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Mathematical statements that we want to prove take the form

A =⇒ B

which we read as “A implies B” or “If A, then B.” A (the hypothesis) and B (the con-
clusion) are themselves mathematical statements like “p|a” or “S is a subset of T” or
whatever. A direct proof of A =⇒ B is a series of statements beginning with A and
ending with B where each statement follows logically from the ones before it.

1 Wiggles the Cat

Here is a stupid example of a direct proof. Assume that the following things are true.

Fact 1.1. If Wiggles the Cat is mad, then he is a dentist.

Fact 1.2. Every dentist has a secret.

Fact 1.3. If any cat has a secret, then it may come to dinner.

Then we can prove the following proposition.

Proposition 1.4. If Wiggles the Cat is mad, then he may come to dinner.

Proof. To prove this statement, we’ll start by assuming the hypothesis (“Wiggles the Cat
is mad”) is true, and use logical steps to arrive at the desired conclusion (“he may come
to dinner”).

1. Assume that Wiggles the Cat is mad.

2. Then by Fact 1.1 it follows that he is a dentist.

3. Since Wiggles is a dentist, then by Fact 1.2, he has a secret.

4. Since Wiggles has a secret and since he is a cat, then by Fact 1.3, he may come to
dinner.
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2 If and Only If Statements

The statement
A ⇐⇒ B

reads “A if and only if B” and all it means is that A implies B and B also implies A. If
you are asked to prove an “if and only if” statement, then you’re being asked to prove two
different statements, A =⇒ B and B =⇒ A.

When you use previous propositions and theorems in a proof that you’re writing you
should think of the ones that are “if and only if” statements as two-way streets for whatever
logical drive you’re wanting to take. This is in contrast to any A =⇒ B theorem that
you may want to use which is a one-way street that let’s you go from A to B, but not the
other way around.

3 Definitions

Definitions in math are there to summarize information. For instance,

• The intersection of two sets S and T as S ∩ T = {x : x ∈ S and x ∈ T},

• A function f : S → T is surjective if for every t ∈ T , there exists an s ∈ S such
that f(s) = t,

• For integers a and b we say that a|b (a divides b) if and only if there exists some
k ∈ Z such that ak = b.

are all definitions that give us shorthand for important ideas. Now we can talk about S∩T
rather than describing what we mean with {x : x ∈ S and x ∈ T} whenever we need to
use the concept of an intersection.

When we use definitions in proofs, we basically treat them like they are if and only if
statements. In fact, the third example above is already written like one. But this does not
mean that definitions can be proven or disproved. For example, why is it true that a|b if
and only if there exists some k ∈ Z such that ak = b? Because that’s what I defined “a|b”
to stand for! Before that it was nothing, just empty symbols.

In a proof, we treat definitions as two-way streets for taking logical steps if we need to.
If you’re at a step and you know that some function f : S → T is surjective, then you may
logically conclude that for every t ∈ T , there exists an s ∈ S such that f(s) = t and no
one can stop you. Conversely, if you have some function f : S → T for which you know
that for every t ∈ T , there exists an s ∈ S such that f(s) = t, then you may conclude that
it’s surjective.

Of course, the first definition defines an object (as opposed to a characteristic of an
object like surjective or a relationship between two objects like a|b), and it wouldn’t make
much sense to treat it as an if and only if statement as we wrote it. However, anytime
S ∩ T shows up, you can replace it with the set {x : x ∈ S and x ∈ T} and vice versa.
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4 Some Direct Proofs

Proposition 4.1. Let a, b, and c be integers. If a|b, then a|bc.

Proof. 1. Assume that a|b.

2. Then by definition, there exists some k ∈ Z such that ak = b.

3. Since we can multiply two sides of an equation with the same thing (an outside
assumption, but a reasonable one), then this implies that akc = bc.

4. Since kc ∈ Z and since a(kc) = bc, then by definition a|bc.

Definition Let a be an integer. We say that a is even if 2|a. Otherwise, a is odd.

Proposition 4.2. If x is an even integer, then x2 is an even integer.

Proof. 1. Let x be an even integer.

2. By definition of even, 2|x.

3. By definition of divides, there exists some k ∈ Z such that 2k = x.

4. Therefore, x2 = 4k2.

5. So x2 = 2(2k2).

6. Since 2k2 is an integer, then by definition 2|x2.

7. Hence, by definition x2 is even.

Definition Let f : X → Y and g : Y → Z be functions. Then the composite g ◦ f is the
function defined by (g ◦ f)(x) = g(f(x)) for all x ∈ X.

Proposition 4.3. If f : X → Y and g : Y → Z are surjective functions, then g◦f : X → Z
is surjective.

Before starting the proof of this let’s think about what we need to show. We need to
start with the fact that f : X → Y and g : Y → Z are surjective functions, and then we
need to end up concluding that g ◦ f : X → Z is surjective. By the definition of surjective,
g ◦ f : X → Z is surjective if and only if for every z ∈ Z, there exists some x ∈ X such
that (g ◦ f)(x) = z.

Ok, so take some random z ∈ Z. Our goal is to show that something in X maps to
it. So now we should probably take a closer look at our function g ◦ f . By definition of
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composite, we know that it is defined by taking each x ∈ X and sending it to g(f(x)). So
if g ◦ f is surjective, then there had better be some x ∈ X for which z = g(f(x)) (where z
is the random element we fixed).

Is there such an x? We’re all done with unpacking the definitions for what we want to
show, but we haven’t thought about what the hypothesis is saying yet. It tells us that f
and g are both surjective. I want to show that something goes to z, and I can see from the
definition of surjective that g must send something to z. Of course, the thing it sends is
from Y which is not what we want, but it’s a step in the right direction maybe. Let’s call
the thing that get’s sent y. So now we know that g(y) = z.

Now the only fact that we haven’t used is that f is also surjective. So let’s think about
it. Everything in Y gets something sent to it from X through f . Hey, that means some
element gets mapped to y and then would get mapped to z when we threw g into the mix!
That’s enough to get the proof started:

Proof. 1. Let f : X → Y and g : Y → Z be surjective functions.

2. Let z ∈ Z. Since g is surjective, there exists some y ∈ Y such that g(y) = z.

3. Since f is surjective, we know that there exists some x ∈ X such that f(x) = y.

4. Therefore, g(f(x)) = g(y) = z.

5. Since z was a arbitrary element of Z, then we’ve just shown that g ◦ f is surjective.
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