Math 215 - Introduction to Advanced Mathematics

Graph Theory Problem Set

Fall 2017

1. Let $G_k = (V, E)$ be a graph with vertex set $V = \{0, 1\}^k$ and edge set

 $E = \{xy : x \text{ and } y \text{ differ in exactly one position}\}.$

Is G_k bipartite? Prove or disprove your answer.

- 2. Let G = (V, E) be a graph with no cycles smaller than C_5 . Fix some positive integer k. If $d(x) \ge k$ for all $x \in V$, then prove that G must have at least $k^2 + 1$ vertices.
- 3. Remove opposite corner squares from an 8×8 checkerboard. Prove that you cannot cover every square of the board using dominos $(1 \times 2 \text{ pieces})$.
- 4. For a natural number n let S_n be the set of all **permutations** of [n]. That is, S_n is the set of all possible ordered n-tuples of the numbers $1, 2, \ldots, n$ such that no number repeats. For example,

$$S_3 = \{123, 132, 213, 231, 312, 321\}.$$

Let $G_n = (V, E)$ be the graph with vertex set $V = S_n$ such that $ab \in E$ if and only if we can get the permutation b from the permutation a by swapping two numbers that are next to each other. For instance, 312 and 321 are adjacent as vertices of G_3 , but 123 and 321 are not.

What is the degree of any vertex in G_n ? Prove that G_n is connected.

- 5. Reprove König's Theorem by using induction on the number of edges to show that if a graph G contains no odd cycles, then it is bipartite.
- 6. Let G = (V, E) be a graph. Prove that G is bipartite if and only if every subgraph H = (V', E') of G has an independent set consisting of at least half of the vertices from V'.
- 7. Prove that every graph on n vertices with at least n edges contains a cycle.