1 Introduction

The goal is to prove the following theorem:

Theorem 1.1. Let S be a smooth algebraic variety over \mathbb{C} , and $o \in S$. Let $N \in \mathbb{Z}_+$ be fixed. Then there are only finitely isomorphism classes of representations

$$
\rho : \pi_1(S, o) \to \mathrm{GL}_N(\mathbb{Q})
$$

coming from geometry. Here we say that a representation comes from geometry if it's isomorphic to a subquotient of a monodromy representation attached to a smooth and projective map $f: X \rightarrow S$.

This follows from a stronger statement:

Theorem 1.2. Let S be a connected complex manifold, and $o \in S$ such that $\pi_1(S, o)$ is finitely generated. Let $N \in \mathbb{Z}_+$, then

- 1. There exist only finitely many isomorphism classes of Q−local systems of rank N on S underlying a polarizable integral variation of Hodge structures, up to semisimplification.
- 2. If S is compactifiable (i.e., there exists a compact complex manifold \overline{S} such that $S = \overline{S} - Z$ where Z is a closed analytic subset). Then there exist only finitely many isomorphism classes of Q−local systems of rank N which are subquotients of local systems underlying polarizable integral variation of Hodge structures.

Note 1.1. Notice that the first part is only up to semi-simplification, so that's why in part 2 we need a stronger condition.

Proof of theorem 1.1. By Nagata compactification theorem, there is a proper variety \overline{S} containing S. Then by Hironaka's resolution of singularities we can assume that \overline{S} is smooth hence a manifold (we only need to blow up singular points, which are in $\overline{S} - S$).

If **V** is a Q-local system coming from geometry, then **V** is a subquotient of $\mathbf{H} = \mathbf{R}^n f_* \mathbb{Q}_X$ for some $f: X \to S$. H underlies a polarizable integral variation of Hodge structures, hence by part 2 of theorem 1.2, there are only finitely many such local systems. \Box

Note 1.2. Another point of note here is that an algebraic variety S has a finite CW-complex structure, hence the fundamental group is finitely presented. For the former claim, see [here.](https://mathoverflow.net/questions/26927/how-to-prove-that-a-projective-variety-is-a-finite-cw-complex) The idea is that a pair (semi-algebraic set, closed subset) in \mathbb{R}^n can be triangulated, hence quasi-projective varieties have finite CW-complex structures. S can be compactified (by Nagata) to \overline{S} , and by Chow's lemma \overline{S} is birational (i.e., can be blown up to) a projective variety \widetilde{S} . Then $(\widetilde{S}, \widetilde{S} - S)$ can be triangulated, thus S has a finite CW-complex structure.

For the latter claim of finitely presented fundamental group, any map $\gamma : \mathbb{S}^1 \to S$ is homotopic to a cellular map. Any two cellular maps are homotopic through a cellular homotopy, i.e., a homotopy that is cellular. Hence we only need to care up to a cellular map $\mathbb{S}^1 \times I \to S$, i.e., only cares up to the 2-skeleton $S^{(2)}$. In fact, $\pi_1(S^{(1)}) \to \pi_1(S^{(2)})$ is surjective (since we haven't identified the cellular maps that are homotopic), and $\pi_1(S^{(2)}) \simeq \pi_1(S)$. Now, $S^{(1)}$ is just a finite graph, hence $\pi_1(S)$ is finitely generated. For finitely presented we need to work a bit more to figure out the kernel.

The compactifiable condition comes from Schmid's theorem of the fixed part:

Theorem 1.3. Let S be a compactifiable complex manifold and V is a polarized complex variation of Hodge structures. Then any global flat section of V (i.e., a section of the underlying local system) has flat components.

Corollary 1.4. Let V be a local system on (S, o) underlying a polarizable variation of \mathbb{Q} -Hodge structure. Then $H^0(S, V)$, which can be identified with

$$
\mathbf{V}_o^{\pi_1(S,o)} = \left\{ v \in \mathbf{V}_s \middle| \gamma \cdot v = v \,\,\forall \,\,\gamma \in \pi_1(S,o) \right\}
$$

has a natural Q–Hodge structure such that the restriction map $H^0(S, V) \to V_o$ is a morphism of Hodge structure. Furthermore, the image is $V_o^{\pi_1(S,o)}$.

Note 1.3. Sanity check: it should be the case then that the restriction map $H^0(S, V) \to V_o$ is injective. Consider $s \in H^0(S, V)$ and take $\{U_i\}$ to be a trivialization of S. Suppose s is 0 after restricted to V_o then $s|_{U_i} = 0$ for some $U_i \ni o$. Since S is connected there must be some other U_j intersecting U_i , hence $s|_{U_i \cup U_j} = 0$. Due to connectedness again, we must be able to find a different $U_k \neq U_i, U_j$ intersecting $U_i \cup U_j$, and repeating this process we get that $s = 0$ to begin with.

Restriction being injective actually true for any coherent torsion-free sheaf on an integral scheme. For a functorial identification of $H^0(S, V)$, look at lemma 4.17 in Voisin's vol 2. The main ingredients are that a morphism of local systems $\phi : V \to W$ is just a map on fibers $\phi_o : \mathbf{V}_o \to \mathbf{W}_o$ which is $\pi_1(S, o)$ –equivariant, and that

$$
H^0(S, \mathbf{V}) = \text{Hom}_{\mathbb{Z}_S}(\mathbb{Z}_S, \mathbf{V})
$$

which follows from the fact that a local system of abelian groups is just a locally constant sheaf of \mathbb{Z}_S -modules (and then recall $H^0(X,\mathscr{F}) = \text{Hom}_{\mathscr{O}_X}(\mathscr{O}_X,\mathscr{F})$ for sheaf \mathscr{F} of \mathscr{O}_X modules).

Note 1.4. Another version (that Ben likes to use) states that the sub-local-system of V of $\pi_1(S, o)$ −invariant vectors on each stalk is a sub-VHS. This is just the constant sheaf with stalk $H^0(S, V)$.

In order to prove theorem 1.2, we will need the following theorems:

Theorem 1.5. Let (S, o) be as in theorem 1.2. Consider the equivalence condition: let $\rho_1, \rho_2 : \pi_1(S, o) \to \mathrm{GL}_N(\mathbb{C}),$ then $\rho_1 \sim \rho_2$ if $\mathrm{Tr}(\rho_1(\gamma)) = \mathrm{Tr}(\rho_2(\gamma))$ for all $\gamma \in \pi_1(S, o)$. Then the set

 ${local system H of rank N underlying integral polarizable VHS}$

is finite.

Theorem 1.6. Let (S, o) be a compactifiable connected complex manifold, and let H be a $\mathbb{C}-local$ system underlying an integral polarizable variation of Hodge structures. Then H is semisimple, i.e.,

$$
\mathbf{H}=\bigoplus W_i\otimes \mathbf{L}_i
$$

where $\mathbf{L_i}$'s are pairwise non-isomorphic irreducible local systems, and W_i 's are complex vector spaces. Furthermore, we can put Hodge structures on W_i , and VHS on \mathbf{L}_i to make this an equality of complex polarized VHS.

Theorem 1.7. Now let V be a direct summand of H . Then V admits a polarized VHS.

Proof of theorem 1.2. This follows from a more general result: Let A be a k–algebra with $char(\mathbb{k}) = 0$, and M, N be semisimple A-modules which are finite dimensional over k. Each $a \in A$ defines, by multiplication, an element in $a_M \in \text{End}_k(M)$ (and $a_N \in \text{End}_k(N)$). If $\text{Tr}(a_M) = \text{Tr}(a_N)$ for all $a \in A$ then $M \simeq_A N$. See [here.](https://mathoverflow.net/questions/6560/version-of-brauer-nesbitt-for-summands)

The idea is that this is true for A finite-dimensional over \Bbbk (equivalently, A artinian, see Lam's Noncommutative rings, theorem 7.19), and to reduce to that case we take B to be the image of

$$
A \to \text{End}(M \oplus N), \quad a \mapsto (a_M, a_N)
$$

then B is Artinian and $M \simeq_B N$ which implies $M \simeq_A N$ (notice $a_M(m) = (a_M, a_N) \cdot m =$ $(a_M, a_N) \cdot n = a_N(n)$. In our case, let $A = \mathbb{Q}[\pi_1(S, o)]$ then the result follows.

For the second part, let V be a subquotient of H which underlies a polarized $\mathbb{Z}-VHS$. Then by theorem 1.6, V is a direct summand, hence underlies a polarized VHS. By (a stronger version which doesn't require integrality) theorem 1.6, V is semisimple, hence by \Box the first part we get the desired result.

2 Proofs

In order to prove theorem 1.5, we will first show that for a fixed $\gamma \in \pi_1(S, o)$ and $N \in \mathbb{Z}_+$, there is a bound for $\text{Tr}(\rho(\gamma))$ for all local systems underlying polarized VHS of rank N.

Proposition 2.1. Let (S, o) be a connected complex manifold, $\gamma \in \pi_1(S, o)$ and $N \in \mathbb{Z}_+$. Then there exists $C > 0$ such that $|\text{Tr}(\rho(\gamma))| < C$ for all $\rho : \pi_1(S, o) \to \text{GL}(\mathbf{H}_o)$ where H is a polarized VHS of rank N.

Proof. Consider H a polarized VHS of rank N. We have a period map $p : S \to \Gamma \backslash D$ where $D = G/K = \text{Aut}(\mathbf{H}_o, q) \cap \text{SL}(\mathbf{H}_o)$ and K is the subgroup fixing the flag corresponding to o. The main thing is that K is a compact subgroup (see CMSP proposition 4.4.4). This lifts to a $\pi_1(S, o)$ -equivariant map on universal cover

$$
P: \widetilde{S} \to D
$$

where $P(\gamma \cdot o) = \rho(\gamma)(P(o))$. We will need a lemma (see CMSP corollary 13.7.2)

Lemma 2.2. There exists a G -invariant metric d_D on D such that every horizonal holomorphic map $f : \Delta \to D$ is distance decreasing, i.e.,

$$
d_D(f(x), f(y)) \le d(x, y) \quad \forall \ x, y \in \Delta
$$

where d is the Poincare metric on the unit disk.

Proof of lemma 2.2. We have the trace form on G , and combining with the Weil operator this gives a G−invariant metric on D. The holomorphic sectional curvature is negative and bounded away from 0 (CMSP, theorem 13.6.3). Hence we can normalize the metric to something with sectional curvature ≤ -1 . Then by Schwarz-Ahlfors-Pick's theorem every holomorphic map from the unit disk is distance decreasing. \Box

We can put a Kobayashi metric d_S on \widetilde{S} such that

$$
d_D(P(o), \rho(\gamma)(P(o))) \leq d_S(o, \gamma \cdot o)
$$

and the claim is that $d_S(x, y)$ is finite for all $x, y \in \widetilde{S}$ since it is connected (this probably has to do with the construction of the Kobayashi metric, see Roydan's Remarks on the Kobayashi metric; essentially the more paths you use to connect 2 points, the lower the sum of distances drops). Let this bound be M.

Next, (D, d_D) is Riemannian homogeneous (isometries act transitively) since d_D is Ginvariant, hence (D, d_D) is complete. It follows that the closed ball are compact (in a geodesically complete Riemannian manifold, a subset is compact iff it's closed and bounded). Thus

$$
\left\{ \rho(\gamma) \in G \middle| d_D(P(o), \rho(\gamma)(P(o))) \le M \right\}
$$

is compact in D. Notice that this set only depends on (D, d_D) which only depends on the Hodge numbers $h^{p,q}$ (see CMSP proposition 4.4.4, even the polarization goes away and we are left with just symplectic and orthogonal groups).

Next observe that $D = G/K$ and K is compact with d_D being G−invariant, so $\rho(\gamma)$ is in a bounded set in G. It follows that its entries must be bounded, hence $\text{Tr}(\rho(\gamma))$ is bounded, and this bound only depends on the Hodge numbers.

To conclude the proof, we need to show that there are only finitely many possibilities for $h^{p,q}$. We will do this by induction on the rank N, with the case $N = 0$ being trivial. Now let w be the weight of **H**. Suppose there exists $i < p < j$ such that

$$
h^{i,w-i} \neq 0, \quad h^{p,w-p} = 0, \quad h^{j,w-j} \neq 0
$$

then F^{p+1} **H** satisfies Griffiths transversality (the only piece we have to worry about is ∇F^{p+1} which might end up in F^p which is not contained in F^{p+1} however $h^{p,w-p} = 0$ so $F^p = F^{p+1}$). So F^{p+1} is a sub-VHS, and by theorem 1.6, we can decompose **H** as a direct sum of 2 sub-VHS of strictly smaller rank. Hence induction takes care of this case.

For the case where $\{p|h^{p,w-p}\}\neq 0$ is an integer interval, we can twist by the Tate module and assume that $w \leq N$. In this case we also have that $h^{p,q}$ can only take finitely many values. \Box

Proposition 2.3. Let Γ be a finitely generated group and $N \in \mathbb{Z}_+$. There exists a finite subset $F \subset \Gamma$ such that if the traces of $\rho_1, \rho_2 : \Gamma \to GL_N(\mathbb{C})$ agree on all $\gamma \in F$, then they agree on all $\gamma \in \Gamma$.

Proof. The (morally correct) idea here is that $Hom(\Gamma, GL_N(\mathbb{C}))$ (the $\mathbb{C}-$ points of the representation scheme) is an affine variety with coordinate ring A. Procesi showed that $A^{GL_N(\mathbb{C})}$ is generated by

$$
\Big\{ \mathrm{Tr}(\gamma):\rho\mapsto\mathrm{Tr}(\rho(\gamma)) \Big|\gamma\in\Gamma\Big\}
$$

and since Γ is finitely generated, so is A thus we can pick finitely many $\gamma \in \Gamma$ to generate the invariant set. \Box

Proof of theorem 1.5. Take a set $F \subset \pi_1(S, o)$ as in the previous proposition. Any ρ : $\pi_1(S, o) \to \text{GL}(\mathbf{H}_o)$ underlying an integral polarizable VHS must factor through $\text{GL}_N(\mathbb{Z})$, i.e., $\rho(\gamma)$ is an integer matrix for all $\gamma \in \pi_1(S, o)$.

By proposition 2.1, for a fixed $\gamma \in \pi_1(S, o)$, $Tr(\rho(\gamma))$ can only take finitely many values as the local system H varies (bounded $+$ integer value implies finite possibilities). Then on F , the traces can only take finitely many values as well (since F is finite), and then by the previous proposition we get the desired conclusion. \Box

Proof of theorem 1.7. We have a local system $\text{End}(H)$ whose stalk at o is $\text{End}(H_0)$. By theorem of the fixed part, the global sections $\text{End}(\mathbf{H})$ has a Hodge structure compatible with restriction. Now, by theorem 1.6,

$$
\mathbf{H} = \bigoplus W_i \otimes \mathbf{L}_i
$$

so by Schur's lemma,

$$
\mathrm{End}(\mathbf{H})=\prod \mathrm{End}(W_i)
$$

One can show that any grading of $\prod \text{End}(W_i)$, compatible with restriction, has to come from gradings of W_i . Fix such gradings, and assume $\mathbf{V} = \mathbf{L}_j$. Then a homogenous (contained in a graded piece) line $L \subset W_j$ defines a projection of degree 0 in End (W_i) with image in L. This, in turn, induces a projection $H \to L \otimes L_i \simeq V$. \Box