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1 Recap

We have the following locuses

Cn(C) = {D e 0@

ho(D) > r+ 1}
Wr(C) = {L c Picd(C)‘hO(L) >4 1}

Theorem 1.1 (Brill-Noether). Let C' be a curve of genus g, and let d > 1,7 > 0 be integers.
Consider the Brill-Noether number:

p=g—(r+1)(g—d+r)

If p >0 then Wj(C) is non empty. Now if C' is a general curve, and p < 0, then WJ(C') is
empty.

Henry had also told us that there is always a D = g2 on a smooth curve of genus 6. If
D has base points, then we have the following cases:

e If D has 2 base points, then (mapping using D is the same as mapping using D minus
base points) it gives a map ¢p : C — P? which is either a birational map to a quadric,
in which case the genus doesn’t match, a 2-1 map to a conic, in which case C is
hyperelliptic, or a 4-1 map to a line. The last case doesn’t happen because ¢p(C) is
nondegenerate.

e If D has 1 base point, then ¢p embeds C as a smooth quintic curve (5-1 map can’t
happen because nondegeneracy).

e Can use a similar argument to rule out the case of > 3 base points.

If D has no base point, then 6 = deg ¢p - deg ¢p(C'), and we have the following cases:
e ¢p maps C in a 3-1 manner onto a conic. Here C' is trigonal.

e ¢p maps C' in a 2-1 manner onto a smooth plane cubic. Here C' is bi-elliptic.

e ¢p maps C in a 2-1 manner onto a singular plane cubic. Here C' is hyperelliptic.

e ¢p maps C birationally to a plane sextic curve Cy. In this case Cjy cannot have a point
of multiplicity > 4 (genus drops too much). If Cy has a Cy has a triple point, then C
is trigonal.

Note 1.1. The genus formula for a plane curve C C P? of degree d with singularities of

multiplicities m; is
- (5)-Z(%)
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2 General curve of genus 6

We want to know what a general curve of genus 6 looks like. Brill-Noether gives us this
for free, but for genus 6, we can do some hands on inspections instead. Recall we have the
moduli M, and the Hurwitz space:

Hag = {(C, f)‘C € M,, f: C — P! a simply branched cover of degree d}

which has dimension 2d + 2g — 2 by Riemann-Hurwitz (once we know the branched points,
monodromy, which is finite, gives the cover). We have the projection map 7 : Hgy — M,.
Say C' € im, i.e., C has a g, then we expect

dim 7 (C) > dim PGL(2) + dim W} (C) = 3 + dim W} (C)

where W7 (C') is the locus of line bundles £ of degree d with h°(L£) > r 4+ 1. In our case,
g =6, and for d = 2, 3, we have

dim Mgy = 2d + 10 < 18 = dim M, + 3

so a general curve of genus 6 cannot have a g1 or gi. For d = 4, we have that a general
curve of genus 6 can only have finitely many g}.

If C is bi-elliptic or a smooth plane quintic, then C' has at least 1-dimension worth of g}
(since we get a g from any point on elliptic curve), so C' cannot be general either. It follows
that a general curve of genus 6 is birational to a plane sextic with 4 simple nodes.

Our goal is to investigate the locus W} (C) of g} on a general genus 6 curve. Such a
divisor looks like D = q; + q2 + q3 + q4; we can always assume these are distinct points. For
this to be a gj, we need h°(D) > 2. Recall Riemann-Roch

(D) —h’ (Ko — D) =4—6+1

so we want h’(Kc — D) > 3. But h°(K¢) = 6, so D moves in a pencil iff it fails to impose
independent conditions on K.

Back to our plane model, let’s first consider Cy C P? with 4 nodes {pi, p2, 3, P4}, no 3
of which are collinear. We can blow up these 4 points to get the normalization 6’6, and by
universal property C' is isomorphic to C.

C() y P?

Here S is a quintic del Pezzo surface. Let Pic(S) = (H, E\, Es, E3, Ey) where H is the
pullback of a line in P2, and E; are exceptional divisors. We have

E}=-1, H*=1, H-E =0, E-E;=0

)

and
Kg=-3H+FE,+FEy+ Es+ E,

2
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4 4
1 1

4
Ko =(Ks+C)|,=3H-) E

1

Note 2.1. Notice that Ko = —Kg

o S0 this shows that if we embeds

g 15, ps
then the image of C' coincides with ¢ (C) of the canonical embedding.

In other words, the canonical divisor K¢ is cut out by cubics through 4 points
4

[ Then D = ) ¢ failing to impose independent conditions on K¢ is equivalent to
1

I'={p1, ., ps,q1,-..,qs} failing to impose independent conditions on cubics.

Proposition 2.1. Let I' be a set of 8 points in P?, then T fails to impose independent
conditions on cubics iff

o [' contains 5 collinear points, or
e [' is contained in a conic.

Applying the proposition, we get that either I' is contained in a conic, or 5 of them are
collinear. By our choice, no 3 of {p;} are collinear, so either {p1, p2, ¢1, ¢2, g3} are collinear
or {p1,¢:}. In the first case, let [ be the line, then

INCo={p1,p2,q1,%,q3}

so the intersection number is 7, which contradicts that Cj is a sextic. It follows that a g; is
cut out by either conics through {p;} or lines through each p;. That gives us all 5 g} on a
general curve of genus 6.

3 Scheme structure on W} (C)

Now let p1,p2,ps be collinear. We can still only have the previous 2 cases because of
intersection number. A g} is, once again, cut out by conics through {p;} or lines through
each p;. There is an issue here, which is that each conic through {p;} contains a line through
p4, and vice versa. As a result we only have four gj.

This has to do with the scheme structure on W} (C). In the previous case of 4 general
points, W} (C') has 5 points each of which is reduced. In this collinear case, we have 4 points
but the one corresponding to conics is nonreduced. The usual way of checking whether a
point is smooth is by looking at the tangent space.

We have Pic?(C) ~ Pic’(C) ~ J(C), and we know the tangent space to J(C), thus for
any L € Pic*(C) we have

T;Pic’(C) ~ HY(C, O¢)
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E’C ~ L}
{dap} ¢ Tap(1 + €dap)

which is the space of first order deformations of L. Then if L € W1(C)\W;t(C), ie.,
r(L) = r, we have

and on the other hand we have the identification

HY(C,0¢) =~ {E € Pic(Speci—[;; X C’)

TLW3(C) ~ {E € Pic (spec% x c)

Let v € H(C,O¢) corresponding to some L, one can check that a section o € HY(L)
extends to a section of L iff

E’C ~ L, every o € H(L) extends to HO(L)}

HY(C,0¢)® H(C,L) — H'(C, L)
v—0—0

so all sections extend iff v — HY(C, L) = 0. By Serre Duality we have
H°(C,Kc)" @ H(C,L) — H(C, Kc ® L")”
and dualizing again to get multiplication map
H(C,Kc @ LY)® H(C,L) & H°(C, K¢)

and we can identify T, W7 (C) ~ Ann(im p).

Back to our case of interest, W/ (C) is 0 dimensional. Let D be the g} cut out by
conics through {p;}, then D =2H — ) FE; then look at the multiplication map

H(C,H) @ HY(C2H =" B;) = H(C.3H — Y E)

If p1, po, p3 are collinear, on a line [, then any conic through those p; has to contain [. On
the other hand, cubics through 4 points p; don’t have to contain [ (take product of 3 lines
PaDi), so this map cannot be surjective. It follows that Ann(im p) has positive dimension,
and D is not a smooth point.

We claimed that D is reduced if {p;} are in general position. This seemingly implies that
the map

H(C, H) © H° (C, 20— E) 5 H (c, 30— Y E)

is surjective, i.e., any cubic through 4 general points can be written as a linear combination
of reducible cubics, which is quite surprising. This is actually just a straightforward con-
sequence of AF + BG theorem; here the key point is that 4 general points is a complete
intersection of 2 conics.

Note 3.1. The version we are using is that for f, g € C[z,y, z] two homogenous polynomials
and V(f) NV (g) =T transversely, i.e., in a finite number of reduced points, then any curve
V(h) containing I' has h € (f,g). This generalizes to transverse intersection in higher
dimensions as well.



	Recap
	General curve of genus 6
	Scheme structure on W14(C)

