Intersection cohomology

Anh Tran

January 22, 2025

1 Perverse sheaf preliminaries

Let X be an algebraic variety or an analytic space, and denote D_c^b the full subcategory of $D^b(Mod(\mathbb{C}_X))$ of F^{\bullet} such that $H^j(F^{\bullet})$ is constructible on X for all $j \in \mathbb{Z}$.

Definition 1.1. We have a *t*-structure ${}^{p}D_{c}^{\leq 0}(X), {}^{p}D_{c}^{\geq 0}(X)$ as follows:

- 1. $F^{\bullet} \in {}^{p}\mathbb{D}_{c}^{\leq 0}(X)$ iff dim supp $H^{j}(F^{\bullet}) \leq -j$ for all $j \in \mathbb{Z}$.
- 2. $F^{\bullet} \in {}^{p} \mathbb{D}_{c}^{\geq 0}(X)$ iff dim supp $H^{j}(\mathbb{D}_{X}F^{\bullet}) \leq -j$ for all $j \in \mathbb{Z}$.

Then we have the abelian category

$$\operatorname{Perv}(\mathbb{C}_X) = {}^{p} \mathcal{D}_c^{\leq 0}(X) \cap {}^{p} \mathcal{D}_c^{\geq 0}(X)$$

We also have truncation functors:

$${}^{p}\tau^{\leqslant 0}: \mathrm{D}^{b}_{c}(X) \to {}^{p}\mathrm{D}^{\leqslant 0}_{c}(X), \quad {}^{p}\tau^{\geqslant 0}: \mathrm{D}^{b}_{c}(X) \to {}^{p}\mathrm{D}^{\geqslant 0}_{c}(X)$$

and cohomological functor (it gives long exact sequence from distinguised triangle):

$${}^{p}H^{n}: \mathcal{D}^{b}_{c}(X) \to \operatorname{Perv}(\mathbb{C}_{X}), \quad F^{\bullet} \mapsto {}^{p}\tau^{\leq 0p}\tau^{\geq 0}(F^{\bullet}[n])$$

Proposition 1.2. Let $F^{\bullet} \in D^b_c(X)$ and $X = \bigsqcup_{\alpha \in A} X_{\alpha}$ be a complex stratification of X consisting of connected strata such that $i^{-1}_{X_{\alpha}}F^{\bullet}$, $i^!_{X_{\alpha}}F^{\bullet}$ have locally constant cohomology sheaves for any $\alpha \in A$. Then

1. $F^{\bullet} \in {}^{p} \mathbb{D}^{\leq 0}_{c}(X)$ iff $H^{j}(i^{-1}_{X_{\alpha}}F^{\bullet}) = 0$ for any α and $j > -\dim X_{\alpha}$.

2. $F^{\bullet} \in {}^{p} \mathbb{D}_{c}^{\geq 0}(X)$ iff $H^{j}(i^{!}_{X_{\alpha}}F^{\bullet}) = 0$ for any α and $j < -\dim X_{\alpha}$

Definition 1.3. Let D_1, D_2 be two triangulated categories with t-structures $(D_i^{\leq 0}, D_i^{\geq 0})$. Suppose we have have a functor $F : D_1 \to D_2$, then F is left t-exact if $F(D_1^{\leq 0}) \subseteq D_2^{\leq 0}$. Right t-exactness is defined similarly. We say that F is t-exact if it's both left and right t-exact.

Suppose that D_i has the heart C_i . For any functor $F : D_1 \to D_2$, we have an induced addive functor:

$${}^{p}F: \mathcal{C}_{1} \to \mathcal{C}_{2}, \quad {}^{p}F \coloneqq {}^{p}H^{0} \circ F \circ (\mathcal{C}_{1} \hookrightarrow D_{1})$$

Proposition 1.4. Assume that F is left exact.

1. For any $C^{\bullet} \in D_1$ we have

 $\tau^{\leqslant 0} \circ F \circ \tau^{\leqslant 0}(C^{\bullet}) \simeq \tau^{\leqslant 0} F(C^{\bullet})$

and in particular, for $C^{\bullet} \in D_1^{\geq}0$, ${}^pF({}^pH^0(C^{\bullet})) \simeq {}^pH^0(F(C^{\bullet})).$

2. ${}^{p}F$ is a left exact functor between abelian categories.

Proposition 1.5. The Verdier duality functor $\mathbb{D}_X : \mathrm{D}^b_c(X) \to \mathrm{D}^b_c(X)^{\mathrm{op}}$ is t-exact and induces an exact functor

$$\mathbb{D}_X : \operatorname{Perv}(\mathbb{C}_X) \to \operatorname{Perv}(\mathbb{C}_X)^{\operatorname{op}}$$

Proposition 1.6. Let Z be a locally closed subvariety of X and $i : Z \hookrightarrow X$ be the embedding.

1. $i^{-1}: \mathbf{D}_c^b(X) \to \mathbf{D}_c^b(Z)$ is right t-exact.

2. $i^!: D^b_c(X) \to D^b_c(Z)$ is left t-exact.

- 3. For any $G^{\bullet} \in {}^{p}\mathbb{D}_{c}^{\geq 0}$ such that $\operatorname{Ri}_{*}G^{\bullet} \in \operatorname{D}_{c}^{b}(X)$ we have $\operatorname{Ri}_{*}G^{\bullet} \in {}^{p}\mathbb{D}_{c}^{\geq 0}(X)$.
- 4. For any $G^{\bullet} \in {}^{p}\mathbb{D}_{c}^{\leq 0}$ such that $i_{!}G^{\bullet} \in \mathbb{D}_{c}^{b}(X)$ we have $i_{!}G^{\bullet} \in {}^{p}\mathbb{D}_{c}^{\leq 0}(X)$.

Minimal extensions

Let X be an irreducible algebraic variety or an irreducible analytic space, and U a Zariski open dense subset of X. Let Z = X - U and denote $i : Z \hookrightarrow X, j : U \hookrightarrow X$ be the closed and open embeddings.

Definition 1.7. We say that a stratification $X = \bigsqcup_{\alpha \in A} X_{\alpha}$ is compatible with $F^{\bullet} \in D_{c}^{b}(U)$ if $U = \bigsqcup_{\alpha \in B} X_{\alpha}$ for $B \subseteq A$, and $F^{\bullet}|_{X_{\alpha}}, \mathbb{D}_{U}F^{\bullet}|_{X_{\alpha}}$ both have locally constant cohomology sheaves for any $\alpha \in B$. Such a stratification always exists if X is an algebraic variety.

By taking refinement we might assume that we have a Whitney stratification as well. Then $Rj_*F^{\bullet}, j_!F^{\bullet} \in D^b_c(X)$. Now assume that F^{\bullet} is a perverse sheaf on U. Recall that we have an inclusion morphism of functor $j_! \hookrightarrow j_*$ which induces a morphism of derived functors, i.e., we have

$$j_!F^\bullet \to \mathrm{R}j_*F^\bullet$$

Definition 1.8. Denote ${}^{p}j_{!*}F^{\bullet}$ to be the image of the canonical morphism ${}^{p}j_{!}F^{\bullet} \to {}^{p}j_{*}F^{\bullet}$ in Perv(\mathbb{C}_{X}), i.e., we have a factorization

$${}^{p}j_{!}F^{\bullet} \twoheadrightarrow {}^{p}j_{!*}F^{\bullet} \hookrightarrow {}^{p}j_{*}F^{\bullet}$$

in $\operatorname{Perv}(\mathbb{C}_X)$. We call this the minimal extension of $F^{\bullet} \in \operatorname{Perv}(\mathbb{C}_X)$.

Proposition 1.9. The minimal extension $G^{\bullet} = {}^{p}j_{!*}F^{\bullet}$ of $F^{\bullet} \in \text{Perv}(\mathbb{C}_{U})$ is the unique perverse sheaf on X which satisfies:

1. $G^{\bullet}|_{U} \simeq F^{\bullet};$

2.
$$i^{-1}G^{\bullet} \in {}^{p}\mathbb{D}_{c}^{\leq -1}(Z);$$

3. $i^! G^{\bullet} \in {}^p \mathbb{D}_c^{\geq 1}(Z)$.

Proposition 1.10. Let $F^{\bullet} \in \text{Perv}(\mathbb{C}_U)$. Then

- 1. ${}^{p}j_{*}F^{\bullet}$ has no non-trivial subobject whose support is contained in Z.
- 2. ${}^{p}j_{!}F^{\bullet}$ has no non-trivial quotient object whose support is contained in Z.

Proof. For part 1, let $G^{\bullet} \subset {}^{p}j_{*}F^{\bullet}$ be a subobject such that supp $G^{\bullet} \subseteq Z$. Notice that $i^{!}G^{\bullet} \simeq i^{-1}G^{\bullet}$.

Note 1.1. $i^!G^{\bullet} \simeq i^{-1}G^{\bullet}$ should be because G^{\bullet} is supported in Z. I (incorrect) thought that it's due to $i_! = i_*$, but i^{-1} is a left adjoint and $i^!$ is a right adjoint.

Now i^{-1} is right t-exact and $i^!$ is left t-exact so $i^!G^{\bullet} \in \operatorname{Perv}(\mathbb{C}_U)$ and thus $i^!G^{\bullet} = {}^{p}i^!G^{\bullet}$.

We have that $G^* \simeq i_* i^! G^{\bullet}$ $(i^! G^{\bullet} \simeq i^{-1} G^{\bullet}$, and i_* is just extension by 0 while supp $G^{\bullet} \subset Z$), so it suffices to show ${}^{p} i^! G^{\bullet} \simeq 0$. We have an exact sequence

$$0 \to G^{\bullet} \to {}^{p}j_{*}F^{\bullet}$$

and applying the left exact functor $p_i!$ we get

$$0 \to {}^{p}i^{!}G^{\bullet} \to {}^{p}i^{!p}j_{*}F^{\bullet}$$

Next we have $i^! R j_* F^{\bullet} \simeq 0$ (extending from U to X then pullback to Z), and since $i^!$ is left exact we have, by proposition 1.4.1,

$$0 = {}^{p}H^{0}(i^{!}\mathrm{R}j_{*}F^{\bullet}) \simeq {}^{p}i^{!} \circ {}^{p}H^{0}(\mathrm{R}j_{*}F^{\bullet}) = {}^{p}i^{!p}j_{*}F^{\bullet}$$

which implies ${}^{p}i^{!}G^{\bullet} = 0$ as desired. Part 2 is similar.

Corollary 1.11. The minimal extension ${}^{p}j_{!*}F^{\bullet}$ has neither non-trivial subobject nor non-trivial quotient object whose support is contained in Z.

Proof. A subobject of ${}^{p}j_{!*}F^{\bullet}$ is a subobject of ${}^{p}j_{*}F^{\bullet}$. A quotient object of ${}^{p}j_{!*}F^{\bullet}$ is a quotient object of ${}^{p}j_{!*}F^{\bullet}$.

Corollary 1.12. We have the following:

- 1. Let $0 \to F^{\bullet} \to G^{\bullet}$ be an exact sequence in $\operatorname{Perv}(\mathbb{C}_U)$. Then $0 \to {}^p j_{!*}F^{\bullet} \to {}^p j_{!*}G^{\bullet}$ is also exact.
- 2. Let $F^{\bullet} \to G^{\bullet} \to 0$ be an exact sequence in $\operatorname{Perv}(\mathbb{C}_U)$. Then ${}^p j_{!*}F^{\bullet} \to {}^p j_{!*}G^{\bullet} \to 0$ is also exact.

Proof. The idea here is that the kernel and cokernel are both supported in Z (since they are 0 on U by exactness and ${}^{p}j_{!*}F^{\bullet}|_{U} \simeq F^{\bullet}$).

Corollary 1.13. Let F^{\bullet} be a simple object in $\operatorname{Perv}(\mathbb{C}_U)$. Then the minimal extension ${}^pj_{!*}F^{\bullet}$ is also a simple object in $\operatorname{Perv}(\mathbb{C}_X)$.

Proof. Suppose we have a short exact sequence

 $0 \to G^{\bullet} \to {}^p j_{!*} F^{\bullet} \to H^{\bullet} \to 0$

then applying the *t*-exact functor ${}^{p}j^{!} = j_{!} = j^{-1}$ we get

$$0 \to j^{-1}G^{\bullet} \to F^{\bullet} \to j^{-1}H^{\bullet} \to 0$$

and since F^{\bullet} is simple, either G^{\bullet} or H^{\bullet} is supported in Z. It then follows from 1.11 that either must be zero.

2 Intersection cohomology

Set $d = \dim X$ and $X_k = \bigsqcup_{\dim X_\alpha \leq k} X_\alpha$, then we get a filtration

$$X = X_d \supset X_{d-1} \supset \cdots \supset X_0 \supset X_{-1} = \emptyset$$

Denote $U_k = X - X_{k-1} = \bigsqcup_{\dim X_\alpha \ge k} X_\alpha$, with

$$U = U_d \stackrel{j_d}{\longrightarrow} U_{d-1} \stackrel{j_{d-1}}{\longrightarrow} \dots \stackrel{j_2}{\longrightarrow} U_1 \stackrel{j_1}{\longrightarrow} U_0 = X$$

a sequence of open embeddings.

Proposition 2.1. Let L be a local system on U. We have an isomorphism

$${}^{p}j_{!*}L[\dim X] \simeq (\tau^{\leqslant -1} \mathrm{R}j_{1*}) \circ \cdots \circ (\tau^{\leqslant -d} \mathrm{R}j_{d*})(L[\dim X])$$

 $\it Proof.$ Since minimal extension plays well with composition of open inclusions, it suffices to show that

$${}^{p}j_{k!*}F^{\bullet} \simeq \tau^{\leq -k} \mathrm{R}j_{k*}F^{\bullet}$$

for any perverse sheaf F^{\bullet} on U_k whose restriction to each $X_{\alpha} \subset U_k$ has locally constant cohomology. To do this, we check that the RHS satisfies all 3 conditions in proposition 1.9.

Corollary 2.2. We have a canonical morphism $(j_*L)[\dim X] \to {}^p j_{!*}(L[\dim X])$.

Proof. From the previous proposition we get

$$\tau^{\leq -\dim X_p} j_{!*}(L[\dim X]) \simeq (j_{1*} \circ \cdots \circ j_{d*})(L)[\dim X] \simeq (j_*L)[\dim X]$$

since we have $\tau^{\leq -k} = \tau^{\leq 0}[k]$.

Definition 2.3. For an irreducible algebraic variety X, we define its intersection cohomology complex by

$$\mathrm{IC}_X^{\bullet} = {}^p j_{!*} \big(\mathbb{C}_{X_{\mathrm{reg}}^{\mathrm{an}}} [\dim X] \big) \in \mathrm{Perv}(\mathbb{C}_X)$$

where X_{reg} is the regular part and $j: X_{\text{reg}} \hookrightarrow X$ is the embedding.

Theorem 2.4. We have $\mathbb{D}_X(\mathrm{IC}^{\bullet}_X) = \mathrm{IC}^{\bullet}_X$.

Proof. We have $\mathbb{D}_X({}^p j_{!*}F^{\bullet}) \simeq {}^p j_{!*}(\mathbb{D}_U F^{\bullet})$, since \mathbb{D} is a *t*-exact functor.

Definition 2.5. Let X be an irreducible analytic space. For $i \in \mathbb{Z}$ we set

$$\mathrm{IH}^{i}_{(c)}(X) \coloneqq H^{i}\big(\mathrm{R}\Gamma_{(c)}(X, \mathrm{IC}^{\bullet}_{X})[-\dim X]\big)$$

called the i - th intersection cohomology group (with compact supports).

Theorem 2.6 (Generalized Poincaré duality). Let X be an irreducible analytic space of dimension d. Then we have

$$\operatorname{IH}^{i}(X) \simeq \operatorname{IH}^{2d-i}_{c}(X)^{\vee}$$

for any $0 \leq i \leq 2d$.

Proof. By Verdier duality we get

 $\mathcal{RHom}_{\mathbb{C}}(\mathcal{R}a_{X!}\mathcal{IC}_{X}^{\bullet},\mathbb{C})\simeq \mathcal{R}a_{X*}\mathcal{RHom}_{\mathbb{C}_{X}}(\mathcal{IC}_{X}^{\bullet},\omega_{X}^{\bullet})=\mathcal{R}a_{X*}\mathbb{D}_{X}(\mathcal{IC}_{X}^{\bullet})\simeq \mathcal{R}a_{X*}\mathcal{IC}_{X}^{\bullet}$ where $a_{X}: X \to \{\mathrm{pt}\}$. Next, notice that

$$\operatorname{Ra}_{X!}\operatorname{IC}^{\bullet}_X \simeq \operatorname{R}\Gamma_c(X, \operatorname{IC}^{\bullet}_X)$$

so we get

$$\mathrm{R}\Gamma_c(X, \mathrm{IC}^{\bullet}_X)^{\vee} \simeq \mathrm{R}\Gamma(X, \mathrm{IC}^{\bullet}_X)$$

and taking (i - d)-th cohomology groups of both sides gives the desired isomorphism. **Definition 2.7.** By Verdier duality, we get that $\mathbb{H}^{-i}(X, \omega_X^{\bullet}) \simeq H_c^i(X)^{\vee}$. We call this the *i*-th Borel-Moore homology group, denoted $H_i^{RmBM}(X)$.

Proposition 2.8. There exist canonical morphisms:

$$H^{i}(X) \to \operatorname{IH}^{i}(X) \to H^{\operatorname{BM}}_{2d-i}(X)$$

where the composition is the same as the cup product with the fundamental class [X].

Proof. We have canonical morphisms:

$$\mathbb{C}_X \to \mathrm{IC}^{\bullet}_X[-\dim X] \to \omega^{\bullet}_X[-2\dim X]$$

where the first one comes from 2.2, and the second comes from taking Verdier dual.

Definition 2.9. Let X be an algebraic variety or analytic space. We say that X is rationally smooth if for any $x \in X$ we have

$$H^i_{\{x\}}(X, \mathbb{C}_X) = \mathbb{C}$$
 $i = 2 \dim X$

and 0 for other i.

Proposition 2.10. Let X be a rationally smooth irreducible analytic space. Then the canonical morphisms $\mathbb{C}_X \to \omega_X^{\bullet}[-2 \dim X]$ and $\mathbb{C}_X \to \mathrm{IC}_X^{\bullet}[-\dim X]$ are isomorphisms.

Proof. Let $i_{\{x\}} : \{x\} \to X$ be the embedding, then

$$i_{\{x\}}^{-1}\omega_X^{\bullet} = i_{\{x\}}^{-1}\mathbb{D}_X(\mathbb{C}_X) \simeq \mathbb{D}_{\{x\}}i_{\{x\}}^!(\mathbb{C}_X) \simeq \operatorname{RHom}_{\mathbb{C}}(\operatorname{R}_{\{x\}}(X,\mathbb{C}_X),\mathbb{C})$$

thus we get

$$H^{j-2d}\left(i_{\{x\}}^{-1}\omega_X^{\bullet}\right) \simeq H^{2\dim X-j}_{\{x\}}(X,\mathbb{C}_X)^{\vee}$$

and by rationally smoothness we get $\mathbb{C}_X \simeq \omega_X^{\bullet}[-2 \dim X]$. For the other isomorphism, let $F^{\bullet} \coloneqq \mathbb{C}_X[\dim X]$ we have $\mathbb{D}_X F^{\bullet} \simeq F^{\bullet}$. We can then show that $F^{\bullet} \simeq \mathrm{IC}_X^{\bullet}$ by showing that it is a minimal extension.

Corollary 2.11. Let X be a rationally smooth irreducible analytic space. Then $H^i(X) \simeq \operatorname{IH}^i(X)$ for any $i \in \mathbb{Z}$.

Theorem 2.12 (Decomposition theorem). Let $f : X \to Y$ be a proper morphism of algebraic variety, then

$$\mathrm{R}f_*(\mathrm{IC}^{\bullet}_X) \simeq \bigoplus_k i_{k*}\mathrm{IC}_{Y_k}(L_k)^{\bullet}[l_k]$$

where, for each k, Y_k is an irreducible closed subvariety of Y, $i_k : Y_k \hookrightarrow Y$ the embedding, L_k is a local system on some smooth Zariski open subset of Y_k .

Corollary 2.13. Let $\pi : \widetilde{X} \to X$ be a resolution of singularities of X. Then $\operatorname{IH}^{i}(X)$ is a direct summand of $H^{i}(\widetilde{X})$ for any $i \in \mathbb{Z}$.

References

[HTT07] Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki. *D-Modules, Perverse Sheaves, and Representation Theory.* Birkhäuser Boston, MA, 2007.