Anh Tran

February 26, 2025

1 Deligne's extension

Theorem 1.1. Let (\mathcal{V}, ∇) be a flat connection on Δ^{\times} with quasi-unipotent monodromy. For each half interval I of length 1, (\mathcal{V}, ∇) extends uniquely to a logarithmic connection $(\mathcal{V}^{I}, \nabla)$ (i.e., $\nabla : \mathcal{V}^{I} \to \Omega_{\Delta}(\log 0) \otimes_{\mathcal{O}_{\Delta}} \mathcal{V}^{I}$) with all eigenvalues of the residue lying in I.

Proof. Consider the universal cover:

$$p: \mathbb{H} \to \Delta^{\times}, \quad z \mapsto t = \exp(2\pi i z)$$

Since all eigenvalues of T have norm 1, they are all of the form $\exp(2\pi i\lambda)$. Picking an interval I amounts to picking a fundamental domain for p, so there exists a unique Nwith eigenvalues in I such that

$$T = \exp(-2\pi i N)$$

Call V a fiber of \mathcal{V} (hence a fiber of $p^*\mathcal{V}$). Notice that a global section s of \mathcal{V} corresponds to a $\pi_1(\Delta^{\times})$ -invariant section \tilde{s} of $p^*\mathcal{V}$. Now, $p^*\mathcal{V}$ is trivial, i.e. $p^*\mathcal{V} \simeq V \otimes_{\mathbb{C}} \mathcal{O}_{\mathbb{H}}$ so a global section \tilde{s} of $p^*\mathcal{V}$ is just $\tilde{s} : \mathbb{H} \to V$. Let $\{v_1, \ldots, v_d\}$ be a basis of V, and if we abuse notation to consider $\{v_1, \ldots, v_d\}$ as the sections (constant w.r.t. the trivialization $p^*\mathcal{V} \simeq V \otimes_{\mathbb{C}} \mathcal{O}_{\mathbb{H}}$), then we have

$$\tilde{s}_i : \mathbb{H} \to p^* \mathcal{V}, \quad z \mapsto \exp(2\pi i z N)(v_i)(z) = \sum_{j=0}^{+\infty} \frac{(2\pi i)^j z^j}{j!} N^j v_i(z)$$

which satisfies

$$\tilde{s}_i(z+1) = \exp(2\pi i(z+1)N)v_i(z+1)
= \exp(2\pi izN)T^{-1}v_i(z+1)
= \exp(2\pi izN)v_i(z) = \tilde{s}_i(z)$$

where $v_i(z+1) = Tv_i(z)$ comes from the compatibility of the $\pi_1(\Delta^{\times})$ -actions on \mathbb{H} and $p^*\mathcal{V}$. Thus these sections descend to global sections $\{s_1, \ldots, s_d\}$ of \mathcal{V} , and we define the extension

$$\mathcal{V}^I \coloneqq \mathcal{O}_\Delta \cdot s_1 \oplus \cdots \oplus \mathcal{O}_\Delta \cdot s_d$$

On \mathbb{H} , we have the pullback connection being d since the bundle is trivial, i.e.,

$$(p^*\nabla)\tilde{s}_i = \sum_{j=1}^{\infty} \frac{(2\pi i)^j j z^{j-1}}{j!} dz \otimes N^j v_i$$
$$= 2\pi i \cdot dz \otimes \sum_{j=1}^{\infty} \frac{(2\pi i)^{j-1} z^{j-1}}{(j-1)!} N^j v_i$$
$$= 2\pi i \cdot dz \otimes N \cdot \exp(2\pi i z N)(v_i)$$

so on Δ^{\times} , noticing that $dt = d(e^{2\pi i z}) = 2\pi i \cdot e^{2\pi i} dz = 2\pi i \cdot t dz$, we have

$$\nabla s_i = \frac{\mathrm{d}t}{t} \otimes N s_i$$

so the residue of the connection is N, with eigenvalues in I as desired.

Definition 1.2. For simplicity of notation, we denote

$$\mathcal{V}^{\alpha} = \mathcal{V}^{[\alpha, \alpha+1)}, \quad \mathcal{V}^{>\alpha} = \mathcal{V}^{(\alpha, \alpha+1]}$$

Let $j: \Delta^{\times} \hookrightarrow \Delta$ and $i: \{0\} \hookrightarrow \Delta$. Notice that these extensions are all subsheaves of $j_*\mathcal{V}$ (be careful, since this is the analytic category, $j_*\mathcal{O}_{\Delta^{\times}}$ is bigger than $\mathcal{O}_{\Delta}(*0)$ since meromorphic non-algebraic function can have essential singularities) since all $s_i \in$ $H^0(\Delta^{\times}, j_*\mathcal{V}) = H^0(\mathbb{H}, \mathcal{V})$. Say we want to move from \mathcal{V}^{α} (with unique N_{α} , log of T with eigenvalues in $[\alpha, \alpha + 1)$) to $\mathcal{V}^{\alpha+1}$, the new unique log of T is $N_{\alpha+1} = N_{\alpha} + I$. Thus

$$\tilde{s}_i^{\alpha+1} = \exp(2\pi i z) \tilde{s}_i^{\alpha}$$

so $s_i^{\alpha+1} = t \cdot s_i^{\alpha}$ since $t = e^{2\pi i z}$. It follows that $\mathcal{V}^{\alpha+1} = t \cdot \mathcal{V}^{\alpha}$ for all $\alpha \in \mathbb{R}$.

Note 1.1. Since \mathcal{V}^{α} is a \mathcal{O}_{Δ} locally free sheaf, $t \cdot \mathcal{V}^{\alpha} \subseteq \mathcal{V}^{\alpha}$, i.e., $\mathcal{V}^{\alpha+1} \subseteq \mathcal{V}^{\alpha}$. This is true more generally, if $\alpha \leq \beta$ then $\mathcal{V}^{\beta} \subseteq \mathcal{V}^{\alpha}$.

Definition 1.3. We have Deligne's meromorphic extension

$$\widetilde{\mathcal{V}} = \bigcup_{\alpha \in \mathbb{R}} \mathcal{V}^{\alpha} \subset j_* \mathcal{V}$$

which is canonical. This is a \mathcal{D}_{Δ} -module, where the action by ∂_t is defined via the logarithmic connection:

$$\nabla_{\partial_t} s \in \iota_{\partial_t} \left(\frac{\mathrm{d}t}{t} \otimes \mathcal{V}^{\alpha} \right) = \frac{1}{t} \mathcal{V}^{\alpha} = \mathcal{V}^{\alpha - 1}$$

for $s \in \mathcal{V}^{\alpha}$.

Note 1.2. This name can be justified by the fact that $\widetilde{\mathcal{V}} = \mathcal{V}^{\alpha} \otimes_{\mathcal{O}_{\Delta}} \mathcal{O}_{\Delta}(*0)$ for any α , since $t^{-n} \cdot \mathcal{V}^{\alpha-n}$ which contains all \mathcal{V}^{β} with $\beta > \alpha - n$.

Note 1.3. To check that this action gives a \mathcal{D}_{Δ} -module, we just need to check the commutator condition $[\partial_t, f]$ for $f \in \mathcal{O}_{\Delta}$.

Proposition 1.4. $\widetilde{\mathcal{V}} = \mathcal{D}_{\Delta} \cdot \mathcal{V}^{-1}$, *i.e.*, the meromorphic extensions is generated (as a \mathcal{D} -module) by \mathcal{V}^{-1} .

Proof. It suffices to show that $\partial_t \cdot \mathcal{V}^{\alpha} = \mathcal{V}^{\alpha-1}$ for $\alpha \leq -1$. Consider $s \in \mathcal{V}^{\alpha-1}$

$$\partial_t t \cdot s = \nabla_{\partial_t} (t \cdot s) = \mathrm{d}t(\partial_t) \otimes s + t \nabla_{\partial_t} s = s + t \left(\frac{\mathrm{d}t}{t} (\partial_t) \otimes N_{\alpha - 1} s \right) = (N_{\alpha - 1} + I) s$$

and if $\alpha \leq -1$ then eigenvalues of $N_{\alpha-1} + I$ are in [-1, 0). It follows that it's invertible, so $\mathcal{V}^{\alpha-1} \xrightarrow{t} \mathcal{V}^{\alpha} \xrightarrow{\partial_t} \mathcal{V}^{\alpha-1}$ is an isomorphism, and the second map must be surjective.

Proposition 1.5. The de Rham complex

$$\mathrm{DR}\left(\widetilde{\mathcal{V}}\right) \coloneqq \left[0 \to \widetilde{\mathcal{V}} \xrightarrow{\nabla} \Omega^{1}_{\Delta} \otimes \widetilde{\mathcal{V}} \to 0\right]$$

is quasi-isomorphic to $Rj_*V[1]$, where V is the underlying local system of (\mathcal{V}, ∇) .

Proof. The idea, which we will see again in Zucker's theorem, is to filter the de Rham complex

$$V^{\alpha} \mathrm{DR}\left(\widetilde{\mathcal{V}}\right) = \left[0 \to \widetilde{\mathcal{V}}^{\alpha} \xrightarrow{\nabla} \Omega^{1}_{\Delta} \otimes \widetilde{\mathcal{V}}^{\alpha-1} \to 0\right]$$

First notice that

$$\mathrm{DR}\left(\widetilde{\mathcal{V}}\right) \simeq \left[0 \to \widetilde{\mathcal{V}} \xrightarrow{t\partial_t} \widetilde{\mathcal{V}} \to 0\right]$$

since $t : \widetilde{\mathcal{V}} \to \widetilde{\mathcal{V}}$ is invertible, and $\Omega_{\Delta}^1 \simeq \mathcal{O}_{\Delta}$ (via $\Omega_{\Delta}^1 = \mathcal{O}_{\Delta} \cdot dt$ and ∇ is identified with ∇_{∂_t}). Thus,

$$V^{\alpha} \mathrm{DR}\left(\widetilde{\mathcal{V}}\right) = \left[0 \to \widetilde{\mathcal{V}}^{\alpha} \xrightarrow{t\partial_{t}} \widetilde{\mathcal{V}}^{\alpha} \to 0\right]$$

Next, we will show that the inclusion $V^{\alpha} DR(\tilde{\mathcal{V}}) \hookrightarrow DR(\tilde{\mathcal{V}})$ is a quasi-isomorphism for all $\alpha \leq 0$. Since $DR(\tilde{\mathcal{V}}) = \bigcup_{\alpha \in \mathbb{R}} V^{\alpha} DR(\tilde{\mathcal{V}})$, it suffices to check that the inclusion $V^{\alpha} DR(\tilde{\mathcal{V}}) \hookrightarrow V^{\beta} DR(\tilde{\mathcal{V}})$ is a quasi-isomorphism for $\beta < \alpha \leq 0$. This is equivalent to the quotient complex

$$\left[0 \to \widetilde{\mathcal{V}}^{\beta} / \widetilde{\mathcal{V}}^{\alpha} \xrightarrow{t\partial_t} \widetilde{\mathcal{V}}^{\beta} / \widetilde{\mathcal{V}}^{\alpha} \to 0\right]$$

being quasi-isomorphic to 0. The key point here is that the V-filtration is discrete (here it's because the set of eigenvalues - exactly where the filtration jumps - is discrete), so $\tilde{\mathcal{V}}^{\beta+\epsilon} = \tilde{\mathcal{V}}^{>\beta}$ for all ϵ small enough. In other words, the above complex is quasi-isomorphic to

$$\left[0 \to \widetilde{\mathcal{V}}^{\beta} / \widetilde{\mathcal{V}}^{>\beta} \xrightarrow{t\partial_t} \widetilde{\mathcal{V}}^{\beta} / \widetilde{\mathcal{V}}^{>\beta} \to 0\right] = \left[0 \to \operatorname{gr}_V^{\beta} \widetilde{V} \xrightarrow{t\partial_t} \operatorname{gr}_V^{\beta} \widetilde{V} \to 0\right]$$

but $\operatorname{gr}_V^{\beta} \widetilde{V}$ is the generalized eigenspace of $t\partial_t$ so $t\partial_t$ is invertible $(t\partial_t - \beta$ is nilpotent, and $\beta < 0$ so eigenvalues are nonzero). In particular,

$$\mathrm{DR}\left(\widetilde{\mathcal{V}}\right) \simeq \left[0 \to \widetilde{\mathcal{V}}^0 \xrightarrow{t\partial_t} \widetilde{\mathcal{V}}^0 \to 0\right]$$

and then we can show that the germ at 0 of this complex is quasi-isomorphic to

$$\left[0 \to \operatorname{gr}_V^0 \widetilde{V} \xrightarrow{t\partial_t} \operatorname{gr}_V^0 \widetilde{V} \to 0\right]$$

which is equivalent to showing

$$\left[0 \to \widetilde{\mathcal{V}}^{>0} \xrightarrow{t\partial_t} \widetilde{\mathcal{V}}^{>0} \to 0\right] \simeq 0$$

which we can check explicitly.

Note 1.4. Another (possible way) of seeing this is by showing (by looking at stalks) that

$$\mathcal{H}^0\left(\mathrm{DR}\left(\widetilde{\mathcal{V}}\right)\right) \simeq \mathrm{R}^1 j_* \mathbf{V}, \quad \mathcal{H}^{-1}\left(\mathrm{DR}\left(\widetilde{\mathcal{V}}\right)\right) \simeq j_* \mathbf{V}$$

and since we are on Δ , the Ext² and above vanishes thus complex splits as direct sum of its cohomologies.

Now let's look at

$$\mathcal{M}\coloneqq\mathcal{D}_{\Delta}\cdot\mathcal{V}^{>-1}\subseteq\widetilde{\mathcal{V}}$$

(we don't necessarily have equality, since $N_{>-2} + I$ can have 0 as an eigenvalue hence not invertible). In this case we have

$$\mathrm{DR}(\mathcal{M}) = j_* \mathbf{V}[1]$$

which is the minimal extension of \mathbf{V} (so \mathcal{M} should be the \mathcal{D} -module minimal extension of \mathcal{V}). Now we can define the V-filtration on $\mathcal{M}: V^{\alpha}\mathcal{M} = \mathcal{V}^{\alpha} \cap \mathcal{M}$.

Note 1.5. We have that $V^{\alpha}\mathcal{M} = \mathcal{V}^{\alpha}$ for $\alpha > -1$. Furthermore,

$$t \cdot V^{\alpha} \mathcal{M} = \mathcal{V}^{\alpha+1}, \quad \partial_t \cdot V^{\alpha} \mathcal{M} = V^{\alpha-1} \mathcal{M} \quad \alpha \leqslant -1$$

and we can identify $\operatorname{Gr}_V^{\alpha} \coloneqq V^{\alpha} \mathcal{M}/V^{>\alpha} \mathcal{M}$ with the generalized α -eigenspace of $t\partial_t$ as follows: we have

$$\mathcal{V}^{\alpha}/\mathcal{V}^{\alpha+1} = \mathcal{V}^{\alpha}/t \cdot \mathcal{V}^{\alpha} \simeq \mathcal{V}^{\alpha} \otimes \mathbb{C}\{t\}/(t) = \mathcal{V}^{\alpha}|_{0}$$

and at the origin, $t\partial_t \cdot s = N_\alpha s$. Thus $\mathcal{V}^\alpha/\mathcal{V}^{>\alpha}$ is the generalized eigenspace (we don't have an actual eigenspace since technically N splits into a semisimple part and a nilpotent part).

2 Hodge modules over a curve

Recall that we have a category $MF_{rh}(\mathcal{D}_X, \mathbb{Q})$ whose objects consist of

- A perserve sheaf \mathbf{V} over \mathbb{Q} ;
- A regular holonomic \mathcal{D}_X -module \mathcal{M} with an isomorphism $\mathrm{DR}(\mathcal{M}) \simeq \mathbf{V} \otimes \mathbb{C}$;
- A good filtration F_{\bullet} on \mathcal{M} .

and our desired category of Hodge modules will be a subcategory of $MF_{rh}(\mathcal{D}_X, \mathbb{Q})$. There will be two types of building blocks:

- Given an inclusion $i : \{x\} \hookrightarrow X$ and a polarizable pure Hodge structure $(H_{\mathbb{Q}}, F^{\bullet})$ of weight w, our Hodge module of type 0 and weight w will be $i_+H_{\mathbb{C}}$ with the filtration induced by F^{\bullet} , and the perverse sheaf being the skyscaper sheaf $H_{\mathbb{Q}}, x$.
- Given a polarizable variation of Hodge structure $(\mathbf{V}_{\mathbb{Q}}, F^{\bullet})$ of weight w 1 over a Zariski open subset $j : U \hookrightarrow X$, our Hodge module of type 1 and weight w will be the minimal extension (as a \mathcal{D} -module) of $\mathcal{V} = \mathbf{V}_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathcal{O}_U$, with the underlying perverse sheaf $j_*\mathbf{V}_{\mathbb{Q}}[1]$, and a filtration as below.

It suffices to do this for punctured disc. Now let's assume that $(\mathcal{V}, \nabla, \mathbf{V}_{\mathbb{Q}})$ is a polarized variation of Hodge structures of weight w - 1 over Δ^{\times} . Denote

$$F_p \mathcal{V} \coloneqq F^{-p} \mathcal{V}$$

the Hodge filtration on \mathcal{V} . We have $\partial_t \cdot F_p \mathcal{V} \subseteq F_{p+1} \mathcal{V}$ by Griffiths' transversality. The naive choice $F_p \mathcal{M} \coloneqq \mathcal{M} \cap j_* F_p \mathcal{V}$ is bad since for $p \gg 0$ we have $F_p \mathcal{V} = \mathcal{V}$ so $F_p \mathcal{M} = \mathcal{M}$ but this is not \mathcal{O}_{Δ} -coherent. By Schmid's nilpotent orbit theorem, the subbundles $F_{\bullet}\mathcal{V}$ extends to subbundles of the Deligne's extensions:

$$F_{\bullet}\mathcal{V}^{\alpha}, \quad F_{\bullet}\mathcal{V}^{>\alpha}$$

and we can actually show that $F_p \mathcal{V}^{\alpha} = \mathcal{V}^{\alpha} \cap j_* F_p \mathcal{V}$ and similarly for $F_p \mathcal{V}^{>\alpha}$.

Note 2.1. $F_p \mathcal{V}^{\alpha}$ is a subbundle of \mathcal{V}^{α} , so $\mathcal{V}^{\alpha}/F_p \mathcal{V}^{\alpha}$ is also a vector bundle (quotient by subbundle is fine). A local section $\sigma \in \mathcal{V}^{\alpha} \cap j_* F_p \mathcal{V}$ on $U \ni 0$ is a section of \mathcal{V}^{α} over U and a section of $F_p \mathcal{V}$ over $U - \{0\}$. Then the image (under quotient) $\overline{\sigma}$ is a local section, over U of $\mathcal{V}^{\alpha}/F_p \mathcal{V}^{\alpha}$. It's 0 on $U - \{0\}$, but $\mathcal{V}^{\alpha}/F_p \mathcal{V}^{\alpha}$ is locally free so $\overline{\sigma} = 0$ on U thus $\sigma \in F_p \mathcal{V}^{\alpha}$.

In order to get Griffths transversality (which is necessary to be a good filtration) we define

$$F_p \mathcal{M} = \sum_{j=0}^{+\infty} (\nabla_{\partial_t})^j F_{p-j} \mathcal{V}^{>-1}$$

which is a finite sum since $F_p \mathcal{V} = 0$ for $p \ll 0$. It's exhaustive since $F_p \mathcal{V}^{>-1} = \mathcal{V}^{>-1}$ for $p \gg 0$, and $\mathcal{M} = \mathcal{D}_{\Delta} \cdot \mathcal{V}^{>-1}$. We also have

$$\partial_t \cdot F_p \mathcal{M} = F_{p+1} \mathcal{M}, \quad p \gg 0$$

so $F_{\bullet}\mathcal{M}$ is a good filtration. $(\mathcal{M}, F_{\bullet}\mathcal{M}, j_*\mathbf{V}[1])$ is our Hodge module of type 1. Let $\mathrm{MH}(\Delta, w)^p$ be the full subcategory of $\mathrm{MF_{rh}}(\mathcal{D}_{\Delta}, \mathbb{Q})$, consisting of finite direct sums of objects of these two types.

Theorem 2.1. $MH(\Delta, w)^p$ is abelian and semisimple.

Proof. We first show that there are no nonzero morphisms between objects of different types. We know that the underlying perserve sheaves of type 0 and 1 correspond to quivers

A morphism of hodge modules would correspond to a morphism of quivers. But this is impossible. For example suppose we have linear maps $0 \rightarrow \psi$ and $\phi \rightarrow \phi$, then

must commute, but this forces $\phi \to \phi$ to be zero, so the morphism of quivers is 0. For same type statements, we have that the category of polarizable (variations of) Hodge structures is both abelian and semisimple.

Theorem 2.2 (Zucker). The cohomology $H^i(\Delta, j_* \mathbf{V}_{\mathbb{C}})$ carries a polarized Hodge structure of weight w + i.

Very rough sketch. We don't have a monodromy filtration on the nose, since our T is not unipotent (which gives nilpotent residue), but we do have

$$\operatorname{Gr}_V^{\alpha} \mathcal{M} = \psi_t^{\alpha} \mathcal{M}$$

which is a generalized α -eigenspace, so we can lift the nilpotent filtration to $N_{\bullet}V^{\alpha}\mathcal{M}$. We have a V-filtration on $DR(\mathcal{M})$ by setting

$$V^{\alpha} \mathrm{DR}(\mathcal{M}) \coloneqq \left[0 \to V^{\alpha} \mathcal{M} \xrightarrow{\nabla} \Omega^{1}_{\Delta} \otimes V^{\alpha-1} \mathcal{M} \to 0 \right]$$

For any $\alpha < 0$, the induced morphism

$$\operatorname{Gr}_V^{\alpha} \mathcal{M} \xrightarrow{\partial_t} \operatorname{Gr}_V^{\alpha-1} \mathcal{M}$$

is an isomorphism, so $V^0 DR(\mathcal{M}) \hookrightarrow DR(\mathcal{M})$ is a quasi-isomorphism. Since \mathcal{M} is a minimal extension, we actually have that $DR(\mathcal{M})$ is quasi-isomorphic to

$$\left[0 \to N_0 V^0 \mathcal{M} \xrightarrow{t\partial_t} N_{-2} V^0 \mathcal{M} \to 0\right]$$

On the other hand we have the L^2 -de Rham complex

$$\mathrm{DR}\left(\widetilde{\mathcal{V}}\right)_{(2)} = \left[0 \to \widetilde{\mathcal{V}}_{(2)} \xrightarrow{\nabla} \left(\Omega^1 \otimes \widetilde{\mathcal{V}}\right)_{(2)} \to 0\right]$$

and Schmid's characterization of $N_{\bullet}\mathcal{V}^{\alpha}$ gives that

$$\left(\Omega^1 \otimes \widetilde{\mathcal{V}}\right)_{(2)} = \frac{\mathrm{d}t}{t} \otimes N_{-2}\mathcal{V}^0, \quad \widetilde{\mathcal{V}}_{(2)} = N_0\mathcal{V}^0$$

so we get

$$\mathrm{DR}\left(\widetilde{\mathcal{V}}\right)_{(2)} \simeq \mathrm{DR}(\mathcal{M}) = j_* \mathbf{V}_{\mathbb{C}}$$

Now, let $\mathcal{H} = \mathcal{C}^{\infty}_{\Delta^{\times}} \otimes \mathbf{V}$. It has a flat C^{∞} -connection D = D' + D'' where $D'' = d'' \otimes \mathrm{Id}$ and D' induced by ∇ . One can then define the L^2 -de Rham complex $\mathcal{L}^{\bullet}_{(2)}(\mathcal{H}, D)$. The inclusion $\mathrm{DR}(\widetilde{\mathcal{V}})_{(2)} \hookrightarrow \mathcal{L}^{\bullet}_{(2)}(\mathcal{H}, D)$ is a quasi-isomorphism, so we get our decomposition.

References

- [Ara08] Donu Arapura. Mixed Hodge structures associated to geometric variations. 2008. arXiv: math/0611837 [math.AG].
- [Sab07] Claude Sabbah. Hodge Theory, Singularities and D-modules. https://perso. pages.math.cnrs.fr/users/claude.sabbah/livres/sabbah_luminy07. pdf. Mar. 2007.
- [Sch14] Christian Schnell. An overview of Morihiko Saito's theory of mixed Hodge modules. 2014. arXiv: 1405.3096 [math.AG].