
Math 215 - Introduction to Advanced Mathematics

Number Theory

Fall 2017

The following introductory guide to number theory is borrowed from Drew Shul-

man and is used in a couple of other Math 215 classes. Over the next 2-3 weeks

our goal as a class is to prove all of the propositions, lemmas, and theorems listed

here simply by using the definitions provided. All of these should be thought of

as your current problem set for this part of the course. I will take all 5 quiz-exam

questions directly from this guide.

Assumptions: For these problems, we assume the existence of the set of natural numbers N =

{1, 2, 3, . . .} and the set of integers Z = {. . . ,−2,−1, 0, 1, 2, . . .}. We also assume the following

basic properties:

• If a, b are integers, then a + b, a− b, and ab are integers.

• If a, b are natural numbers, then a + b and ab are natural numbers.

• If a, b are integers, then exactly one of the following is true: a < b, b < a, or a = b.

• The operations addition and multiplication on the integers are associative, commutative,

and distributive.

Definition 1 Let a, b be integers. We say that a divides b if there exists an integer k such

that ak = b. If a divides b, we write a|b.

Remark 2 If a divides b, we can also say that a is a divisor of b, or that b is a multiple of

a.

Proposition 3 Let a, b, c be integers. If a|b and a|c, then a|(b + c).

Proposition 4 Let a, b, c be integers. If a|b and a|c, then a|(b− c).

Conjecture 5 Let a, b, c be integers. If a|(b + c), then a|b and a|c.

Proposition 6 Let a, b, c be integers. If a|b and a|c, then a|bc.

Proposition 7 Let a, b, c be integers. If a|b, then a|bc.

Proposition 8 Let a, b, c be integers. If a|b and b|c, then a|c.

Proposition 9 If n is an integer, then n|0.
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Corollary 10 If n and a are integers, then n|(a− a).

Proposition 11 Let n, a, b be integers. If n|(a− b), then n|(b− a).

Proposition 12 Let n, a, b, c be integers. If n|(a− b) and n|(b− c), then n|(a− c).

Definition 13 Let a, b be integers and n a natural number. If n|(a− b), then we say that a is

congruent to b modulo n and write

a ≡ bmodn.

Remark 14 Consider two statements P and Q. We write P if and only if Q to mean the

combination of the statements “If P , then Q” AND “If Q, then P”.

Proposition 15 Let a be an integer and n a natural number. n|a if and only if a ≡ 0 modn.

Note: In the above proposition, the statement P is n|a and the statement Q is a ≡ 0 modn.

Proposition 16 Let a be an integer and n a natural number. Then a ≡ amodn.

Proposition 17 Let a, b be integers and n a natural number. If a ≡ bmodn, then b ≡ amodn.

Proposition 18 Let a, b, c be integers and n a natural number. If a ≡ bmodn and b ≡ cmodn,

then a ≡ cmodn.

Proposition 19 Let a, b, c, d be integers and n a natural number. If a ≡ bmodn and c ≡
dmodn, then a + c ≡ b + dmodn.

Proposition 20 Let a, b, c, d be integers and n a natural number. If a ≡ bmodn and c ≡
dmodn, then a− c ≡ b− dmodn.

Proposition 21 Let a, b, c, d be integers and n a natural number. If a ≡ bmodn and c ≡
dmodn, then ac ≡ bdmodn.

Notation 22 If a does not divide b, we notate this by a - b.

Proposition 23 2 - 1

Proposition 24 Let a, b be natural numbers. If a > b, then a - b.

Definition 25 Let S be a set of integers and let l be an element of S. We say that l is a least

element of S if l ≤ s for every s in S.

Proposition 26 Let S be a set of integers and assume that l is a least element of S. If l′ is

some other least element of S, then l = l′.

Note: Proposition 26 says that the least element of a set (if it exists) is unique.

Conjecture 27 Every non-empty set of integers has a least element.



Axiom 28 If S is a non-empty set of non-negative integers, then S has a least element.

Note: An axiom is something we assume to be true without proof.

Challenge 29 Let a be an integer and n a natural number. Show that there exists a unique

integer r such that a ≡ rmodn and 0 ≤ r < n.

Hints: Consider the set S = {a − kn : k is an integer and a − kn ≥ 0}. Show that S only

contains non-negative integers and is non-empty. Use Axiom 28 to find the smallest element of

S and call it r. Show that a ≡ rmodn and explain why 0 ≤ r < n.

Question 30 Why have we labeled the unique integer in Challenge 29 with the letter r? What

does this number represent?

Remark 31 Let a be an integer and n a natural number. Let r be the unique integer as in

Challenge 29. Define the (unique) integer q by the formula a = nq + r. (Why have we chosen

to use the letter q?) Given the integer a and the natural number n, finding the unique integers

q, r such that a = nq + r where 0 ≤ r < n is called the division algorithm.

Proposition 32 Let a, b be integers and n a natural number. If a ≡ bmodn, then a2 ≡
b2 modn.

Proposition 33 Let a, b be integers and n a natural number. If a ≡ bmodn, then a3 ≡
b3 modn.

Proposition 34 Let a, b be integers and n a natural number. If a ≡ bmodn, then ak ≡
bk modn for every natural number k.

Problem 35 For the following pairs of integers a and n, find q and r in the division algorithm.

• a = 5, n = 2

• a = 72, n = 5

• a = 94, n = 100

• a = 7814, n = 1124

Definition 36 Let a and b be positive integers and d an integer such that d|a and d|b. Then

we say that d is a common divisor of a and b.

Definition 37 Let a and b be integers such that not both of a and b are zero. We say an integer

d is a greatest common divisor of a and b if the following two statements are true:

1. d|a and d|b; and

2. if c is any integer such that c|a and c|b, then c ≤ d.

Proposition 38 Let a and b be integers such that not both are zero. Let

D = {am + bn : m and n are integers, and am + bn > 0}.

Then the following statements are true:



1. D is a non-empty set of positive integers.

2. D has a least element. Call that least element d.

3. There exists integers x and y such that d = ax + by.

4. d|a and d|b. [Hint: Use the division algorithm.]

5. If c is any integer such that c|a and c|b, then c|d.

6. If c is any integer such that c|a and c|b, then c ≤ d.

7. d is a greatest common divisor of a and b.

8. The greatest common divisor is unique.

Notation 39 The greatest common divisor of a and b is denoted gcd(a, b).

Lemma 40 Let a, b be natural numbers, and let r be the unique integer as defined by a = bq+r

where 0 ≤ r < b. If d is a natural number, then d|a and d|b if and only if d|b and d|r.

Proposition 41 Let a, b be natural numbers, and let r be the unique integer as defined by

a = bq + r where 0 ≤ r < b. Then gcd(a, b) = gcd(b, r).

Proposition 42 Let a be a natural number. Then gcd(a, 0) = a.

Problem 43 Using the previous two propositions, find the greatest common divisor of the fol-

lowing pairs of natural numbers.

• gcd(7, 2)

• gcd(52, 16)

• gcd(1492, 2014)

• gcd(528740, 615846)

Remark 44 The process of finding the greatest common divisor of two natural numbers using

the previous two propositions is referred to as the Euclidean Algorithm.

Problem 45 For each part, find integers m,n such that gcd(a, b) = am + bn.

• gcd(7, 2)

• gcd(52, 16)

• gcd(1492, 2014)

• gcd(528740, 615846)

Definition 46 Two integers a and b are called relatively prime (or coprime) if gcd(a, b) =

1.



Proposition 47 Two integers a and b are relatively prime if and only if there exists integers

m,n such that am + bn = 1.

Proposition 48 Let a, b be relatively prime integers.

• If a|c and b|c, then ab|c.

• If a|bc, then a|c.

Definition 49 An integer p > 1 is prime if the only positive divisors of p are 1 and p.

Proposition 50 Let p be a prime, and let a be an integer. Then either p|a or p and a are

relatively prime.

Proposition 51 Let p be a prime, and let a, b be integers. If p|ab, then p|a or p|b.

Corollary 52 If p is prime, and p|a1 · a2 · · · ak−1 · ak, then p|ai for some i = 1, 2, . . . , k.

Theorem 53 (Fundamental Theorem of Arithmetic) Let n be an integer greater than 1.

Then

n = pe11 · · · p
ek
k

where the primes p1 < p2 < · · · < pk are distinct and the exponents ei are positive integers.

This prime-factorization is unique.

Theorem 54 (Euclid’s Theorem) There are infinitely many primes.

Hint: There are MANY proofs that there are an infinite number of primes, but Euclid’s proof

is the most beautiful (it is short and sweet). It is perhaps the “prettiest” proof in all of

mathematics. To arrive at a contradiction, assume that there are only finitely many primes.

Call those primes p1, p2, . . . , pk, and consider the integer n = p1p2 · · · pk + 1.


