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Surfaces

Surfaces are everywhere

I Surface of the earth – a sphere.

I Surface of a doughnut – a torus.

I Solutions to z = y2 − x2 in R3.
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First definition

“Definition”: A surface is a subset S ⊂ R3 that “looks like” the
plane near any point.

More examples... a genus 6 surface.
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Which surfaces are the same?

Surfaces should be considered “the same” if one can be deformed
into the other.

Not general enough...
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Another example

We also want this surface

and this surface to be the same.
To see this, deform this surface to this one.
view it as a rectangle.... with opposite sides glued.
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Homeomorphism

Definition

Given two subsets S1,S2 ⊂ R3, a homeomorphism f : S1 → S2 is a
continuous bijection with continuous inverse. If such f exists, we
say S1 and S2 are homeomorphic, written S1

∼= S2.

This makes precise the terms “looks like” and “the same”.

Definition

S ⊂ R3 is a surface if for all x ∈ S there is an ε > 0 so that the set

Bε(x) = {z ∈ R3 | |z − x | < ε}

is homeomorphic to the unit disk in R2.
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Classification Theorem

Theorem

Every connected compact surface in R3 is homeomorphic to
exactly one of the following.

Genus g surfaces for g ≥ 0.

I Compact ⇒ closed and bounded here
I doesn’t wander off to infinity in R3, and
I contains all limits of its points.

I Connected ⇒ any 2 points connected by a path.
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3-dimensions

Can also define n–dimensional analogues of surfaces:

n–manifolds.

These are much more complicated, even for n = 3

Can use surfaces to study 3–manifolds.
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Mapping torus

φφ

Interesting class of 3–manifolds are mapping tori.

I Start with S × [0, 1].

I Glue S × {0} to S × {1} with a homeomorphism φ : S → S

3–manifold M = Mφ, the mapping torus of φ
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Homeomorphisms and isotopy

Definition

Homeomorphisms φ0, φ1 : S → S

are isotopic if there is a
continuous family of homeomorphisms

φt : S → S

interpolating between φ0 and φ1.

Write φ0 ' φ1.

Fact: φ0 ' φ1 ⇒ Mφ0
∼= Mφ1

Leininger Geometry and dynamics of surface homeomorphisms.
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Mapping class group

Definition

Given a surface S , the mapping class group of S is defined by

MCG(S) = {φ : S → S | φ a homeomorphism }/ '

Facts.
I MCG(S) is a group – a quotient group of Homeo(S).
I For the sphere S , MCG(S) = {[I ], [−I ]}.
I For all other compact connected S , |MCG(S)| =∞
I Generated (almost) by Dehn twists. Ex: T , T 2, T 3
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Torus

The torus T 2 is a square with sides glued.

Alternatively, T 2 = R2/Z2.
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Torus

A ∈ GL(2,Z) defines a linear transformation A : R2 → R2 with
A(Z2) = Z2.

⇒ A “descends” to φA : T 2 → T 2. In fact,

Theorem

Mod(T 2) = GL(2,Z)
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Torus

Examples:

I

(
1 1
0 1

)
fixes the curve

(
1
0

)
I No power of

(
2 1
1 1

)
fixes a (nontrivial) curve
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Torus

(
2 1
1 1

)
has two eigenvectors with eigenvalues λ±1 = 3±

√
5

2 .

Stretch by 3+
√
5

2 , contract by 3−
√
5

2 .

On T 2, lim
n→∞

Length(φnA(γ))

λn
= 1 for all nontrivial curves γ.
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Classification of mapping classes

Theorem (Thurston)

For any compact connected surface S, any element of Mod(S) can
be represented by a homeomorphism φ so that one of the following
holds:

I φk = IdS for some k > 0,

I φ(C ) = C for some finite set of nontrivial curves C , or

I There exists a number λ > 1 so that lim
k→∞

Length(φk(γ))

λk
= 1.

In third (generic) case, can actually assume φ looks like(
λ 0
0 1/λ

)
locally. Third type is called pseudo-Anosov.
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Example in genus 2

T1T 2
2 ↔

(
1 2
0 1

)
T−13 T−24 ↔

(
1 0
2 1

)
.

x1 x2

x4 x3

φ = T1T 2
2 T−13 T−24 ↔

(
5 2
2 1

)
is pseudo-Anosov.

λ = λ(φ) = 3 + 2
√

2
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The dilatation.

The number λ(φ) > 1 is called the dilatation of φ, and it’s a basic
measure of the complexity of φ. Facts:

I The dilatation is not always quadratic, but it is always an
algebraic integer—a root to a monic integral polynomial.

I For a fixed surface S and N > 0, there are only finitely many*
pseudo-Anosov homeomorphisms φ with λ(φ) < N.

I For any g ≥ 1 there are pseudo-Anosov homeomorphisms on
Sg , a genus g surface, φ : Sg → Sg for which

λ(φ) ≤ g
√

4

Leininger Geometry and dynamics of surface homeomorphisms.
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Mapping tori

How does λ(φ) affect Mφ?

Theorem

For any L > 0, the set of mapping tori⋃
g≥1
{Mφ | φ : Sg → Sg , λ(φ) <

g
√

L}

contains only finitely many homeomorphism types of 3–manifolds*.

Fixed g ⇒ finitely many φ : Sg → Sg with λ(φ) ≤ g
√

L.∀ L ≥ 4, g ≥ 1 there is φ : Sg → Sg with λ(φ) ≤ g
√

L.*technical point: must puncture surfaces.
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Final remarks

I Mφ admits a “geometric structure” which is determined by
the type of φ from the classification theorem: pseudo-Anosov
φ have hyperbolic Mφ.

I Several results relating the geometry of Mφ to properties of φ.
Still many interesting open questions about this relationship.
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The End

Thanks!!
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