A "minimalist" proof that the primes have density zero

As is standard, let $\pi(x)$ denote the number of primes less than or equal to x. The Prime Number Theorem (PNT) says

$$
\pi(x) \sim \frac{x}{\log x}
$$

(for us, "log" always denotes natural log). Two consequences of PNT are:

1. the number of primes is infinite
2. $\lim _{x \rightarrow \infty} \frac{\pi(x)}{x}=0$; that is, the primes have "density" zero.

Proofs of PNT tend to be lengthy. But if we just want to prove statements 1 and 2 , that can be done more easily. Statement 1 has a classic proof due to Euclid (and there are various other proofs as well). Statement 2 can also be proved relatively quickly by elementary means.

The key "trick", which is not original with me, is to use certain properties of the "middle" binomial coefficient $\binom{2 n}{n}$.

We know $\binom{2 n}{n}<4^{n}$ because the number of n-subsets of a $(2 n)$-set is less than the total number of subsets.

Also, we know $\binom{2 n}{n}=\frac{(n+1) \cdots 2 n}{1 \cdots n}$ is an integer. All primes from $n+1$ to $2 n$ must appear in its prime factorization (because they appear in the numerator but not the denominator), and each such prime is greater than n. It follows that $\binom{2 n}{n}>n^{\pi(2 n)-\pi(n)}$. We conclude

$$
n^{\pi(2 n)-\pi(n)}<4^{n}
$$

which, taking logs and rearranging, gives

$$
\pi(2 n)-\pi(n)<\log 4 \cdot \frac{n}{\log n}
$$

This implies

$$
\pi\left(2^{k}\right)-\pi\left(2^{k-1}\right)<\log 4 \cdot \frac{2^{k-1}}{(k-1) \log 2}=\frac{2^{k}}{k-1}
$$

If we sum from $k=2$ to $k=2 m$, the left side telescopes and we get

$$
\begin{aligned}
\pi\left(2^{2 m}\right)-\pi(2) & <\frac{2^{2}}{1}+\cdots+\frac{2^{m}}{m-1}+\frac{2^{m+1}}{m}+\cdots+\frac{2^{2 m}}{2 m-1} \\
& <2^{2}+\cdots+2^{m}+\frac{2^{m+1}+\cdots+2^{2 m}}{m} \\
& <2^{m+1}+\frac{2^{2 m+1}}{m}
\end{aligned}
$$

which implies

$$
\pi\left(4^{m}\right)=\pi\left(2^{2 m}\right)<1+2^{m+1}+\frac{2^{2 m+1}}{m}
$$

Now given any positive x, there exists a positive integer m with

$$
4^{m-1}<x \leq 4^{m} \quad \text { and hence } m-1<\log _{4} x \leq m
$$

We then have

$$
\pi(x) \leq \pi\left(4^{m}\right)<1+2^{\left(1+\log _{4} x\right)+1}+\frac{2^{2\left(1+\log _{4} x\right)+1}}{\log _{4} x}
$$

which simplifies to

$$
\pi(x)<1+4 \sqrt{x}+\frac{8 x}{\log _{4} x}
$$

implying

$$
\frac{\pi(x)}{x}<\frac{1}{x}+\frac{4}{\sqrt{x}}+\frac{8}{\log _{4} x}
$$

which approaches 0 as x approaches infinity.

