
Math 215 - Introduction to Advanced Mathematics

Sets and Functions Problem Set Solutions

Fall 2017

1. Determine the following sets:

• {m ∈ Z+ : ∃n ∈ Z+,m ≤ n}
• {m ∈ Z+ : ∀n ∈ Z+,m ≤ n}
• {m ∈ Z+ : ∃n ∈ Z+, n ≤ m}
• {m ∈ Z+ : ∀n ∈ Z+, n ≤ m}

The sets are Z+, {1}, Z+, and ∅.

2. For each n ∈ N let

An =

(
1

2
,
1

2
+

1

n

)
.

Find
⋃

n∈NAn and
⋂

n∈NAn.

First,
⋃

n∈NAn =
(
1
2 ,

3
2

)
.

Proof. The fact that (
1

2
,
3

2

)
⊆
⋃
n∈N

An

is trivial. So we need only show that the opposite is true. Let

x ∈
(

1

2
,
1

2
+

1

n

)
for some n ∈ N. Then since 1/n ≤ 1 for any such n, it follows that

x ∈
(

1

2
,
3

2

)
and we are done.
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Next,
⋂

n∈NAn = ∅.

Proof. Assume, towards a contradiction, that there exists some number x ∈
⋂

n∈NAn.
Certainly, if x ≤ 1/2, then this is an immediate contradiction so assume that 1/2 < x.
Therefore, x = 1/2 + ε for some positive ε. Since we know that 1/n→ 0 as n→∞,
then there must exist some N ∈ N for which

1

N
< ε.

Therefore,

x =
1

2
+ ε >

1

2
+

1

N
.

Hence,

x 6∈
(

1

2
,
1

2
+

1

N

)
.

Therefore, x cannot be in the intersection, a contradiction.

3. Prove de Morgan’s laws, that for any sets A and B (in some universe U), the following
hold:

(A ∪B)c = Ac ∩Bc

(A ∩B)c = Ac ∪Bc.

First, we’ll show that (A ∪B)c = Ac ∩Bc.

Proof. Let x ∈ (A∪B)c. Then x 6∈ A∪B. If either x ∈ A or x ∈ B, then x ∈ A∪B.
Therefore, x 6∈ A and x 6∈ B. So x ∈ Ac and x ∈ Bc. Thus, x ∈ Ac ∩ Bc. So
(A ∪B)c ⊆ Ac ∩Bc.

Conversely, if x ∈ Ac ∩ Bc. Then x ∈ Ac and x ∈ Bc. Therefore, x 6∈ A and x 6∈ B.
So x 6∈ A ∪B. Hence, x ∈ (A ∪B)c.

Next, we’ll show that (A ∩B)c = Ac ∪Bc.

Proof. Let x ∈ (A∩B)c, then x 6∈ A∩B. So either x 6∈ A or x 6∈ B. In the first case,
x ∈ Ac and therefore, x ∈ Ac ∪Bc. In the other case, x ∈ Bc and so x ∈ Ac ∪Bc.

Conversely, if x ∈ Ac ∪Bc, then either x ∈ Ac or x ∈ Bc. So either x 6∈ A or x 6∈ B.
In either case, x 6∈ A ∩B. Hence, x ∈ (A ∩B)c.

4. Prove that for any two sets, A and B, the following statements hold:

• A ⊆ B if and only if A ∪B = B.
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Proof. (⇒) Assume that A ⊆ B. If x ∈ A ∪ B, then either x ∈ B and we’re
done or x ∈ A and by the assumption that A ⊆ B, then x ∈ B. Conversely, if
x ∈ B, then x ∈ A ∪B by definition of union. So A ∪B = B.

(⇐) Assume that A ∪ B = B. Let x ∈ A. Then x ∈ A ∪ B. Hence, x ∈ B. So
A ⊆ B.

• A ⊆ B if and only if A ∩B = A.

Proof. (⇒) Assume that A ⊆ B. Let x ∈ A ∩ B, then x ∈ A by definition of
intersection. So A ∩B ⊆ A. Conversely, let x ∈ A, then by assumption, x ∈ B.
Therefore, x ∈ A ∩B. So A ⊆ A ∩B and we are done.

(⇐) Now assume that A ∩B = A. Let x ∈ A. Then x ∈ A ∩B by assumption.
So x ∈ B by definition of intersection. Thus, A ⊆ B.

• A ∪B = B if and only if A ∩B = A.

Proof. By the first and second parts of this problem A ∪ B = B if and only if
A ⊆ B if and only if A ∩B = A.

5. Prove that if A ∩B ⊆ C and x ∈ B, then x 6∈ A \ C.

Proof. Assume that A ∩ B ⊆ C and that x ∈ B. Assume towards a contradiction
that x ∈ A \ C. Then x ∈ A and x 6∈ C by definition of set difference. Since x ∈ A
and x ∈ B, then x ∈ A ∩ B. So by assumption that A ∩ B ⊆ C, we see that x ∈ C,
a contradiction.

6. Prove that for any two sets, A and B,

A ⊆ B ⇐⇒ B̄ ⊆ Ā,

where the complement is taken with respect to some universal set U .

Proof. (⇒) Let A ⊆ B and assume towards a contradiction that B̄ 6⊆ Ā. Therefore,
there exists some element x ∈ B̄ such that x 6∈ Ā. Hence, x 6∈ B and x ∈ A. Thus,
A 6⊆ B, a contradiction.

(⇐) We’ve just shown that for any two sets A and B that

A ⊆ B ⇒ B̄ ⊆ Ā.

Therefore,
B̄ ⊆ Ā⇒ ¯̄A ⊆ ¯̄B ⇒ A ⊆ B.
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7. Prove for any sets A, B, C, and D, that

(A×B) ∪ (C ×D) ⊆ (A ∪ C)× (B ∪D).

Show that these two sets are not necessarily equal.

Proof. Let (x, y) ∈ (A × B) ∪ (C × D). So either x ∈ A and y ∈ B or x ∈ C and
x ∈ D. In either case x ∈ A∪C and y ∈ B∪D. Hence, (x, y) ∈ (A∪C)×(B∪D).

The two sets are not always equal as the following example shows:

A = B = {1}
C = D = {2}

(A×B) ∪ (C ×D) = {(1, 1), (2, 2)}
(A ∪ C)× (B ∪D) = {(1, 1), (1, 2), (2, 1), (2, 2)}

8. Let A be a finite set with exactly n elements. How many elements are in the power
set P(A)?

We can construct any subset of A by looking at each element of A in turn and deciding
whether or not it belongs to the subset. So for each element we have two choices, in
or out. Therefore, at the end of the n elements there were 2n possible combinations
of decisions we could have made. Therefore, there are 2n different subsets of A.

We can prove this more formally by using a proof technique called induction that
we will talk a lot more about in class.

Proposition 0.1. Let A be a finite set with |A| = n (this is notation for A has n
elements), then |P(A)| = 2n.

Proof. First, when n = 1, then A = {a1} for some element a1. So P(A) = {∅, {a1}}.
Therefore, |P(A)| = 21 and the proposition is true for n = 1.

Next, assume that n > 1 and that the proposition is true for any set with n − 1
elements. Let

A = {a1, . . . , an}.

We will count the number of subsets of A by counting the number of subsets that do
not contain the element an and then counting the ones that do.

Consider the set A \ {an}. It has n − 1 elements. Therefore, there are exactly 2n−1

different subsets of A \ {an} according to our assumption. Therefore, there are 2n−1

subsets of A that do not contain the element an.
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So now we need to count the number of subsets of A that contain the element an.
Each of these subsets can be thought of as {an} ∪ B for some subset B ⊆ A \ {an}.
Moreover, if B1, B2 ⊆ A \ {an} are two distinct subsets (B1 6= B2), then

B1 ∪ {an} 6= B2 ∪ {an}.

So there must be 2n−1 subsets of A that contain an. Therefore,

|P(A)| = 2n−1 + 2n−1 = 2n.

Do you see why this kind of argument works?

9. Find functions fi : R→ R with the following images:

• Im(f1) = R
• Im(f2) = R+

• Im(f3) = R \ Z
• Im(f4) = Z

Many different answers for this one. For example, the floor function, bxc, defined by
taking the biggest integer less than or equal to x is a good f4.

10. Determine whether each of the following functions fi : R→ R is injective, surjective,
or bijective:

• f1(x) = 2x+ 5

This one is bijective.

Proof. Let f1(x1) = f1(x2), then

2x1 + 5 = 2x2 + 5

2x1 = 2x2

x1 = x2

So it is injective.

Let y ∈ R. Then y−5
2 ∈ R, and

f1

(
y − 5

2

)
= y.

So f1 is surjective. Therefore, f1 is a bijection.
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• f2(x) = x2 + 2x+ 1

This one is neither. Since x = 0 and x = −2 both give f2(x) = 1, then it is
not injective. And setting f2(x) = −1 gives complex values for x so it is not
surjective.

• f3(x) = x3

This is a bijection.

Proof. Let f3(x1) = f3(x2) for some x1, x2 ∈ R, then

x31 = x32

x1 = x2

So f3 is an injection.

Let y ∈ R, then it is known that the cube root of y is also a real number. Hence,
f3 is surjective. Therefore, it is a bijection.

• f4(x) = ex

This function is not surjective since there exists no real number x for which
ex = −1. However, it is injective.

Proof. Let x1, x2 ∈ R such that f4(x1) = f4(x2). Then

ex1 = ex2

x1 = x2

by taking the natural log of both sides. So the function is injective.

11. Prove that if f : X → Y and g : Y → Z are injections, then the function g◦f : X → Z
is also an injection.

Proof. Let x1, x2 ∈ X such that

(g ◦ f)(x1) = (g ◦ f)(x2).

Then g(f(x1)) = g(f(x2)). Since g is injective, then it follows that f(x1) = f(x2).
Since f is injective, then if follows that x1 = x2. Thus, g ◦ f is injective.
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12. Prove that if f : X → Y and g : Y → Z are bijections, then the function g◦f : X → Z
is also a bijection, and that the two functions (g◦f)−1 : Z → X and f−1◦g−1 : Z → X
are equal.

Proof. In the previous problem we showed that g ◦ f must be injective, and on the
Worksheet we showed that g ◦ f must be surjective. Therefore, it is a bijection. So
it must have a unique inverse, (g ◦ f)−1 (again, from the worksheet). Therefore, to
show that

f−1 ◦ g−1 = (g ◦ f)−1

we need only show that composing the function f−1 ◦ g−1 with the function g ◦ f
gives the identity functions (idX or idZ depending on the order of composition).

So for all x ∈ X, (
(f−1 ◦ g−1) ◦ (g ◦ f)

)
(x) = (f−1 ◦ g−1)(g(f(x)))

= f−1(g−1(g(f(x))))

= f−1(f(x))

= x

So
(f−1 ◦ g−1) ◦ (g ◦ f) = idX .

Similarly, for any z ∈ Z,(
(g ◦ f) ◦ (f−1 ◦ g−1)

)
(z) = (g ◦ f)(f−1(g−1(z)))

= g(f(f−1(g−1(z))))

= g(g−1(z))

= z

So
(g ◦ f) ◦ (f−1 ◦ g−1) = idZ .
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