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1 Recap

Definition 1.1. An algebraic group is reductive if all of its finite dimensional representations
are semisimple. An equivalent definition is that it is the product of an algebraic torus and
a (Zariski-)connected semi-simple group.

Example 1.2. The 2 examples to keep in mind here is GL(H) and S.

Definition 1.3. Let L be a finite k-algebra, and X = SpecA be an affine algebraic group
over L. We have the functor of points

hX : AlgL → Grp, R 7→ HomL(A,R)

then we can define the Weil restriction ResL/kX to be the algebraic group representing the
functor

h : Alg
k
→ Grp, R 7→ hX(R⊗k L)

Definition 1.4. The Deligne torus S = ResC/RGm.

Note 1.1. We have S(R) = Gm(R⊗R C) = Gm(C) = C×, so S is just C× thought of as an
R-algebraic group. We also have

S(C) = Gm(C⊗R C) ≃ Gm(C× C) ≃ Gm(C)×Gm(C) ≃ C× × C×

where the second to last isomorphism comes from the fact that covariant representable
functors commute with limits (not colimits).

The idea here is that a covariant representable functor looks like Hom(A,−), and

Hom
(
A, lim←− β

)
= lim←−Hom(X, β)

(see Kashiwara’s pg. 37).

We have an embedding of S(R) = C× ↪→ S(C) = C× × C× by z 7→ (z, z), and the
weight cocharacter w : Gm → S, which is just z 7→ (z, z) at the level of complex points, and
R× ↪→ C× at the level of real points.

Notice that C× = R× · S1, with S1 = U(1)(R). Then we can extend S1 ↪→ C× to an
embedding U(1) ↪→ S and get S = U(1) · w(Gm).

Let H be a R-vector space, and consider a linear representation h : S → GLH . Equiv-
alently, we have an action of S(R) on H ⊗R R for each R−algebra R. The trick here is
that if we look at SC = S ×R C ≃ Gm × Gm, its functor of points is equal to that of S,
i.e., for any C−algebra R, SC(R) = S(R). Let HC = H ⊗R C. Since the representation
Gm ×Gm → GLHC is diagonalizable with characters

χm,n : Gm ×Gm → Gm, (a, b) 7→ a−mb−n

we have a decomposition

HC =
⊕
p,q

Hp,q, Hp,q = (HC)χp,q =
{
v ∈ HC

∣∣∣(a, b) · v = a−pb−qv, (a, b) ∈ SC(C) = S(C)
}
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and since this is an R−action, we must have Hp,q = Hq,p. We can also look at the restricted
action h

∣∣
Gm

= h ◦ w : Gm → GLH . The characters here are χk : Gm → Gm mapping

a 7→ a−k, so we have a decomposition

H =
⊕
k

Hk, Hk = Hχk
=

{
v ∈ V

∣∣∣a · v = a−kv, a ∈ Gm(R)
}

and over C this action is z 7→ (z, z) 7→ (v 7→ (z, z) · v). If v ∈ Hp,q, then h ◦ w(z)(v) =
z−pz−qv = z−(p+q)v. Thus we have a decomposition Hk ⊗R C =

⊕
p+q=k H

p,q.

Theorem 1.5. Let HR be a real vector space. A R-Hodge structure on HR is equivalent to
a linear representation h : S→ GL(HR). Furthermore, if HR = HQ ⊗Q R, and

h ◦ w : Gm → GL(H ⊗Q R)

is defined over Q, then we have a Q−Hodge structure on HQ. Notice that the Weil operator
here is just C = h(i).

Note 1.2. Here we have an equivalence between the category of R-Hodge structures and
the category of representations of S. This is an example of Tannakian duality, where the
category of R-Hodge structure is Tannakian, hence has a Tannakian dual which is S.

Definition 1.6. Let h : S → GL(HR) be a Q-Hodge structure of pure weight k. A polar-
ization for h is a morphism of Hodge structures

S : HQ ⊗Q HQ → Q(−k)

such that Q(u, v) = (2πi)kS(C(u)⊗ v) is symmetric and positive definite on HR.

Just a sanity check, let q be the intersection form, then S(u ⊗ v) = (2πi)−kq(u, v). For
u ∈ Hp,q and v ∈ Hr,s then u ⊗ v is in the (p + r, q + s)-piece. Thus S(u ⊗ v) = 0 which
implies q(u, v) = 0 if (p+ r, q + s) ̸= (k, k).

We also have u ∈ Hq,p so S(C(u) ⊗ u) > 0 for u ̸= 0, which implies ip−qq(u, u) =
q(C(u), u) > 0.

2 Mumford-Tate group

Consider a Q−Hodge structure (HQ, F
•) of weight k. This is equivalent to a linear

representation h : S→ GL(HR) such that h ◦w : Gm → GL(HR) is mapping t 7→ t−k · IdHR .

Definition 2.1. The Mumford-Tate group MT(h) is the Q−Zariski closure of h(S) in
GL(HR), i.e., the smallest Q−algebraic subgroup G of GL(HR) such that G(R) contains
h(S) (or, equivalently, G(C) contains h(S(C))).

Proposition 2.2. Let T be a finite direct sum of spaces of the form Tm,n = H⊗m
R ⊗ (H∨

R)
⊗n.

We can view T as a Q-Hodge structure, and there is an action of MT(h) on T (induced by
the action on HR).

Then for any Q-subspace W ⊆ T , W is a Q-Hodge substructure if and only if it is a
MT(h)-submodule.
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Proof. (⇐) : This is saying that we have a rational subrepresentation MT(h) → GL(W ).
Then S ↪→ MT(V, F •)→ GL(W ) gives a rational Hodge structure on W .
(⇒) : SupposeW is aQ−Hodge substructure. Consider theQ−Zariski closureM ⊂ GL(HR)
of

{
g ∈ GL(HR)

∣∣g ·W ⊆ W
}
. Since W is a Q-Hodge substructure, W is stable under the

induced action of S, i.e., h(S) ⊆M . It follows that MT(h) ⊆M , and W is stable under the
action of MT(h).

Note 2.1. Another way to phrase this result: The subcategory ⟨HR⟩⊗ (of Q−Hodge struc-
ture) generated by HR (under tensor product, direct sum, subquotients) is Tannakian, and
its dual is MT(h).

Definition 2.3 (Hodge tensors). Hodge tensors in T are rational tensors of pure Hodge
type, i.e., elements of TQ ∩ (TC)

p,p for some p.

Note 2.2. Let t ∈ T and consider L a line spanned by t. Then L is a Q−Hodge substructure
iff t is a Hodge tensor.

Proposition 2.4. A vector t ∈ T is a weight 0 Hodge tensor if and only if t is fixed by
MT(h).

Proof. Suppose MT(h) fixes t, then it fixes the line L spanned by t hence t is a Hodge tensor
of some weight (p, p). But then h ◦w(Gm) ⊂ MT(h) acts on t by g · v = g−2pv so it can only
be fixed if p = 0.

Now suppose t is a weight 0 Hodge tensor. Consider T 0,0 the one-dimensional trivial
representation. Then 1 ∈ T 0,0 is a Hodge tensor. Then (1, t) is a weight 0 Hodge tensor,
thus the line spanned by (1, t) ∈ T 0,0 ⊕ L is a Q−Hodge substructure. Let g ∈ MT(h) then
g · (1, t) = (g(1), g(t)) = (1, g(t)), so (1, g(t)) on the line R · (1, t). This is only possible if
g(t) = t, i.e., t is fixed by MT(h).

Note 2.3. I was confused for a while about why the second paragraph doesn’t apply to
Hodge tensor of any weight. If t has weight (p, p) then T 0,0⊕L is a 2-dimensional Q-Hodge
structure of weight (0, 0) + (p, p). Then for the line spanned by (1, t) to be a Q−Hodge
substructure, we must have the line being contained entirely in either T 0,0 or L. This is
clearly not true.

Theorem 2.5. MT(h) is the largest algebraic subgroup of GL(HR) which fixes weight 0
Hodge tensors in any finite direct sum T of tensor representations Tm,n.

Proof. We will first prove the following proposition:

Proposition 2.6. Let M ⊆ GL(HR) be a closed subgroup such that every character of M
is the restriction of a character of GL(HR). Then there exists a finite direct sum T of Tm,n,
and t ∈ T such that M = StabGL(HR)(t).

By Chevalley’s theorem, M is the stabilizer of a line L in a finite dimensional repre-
sentation V of GL(HR). We also have that any such representation can be built out of V
through tensor products, duals, direct sums, and subquotients. Thus there exists T such
that M = StabGL(HR)(L) with L ⊆ T .

Note 2.4. It’s quite important that GL(HR) is reductive here, otherwise subquotient doesn’t
imply containment.
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Now, a line L fixed by M corresponds to a character of M (pick a generator l ∈ L, for
each g ∈ M , g · L is a multiple of l, i.e. g · L = χ(g)l which gives our character). Since
characters on M extend to GL(HR), we have that L is invariant under GL(HR) as well.

Then look at the line L⊗L∨ inside the GL(HR)−module T ⊗L∨, and let t be a generator.
The claim is that g ∈ GL(H) fixes t iff g fixes L.

Note 2.5. We need to prove that L is a GL(HR)−module so that we have a rep ρ :
GL(HR)→ GL(L). Then ϕ : GL(HR)→ GL(L⊗ L∨) is defined to be

ϕ(g)(l ⊗ f) = ρ(g)(l)⊗ ρ(g−1)∨(f)

If g fixes L then ρ(g)(l) = r0 · l which implies ρ(g−1)(l) = r−1
0 · l. For any l1 ∈ L, we have

l1 = r1 · l and

ρ(g−1)∨(f)(l1) = f(ρ(g−1)(l1)) = r1 · f(ρ(g−1)(l)) =
r1
r0
f(l) = r−1

0 f(l1)

so ϕ(g)(l ⊗ f) = l ⊗ f . The other direction is similar, using the fact that since L is a line,
any element of L⊗ L∨ looks like l ⊗ f .

Back to the theorem, we need to check that every character χ : MT(h) → Gm extends
to all of GL(HR). Such a character corresponds to a rational line L fixed by MT(h), and
since MT(h) is the Q-Zariski closure of h(S), the MT(h)-action on L is determined by the
S−action.

If L ≃ R(0), then MT(h) acts trivially on it, and we can extend this to the trivial
GL(HR)−action. Otherwise, L ≃ R(−p), and S acts on it by z−p(z)−p. If we look at the
matrix model of S, this is acting by multiplying with (det(z))−p. This supposedly extend to
all of GL(HR).

Note 2.6. There is an issue here: Let h : S → GL(HR) be the representation, look at the
matrix model of z ∈ S, it’s not true that det(z) = deth(z).

We have the decomposition H =
⊕k

i=0 H
i,k−i. Take a basis

〈
ei,k−i
j

〉
corresponding to the

decomposition. Then w.r.t. this basis, h(z) looks like a diagonal matrix with diagonal entries

z−i(z)i−k and each of those appears dimH i,k−i times. So deth(z) =
k∏

i=0

(z−i(z)i−k)dimHi,k−i
.

Since dimH i,k−i = dimHk−i,i, deth(z) = (z · z)N for some N ∈ Z, so

deth(z) = det(z)N ⇒ det(z)−p = deth(z)−p/N

but det−p/N is not a character on GL(HR).

One possible fix here is to look at detHR =
∧dimHR HR which has weight N ̸= 0 (if HR

has weight 0 then everything has weight 0). Then the line

L⊗N ⊗ (detHR)
⊗−2p ≃ R(−pN)⊗ (detHR)

⊗−2p

has weight 2pN − 2pN = 0. Then the S−action on this new line is trivial, which extends to
the trivial action on GL(HR). Back to the theorem, we then get that MT(h) = StabGL(HR)(t)
for some weight 0 Hodge tensor t, and we are done.

Proposition 2.7. The Mumford-Tate group of a polarizable Q−Hodge structure is reductive.
Proof. Let h : S→ GL(HR) be the polarizable Q-Hodge structure. The key observation here
is that HR is semi-simple (for any subrep we can look at the orthogonal complement), hence
the subcategory ⟨HR⟩⊗ generated by HR is semisimple. This implies all finite dimensional
reps of MT(h) is semisimple, thus G is reductive.
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3 Variations of Hodge structures

Suppose we have a polarized (in the sense of morphism of local systems) variation of
Hodge structure with quasi-projective smooth base S, giving a period map:

P : S → Γ\D

The key observation to defining the Mumford-Tate group of a variation is that a Hodge
tensor stays Hodge over a closed subvariety of S. Consider the local system Tm,n

s = H⊗m
s ⊗

(H∨
s )

⊗n. Consider t a section Tm,n and let

Z(t) =
{
s ∈ S

∣∣ts is Hodge}
This is an analytic subvariety of S (the proof is similar to Voisin’s vol 2, pg. 144, the

idea is that consider the holomorphic bundle T m,n = Tm,n ⊗ OS, then this set is just the
zero set of the projection T m,n → T m,n/F pT m,n which is holomorphic). Next define

Z =
⋃

Z(t)̸=S

Z(t)

which is a countable union of proper subvariety. Then on Sgen = S−Z we have no unexpected
Hodge tensor popping up, hence the Mumford-Tate groups MT(hs) are the same.

Definition 3.1. Informally speaking, we can define the Mumford-Tate group of a variation
MT(P) to be the Mumford-Tate group over a very general point.

Fix a very general point s ∈ S, then the local system H corresponds to a monodromy
representation

ρ : π1(S, s)→ GL(Hs)

Definition 3.2. The algebraic monodromy group Mon(P) is the connected component of
the identity of the Q-Zariski closure of π1(S, s) in GL(Hs).

Proposition 3.3. Mon(P) is a subgroup of MT(P).

Proof. The idea here is that the monodromy action preserves polarization

Note 3.1. In the geometric case, it’s a topological invariant hence preserves cup product
and hyperplane class hence the polarization by Lefschetz’s hard theorem.

For the abstract case, look at Voisin’s vol 2 pg. 72, and see that she is building a
monodromy representation out of a local system by picking natural/unique isomorphism,
which should preserve the polarization.

We know that MT(P) = StabGL(Hs)(t) for some weight 0 Hodge tensor t ∈ Tm,n. The
space of weight 0 Hodge classes of Tm,n is preserved under the monodromy action (since
we are picking a very general s ∈ S, Hodge tensors on s are Hodge everywhere). The
polarization is definite on the (0, 0) piece of Tm,n and thus the monodromy action is taking
values in the orthogonal group of a lattice with definite form, which is finite.

Note 3.2. It’s the orthogonal group of a lattice, since the underlying local system is that of
Z−modules. Next, why is Aut(VZ, q) finite if q is definite? We can think of VZ as sitting inside
VR, and so Aut(VZ, q) ⊂ Aut(VR, q) ⊂ Aut(VR) ⊂ Rn×n. If q is definite, then Aut(VR, q) is
compact (closed and bounded, see here). Aut(VZ, q) is a lattice inside a bounded set in Rn×n

so it has only finitely many points.
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Back to the proposition, the monodromy action is finite, so there is a finite index sub-
group Γ′ fixing the Hodge tensor t (by Orbit-Stabilizer or something). It follows that there is

a finite index subgroup of ρ(π1(S))
Zar

fixing t. Now the connected component of the identity
is sitting inside every finite index subgroup (orbits are disjoint) hence Mon(P) fixes t. It
follows that Mon(P) is a subgroup of MT(P).

Proposition 3.4.
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