1 Indecomposability and connectedness

Definition 1.1. Let \mathcal{A} be an abelian category, then $\text{Kom}(\mathcal{A})$ is the abelian category of complexes in \mathcal{A} . Then there exists a category $D(\mathcal{A})$, the derived category of \mathcal{A} , and a functor

$$Q: \operatorname{Kom}(\mathcal{A}) \to \operatorname{D}(A)$$

such that:

1. If $f: A^{\bullet} \to B^{\bullet}$ is a quasi-isomorphism, then Q(f) is an isomorphism in $D(\mathcal{A})$.

2. Any $F : \text{Kom}(\mathcal{A}) \to \mathcal{D}$ satisfying the above property factors uniquely through Q.

The way we construct $D(\mathcal{A})$ is by passing through the homotopy category of complexes $K(\mathcal{A})$, by setting $Ob(D(\mathcal{A})) = Ob(Kom(\mathcal{A}))$ and $Hom_{D(\mathcal{A})}(A^{\bullet}, B^{\bullet})$ as the set of equivalence (in $K(\mathcal{A})$) classes of diagrams of the form:

Definition 1.2. We have the shift operator on $D(\mathcal{A})$

$$T: D(\mathcal{A}) \to D(\mathcal{A}), \quad A \mapsto A[1]$$

and a triangle, in $D(\mathcal{A})$, of the form

$$A^{\bullet} \to B^{\bullet} \to C^{\bullet} \to A^{\bullet}[1]$$

is called distinguished if it is isomorphic, in $D(\mathcal{A})$, to a triangle of the form

$$A_0^{\bullet} \xrightarrow{f} B_0^{\bullet} \xrightarrow{\tau} C(f) \xrightarrow{\pi} A_0^{\bullet}[1]$$

where C(f) is the mapping cone of f, and τ, π are natural morphisms coming from the mapping cone construction. This implies that a distinguished triangle gives a long exact sequence of cohomology

$$\ldots \to H^i(A^{\bullet}) \to H^i(B^{\bullet}) \to H^i(C^{\bullet}) \to H^{i+1}(A^{\bullet}) \to \ldots$$

Note 1.1. This turns D(A) into a triangulated category, which is just a category with a shift operator, and a set of distinguished triangles satisfying some conditions.

Note 1.2. One way to make sense of the triangles: if you have a short exact sequence $0 \to A^{\bullet} \xrightarrow{f} B^{\bullet} \to C^{\bullet} \to 0$ then we can show that C(f) is quasi-isomorphic to C^{\bullet} , and then we get a distinguished triangle

$$A^{\bullet} \to B^{\bullet} \to C^{\bullet} \to A^{\bullet}[1]$$

Definition 1.3. A triangulated category \mathcal{D} is decomposed into triangulated subcategory (subcategory s.t. inclusion is exact as a functor between triangulated categories) $\mathcal{D}_1, \mathcal{D}_2$ if the following 3 conditions are satisfied:

- 1. Both $\mathcal{D}_1, \mathcal{D}_2$ contain objects non-isomorphic to 0;
- 2. For all $A \in \mathcal{D}$ there exists a distinguished triangle

$$B_1 \to A \to B_2 \to B_1[1], \quad B_i \in \mathcal{D}_i$$

3. Hom $(B_1, B_2) =$ Hom $(B_2, B_1) = 0$ for all $B_1 \in \mathcal{D}_1, B_2 \in \mathcal{D}_2$.

Definition 1.4. Let X be a scheme, its derived category is $D^b(X) := D^b(\mathbf{Coh}(X))$.

Proposition 1.5. Let X be a Noetherian scheme. Then X is connected if and only if $D^b(X)$ is indecomposable.

Proof. (\Leftarrow): Suppose for the sake of contradiction that X is not connected, i.e., $X = X_1 \sqcup X_2$, with X_i closed. The idea is that for any $\mathcal{F}^{\bullet} \in D^b(X)$, we have decomposition

$$\mathcal{F}^{\bullet} = \mathcal{F}_1^{\bullet} \oplus \mathcal{F}_2^{\bullet}, \quad \operatorname{Supp}(\mathcal{F}_i^{\bullet}) \subseteq X_i$$

where the support of a complex \mathcal{F}^{\bullet} is the union of the supports of all its cohomology sheaves. We will prove using induction, the base case for shifts of arbitrary coherent sheaves is clear. Let \mathcal{F}^{\bullet} be a complex of length at least 2. Let m be the minimum number such that $\mathcal{H} = H^m(\mathcal{F}^{\bullet}) \neq 0$. We then have a distinguished triangle

$$\mathcal{H}[-m] \to \mathcal{F}^{\bullet} \to \mathcal{G}^{\bullet} \to \mathcal{H}[1-m]$$

such that $H^q(\mathcal{F}^{\bullet}) = H^q(\mathcal{G}^{\bullet})$ for q > m and $H^q(\mathcal{G}^{\bullet}) = 0$ for $q \leq m$. This implies that \mathcal{G}^{\bullet} is quasi-isomorphic to a complex \mathcal{N}^{\bullet} with $\mathcal{N}^q = 0$ for $q \leq m$, hence in $D^b(X)$, \mathcal{G}^{\bullet} must have length 1 smaller than the length of \mathcal{F}^{\bullet} . By induction, we then have

$$\mathcal{H}=\mathcal{H}_1\oplus\mathcal{H}_2, \quad \mathcal{G}^ullet=\mathcal{G}^ullet_1\oplus\mathcal{G}^ullet_2$$

and then define \mathcal{F}_i^{\bullet} to be the complexes completing the 2 triangles

$$\mathcal{F}_i^{\bullet} \to \mathcal{G}_i^{\bullet} \to \mathcal{H}_i[1-m] \to \mathcal{F}_i^{\bullet}[1]$$

We can then show that

$$\operatorname{Hom}(\mathcal{G}_1^{\bullet}, \mathcal{H}_2[1-m]) = \operatorname{Hom}(\mathcal{G}_2^{\bullet}, \mathcal{H}_1[1-m]) = 0$$

which implies $\mathcal{F}^{\bullet} = \mathcal{F}_1^{\bullet} \oplus \mathcal{F}_2^{\bullet}$.

 (\Rightarrow) : Suppose that $D^b(X)$ is decomposable by $\mathcal{D}_1, \mathcal{D}_2$. Then $\mathcal{O}_X = \mathcal{F}_1^{\bullet} \oplus \mathcal{F}_2^{\bullet}$ (write down the distinguished triangle, and notice the last map is trivial hence the triangle is split). Since (co)kernel commute with direct sum, we have that $H^q(\mathcal{F}_i^{\bullet}) = 0$ for i > 0, hence \mathcal{F}_i^{\bullet} is quasi-isomorphic to a coherent sheaf \mathcal{F}_i .

This direct sum is a \mathcal{O}_X -module decomposition, so we must have $\mathcal{F}_i \simeq \mathcal{I}_{X_i}$, an ideal sheaf which cuts out a subscheme X_i . Then

$$\mathcal{O}_X = \mathcal{I}_{X_1} + \mathcal{I}_{X_2} \subseteq \mathcal{I}_{X_1 \cap X_2}, \quad \mathcal{I}_{X_1 \cup X_2} \subseteq \mathcal{I}_{X_1} \cap \mathcal{I}_{X_2} = 0$$

thus $X = X_1 \sqcup X_2$. By our assumption we must have $X_1 = \emptyset$ or $X_2 = \emptyset$. WLOG assume X_2 is empty, then $\mathcal{O}_X \in \mathcal{D}_2$. Now, for any point $x \in X$, its structure sheaf is $\Bbbk(x) \simeq \mathcal{O}_X/\mathfrak{m}_x \in \mathrm{D}^b(X)$. A decomposition of $\Bbbk(x)$ must be trivial (since it's a direct sum of \mathcal{O}_X -modules), and there exists a non-trivial $\mathcal{O}_X \to \Bbbk(x)$ hence $\Bbbk(x) \in \mathcal{D}_1$ for all $x \in X$.

Let \mathcal{F}^{\bullet} be nontrivial in \mathcal{D}_2 . Then there is a maximal m such that $\mathcal{H} = H^m(\mathcal{F}^{\bullet}) \neq 0$. Then there exists a point x in the support of \mathcal{H} and we have a surjection $\mathcal{H} \to \mathbb{k}(x)$. We have a quasi-isomorphism (the one identifying complex with zero cohomology past m with a complex which is 0 past m)

$$\mathcal{F}^{\bullet} \to \left(\ldots \to \mathcal{F}^{m-1} \to \ker(d^m) \to 0 \to 0 \to \ldots \right)$$

and the nontrivial map

$$(\dots \to \mathcal{F}^{m-1} \to \ker(d^m) \to 0 \to 0 \to \dots) \to \mathcal{H}[-m] \to \mathbb{k}(x)[-m]$$

and taking composition we get a nontrivial map $\mathcal{F}^{\bullet} \to \Bbbk(x)[-m]$ which is a contradiction since $\Bbbk(x) \in \mathcal{D}_1$.

2 Semi-orthogonal decomposition

So our previous definition of decomposition is too strong, hence we need a weaker notation, called the semi-orthogonal decomposition.

Definition 2.1. A full triangulated subcategory $\mathcal{D}_0 \subseteq \mathcal{D}$ is called admissible if the inclusion has a right adjoint $\pi : \mathcal{D} \to \mathcal{D}_0$, i.e., $\operatorname{Hom}_{\mathcal{D}}(A, B) = \operatorname{Hom}_{\mathcal{D}_0}(A, \pi(B))$ for all $A \in \mathcal{D}_0$ and $B \in \mathcal{D}$.

The orthogonal complement of \mathcal{D}_0 is the full subcategory \mathcal{D}_0^{\perp} of all objects $C \in \mathcal{D}$ such that $\operatorname{Hom}(A, C) = 0$ for all $A \in \mathcal{D}_0$.

Definition 2.2. A sequence of full admissible triangulated subcategories $\mathcal{D}_1, ..., \mathcal{D}_n \subset \mathcal{D}$ is semi-orthogonal if $D_i \subset \mathcal{D}_i^{\perp}$ for all i < j.

Such a sequence defines a semi-orthogonal decomposition if \mathcal{D} is equivalent, via inclusion, to the smallest full triangulated subcategory of \mathcal{D} containing all \mathcal{D}_i .

Proposition 2.3. A semi-orthogonal sequence defines a decomposition if the intersection of all \mathcal{D}_i^{\perp} is trivial.

Example 2.4. In a saturated category, the orthogonal complement of an admissible subcategory is admissible, hence if $\mathcal{D}_0 \subset \mathcal{D}$ is orthogonal we get a semi-orthogonal decomposition $\mathcal{D} = \langle \mathcal{D}_0^{\perp}, \mathcal{D}_0 \rangle$.

The other way to get a semi-orthogonal decomposition is through exceptional sequences:

Definition 2.5. An exceptional sequence is a sequence of objects $E_1, ..., E_n \in \mathcal{D}$ such that

$$\operatorname{Hom}(E_j, E_i[l]) = \begin{cases} \mathbb{k} & \text{if } l = 0, i = j \\ 0 & \text{if } i < j \text{ or } l \neq 0, i = j \end{cases}$$

Such a sequence is full if any full triangulated subcategory containing all objects E_i is equivalent to \mathcal{D} .

Example 2.6. The point is that the full subcategory $\langle E_i \rangle$, whose objects are of the form $\bigoplus E_i[l]^{\alpha_l}$, is an admissible triangulated subcategory. Thus if $E_1, ..., E_n$ is a full exceptional sequence then

$$\langle E_1 \rangle, \quad \langle E_2 \rangle, \quad \dots, \quad \langle E_n \rangle$$

form a semi-orthogonal decomposition.

Next we want to show that $\mathcal{O}(a), \mathcal{O}(a+1), ..., \mathcal{O}(a+n)$ forms a full exceptional sequence in $D^b(\mathbb{P}^n)$. For this we need the following 2 propositions. Let $\Delta \subset \mathbb{P}^n \times \mathbb{P}^n$ be the diagonal, and π_1, π_2 be the two projections $\mathbb{P}^n \times \mathbb{P}^n \to \mathbb{P}^n$.

Proposition 2.7. There exists a locally free resolution of \mathcal{O}_{Δ} of the form

$$0 \to \bigwedge^{n} (\mathcal{O}(-1) \boxtimes \Omega(1)) \to \bigwedge^{n-1} (\mathcal{O}(-1) \boxtimes \Omega(1)) \to \dots \to \mathcal{O}(-1) \boxtimes \Omega(1) \to \mathcal{O}_{\mathbb{P}^{n} \times \mathbb{P}^{n}} \to \mathcal{O}_{\Delta} \to 0$$

Proof. We can think of $\mathbb{P}^n = \mathbb{P}(V)$, the space of lines $l \subset V$. Then $\mathcal{O}(-1)$, the tautological line bundle, has fiber l above a point $l \in \mathbb{P}(V)$. On the other hand, look at the Euler sequence

$$0 \to \Omega(1) \to V^{\vee} \otimes \mathcal{O} \to \mathcal{O}(1) \simeq \mathcal{O}(-1)^{\vee} \to 0$$

we get that the fiber of $\Omega(1)$ above $l \in \mathbb{P}(V)$ is the space of linear functional $\varphi : V \to \mathbb{K}$ that is trivial on $l \subset V$. Look at the evaluation map:

$$s: \mathcal{O}(-1) \boxtimes \Omega(1) \to \mathcal{O}_{\mathbb{P}(V) \times \mathbb{P}(V)}$$

which at a point $(l_1, l_2) \in \mathbb{P}(V) \times \mathbb{P}(V)$ is given by $x \otimes \varphi \mapsto \varphi(x)$ with $x \in l_1$ and $\varphi : V \to \mathbb{k}$ vanishing on l_2 . Clearly then Δ is the zero locus of $s \in H^0(\mathbb{P}(V) \times \mathbb{P}(V), (\mathcal{O}(-1) \boxtimes \Omega(1))^{\vee})$. Take the Koszul resolution coming from this section (of a vector bundle), we get the desired resolution.

Proposition 2.8. For any coherent sheaf \mathcal{F} on \mathbb{P}^n there exists two natural spectral sequence

$$E_1^{p,q} \coloneqq H^q(\mathbb{P}^n, \mathcal{F}(p)) \otimes \Omega^{-p}(-p) \Rightarrow E^{p+q} = \begin{cases} \mathcal{F} & \text{if } p+q=0\\ 0 & \text{otherwise} \end{cases}$$
$$E_1^{p,q} \coloneqq H^q(\mathbb{P}^n, \mathcal{F} \otimes \Omega^{-p}(-p)) \otimes \mathcal{O}(p) \Rightarrow E^{p+q} = \begin{cases} \mathcal{F} & \text{if } p+q=0\\ 0 & \text{otherwise} \end{cases}$$

Proof. Both of these come from the spectral sequence of filtered complex A^{\bullet} ,

$$E_1^{p,q} = \mathbb{R}^q F(A^p) \Rightarrow \mathbb{R}^{p+q} F(A^{\bullet})$$

Note 2.1. If $F = \Gamma$ and $A^{\bullet} = \Omega^{\bullet}$ then this gives you the Hodge-to-de Rham spectral sequence. The proof of this general sequence is the same, the point is that we have a double complex resolution (Cartan-Eilenberg resolution) of A^{\bullet} .

Here we let $A^{\bullet} = \pi_1^* \mathcal{F} \otimes \mathcal{L}^{\bullet}$, where $\mathcal{L} = \mathcal{O}(-1) \boxtimes \Omega(1)$ and $F = \pi_{2*}$. We have

$$R^{q}F(A^{-p}) = R^{q}\pi_{2*}\left(\pi_{1}^{*}\mathcal{F}\otimes\bigwedge^{p}\pi_{1}^{*}\mathcal{O}(-1)\otimes\pi_{2}^{*}\Omega(1)\right)$$
$$= R^{q}\pi_{2*}(\pi_{1}^{*}\mathcal{F}\otimes\pi_{1}^{*}\mathcal{O}(-p)\otimes\pi_{2}^{*}\Omega^{p}(p))$$
$$= R^{q}\pi_{2*}(\pi_{1}^{*}\mathcal{F}(-p)\otimes\pi_{2}^{*}\Omega^{p}(p))$$
$$= (R^{q}\pi_{2*}\pi_{1}^{*}\mathcal{F}(-p))\otimes\Omega^{p}(p)$$
$$= H^{q}(\mathbb{P}^{n},\mathcal{F}(-p))\otimes\Omega^{p}(p)$$

where the last equality comes from flat base change

which gives

$$\mathbf{R}^{q} \pi_{2*} \pi_{1}^{*} \mathcal{F}(-p) = \phi_{2}^{*} \mathbf{R}^{q} \phi_{1*} \mathcal{F}(-p) \simeq H^{q}(\mathbb{P}^{n}, \mathcal{F}(-p))$$

since $\mathbb{R}^q \phi_{1*} \mathcal{F}(-p)$ is just the sheaf of $H^q(\mathbb{P}^n, \mathcal{F}(-p))$ over a single point Spec k. This gives the desired

$$\mathbf{R}^{q}F(A^{p}) = H^{q}(\mathbb{P}^{n}, \mathcal{F}(p)) \otimes \Omega^{-p}(-p)$$

On the other hand, we have

$$R^{p+q}F(A^{\bullet}) = R^{p+q}\pi_{2*}(\pi_{1}\mathcal{F} \otimes \mathcal{L}^{\bullet})$$

= $H^{p+q}(\Phi_{\mathcal{L}^{\bullet}}(\mathcal{F}))$
= $H^{p+q}(\Phi_{\mathcal{O}_{\Delta}}(\mathcal{F})) = H^{p+q}(\mathcal{F})$

which is \mathcal{F} if p + q = 0, and 0 otherwise.

Proposition 2.9. Any sequence of line bundles of the form

$$\mathcal{O}(a), \quad \mathcal{O}(a+1), \quad ..., \quad \mathcal{O}(a+n)$$

forms a full exceptional sequence in $D^b(\mathbb{P}^n)$.

Proof. We have

$$\operatorname{Hom}_{\operatorname{D}^{b}(\mathbb{P}^{n})}(\mathcal{O}(i),\mathcal{O}(j)[q]) \simeq \operatorname{Hom}(\mathcal{O},\mathcal{O}(j-i)[q]) \simeq \operatorname{R}^{q}\Gamma(\mathbb{P}^{n},\mathcal{O}(j-i)) \simeq H^{q}(\mathbb{P}^{n},\mathcal{O}(j-i))$$

which tells us that this is an exceptional sequence. It remains to show that the sequence is full.

We want to show that the orthogonal complement $\langle \mathcal{O}(a), ..., \mathcal{O}(a+n) \rangle^{\perp}$ is trivial. We will only do the case where we have a genuine sheaf \mathcal{F} . Suppose \mathcal{F} is orthogonal to all $\mathcal{O}(i)$, then

$$\operatorname{Hom}(\mathcal{O}(i), \mathcal{F}[q]) = 0 \quad \forall \ s, \forall \ i = a, ..., a + n$$

then apply the Beilinson spectral sequence to $\mathcal{F}(-a)$ we get

$$E_1^{p,q} = H^q(\mathbb{P}^n, \mathcal{F}(p-a)) \otimes \Omega^{-p}(-p) \simeq \operatorname{Hom}(\mathcal{O}(a-p), \mathcal{F}[q]) \otimes \Omega^{-p}(-p)$$

The point here is that $\Omega^{-p}(-p) = 0$ unless $0 \leq -p \leq n$, in which case $\operatorname{Hom}(\mathcal{O}(a - p), \mathcal{F}[q]) = 0$. So this sequence converges to the zero sheaf, i.e., $\mathcal{F}(-a) = 0$ which implies $\mathcal{F} = 0$.

Note 2.2. This sequence is actually stroʻng, so we get an equivalence between $D^b(\mathbb{P}^n)$ and the derived category of right A-modules for $A = \text{End}(\bigoplus E_i)$.