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D. J. Kleitman

Of three ordinary people, two must have the same sex
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Ramsey Theory – total disorder is impossible

In any collection of six people, either three of them mutually know
each other, or three of them mutually do not know each other.

Is it true for five people?
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Suppose we seek four mutual acquaintances or four mutual
nonacquaintances. How many people are needed?

What about p mutual acquaintances?

Definition

The Ramsey number R(p, p) is the minimum number of people
such that we must have either p mutual acquaintances or p mutual
nonacquaintances

R(3, 3) = 6

R(4, 4) = 18
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43 ≤ R(5, 5) ≤ 49

102 ≤ R(6, 6) ≤ 165

How many possible situations with 49 people?

2(492 ) = 21176
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Ramsey’s Theorem (finite case)

R(p, p) is finite for every positive integer p. Moreover,

(
√

2)p < R(p, p) < 4p

No major improvements since the 1940’s
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Arithmetic Progressions (AP’s)

a a + d a + 2d a + 3d . . .

5 7 9 11 . . .

3 7 11 15
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Suppose we color the numbers 1, 2, 3 with red or blue. We are
guaranteed an AP of length 2 in the same color.

What if we want an AP of length 3?

9 numbers suffice but 8 do not!

1 2 3 4 5 6 7 8

What if we want an AP of length p?
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Definition

W (p) is the minimum n such that every red-blue coloring of
{1, 2, . . . , n} must contain a monochromatic AP of length p.

Van-der-Waerden’s Theorem (1927)

W (p) is finite for every p.
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How big is W (p)?

W (2) = 3

W (3) = 9

W (4) = 35

W (5) = 178

W (6) = 1132

W (p) < ???
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Big Functions

f1(x) = DOUBLE (x) = 2x

f2(x) = EXP(x) = 2x

EXP is obtained by applying DOUBLE x times starting at 1:

2x = f2(x) = 2 · 2 · 2 · · · 2 · 1 = f1(f1(f1(· · · f1(f1(1)))))

where we iterate x times.
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f3(x) = TOWER(x)

TOWER(5) = f3(5) = 22
22

2

= 265536

f4(x) = WOW (x)

For example, f4(4) is a tower of twos of height 65536.

Ackerman Function: g(x) = fx(x)

Ramsey’s Theorem implies that W (p) < g(p).

Shelah’s Theorem

W (p) < f4(5p)
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Conjecture

W (p) < TOWER(p)

for every p.

Ron Graham offered $1000 for this conjecture, and it was claimed
by Tim Gowers in 1998 who proved that

W (p) < 22
22

2p+9

Now Graham offers $1000 for showing that W (p) < 2p
2
.

Lower Bound

W (p) > 2p
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Density Results

Erdős-Turán Conjecture

Fix k ≥ 2 and ε > 0. Then for n sufficiently large, every subset S
of {1, 2, . . . , n} with |S | > εn contains a k-term AP.

Szemerédi’s Theorem

The Erdős-Turán Conjecture is true.

How large is “sufficiently large” ??
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Higher Dimensional Szemerédi Theorem

Multidimensional Szemerédi Theorem (Furstenberg-Katznelson)

For every ε > 0, every positive integer r and every finite subset
X ⊂ Zr there is a positive integer n such that every subset S of
the grid {1, 2, . . . , n}r with |S | > εnr has a subset of the form
~a + dX for some positive integer d .

The Furstenberg-Katznelson proof gave no actual bound on n.
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Hypergraphs

Definition

A k-uniform hypergraph on [n] := {1, 2, . . . , n} is a collection of
k-element subsets of [n].

Definition

A k-simplex is the k-uniform hypergraph on [k + 1] which consists
of all possible k-element sets (there are

(k+1
k

)
= k + 1 of them).
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Graph Removal Lemmas

Question

Suppose we have a graph ( = 2-uniform hypergraph) with few
triangles ( = 2-simplices). Can we delete few edges so that after
removing the edges, there are no triangles?

Rusza-Szemerédi (6,3) theorem

For every a > 0 there exists c > 0 with the following property. If G
is any graph with n vertices and at most cn3 triangles, then it is
possible to remove at most an2 edges from G to make it
triangle-free.
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Hypergraph Removal Lemma

Theorem (Frankl-Rödl, Rödl-Schacht, Gowers)

For every a > 0 there exists c > 0 with the following property. If H
is any k-uniform hypergraph with n vertices and at most cnk+1

k-simplices, then it is possible to remove at most ank edges from
H to make it k-simplex-free.

A corollary to the removal lemma above is that we get an effective
bound for n in the Furstenberg-Katznelson theorem.
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