Math 215 - Introduction to Advanced Mathematics

Sets and Functions Quiz-Exam Solutions and Rubric

Fall 2017

- 1. Determine the following sets (just give a simple description for each one, no proof necessary):
 - $\{m \in \mathbb{Z}^+ : \exists n \in \mathbb{Z}^+, m \le n\}$
 - $\{m \in \mathbb{Z}^+ : \forall n \in \mathbb{Z}^+, m \le n\}$
 - $\{m \in \mathbb{Z}^+ : \exists n \in \mathbb{Z}^+, n \le m\}$
 - $\{m \in \mathbb{Z}^+ : \forall n \in \mathbb{Z}^+, n \leq m\}$

The sets are \mathbb{Z}^+ , $\{1\}$, \mathbb{Z}^+ , and \emptyset .

2. Prove that if $A \cap B \subseteq C$ and $x \in B$, then $x \notin A \setminus C$.

Proof. Assume that $A \cap B \subseteq C$ and that $x \in B$. Assume towards a contradiction that $x \in A \setminus C$. Then $x \in A$ and $x \notin C$ by definition of set difference. Since $x \in A$ and $x \in B$, then $x \in A \cap B$. So by assumption that $A \cap B \subseteq C$, we see that $x \in C$, a contradiction.

3. Prove that if $f: X \to Y$ and $g: Y \to Z$ are injections, then the function $g \circ f: X \to Z$ is also an injection.

Proof. Let $x_1, x_2 \in X$ such that

$$(g \circ f)(x_1) = (g \circ f)(x_2).$$

Then $g(f(x_1)) = g(f(x_2))$. Since g is injective, then it follows that $f(x_1) = f(x_2)$. Since f is injective, then if follows that $x_1 = x_2$. Thus, $g \circ f$ is injective.

4. Prove that intersection distributes over union. That is, prove that for any sets A, B, and C:

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C).$$

Proof. Let $x \in A \cap (B \cup C)$, then $x \in A$ and $x \in B \cup C$. So either $x \in B$ or $x \in C$. If $x \in B$, then $x \in A \cap B$ and therefore, $x \in (A \cap B) \cup (A \cap C)$. If $x \in C$, then $x \in A \cap C$ and so again $x \in (A \cap B) \cup (A \cap C)$. Hence,

$$A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C).$$

In the other direction, let $x \in (A \cap B) \cup (A \cap C)$. Then either $x \in A \cap B$ or $x \in A \cap C$. In the first case, $x \in A$ and $x \in B$. Thus, $x \in A$ and $x \in B \cup C$. So $x \in A \cap (B \cup C)$. In the second case, $x \in A$ and $x \in C$. Thus, $x \in A$ and $x \in B \cup C$. So $x \in A \cap (B \cup C)$. Hence,

$$(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C),$$

and so the two sets are equal.

5. Prove that if $f: X \to Y$ and $g: Y \to Z$ are surjections, then the function

$$g \circ f : X \to Z$$

is also a surjection.

Proof. Let $z \in Z$. Since g is a surjection, then there exists a $y \in Y$ such that g(y) = z. Since f is a surjection, then there exists an $x \in X$ such that f(x) = y. Therefore,

$$(g \circ f)(x) = z.$$

Hence, $g \circ f$ is surjective.