Math 215 - Introduction to Advanced Mathematics

Sets and Functions Problem Set Solutions

Fall 2017

1. Determine the following sets:

e {meZ"t:3IneZ ", m<n}
e {meZt:¥YneZt,m<n}
e {meZ"t:3IneZ n<m}
e {meZt:¥YneZt n<m}

The sets are Z*1, {1}, ZT, and 0.

2. For each n € N let

Find J,,eny An and (), cn An-

First, U, ey An = (%7 %)

Proof. The fact that
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neN

is trivial. So we need only show that the opposite is true. Let
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for some n € N. Then since 1/n <1 for any such n, it follows that
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and we are done.



Next, ey An = 0.

Proof. Assume, towards a contradiction, that there exists some number = € (), oy An-
Certainly, if x < 1/2, then this is an immediate contradiction so assume that 1/2 < z.
Therefore, = 1/2 + ¢ for some positive e. Since we know that 1/n — 0 as n — oo,

then there must exist some N € N for which
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Hence,
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Therefore, © cannot be in the intersection, a contradiction. O

3. Prove de Morgan’s laws, that for any sets A and B (in some universe U ), the following
hold:
(AUB)® = A°N B¢
(AN B)¢ = A°U B“.

First, we’ll show that (AU B)¢ = A°N B°.

Proof. Let x € (AUB)¢. Then x ¢ AU B. If either x € Aor x € B, then x € AUB.
Therefore, + ¢ A and v ¢ B. So x € A° and z € B°. Thus, z € A°N B¢ So
(AUB)® C A°N B°.

Conversely, if z € A°N B¢. Then z € A° and x € B¢. Therefore, x ¢ A and = ¢ B.
So x ¢ AU B. Hence, z € (AU B)°“. O
Next, we’ll show that (AN B)¢ = A°U B°.

Proof. Let x € (AN B)¢, then z ¢ AN B. So either x ¢ A or x ¢ B. In the first case,
r € A€ and therefore, x € A° U B€. In the other case, x € B¢ and so z € A° U B€.

Conversely, if € A°U B¢, then either € A° or x € B®. So either € A or x ¢ B.
In either case, x ¢ AN B. Hence, x € (AN B)°. O

4. Prove that for any two sets, A and B, the following statements hold:
e AC B ifandonly if AUB = B.



Proof. (=) Assume that A C B. If x € AU B, then either x € B and we're
done or x € A and by the assumption that A C B, then x € B. Conversely, if
x € B, then x € AU B by definition of union. So AU B = B.

(<) Assume that AUB = B. Let x € A. Then v € AU B. Hence, x € B. So
ACB. O

e AC Bifandonly if ANB = A.

Proof. (=) Assume that A C B. Let x € AN B, then € A by definition of
intersection. So AN B C A. Conversely, let z € A, then by assumption, x € B.
Therefore, z € AN B. So A C AN B and we are done.

(<) Now assume that AN B = A. Let x € A. Then z € AN B by assumption.
So x € B by definition of intersection. Thus, A C B. O

e AUB=Bifand only if ANB = A.

Proof. By the first and second parts of this problem AU B = B if and only if
A C Bif and only if AN B = A. O

5. Prove that if ANB C C and v € B, thenx ¢ A\ C.

Proof. Assume that AN B C C and that x € B. Assume towards a contradiction
that z € A\ C. Then x € A and = ¢ C by definition of set difference. Since z € A
and x € B, then x € AN B. So by assumption that AN B C C, we see that x € C,
a contradiction. O
6. Prove that for any two sets, A and B,
ACB < BCA,

where the complement is taken with respect to some universal set U.

Proof. (=) Let A C B and assume towards a contradiction that B ¢ A. Therefore,
there exists some element = € B such that x ¢ A. Hence, x ¢ B and x € A. Thus,
A ¢ B, a contradiction.

(<) We've just shown that for any two sets A and B that
ACB=BCA.

Therefore,

D>II

BCA=ACB= ACB.



7. Prove for any sets A, B, C, and D, that
(AxB)U(CxD)C(AUC)x (BUD,).

Show that these two sets are not necessarily equal.

Proof. Let (z,y) € (Ax B)U(C x D). So either z € A and y € B or x € C and
x € D. In either case x € AUC and y € BUD. Hence, (z,y) € (AUC)x (BUD). O

The two sets are not always equal as the following example shows:

A=B={1}
C=D={2

(Ax B)U(C x D) ={(1,1),(2,2)}

(AUC) x (BUD)=1{(1,1),(1,2),(2,1),(2,2)}

8. Let A be a finite set with exactly n elements. How many elements are in the power

set P(A)?

We can construct any subset of A by looking at each element of A in turn and deciding
whether or not it belongs to the subset. So for each element we have two choices, in
or out. Therefore, at the end of the n elements there were 2™ possible combinations
of decisions we could have made. Therefore, there are 2" different subsets of A.

We can prove this more formally by using a proof technique called induction that
we will talk a lot more about in class.

Proposition 0.1. Let A be a finite set with |A| = n (this is notation for A has n
elements), then |P(A)| = 2".

Proof. First, when n = 1, then A = {a1} for some element a;. So P(A) = {0, {a1}}.
Therefore, |P(A)| = 2! and the proposition is true for n = 1.

Next, assume that n > 1 and that the proposition is true for any set with n — 1
elements. Let
A=A{a,...,an}.

We will count the number of subsets of A by counting the number of subsets that do
not contain the element a, and then counting the ones that do.

Consider the set A\ {a,}. It has n — 1 elements. Therefore, there are exactly 27!
different subsets of A\ {a,} according to our assumption. Therefore, there are 27!
subsets of A that do not contain the element a,,.



10.

So now we need to count the number of subsets of A that contain the element a,,.
Each of these subsets can be thought of as {a,} U B for some subset B C A\ {a,}.
Moreover, if By, B C A\ {a,} are two distinct subsets (B; # Bs), then

B; U {an} # By U {an}

So there must be 277! subsets of A that contain a,. Therefore,

P(A)| =2""1o2n !t =2n,

Do you see why this kind of argument works?

Find functions f; : R — R with the following images:

e Im(f1)=R

o Im(fy) =R"

e Im(f3) =R\ Z
e Im(fy) =%

Many different answers for this one. For example, the floor function, |z], defined by
taking the biggest integer less than or equal to z is a good fy.

Determine whether each of the following functions f; : R — R is injective, surjective,
or bijective:

[} fl(ﬂj‘) :21'—"5

This one is bijective.
Proof. Let f1(x1) = fi(z2), then

201 +5=2x2+5
2x1 = 2x9

r1 = X9

So it is injective.
Let y € R. Then y2;5 € R, and

f1 <y2—5> =y.

So fi is surjective. Therefore, f is a bijection. O



o folr) =22 +22+1

This one is neither. Since x = 0 and x = —2 both give fa(x) = 1, then it is
not injective. And setting fo(z) = —1 gives complex values for z so it is not
surjective.

[ fg(l‘) = CCB
This is a bijection.

Proof. Let fs(x1) = f3(x2) for some x1,z9 € R, then

2% = o
r1 = T2

So f3 is an injection.
Let y € R, then it is known that the cube root of y is also a real number. Hence,
f3 is surjective. Therefore, it is a bijection. O

o fy(x)=¢€"

This function is not surjective since there exists no real number = for which
e” = —1. However, it is injective.

Proof. Let z1,x2 € R such that fq(x1) = fa(x2). Then

et — T2
r1 = T2
by taking the natural log of both sides. So the function is injective. O

11. Provethatif f: X =Y andg:Y — Z areinjections, then the function gof : X — Z
s also an injection.

Proof. Let x1,z2 € X such that

(g0 f)(x1) = (g o f)(w2).

Then g(f(z1)) = g(f(x2)). Since g is injective, then it follows that f(z1) = f(x2).
Since f is injective, then if follows that x1 = x2. Thus, g o f is injective. 0



12. Provethatif f: X =Y andg:Y — Z are bijections, then the function gof : X — Z
is also a bijection, and that the two functions (gof)™ : Z — X and flog™': Z - X
are equal.

Proof. In the previous problem we showed that g o f must be injective, and on the
Worksheet we showed that g o f must be surjective. Therefore, it is a bijection. So
it must have a unique inverse, (g o f)~! (again, from the worksheet). Therefore, to
show that

fTrogt=(gof)7!
we need only show that composing the function f~! o g~! with the function g o f

gives the identity functions (idy or idz depending on the order of composition).
So for all x € X,

1

(fTog™Holgo ) (@) = (fog ) (g(f(2)))

So

So



