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1 Indecomposability and connectedness

Definition 1.1. Let A be an abelian category, then Kom(A) is the abelian category of
complexes in A. Then there exists a category D(A), the derived category of A, and a
functor

Q : Kom(A) → D(A)

such that:

1. If f : A• → B• is a quasi-isomorphism, then Q(f) is an isomorphism in D(A).

2. Any F : Kom(A) → D satisfying the above property factors uniquely through Q.

The way we construct D(A) is by passing through the homotopy category of complexes
K(A), by setting Ob(D(A)) = Ob(Kom(A)) and HomD(A)(A

•, B•) as the set of equivalence
(in K(A)) classes of diagrams of the form:

C•

A• B•
qis

Definition 1.2. We have the shift operator on D(A)

T : D(A) → D(A), A 7→ A[1]

and a triangle, in D(A), of the form

A• → B• → C• → A•[1]

is called distinguished if it is isomorphic, in D(A), to a triangle of the form

A•
0

f−→ B•
0

τ−→ C(f)
π−→ A•

0[1]

where C(f) is the mapping cone of f , and τ, π are natural morphisms coming from the
mapping cone construction. This implies that a distinguished triangle gives a long exact
sequence of cohomology

... → H i(A•) → H i(B•) → H i(C•) → H i+1(A•) → ...

Note 1.1. This turns D(A) into a triangulated category, which is just a category with a
shift operator, and a set of distinguished triangles satisfying some conditions.

Note 1.2. One way to make sense of the triangles: if you have a short exact sequence

0 → A• f−→ B• → C• → 0 then we can show that C(f) is quasi-isomorphic to C•, and then
we get a distinguished triangle

A• → B• → C• → A•[1]

Definition 1.3. A triangulated category D is decomposed into triangulated subcategory
(subcategory s.t. inclusion is exact as a functor between triangulated categories) D1,D2 if
the following 3 conditions are satisfied:
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1. Both D1,D2 contain objects non-isomorphic to 0;

2. For all A ∈ D there exists a distinguished triangle

B1 → A → B2 → B1[1], Bi ∈ Di

3. Hom(B1, B2) = Hom(B2, B1) = 0 for all B1 ∈ D1, B2 ∈ D2.

Definition 1.4. Let X be a scheme, its derived category is Db(X) := Db(Coh(X)).

Proposition 1.5. Let X be a Noetherian scheme. Then X is connected if and only if Db(X)
is indecomposable.

Proof. (⇐) : Suppose for the sake of contradiction thatX is not connected, i.e.,X = X1⊔X2,
with Xi closed. The idea is that for any F• ∈ Db(X), we have decomposition

F• = F•
1 ⊕F•

2 , Supp(F•
i ) ⊆ Xi

where the support of a complex F• is the union of the supports of all its cohomology
sheaves. We will prove using induction, the base case for shifts of arbitrary coherent sheaves
is clear. Let F• be a complex of length at least 2. Let m be the minimum number such that
H = Hm(F•) ̸= 0. We then have a distinguished triangle

H[−m] → F• → G• → H[1−m]

such that Hq(F•) = Hq(G•) for q > m and Hq(G•) = 0 for q ≤ m. This implies that G• is
quasi-isomorphic to a complex N • with N q = 0 for q ≤ m, hence in Db(X), G• must have
length 1 smaller than the length of F•. By induction, we then have

H = H1 ⊕H2, G• = G•
1 ⊕ G•

2

and then define F•
i to be the complexes completing the 2 triangles

F•
i → G•

i → Hi[1−m] → F•
i [1]

We can then show that

Hom(G•
1 ,H2[1−m]) = Hom(G•

2 ,H1[1−m]) = 0

which implies F• = F•
1 ⊕F•

2 .

(⇒) : Suppose that Db(X) is decomposable by D1,D2. Then OX = F•
1 ⊕ F•

2 (write down
the distinguished triangle, and notice the last map is trivial hence the triangle is split).
Since (co)kernel commute with direct sum, we have that Hq(F•

i ) = 0 for i > 0, hence F•
i is

quasi-isomorphic to a coherent sheaf Fi.
This direct sum is a OX−module decomposition, so we must have Fi ≃ IXi

, an ideal
sheaf which cuts out a subscheme Xi. Then

OX = IX1 + IX2 ⊆ IX1∩X2 , IX1∪X2 ⊆ IX1 ∩ IX2 = 0

thus X = X1 ⊔ X2. By our assumption we must have X1 = ∅ or X2 = ∅. WLOG
assume X2 is empty, then OX ∈ D2. Now, for any point x ∈ X, its structure sheaf is
k(x) ≃ OX/mx ∈ Db(X). A decomposition of k(x) must be trivial (since it’s a direct sum

2



Decompositions in derived categories Anh Tran - atran58@uic.edu

of OX-modules), and there exists a non-trivial OX → k(x) hence k(x) ∈ D1 for all x ∈ X.
Let F• be nontrivial in D2. Then there is a maximal m such that H = Hm(F•) ̸= 0.

Then there exists a point x in the support of H and we have a surjection H → k(x). We
have a quasi-isomorphism (the one identifying complex with zero cohomology past m with
a complex which is 0 past m)

F• →
(
... → Fm−1 → ker(dm) → 0 → 0 → ...

)
and the nontrivial map(

... → Fm−1 → ker(dm) → 0 → 0 → ...
)
→ H[−m] → k(x)[−m]

and taking composition we get a nontrivial map F• → k(x)[−m] which is a contradiction
since k(x) ∈ D1.

2 Semi-orthogonal decomposition

So our previous definition of decomposition is too strong, hence we need a weaker notation,
called the semi-orthogonal decomposition.

Definition 2.1. A full triangulated subcategory D0 ⊆ D is called admissible if the inclusion
has a right adjoint π : D → D0, i.e., HomD(A,B) = HomD0(A, π(B)) for all A ∈ D0 and
B ∈ D.

The orthogonal complement of D0 is the full subcategory D⊥
0 of all objects C ∈ D such

that Hom(A,C) = 0 for all A ∈ D0.

Definition 2.2. A sequence of full admissible triangulated subcategories D1, ...,Dn ⊂ D is
semi-orthogonal if Di ⊂ D⊥

j for all i < j.
Such a sequence defines a semi-orthogonal decomposition if D is equivalent, via inclusion,

to the smallest full triangulated subcategory of D containing all Di.

Proposition 2.3. A semi-orthogonal sequence defines a decomposition if the intersection of
all D⊥

i is trivial.

Example 2.4. In a saturated category, the orthogonal complement of an admissible subcat-
egory is admissible, hence if D0 ⊂ D is orthogonal we get a semi-orthogonal decomposition
D =

〈
D⊥

0 ,D0

〉
.

The other way to get a semi-orthogonal decomposition is through exceptional sequences:

Definition 2.5. An exceptional sequence is a sequence of objects E1, ..., En ∈ D such that

Hom(Ej, Ei[l]) =

{
k if l = 0, i = j

0 if i < j or l ̸= 0, i = j

Such a sequence is full if any full triangulated subcategory containing all objects Ei is
equivalent to D.

Example 2.6. The point is that the full subcategory ⟨Ei⟩, whose objects are of the form⊕
Ei[l]

αl , is an admissible triangulated subcategory. Thus if E1, ..., En is a full exceptional
sequence then

⟨E1⟩, ⟨E2⟩, ..., ⟨En⟩
form a semi-orthogonal decomposition.
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Next we want to show that O(a),O(a+1), ...,O(a+n) forms a full exceptional sequence
in Db(Pn). For this we need the following 2 propositions. Let ∆ ⊂ Pn × Pn be the diagonal,
and π1, π2 be the two projections Pn × Pn → Pn.

Proposition 2.7. There exists a locally free resolution of O∆ of the form

0 →
n∧
(O(−1)⊠ Ω(1)) →

n−1∧
(O(−1)⊠ Ω(1)) → ... → O(−1)⊠Ω(1) → OPn×Pn → O∆ → 0

Proof. We can think of Pn = P(V ), the space of lines l ⊂ V . Then O(−1), the tautological
line bundle, has fiber l above a point l ∈ P(V ). On the other hand, look at the Euler
sequence

0 → Ω(1) → V ∨ ⊗O → O(1) ≃ O(−1)∨ → 0

we get that the fiber of Ω(1) above l ∈ P(V ) is the space of linear functional φ : V → k that
is trivial on l ⊂ V . Look at the evaluation map:

s : O(−1)⊠ Ω(1) → OP(V )×P(V )

which at a point (l1, l2) ∈ P(V )×P(V ) is given by x⊗φ 7→ φ(x) with x ∈ l1 and φ : V → k

vanishing on l2. Clearly then ∆ is the zero locus of s ∈ H0
(
P(V )× P(V ), (O(−1)⊠ Ω(1))∨

)
.

Take the Koszul resolution coming from this section (of a vector bundle), we get the desired
resolution.

Proposition 2.8. For any coherent sheaf F on Pn there exists two natural spectral sequence

Ep,q
1 := Hq(Pn,F(p))⊗ Ω−p(−p) ⇒ Ep+q =

{
F if p+ q = 0

0 otherwise

Ep,q
1 := Hq(Pn,F ⊗ Ω−p(−p))⊗O(p) ⇒ Ep+q =

{
F if p+ q = 0

0 otherwise

Proof. Both of these come from the spectral sequence of filtered complex A•,

Ep,q
1 = RqF (Ap) ⇒ Rp+qF (A•)

Note 2.1. If F = Γ and A• = Ω• then this gives you the Hodge-to-de Rham spectral
sequence. The proof of this general sequence is the same, the point is that we have a double
complex resolution (Cartan-Eilenberg resolution) of A•.

Here we let A• = π∗
1F ⊗ L•, where L = O(−1)⊠ Ω(1) and F = π2∗. We have

RqF (A−p) = Rqπ2∗

(
π∗
1F ⊗

p∧
π∗
1O(−1)⊗ π∗

2Ω(1)

)
= Rqπ2∗(π

∗
1F ⊗ π∗

1O(−p)⊗ π∗
2Ω

p(p))

= Rqπ2∗(π
∗
1F(−p)⊗ π∗

2Ω
p(p))

= (Rqπ2∗π
∗
1F(−p))⊗ Ωp(p)

= Hq(Pn,F(−p))⊗ Ωp(p)
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where the last equality comes from flat base change

Pn × Pn Pn

Pn Speck

π1

π2

ϕ2

ϕ1

which gives
Rqπ2∗π

∗
1F(−p) = ϕ∗

2R
qϕ1∗F(−p) ≃ Hq(Pn,F(−p))

since Rqϕ1∗F(−p) is just the sheaf of Hq(Pn,F(−p)) over a single point Speck. This gives
the desired

RqF (Ap) = Hq(Pn,F(p))⊗ Ω−p(−p)

On the other hand, we have

Rp+qF (A•) = Rp+qπ2∗(π1F ⊗ L•)

= Hp+q(ΦL•(F))

= Hp+q(ΦO∆
(F)) = Hp+q(F)

which is F if p+ q = 0, and 0 otherwise.

Proposition 2.9. Any sequence of line bundles of the form

O(a), O(a+ 1), ..., O(a+ n)

forms a full exceptional sequence in Db(Pn).

Proof. We have

HomDb(Pn)(O(i),O(j)[q]) ≃ Hom(O,O(j − i)[q]) ≃ RqΓ(Pn,O(j − i)) ≃ Hq(Pn,O(j − i))

which tells us that this is an exceptional sequence. It remains to show that the sequence is
full.

We want to show that the orthogonal complement ⟨O(a), ...,O(a+ n)⟩⊥ is trivial. We
will only do the case where we have a genuine sheaf F . Suppose F is orthogonal to all O(i),
then

Hom(O(i),F [q]) = 0 ∀ s,∀ i = a, ..., a+ n

then apply the Beilinson spectral sequence to F(−a) we get

Ep,q
1 = Hq(Pn,F(p− a))⊗ Ω−p(−p) ≃ Hom(O(a− p),F [q])⊗ Ω−p(−p)

The point here is that Ω−p(−p) = 0 unless 0 ≤ −p ≤ n, in which case Hom(O(a −
p),F [q]) = 0. So this sequence converges to the zero sheaf, i.e., F(−a) = 0 which implies
F = 0.

Note 2.2. This sequence is actually stro‘ng, so we get an equivalence between Db(Pn) and
the derived category of right A−modules for A = End(

⊕
Ei).
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