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1 Definition

1.1 Functor of points

Suppose we have a scheme G over k, then a k-point is just a map Speck → G. Thus we
can think of the set G(k) as Hom(Speck, G). Generalizing this, for any scheme G we can
define a functor of points

hG : (Affine schemes/k)op → Sets, X 7→ Mork(X,G)

and Yoneda’s lemma says that the functor G 7→ hG is fully faithful, i.e., a scheme is deter-
mined up to isomorphism by its functor of points. Now, we say that a functor

F : (Affine schemes/k)op → Sets

is representable if it is isomorphic to hG for some scheme G.

Theorem 1.1. Such a functor is F representable if and only if F admits an open cover by
representable functors and F is a sheaf with respect to the Zariski topology on the category
of schemes.

Note 1.1. The motivation for this topology comes from gluing sheaves. We say that a
functor F : Schop → Sets satisfies the sheaf property if for every scheme T and every open
covering T =

⋃
α Uα we have an exact complex:

0 → F (T ) →
∏
α

F (Uα) ⇒
∏
α,β

F (Uα ×T Uβ)

Example 1.2. The functor X 7→ H0(X,OX) is represented by A1. The functor X 7→
H0(X,OX)

∗ is represented by Gm.

For a group scheme G we just ask hG to factor, i.e.,

hG : (Sch/k)op Sets

Grps

so we can think of a group scheme G over k as a functor (Sch/k)op → Grps.

1.2 Jacobian functor

Let C be a complete nonsingular curve over k. Recall that a Weil divisor is just a formal
sum of points

D =
n∑

j=1

njPj, degD =
n∑

j=1

nj[k(Pj) : k]

and we have a correspondence between divisors and line bundles on C. We defined Pic0(C)
to be the group of degree 0 line bundles on C; this is not necessarily a scheme.

Let T be a connected scheme over k, look at the fiber product

π : C ×k T → T, Ct = π−1(t)
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and for L ∈ Pic(C ×k T ) we define Lt = L
∣∣
Ct
. Then we have that the map t 7→ χ(Ct,Lt)

is locally constant (this is an example of a flat family of curves). By Riemann Roch, this
implies that deg(Lt) is independent of t ∈ T . This degree is also invariant under base
change, so we can define a functor J : (Sch/k)op → Grps,

J(T ) =

{
L ∈ Pic(C ×k T )

∣∣∣ deg(Lt) = 0∀ t ∈ T
}
⧸π∗Pic(T )

and we can think of hJ(T ) as the group of degree 0 line bundles on C parametrized by T ,
modulo the trivial family. Notice that J(k) = Pic0(C).

Definition 1.3. If J is representable, then we call the representative scheme Jac(C).

1.3 Obstruction to representability

Suppose J is representable by a group scheme Jac(C), and let K/k be a Galois extension
with group Γ. Then

J(K) = Mork(SpecK, Jac(C)) ≃ MorK(SpecK, Jac(C)×k K)

Note 1.2. Let’s convince myself of the affine case, i.e., to show Homk(A,K) = HomK(A⊗k

K,K). This comes from the fact that tensor product is a pushout, i.e., we have a diagram

K

A⊗k K K

A k

Id

Here (on K) we have a Galois action by Γ. Since

MorK(SpecK, Jac(C)×k K)Γ ≃ Mork(Speck, Jac(C))

Note 1.3. Once again, easy to prove for affine case. The Galois action on SpecA×k K ≃
Spec(A⊗k K) is just 1⊗ σ for σ ∈ Γ.

we have that J(K)Γ = J(k). In other words, we would expect

Pic0(C ×k K)Γ = Pic0(C)

but this is not true in general. In fact, we can measure the failure of this equality by an
exact sequence

0 → Pic(C) → Pic(C ×k K)Γ → Br(k)

where Br(k) is the Brauer group of k.

Example 1.4. Consider C = V (x2+y2+z2) ∈ P2
R, which is empty. Now, C×RC is a conice

in P2
C, hence isomorphic to P1

C. If Pic(C) = Pic(C ×R C)Z/2Z then Pic(C) is a subgroup of
index at most 2 in Pic(C ×R C) = Z, but this is impossible.
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The possible issue here is that a line bundle L ∈ Pic(C ×k K)Γ has too many auto-
morphisms (coming from Γ), and they have to satisfy some compatible conditions for L to
descend to Pic(C). Fortunately, if C(k) is nonempty then everything works.

Theorem 1.5. Suppose C has a k-point. Then the functor J can be represented by a group
scheme Jac(C), called the Jacobian variety of C.

The idea here is that if we include the k−point in our data, then we kill all the auto-
morphisms. The forgetful functor getting rid of the extra data is actually an isomorphism,
so we are good.

Example 1.6. Jac(P1) = Speck, since there is no nontrivial divisor of degree 0 (Pic(P1) =
Z, two points are linearly equivalent). The Jacobian of an elliptic curve is isomorphic to the
elliptic curve itself.

Example 1.7. Let C be a projective curve over Fp, and p a Fp−point of C. Then C\{p} is
affine, and the class group of its coordinate ring is J(Fp). The reason is that Pic(C\{p}) =
Pic0(C) by mapping D 7→ D − degD · p.

2 Properties and applications

Clearly, J = Jac(C) is a nonsingular abelian variety.

Proposition 2.1. The tangent space T0J is canonically isomorphic to H1(C,OC). Thus
the dimension of J is equal to the genus of C.

Definition 2.2. For each point p ∈ C(k) we can define a map fp : C → Jac(C) such that
at the level of k−points,

fp : C(k) → Jac(C)(k) = Pic0(C), x 7→ [x− p]

Proposition 2.3. The map f ∗
p : H0(J,ΩJ) → H0(C,ΩC) is an isomorphism.

Proof. Essentially we need to show that the following diagram commutes

H0(J,ΩJ) H0(C,ΩC)

(T0J)
∨ H1(C,OC)

∨

f∗
p

≃

≃ ≃

Note 2.1. What is this map H0(J,ΩJ) ≃ (T0J)
∨? It’s just evaluating the 1-form at 0; the

idea is that a group variety is homogeneous, so a vector X0 in T0J extends uniquely to a
vector field X hence we get an isomorphism.

H0(J,ΩJ) ∋ ω 7→ (X0 7→ ω0(X0))

Proposition 2.4. The map fp is a closed embedding.
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Proof. Field extensions are faithfully flat, so it suffices prove this for the case k = k. Then
we just need to show that the map separates points and tangents. For points, suppose
fp(x) = fp(y) then [x − p] = [y − p] which implies x, y are linearly equivalent, but this is
impossible on a curve of genus > 0.

Now consider the map:

f r
p : Cr → J, (p1, ..., pr) 7→ [p1 + ...+ pr − r · p]

which descends to a map f
(r)
p : C(r) → J . The image W r = f

(r)
p (C(r)) is a closed subvariety

of J , and thus W g = J .

Note 2.2. Abel’s theorem says that fibers of f
(r)
p correspond to linear equivalence classes

of effective divisors of degree r.

Theorem 2.5. For all r ≤ g, the map f
(r)
p : C(r) → W r is birational. In particular, J is

the unique abelian variety birational to C(g).

Example 2.6. Consider a curve C of genus 2. We have a double cover (by the canonical
divisor) π : C → P1 branched at 6 points. Each fiber π−1(x) = {p, q} (not necessarily
distinct) defines a degree 2 divisor p + q. Since any 2 points on P1 are linearly equivalent,
all these degree 2 divisors are linearly equivalent and get mapped to the same point by f (2).

So we have a family of degree 2 divisors (which is itself a divisor in C(2)) which gets
contracted in J(C). In other words, f (2) is a blow down here.

Now let Θ = W g−1 then this is a divisor in J . This does depend on the chosen point p,
but only up to translation. Such a divisor induces a map:

ϕL(Θ) : J → J∨, x 7→
[
t∗xL(Θ)⊗ L(Θ)−1

]
which is an isomorphism in this case. Hence (A,Θ) is a principally polarized abelian variety.

Theorem 2.7 (Torelli). C is determined, up to isomorphism, by its principally polarized
Jacobian variety.
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