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1 Introduction

The goal is to prove the following theorem:

Theorem 1.1. Let S be a smooth algebraic variety over C, and o ∈ S. Let N ∈ Z+ be fixed.
Then there are only finitely isomorphism classes of representations

ρ : π1(S, o) → GLN(Q)

coming from geometry. Here we say that a representation comes from geometry if it’s iso-
morphic to a subquotient of a monodromy representation attached to a smooth and projective
map f : X → S.

This follows from a stronger statement:

Theorem 1.2. Let S be a connected complex manifold, and o ∈ S such that π1(S, o) is
finitely generated. Let N ∈ Z+, then

1. There exist only finitely many isomorphism classes of Q−local systems of rank N
on S underlying a polarizable integral variation of Hodge structures, up to semi-
simplification.

2. If S is compactifiable (i.e., there exists a compact complex manifold S such that
S = S − Z where Z is a closed analytic subset). Then there exist only finitely many
isomorphism classes of Q−local systems of rank N which are subquotients of local
systems underlying polarizable integral variation of Hodge structures.

Note 1.1. Notice that the first part is only up to semi-simplification, so that’s why in part
2 we need a stronger condition.

Proof of theorem 1.1. By Nagata compactification theorem, there is a proper variety S con-
taining S. Then by Hironaka’s resolution of singularities we can assume that S is smooth
hence a manifold (we only need to blow up singular points, which are in S − S).

If V is a Q−local system coming from geometry, then V is a subquotient of H = Rnf∗QX

for some f : X → S. H underlies a polarizable integral variation of Hodge structures, hence
by part 2 of theorem 1.2, there are only finitely many such local systems.

Note 1.2. Another point of note here is that an algebraic variety S has a finite CW-complex
structure, hence the fundamental group is finitely presented. For the former claim, see here.
The idea is that a pair (semi-algebraic set, closed subset) in Rn can be triangulated, hence
quasi-projective varieties have finite CW-complex structures. S can be compactified (by
Nagata) to S, and by Chow’s lemma S is birational (i.e., can be blown up to) a projective

variety S̃. Then (S̃, S̃ − S) can be triangulated, thus S has a finite CW-complex structure.
For the latter claim of finitely presented fundamental group, any map γ : S1 → S is

homotopic to a cellular map. Any two cellular maps are homotopic through a cellular
homotopy, i.e., a homotopy that is cellular. Hence we only need to care up to a cellular map
S1×I → S, i.e., only cares up to the 2-skeleton S(2). In fact, π1(S

(1)) → π1(S
(2)) is surjective

(since we haven’t identified the cellular maps that are homotopic), and π1(S
(2)) ≃ π1(S).

Now, S(1) is just a finite graph, hence π1(S) is finitely generated. For finitely presented we
need to work a bit more to figure out the kernel.

The compactifiable condition comes from Schmid’s theorem of the fixed part:
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Theorem 1.3. Let S be a compactifiable complex manifold and V is a polarized complex
variation of Hodge structures. Then any global flat section of V (i.e., a section of the
underlying local system) has flat components.

Corollary 1.4. Let V be a local system on (S, o) underlying a polarizable variation of Q-
Hodge structure. Then H0(S,V), which can be identified with

Vπ1(S,o)
o =

{
v ∈ Vs

∣∣γ · v = v ∀ γ ∈ π1(S, o)
}

has a natural Q−Hodge structure such that the restriction map H0(S,V) → Vo is a mor-

phism of Hodge structure. Furthermore, the image is V
π1(S,o)
o .

Note 1.3. Sanity check: it should be the case then that the restriction map H0(S,V) → Vo

is injective. Consider s ∈ H0(S,V) and take {Ui} to be a trivialization of S. Suppose s is
0 after restricted to Vo then s|Ui

= 0 for some Ui ∋ o. Since S is connected there must be
some other Uj intersecting Ui, hence s|Ui∪Uj

= 0. Due to connectedness again, we must be
able to find a different Uk ̸= Ui, Uj intersecting Ui ∪ Uj, and repeating this process we get
that s = 0 to begin with.

Restriction being injective actually true for any coherent torsion-free sheaf on an integral
scheme. For a functorial identification of H0(S,V), look at lemma 4.17 in Voisin’s vol 2.
The main ingredients are that a morphism of local systems ϕ : V → W is just a map on
fibers ϕo : Vo → Wo which is π1(S, o)−equivariant, and that

H0(S,V) = HomZS
(ZS,V)

which follows from the fact that a local system of abelian groups is just a locally constant
sheaf of ZS−modules (and then recall H0(X,F ) = HomOX

(OX ,F ) for sheaf F of OX-
modules).

Note 1.4. Another version (that Ben likes to use) states that the sub-local-system of V of
π1(S, o)−invariant vectors on each stalk is a sub-VHS. This is just the constant sheaf with
stalk H0(S,V).

In order to prove theorem 1.2, we will need the following theorems:

Theorem 1.5. Let (S, o) be as in theorem 1.2. Consider the equivalence condition: let
ρ1, ρ2 : π1(S, o) → GLN(C), then ρ1 ∼ ρ2 if Tr(ρ1(γ)) = Tr(ρ2(γ)) for all γ ∈ π1(S, o). Then
the set

{local system H of rank N underlying integral polarizable VHS}⧸∼
is finite.

Theorem 1.6. Let (S, o) be a compactifiable connected complex manifold, and let H be a
C−local system underlying an integral polarizable variation of Hodge structures. Then H is
semisimple, i.e.,

H =
⊕

Wi ⊗ Li

where Li’s are pairwise non-isomorphic irreducible local systems, and Wi’s are complex vector
spaces. Furthermore, we can put Hodge structures on Wi, and VHS on Li to make this an
equality of complex polarized VHS.

Theorem 1.7. Now let V be a direct summand of H. Then V admits a polarized VHS.
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Proof of theorem 1.2. This follows from a more general result: Let A be a k−algebra with
char(k) = 0, and M,N be semisimple A−modules which are finite dimensional over k. Each
a ∈ A defines, by multiplication, an element in aM ∈ Endk(M) (and aN ∈ Endk(N)). If
Tr(aM) = Tr(aN) for all a ∈ A then M ≃A N . See here.

The idea is that this is true for A finite-dimensional over k (equivalently, A artinian, see
Lam’s Noncommutative rings, theorem 7.19), and to reduce to that case we take B to be
the image of

A → End(M ⊕N), a 7→ (aM , aN)

then B is Artinian and M ≃B N which implies M ≃A N (notice aM(m) = (aM , aN) ·m =
(aM , aN) · n = aN(n)). In our case, let A = Q[π1(S, o)] then the result follows.

For the second part, let V be a subquotient of H which underlies a polarized Z−VHS.
Then by theorem 1.6, V is a direct summand, hence underlies a polarized VHS. By (a
stronger version which doesn’t require integrality) theorem 1.6, V is semisimple, hence by
the first part we get the desired result.

2 Proofs

In order to prove theorem 1.5, we will first show that for a fixed γ ∈ π1(S, o) and N ∈ Z+,
there is a bound for Tr(ρ(γ)) for all local systems underlying polarized VHS of rank N .

Proposition 2.1. Let (S, o) be a connected complex manifold, γ ∈ π1(S, o) and N ∈ Z+.
Then there exists C > 0 such that |Tr(ρ(γ))| < C for all ρ : π1(S, o) → GL(Ho) where H is
a polarized VHS of rank N .

Proof. Consider H a polarized VHS of rank N . We have a period map p : S → Γ\D where
D = G/K = Aut(Ho, q)∩ SL(Ho) and K is the subgroup fixing the flag corresponding to o.
The main thing is that K is a compact subgroup (see CMSP proposition 4.4.4). This lifts
to a π1(S, o)-equivariant map on universal cover

P : S̃ → D

where P (γ · o) = ρ(γ)(P (o)). We will need a lemma (see CMSP corollary 13.7.2)

Lemma 2.2. There exists a G−invariant metric dD on D such that every horizonal holo-
morphic map f : ∆ → D is distance decreasing, i.e.,

dD(f(x), f(y)) ≤ d(x, y) ∀ x, y ∈ ∆

where d is the Poincare metric on the unit disk.

Proof of lemma 2.2. We have the trace form on G, and combining with the Weil operator
this gives a G−invariant metric on D. The holomorphic sectional curvature is negative
and bounded away from 0 (CMSP, theorem 13.6.3). Hence we can normalize the metric to
something with sectional curvature ≤ −1. Then by Schwarz-Ahlfors-Pick’s theorem every
holomorphic map from the unit disk is distance decreasing.

We can put a Kobayashi metric dS on S̃ such that

dD(P (o), ρ(γ)(P (o))) ≤ dS(o, γ · o)
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and the claim is that dS(x, y) is finite for all x, y ∈ S̃ since it is connected (this probably
has to do with the construction of the Kobayashi metric, see Roydan’s Remarks on the
Kobayashi metric; essentially the more paths you use to connect 2 points, the lower the sum
of distances drops). Let this bound be M .

Next, (D, dD) is Riemannian homogeneous (isometries act transitively) since dD is G-
invariant, hence (D, dD) is complete. It follows that the closed ball are compact (in a
geodesically complete Riemannian manifold, a subset is compact iff it’s closed and bounded).
Thus {

ρ(γ) ∈ G
∣∣∣dD(P (o), ρ(γ)(P (o))) ≤ M

}
is compact in D. Notice that this set only depends on (D, dD) which only depends on the
Hodge numbers hp,q (see CMSP proposition 4.4.4, even the polarization goes away and we
are left with just symplectic and orthogonal groups).

Next observe that D = G/K and K is compact with dD being G−invariant, so ρ(γ) is in
a bounded set in G. It follows that its entries must be bounded, hence Tr(ρ(γ)) is bounded,
and this bound only depends on the Hodge numbers.

To conclude the proof, we need to show that there are only finitely many possibilities for
hp,q. We will do this by induction on the rank N , with the case N = 0 being trivial. Now
let w be the weight of H. Suppose there exists i < p < j such that

hi,w−i ̸= 0, hp,w−p = 0, hj,w−j ̸= 0

then F p+1H satisfies Griffiths transversality (the only piece we have to worry about is∇F p+1

which might end up in F p which is not contained in F p+1 however hp,w−p = 0 so F p = F p+1).
So F p+1 is a sub-VHS, and by theorem 1.6, we can decompose H as a direct sum of 2 sub-
VHS of strictly smaller rank. Hence induction takes care of this case.

For the case where
{
p
∣∣hp,w−p

}
̸= 0 is an integer interval, we can twist by the Tate module

and assume that w ≤ N . In this case we also have that hp,q can only take finitely many
values.

Proposition 2.3. Let Γ be a finitely generated group and N ∈ Z+. There exists a finite
subset F ⊂ Γ such that if the traces of ρ1, ρ2 : Γ → GLN(C) agree on all γ ∈ F , then they
agree on all γ ∈ Γ.

Proof. The (morally correct) idea here is that Hom(Γ,GLN(C)) (the C−points of the repre-
sentation scheme) is an affine variety with coordinate ring A. Procesi showed that AGLN (C)

is generated by {
Tr(γ) : ρ 7→ Tr(ρ(γ))

∣∣∣γ ∈ Γ
}

and since Γ is finitely generated, so is A thus we can pick finitely many γ ∈ Γ to generate
the invariant set.

Proof of theorem 1.5. Take a set F ⊂ π1(S, o) as in the previous proposition. Any ρ :
π1(S, o) → GL(Ho) underlying an integral polarizble VHS must factor through GLN(Z),
i.e., ρ(γ) is an integer matrix for all γ ∈ π1(S, o).

By proposition 2.1, for a fixed γ ∈ π1(S, o), Tr(ρ(γ)) can only take finitely many values
as the local system H varies (bounded + integer value implies finite possibilities). Then on
F , the traces can only take finitely many values as well (since F is finite), and then by the
previous proposition we get the desired conclusion.
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Proof of theorem 1.7. We have a local system End(H) whose stalk at o is End(Ho). By
theorem of the fixed part, the global sections End(H) has a Hodge structure compatible
with restriction. Now, by theorem 1.6,

H =
⊕

Wi ⊗ Li

so by Schur’s lemma,

End(H) =
∏

End(Wi)

One can show that any grading of
∏

End(Wi), compatible with restriction, has to come
from gradings ofWi. Fix such gradings, and assumeV = Lj. Then a homogenous (contained
in a graded piece) line L ⊂ Wj defines a projection of degree 0 in End(Wi) with image in
L. This, in turn, induces a projection H → L⊗ Lj ≃ V.
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