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1 Indecomposability and connectedness

Definition 1.1. Let A be an abelian category, then Kom(.A) is the abelian category of
complexes in 4. Then there exists a category D(A), the derived category of A, and a
functor

Q) : Kom(A) — D(A)
such that:
1. If f: A®* — B°® is a quasi-isomorphism, then Q(f) is an isomorphism in D(A).
2. Any F': Kom(A) — D satisfying the above property factors uniquely through Q.

The way we construct D(.A) is by passing through the homotopy category of complexes
K(A), by setting Ob(D(A)) = Ob(Kom(.A)) and Homp)(A®, B*) as the set of equivalence
(in K(.A)) classes of diagrams of the form:

)
AN
A* B*

Definition 1.2. We have the shift operator on D(.A)
T:D(A) —D(A), A~ A[l]
and a triangle, in D(.A), of the form
A* = B* — C* — A*[1]
is called distinguished if it is isomorphic, in D(A), to a triangle of the form
A3 LBy Lo S Ay

where C'(f) is the mapping cone of f, and 7,7 are natural morphisms coming from the
mapping cone construction. This implies that a distinguished triangle gives a long exact
sequence of cohomology

.. — H'(A*) — HY(B*) — H'(C*) — H"(A*) — ...

Note 1.1. This turns D(.A) into a triangulated category, which is just a category with a
shift operator, and a set of distinguished triangles satisfying some conditions.

Note 1.2. One way to make sense of the triangles: if you have a short exact sequence

0 A* L B* = ¢* = 0 then we can show that C(f) is quasi-isomorphic to C'*; and then
we get a distinguished triangle

A* - B* — C* — A*[1]

Definition 1.3. A triangulated category D is decomposed into triangulated subcategory
(subcategory s.t. inclusion is exact as a functor between triangulated categories) Dy, Dy if
the following 3 conditions are satisfied:
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1. Both Dy, D, contain objects non-isomorphic to 0;
2. For all A € D there exists a distinguished triangle

Bl—)A—)BQ%Bl[l], BleDl

3. Hom(By, Bs) = Hom(Bs, By) = 0 for all By € Dy, By € Ds.
Definition 1.4. Let X be a scheme, its derived category is D?(X) := D?(Coh(X)).

Proposition 1.5. Let X be a Noetherian scheme. Then X is connected if and only if D*(X)
18 1ndecomposable.

Proof. (<) : Suppose for the sake of contradiction that X is not connected, i.e., X = X;UX5,
with X; closed. The idea is that for any F* € D’(X), we have decomposition

Fr=FeF;, Sup(F7)CX;

where the support of a complex F* is the union of the supports of all its cohomology
sheaves. We will prove using induction, the base case for shifts of arbitrary coherent sheaves
is clear. Let F* be a complex of length at least 2. Let m be the minimum number such that
H = H™(F*) #0. We then have a distinguished triangle

H[-m] = F* — G* — H[l —m)]

such that HY(F*) = HY(G*®) for ¢ > m and HY(G*) = 0 for ¢ < m. This implies that G* is
quasi-isomorphic to a complex A'* with N7 = 0 for ¢ < m, hence in D°(X), G* must have
length 1 smaller than the length of F°. By induction, we then have

H=H 1 ®Hs, G =G DG
and then define F; to be the complexes completing the 2 triangles
Fr =G = Hill =m] = (1]
We can then show that
Hom (G}, Hall — m]) — Hom(g3, Ha[1 — m]) = 0

which implies F* = F} @ F3.

(=) : Suppose that D’(X) is decomposable by Dy, Dy. Then Ox = Fy & F5 (write down
the distinguished triangle, and notice the last map is trivial hence the triangle is split).
Since (co)kernel commute with direct sum, we have that H4(F?) = 0 for ¢ > 0, hence F is
quasi-isomorphic to a coherent sheaf F;.

This direct sum is a Ox—module decomposition, so we must have F; ~ Tx,, an ideal
sheaf which cuts out a subscheme X;. Then

OX - IXl +IX2 g IleXQJ IX1UX2 g IX1 OZXQ - O

thus X = X; U X,. By our assumption we must have X; = 0 or Xy = (. WLOG
assume X, is empty, then Ox € Dy. Now, for any point z € X, its structure sheaf is
k(z) ~ Ox/m, € D*(X). A decomposition of k(z) must be trivial (since it’s a direct sum

2



Decompositions in derived categories Anh Tran - atran58Quic.edu

of Ox-modules), and there exists a non-trivial Ox — k(x) hence k(z) € D, for all z € X.

Let F* be nontrivial in Dy. Then there is a maximal m such that H = H™(F*) # 0.
Then there exists a point  in the support of H and we have a surjection H — k(x). We
have a quasi-isomorphism (the one identifying complex with zero cohomology past m with
a complex which is 0 past m)

Fr= (o FP s ker(d™) 00— )
and the nontrivial map
(. = F™ S ker(d™) = 0= 0= ...) = H[-m] — k(z)[-m]

and taking composition we get a nontrivial map F* — k(z)[—m] which is a contradiction
since k(z) € D;. O

2 Semi-orthogonal decomposition

So our previous definition of decomposition is too strong, hence we need a weaker notation,
called the semi-orthogonal decomposition.

Definition 2.1. A full triangulated subcategory Dy C D is called admissible if the inclusion
has a right adjoint = : D — Dy, i.e., Homp(A, B) = Homp, (A, 7(B)) for all A € Dy and
B eD.

The orthogonal complement of Dy is the full subcategory Dy of all objects C' € D such
that Hom(A, C') = 0 for all A € Dy.

Definition 2.2. A sequence of full admissible triangulated subcategories Dy, ..., D,, C D is
semi-orthogonal if D; C DjL for all 7 < j.

Such a sequence defines a semi-orthogonal decomposition if D is equivalent, via inclusion,
to the smallest full triangulated subcategory of D containing all D;.

Proposition 2.3. A semi-orthogonal sequence defines a decomposition if the intersection of
all Di is trivial.

Example 2.4. In a saturated category, the orthogonal complement of an admissible subcat-
egory is admissible, hence if Dy C D is orthogonal we get a semi-orthogonal decomposition
D= <D0L, D0>.

The other way to get a semi-orthogonal decomposition is through exceptional sequences:

Definition 2.5. An exceptional sequence is a sequence of objects E1, ..., E, € D such that

k  ifl=0,i=j

Hom(E;, Ei[l]) =
om(Ej, Eill) {o ifi<jorl#0,i=j

Such a sequence is full if any full triangulated subcategory containing all objects F; is
equivalent to D.

Example 2.6. The point is that the full subcategory (E;), whose objects are of the form
P E;[l]*, is an admissible triangulated subcategory. Thus if Fy, ..., F, is a full exceptional
sequence then

(Er), (E2), .., (Ep)

form a semi-orthogonal decomposition.
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Next we want to show that O(a), O(a+1),...,O(a+n) forms a full exceptional sequence
in D?(P"). For this we need the following 2 propositions. Let A C P x P" be the diagonal,
and 7, T be the two projections P* x P"* — P".

Proposition 2.7. There exists a locally free resolution of Oa of the form

n—1

0— /n\((9<—1) R Q1) = N\ (O(-1)BQ(1) = ... & O(=1)BQ(1) = Opnypr — Oa = 0

Proof. We can think of P* = P(V'), the space of lines [ C V. Then O(—1), the tautological
line bundle, has fiber [ above a point [ € P(V). On the other hand, look at the Euler

sequence
0—-Q1)=V'®e0—0(1)~0(-1)" =0

we get that the fiber of (1) above [ € P(V') is the space of linear functional ¢ : V' — k that
is trivial on [ C V. Look at the evaluation map:

5:0(=1) X Q1) = Opwyxpv)

which at a point (I1,l3) € P(V) xP(V) is given by t ® ¢ — p(z) with x € [y and ¢ : V — k
vanishing on l,. Clearly then A is the zero locus of s € HO(P(V) x P(V), (O(-1) K Q(1))").
Take the Koszul resolution coming from this section (of a vector bundle), we get the desired
resolution. n

Proposition 2.8. For any coherent sheaf F on P™ there exists two natural spectral sequence

F ifp+q=0

BV = HYP", F(p)) @ @ 7(—p) = EM* = |
0 otherwise

F ifp+q=0

B = HU(P", F 9 Q7(—p)) @ O(p) = B = |
0 otherwise

Proof. Both of these come from the spectral sequence of filtered complex A°®,
EY = RIF(AP) = RPTIF(A®)

Note 2.1. If F = T' and A®* = °* then this gives you the Hodge-to-de Rham spectral
sequence. The proof of this general sequence is the same, the point is that we have a double
complex resolution (Cartan-Eilenberg resolution) of A°.

Here we let A® = mfF @ L°, where £ = O(—1) K (1) and F' = m,. We have

p
RIF(AP) = Rim,, (ﬂ]—“ © \m0(-1) ® W;Q(l))

= R, (1] F @ 11 O(—p) @ 150" (p))
= R7o. (1] F (—p) ® 107 (p))

= (R F(—p)) ® Q¥(p)

= HY(P", F(—p)) @ 2 (p)
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where the last equality comes from flat base change

P x P —2—— P"

ﬂzk ¢1

e
P > Speck

which gives
Rimy, 1 F(—p) = ¢3R161.F (—p) ~ HI(P", F(~p))

since RY¢1,F(—p) is just the sheaf of HY(P", F(—p)) over a single point Spec k. This gives
the desired
RIF(A?) = HI(P", F(p)) © Q7" (=p)

On the other hand, we have
RPFIF(A®) = RPT Iy, (mF @ L*)

= H*9 (00 (F)
= H""%(®0,(F)) = H**(F)

which is F if p + ¢ = 0, and 0 otherwise. O

Proposition 2.9. Any sequence of line bundles of the form
O(a), O(a+1), .., Oa+n)
forms a full exceptional sequence in DP(P").

Proof. We have
Home(]P’")(O(i)? O(])[Q]) = HOHI(O, O(] - Z)[QD = Rqr(]})n’ O(] - Z)) = Hq(IPn? O(j - Z))

which tells us that this is an exceptional sequence. It remains to show that the sequence is
full.

We want to show that the orthogonal complement (O(a), ..., O(a +n))" is trivial. We
will only do the case where we have a genuine sheaf F. Suppose F is orthogonal to all O(i),
then

Hom(O(i),Flg])) =0 Vs,Vi=a,..,a+n

then apply the Beilinson spectral sequence to F(—a) we get
EY? = HY(P", F(p — a)) ® 27"(—p) ~ Hom(O(a — p), Flq]) @ @7 (—p)

The point here is that Q77(—p) = 0 unless 0 < —p < n, in which case Hom(O(a —
p), Flq]) = 0. So this sequence converges to the zero sheaf, i.e., F(—a) = 0 which implies
F =0. O

Note 2.2. This sequence is actually stro‘ng, so we get an equivalence between D°(P") and
the derived category of right A—modules for A = End(Ep E;).
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