Math 215 - Introduction to Advanced Mathematics

Sets and Functions Problem Set

Fall 2017

- 1. Determine (find an easier description for) the following sets:
 - $\{m \in \mathbb{Z}^+ : \exists n \in \mathbb{Z}^+, m \le n\}$
 - $\{m \in \mathbb{Z}^+ : \forall n \in \mathbb{Z}^+, m \le n\}$
 - { $m \in \mathbb{Z}^+ : \exists n \in \mathbb{Z}^+, n \le m$ }
 - { $m \in \mathbb{Z}^+ : \forall n \in \mathbb{Z}^+, n \le m$ }
- 2. For each $n \in \mathbb{N}$ let

$$A_n = \left(\frac{1}{2}, \frac{1}{2} + \frac{1}{n}\right).$$

Find $\bigcup_{n \in \mathbb{N}} A_n$ and $\bigcap_{n \in \mathbb{N}} A_n$. In this problem, the notation (a, b) stands for the open interval of real numbers from a to b. So

$$(a, b) = \{ x \in \mathbb{R} : a < x < b \}.$$

It does not mean a point or a set of two elements.

3. Prove de Morgan's laws, that for any sets A and B (in some universe U), the following hold:

$$(A \cup B)^c = A^c \cap B^c$$
$$(A \cap B)^c = A^c \cup B^c.$$

- 4. Prove that for any two sets, A and B, the following statements hold:
 - $A \subseteq B$ if and only if $A \cup B = B$.
 - $A \subseteq B$ if and only if $A \cap B = A$.
 - $A \cup B = B$ if and only if $A \cap B = A$.
- 5. Prove that if $A \cap B \subseteq C$ and $x \in B$, then $x \notin A \setminus C$.

6. Prove that for any two sets, A and B,

$$A \subseteq B \iff \bar{B} \subseteq \bar{A},$$

where the complement is taken with respect to some universal set U.

7. Prove for any sets A, B, C, and D, that

$$(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D).$$

Show that these two sets are not necessarily equal. Here $A \times B$ stands for the Cartesian Product (ordered pairs) of the sets A and B,

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

- 8. Let A be a finite set with exactly n elements. How many elements are in the power set $\mathcal{P}(A)$?
- 9. Find functions $f_i : \mathbb{R} \to \mathbb{R}$ with the following images (the range):
 - $\operatorname{Im}(f_1) = \mathbb{R}$
 - $\operatorname{Im}(f_2) = \mathbb{R}^+$
 - $\operatorname{Im}(f_3) = \mathbb{R} \setminus \mathbb{Z}$
 - $\operatorname{Im}(f_4) = \mathbb{Z}$
- 10. Determine whether each of the following functions $f_i : \mathbb{R} \to \mathbb{R}$ is injective, surjective, or bijective:
 - $f_1(x) = 2x + 5$
 - $f_2(x) = x^2 + 2x + 1$
 - $f_3(x) = x^3$
 - $f_4(x) = e^x$
- 11. Prove that if $f: X \to Y$ and $g: Y \to Z$ are injections, then the function $g \circ f: X \to Z$ is also an injection.
- 12. Prove that if $f: X \to Y$ and $g: Y \to Z$ are bijections, then the function $g \circ f: X \to Z$ is also a bijection, and that the two functions $(g \circ f)^{-1}: Z \to X$ and $f^{-1} \circ g^{-1}: Z \to X$ are equal.