1 Definition

1.1 Functor of points

Suppose we have a scheme G over k, then a k-point is just a map $\text{Spec } \mathbb{k} \to G$. Thus we can think of the set $G(\mathbb{k})$ as Hom(Spec k, G). Generalizing this, for any scheme G we can define a functor of points

$$
h_G: (\text{Affine schemes}/\mathbb{k})^{\text{op}} \to \text{Sets}, \quad X \mapsto \text{Mor}_{\mathbb{k}}(X, G)
$$

and Yoneda's lemma says that the functor $G \mapsto h_G$ is fully faithful, i.e., a scheme is determined up to isomorphism by its functor of points. Now, we say that a functor

$$
F: (Affine schemes/k)^{op} \to Sets
$$

is representable if it is isomorphic to h_G for some scheme G .

Theorem 1.1. Such a functor is F representable if and only if F admits an open cover by representable functors and F is a sheaf with respect to the Zariski topology on the category of schemes.

Note 1.1. The motivation for this topology comes from gluing sheaves. We say that a functor $F : \mathbf{Sch}^{\mathrm{op}} \to \mathbf{Sets}$ satisfies the sheaf property if for every scheme T and every open covering $T = \bigcup_{\alpha} U_{\alpha}$ we have an exact complex:

$$
0 \to F(T) \to \prod_{\alpha} F(U_{\alpha}) \rightrightarrows \prod_{\alpha,\beta} F(U_{\alpha} \times_T U_{\beta})
$$

Example 1.2. The functor $X \mapsto H^0(X, \mathcal{O}_X)$ is represented by \mathbb{A}^1 . The functor $X \mapsto$ $H^0(X, \mathcal{O}_X)^*$ is represented by \mathbb{G}_m .

For a group scheme G we just ask h_G to factor, i.e.,

so we can think of a group scheme G over k as a functor $(\text{Sch}/\mathbb{k})^{\text{op}} \to \text{Grps}$.

1.2 Jacobian functor

Let C be a complete nonsingular curve over \Bbbk . Recall that a Weil divisor is just a formal sum of points

$$
D = \sum_{j=1}^{n} n_j P_j, \quad \deg D = \sum_{j=1}^{n} n_j [\mathbb{k}(P_j) : \mathbb{k}]
$$

and we have a correspondence between divisors and line bundles on C. We defined $Pic^0(C)$ to be the group of degree 0 line bundles on C ; this is not necessarily a scheme.

Let T be a connected scheme over \mathbb{k} , look at the fiber product

$$
\pi: C \times_{\mathbb{k}} T \to T, \quad C_t = \pi^{-1}(t)
$$

and for $\mathcal{L} \in \text{Pic}(C \times_k T)$ we define $\mathcal{L}_t = \mathcal{L}|_{C_t}$. Then we have that the map $t \mapsto \chi(C_t, \mathcal{L}_t)$ is locally constant (this is an example of a flat family of curves). By Riemann Roch, this implies that $\deg(\mathcal{L}_t)$ is independent of $t \in T$. This degree is also invariant under base change, so we can define a functor $J : (\text{Sch}/\mathbb{k})^{\text{op}} \to \text{Grps}$,

$$
J(T) = \left\{ \mathcal{L} \in \text{Pic}(C \times_{\mathbb{k}} T) \middle| \deg(\mathcal{L}_t) = 0 \forall t \in T \right\}_{\pi^* \text{Pic}(T)}
$$

and we can think of $h_J(T)$ as the group of degree 0 line bundles on C parametrized by T, modulo the trivial family. Notice that $J(\mathbb{k}) = \text{Pic}^0(C)$.

Definition 1.3. If J is representable, then we call the representative scheme $Jac(C)$.

1.3 Obstruction to representability

Suppose J is representable by a group scheme $Jac(C)$, and let K/\mathbb{R} be a Galois extension with group Γ. Then

$$
J(K) = \text{Mor}_{k}(\text{Spec } K, \text{Jac}(C)) \simeq \text{Mor}_{K}(\text{Spec } K, \text{Jac}(C) \times_{\mathbb{k}} K)
$$

Note 1.2. Let's convince myself of the affine case, i.e., to show $\text{Hom}_k(A, K) = \text{Hom}_K(A \otimes_k$ K, K). This comes from the fact that tensor product is a pushout, i.e., we have a diagram

Here (on K) we have a Galois action by Γ. Since

 $\mathrm{Mor}_K(\mathrm{Spec} K, \mathrm{Jac}(C) \times_{\mathbb{k}} K)^\Gamma \simeq \mathrm{Mor}_{\mathbb{k}}(\mathrm{Spec} \, \mathbb{k}, \mathrm{Jac}(C))$

Note 1.3. Once again, easy to prove for affine case. The Galois action on Spec $A \times_k K \simeq$ $Spec(A \otimes_{\mathbb{k}} K)$ is just $1 \otimes \sigma$ for $\sigma \in \Gamma$.

we have that $J(K)^{\Gamma} = J(\mathbb{k})$. In other words, we would expect

$$
\operatorname{Pic}^0(C \times_{\mathbb{k}} K)^\Gamma = \operatorname{Pic}^0(C)
$$

but this is not true in general. In fact, we can measure the failure of this equality by an exact sequence

$$
0 \to Pic(C) \to Pic(C \times_{\mathbb{k}} K)^{\Gamma} \to Br(\mathbb{k})
$$

where $Br(k)$ is the Brauer group of k.

Example 1.4. Consider $C = V(x^2 + y^2 + z^2) \in \mathbb{P}_{\mathbb{R}}^2$, which is empty. Now, $C \times_{\mathbb{R}} \mathbb{C}$ is a conice in $\mathbb{P}^2_{\mathbb{C}}$, hence isomorphic to $\mathbb{P}^1_{\mathbb{C}}$. If $\text{Pic}(C) = \text{Pic}(C \times_{\mathbb{R}} \mathbb{C})^{\mathbb{Z}/2\mathbb{Z}}$ then $\text{Pic}(C)$ is a subgroup of index at most 2 in Pic($C \times_{\mathbb{R}} \mathbb{C}$) = Z, but this is impossible.

The possible issue here is that a line bundle $\mathcal{L} \in Pic(C \times_{\mathbb{k}} K)^{\Gamma}$ has too many automorphisms (coming from Γ), and they have to satisfy some compatible conditions for $\mathcal L$ to descend to Pic(C). Fortunately, if $C(\mathbb{k})$ is nonempty then everything works.

Theorem 1.5. Suppose C has a k-point. Then the functor J can be represented by a group scheme $Jac(C)$, called the Jacobian variety of C.

The idea here is that if we include the k−point in our data, then we kill all the automorphisms. The forgetful functor getting rid of the extra data is actually an isomorphism, so we are good.

Example 1.6. Jac(\mathbb{P}^1) = Spec k, since there is no nontrivial divisor of degree 0 (Pic(\mathbb{P}^1) = Z, two points are linearly equivalent). The Jacobian of an elliptic curve is isomorphic to the elliptic curve itself.

Example 1.7. Let C be a projective curve over \mathbb{F}_p , and p a \mathbb{F}_p -point of C. Then $C\backslash\{p\}$ is affine, and the class group of its coordinate ring is $J(\mathbb{F}_p)$. The reason is that $Pic(C\setminus\{p\})=$ $Pic^0(C)$ by mapping $D \mapsto D - \deg D \cdot p$.

2 Properties and applications

Clearly, $J = \text{Jac}(C)$ is a nonsingular abelian variety.

Proposition 2.1. The tangent space T_0J is canonically isomorphic to $H^1(C, \mathcal{O}_C)$. Thus the dimension of J is equal to the genus of C .

Definition 2.2. For each point $p \in C(\mathbb{k})$ we can define a map $f_p : C \to \text{Jac}(C)$ such that at the level of k−points,

$$
f_p: C(\mathbb{k}) \to \text{Jac}(C)(\mathbb{k}) = \text{Pic}^0(C), \quad x \mapsto [x - p]
$$

Proposition 2.3. The map $f_p^*: H^0(J, \Omega_J) \to H^0(C, \Omega_C)$ is an isomorphism.

Proof. Essentially we need to show that the following diagram commutes

 \Box

Note 2.1. What is this map $H^0(J, \Omega_J) \simeq (T_0 J)^{\vee}$? It's just evaluating the 1-form at 0; the idea is that a group variety is homogeneous, so a vector X_0 in T_0J extends uniquely to a vector field X hence we get an isomorphism.

$$
H^0(J, \Omega_J) \ni \omega \mapsto (X_0 \mapsto \omega_0(X_0))
$$

Proposition 2.4. The map f_p is a closed embedding.

Proof. Field extensions are faithfully flat, so it suffices prove this for the case $\mathbb{k} = \overline{\mathbb{k}}$. Then we just need to show that the map separates points and tangents. For points, suppose $f_p(x) = f_p(y)$ then $[x - p] = [y - p]$ which implies x, y are linearly equivalent, but this is impossible on a curve of genus > 0 . \Box

Now consider the map:

$$
f_p^r : C^r \to J, \quad (p_1, ..., p_r) \mapsto [p_1 + ... + p_r - r \cdot p]
$$

which descends to a map $f_p^{(r)}$: $C^{(r)} \to J$. The image $W^r = f_p^{(r)}(C^{(r)})$ is a closed subvariety of J, and thus $W^g = J$.

Note 2.2. Abel's theorem says that fibers of $f_p^{(r)}$ correspond to linear equivalence classes of effective divisors of degree r.

Theorem 2.5. For all $r \leq g$, the map $f_p^{(r)} : C^{(r)} \to W^r$ is birational. In particular, J is the unique abelian variety birational to $C^{(g)}$.

Example 2.6. Consider a curve C of genus 2. We have a double cover (by the canonical divisor) $\pi : C \to \mathbb{P}^1$ branched at 6 points. Each fiber $\pi^{-1}(x) = \{p, q\}$ (not necessarily distinct) defines a degree 2 divisor $p + q$. Since any 2 points on \mathbb{P}^1 are linearly equivalent, all these degree 2 divisors are linearly equivalent and get mapped to the same point by $f^{(2)}$.

So we have a family of degree 2 divisors (which is itself a divisor in $C^{(2)}$) which gets contracted in $J(C)$. In other words, $f^{(2)}$ is a blow down here.

Now let $\Theta = W^{g-1}$ then this is a divisor in J. This does depend on the chosen point p, but only up to translation. Such a divisor induces a map:

$$
\phi_{\mathcal{L}(\Theta)} : J \to J^{\vee}, \quad x \mapsto \left[t_x^* \mathcal{L}(\Theta) \otimes \mathcal{L}(\Theta)^{-1} \right]
$$

which is an isomorphism in this case. Hence (A, Θ) is a principally polarized abelian variety.

Theorem 2.7 (Torelli). C is determined, up to isomorphism, by its principally polarized Jacobian variety.