A “minimalist” proof that the primes have density zero

As is standard, let m(x) denote the number of primes less than or equal to z.
The Prime Number Theorem (PNT) says
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(@) ~ log

(for us, “log” always denotes natural log). Two consequences of PNT are:

1. the number of primes is infinite

m(x
2. lim Q = 0; that is, the primes have “density” zero.
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Proofs of PNT tend to be lengthy. But if we just want to prove statements
1 and 2, that can be done more easily. Statement 1 has a classic proof due
to Euclid (and there are various other proofs as well). Statement 2 can also
be proved relatively quickly by elementary means.

The key “trick”, which is not original with me, is to use certain properties
of the “middle” binomial coefficient (2:)

We know (277) < 4™ because the number of n-subsets of a (2n)-set is less than
the total number of subsets.

Also, we know (*") = ("ng)n%b is an integer. All primes from n+1 to 2n must

appear in its prime factorization (because they appear in the numerator but
not the denominator), and each such prime is greater than n. It follows that
(*") > nm@m=("We conclude

n7r(2n)771'(n) < 4
which, taking logs and rearranging, gives

m(2n) —7(n) <log4 -
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This implies
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If we sum from k& = 2 to k = 2m, the left side telescopes and we get
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Now given any positive z, there exists a positive integer m with
gt << gqm and hence m — 1 < log, x < m.

We then have
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which simplifies to
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which approaches 0 as x approaches infinity.




