Math 215 - Introduction to Advanced Mathematics

Sets and Functions Quiz-Exam, Take 2

Fall 2017

1. We use standard interval notation in what follows. That is, for real numbers a < b,

$$(a,b) = \{r \in \mathbb{R} : a < r < b\} \\ [a,b) = \{r \in \mathbb{R} : a \le r < b\} \\ (a,b] = \{r \in \mathbb{R} : a < r \le b\} \\ [a,b] = \{r \in \mathbb{R} : a \le r \le b\} \\ [a,b] = \{r \in \mathbb{R} : a \le r \le b\}$$

For any $n \in \mathbb{N}$, define the set A_n as

$$A_n = \left(0, \frac{1}{n}\right).$$

You may assume the following fact is true without proof: for any real number $\epsilon \in (0,1)$, there exists a natural number k such that $\frac{1}{k+1} \leq \epsilon < \frac{1}{k}$.

(a) What is

$$\bigcup_{n \in \mathbb{N}} A_n?$$

Prove that your answer is correct.

Solution:

$$\bigcup_{n \in \mathbb{N}} A_n = (0, 1)$$

Proof. Let $x \in \bigcup_{n \in \mathbb{N}} A_n$, then $x \in (0, 1/n)$ for some n. Since $(0, 1/n) \subseteq (0, 1)$ for any $n \in \mathbb{N}$, then $x \in (0, 1)$. Conversely, if $x \in (0, 1)$, then x belongs to the first set of this union. Hence, by definition of union, $x \in \bigcup_{n \in \mathbb{N}} A_n$.

(b) What is

$$\bigcap_{n=1}^{5} A_n?$$

Solution:

$$\bigcap_{n=1}^{5} A_n = \left(1, \frac{1}{5}\right).$$

(c) What is

$$\bigcap_{n \in \mathbb{N}} A_n?$$

Prove that your answer is correct.

Solution:

$$\bigcap_{n\in\mathbb{N}}A_n=\emptyset$$

Proof. Suppose $\bigcap_{n \in \mathbb{N}} A_n$ is not empty. Then there exists some $\epsilon \in \bigcap_{n \in \mathbb{N}} A_n$. So $\epsilon \in A_1 = (0, 1)$ by definition of intersection. Therefore, by the fact above, we know that there exists a natural number k such that

$$\frac{1}{k+1} \le \epsilon < \frac{1}{k}.$$

Hence,

$$\epsilon \not\in \left(0, \frac{1}{k+1}\right),$$

a contradiction.

(d) For any n, what is $A_n \setminus A_{n+1}$?

Solution:

$$A_n \setminus A_{n+1} = \left[\frac{1}{n+1}, \frac{1}{n}\right).$$

(e) What is

$$\bigcup_{n\in\mathbb{N}} (A_n\setminus A_{n+1})?$$

Prove that your answer is correct.

Solution:

$$\bigcup_{n\in\mathbb{N}} \left(A_n \setminus A_{n+1}\right) = (0,1)$$

Proof. Let $x \in \bigcup_{n \in \mathbb{N}} (A_n \setminus A_{n+1})$, then

$$x \in A_n \setminus A_{n+1} = \left[\frac{1}{n+1}, \frac{1}{n}\right)$$

for some $n \in \mathbb{N}$. So $x \in (0,1)$. Conversely, if $x \in (0,1)$, then by the fact we assume above, there exists some natural number k such that

$$\frac{1}{k+1} \le x < \frac{1}{k}.$$

Hence,

$$x \in \bigcup_{n \in \mathbb{N}} \left(A_n \setminus A_{n+1} \right)$$

	- Г
 - 1	
	- L

- 2. Let $A = \{a, b, c\}$ and $B = \{b, d\}$.
 - (a) What is $A \cap B$?

Solution:

 $\{b\}$

(b) What is $\mathcal{P}(A)$?

Solution:

$$\{ \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{c, b\}, \{a, b, c\} \}$$

(c) What is $\mathcal{P}(B)$?

Solution:

- $\{ \emptyset, \{b\}, \{d\}, \{b, d\} \}$
- (d) What is $\mathcal{P}(A \cap B)$?

Solution:

(e) What is $\mathcal{P}(A) \cap \mathcal{P}(B)$?

Solution:

$\{\emptyset, \{b\}\}$

 $\{ \emptyset, \{b\} \}$

(f) Prove that in general, for any two sets S and T,

$$\mathcal{P}(S \cap T) = \mathcal{P}(S) \cap \mathcal{P}(T).$$

Solution:

Proof. Let $A \in \mathcal{P}(S \cap T)$. Then $A \subseteq S \cap T$. So $A \subseteq S$ and $A \subseteq T$. So $A \in \mathcal{P}(S)$ and $A \in \mathcal{P}(T)$. Hence, $A \in \mathcal{P}(S) \cap \mathcal{P}(T)$. Conversely, let $A \in \mathcal{P}(S) \cap \mathcal{P}(T)$. Then $A \in \mathcal{P}(S)$ and $A \in \mathcal{P}(T)$. So $A \subseteq S$ and $A \subseteq T$. Therefore, $A \subseteq S \cap T$. So $A \in \mathcal{P}(S \cap T)$.

- 3. In the following questions determine whether the function f is injective, surjective, both (bijective), or neither. Prove your answer is correct.
 - (a) $f : \mathbb{R} \to \mathbb{Z}$ defined by $f(x) = \lceil x \rceil$ (the ceiling function returns the integer *n* for which $n 1 < x \le n$

Solution: f is not injective since f(0.9) = 1 = f(1). f is surjective

Proof. Let $y \in \mathbb{Z}$. Then $y \in \mathbb{R}$ as well and f(y) = y.

(b) Let S be the set of finite subsets of \mathbb{Z} . Then $f: S \to \mathbb{Z}$ is defined by f(A) = |A| (the number of elements in A).

Solution: f is neither injective or surjective. It is not surjective since $-1 \in \mathbb{Z}$, but no set can contain -1 elements. It is not injective since $f(\{1\}) = 1 = f(\{2\})$.

(c) Let S = {1, x, x², ..., x^k, ...}, the set of all monic monomials in a single variable. Define f : S → Z by f(p(x)) = deg(p(x)), the degree of the polynomial.
Solution: f is not surjective since -1 ∈ Z, but no polynomial has degree -1. f is injective.

Proof. Let $p(x), q(x) \in S$ such that f(p(x)) = f(q(x)). Since $p(x) = x^k$ and $q(x) = x^{k'}$ for some nonnegative integers k, k', then $f(x^k) = f(x^{k'})$. So k=k'. Hence, p(x) = q(x). So f is injective.

(d) Let U be a set. Define $f : \mathcal{P}(U) \to \mathcal{P}(U)$ by $f(A) = U \setminus A$.

Solution: f is a bijection.

Proof. Let $A, B \in \mathcal{P}(U)$ such that f(A) = f(B). Then $U \setminus A = U \setminus B$. We want to show that A = B to prove this function is injective. Let $x \in A$. Then $x \in U$. Hence, $x \notin U \setminus A$. Therefore, $x \notin U \setminus B$. Since $x \in U$ this means that $x \in B$ by definition of the set difference. Therefore, $A \subseteq B$. The same argument shows that $B \subseteq A$. Hence, A = B and so f is injective. Now, let $A \in \mathcal{P}(U)$. Then

$$(U \setminus A) = U \setminus (U \setminus A)$$

= { $x \in U : x \notin U \setminus A$ }
= { $x \in U : x \notin U \text{ or } x \in U \cap A = A$ }
= { $x \in U : x \in A$ }
= A .

So f is surjective.

4. Prove that if $f: X \to Y$ and $g: Y \to Z$ are surjections, then the function

$$g \circ f : X \to Z$$

is also a surjection.

Solution:

Proof. Let $z \in Z$. Since g is a surjection, then there exists a $y \in Y$ such that g(y) = z. Since f is a surjection, then there exists an $x \in X$ such that f(x) = y. Therefore,

$$(g \circ f)(x) = z$$

Hence, $g \circ f$ is surjective.

5. Show by induction that the sum of the first k odd integers is equal to k^2 .

Solution:

Proof. Base case: If k = 1, then this is clearly true.

Induction Step: Assume that $k \ge 2$, and that the sum of the first k-1 odd numbers is $(k-1)^2$. Then

$$1 + \dots + (2k - 3) = (k - 1)^2$$

$$1 + \dots + (2k - 3) + (2k - 1) = (k - 1)^2 + (2k - 1)$$

$$1 + \dots + (2k - 3) + (2k - 1) = k^2 - 2k + 1 + 2k - 1$$

$$1 + \dots + (2k - 3) + (2k - 1) = k^2$$