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L. Introduction
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tical mechanics, our systems will be governed by partial differential equations,
and will have a countably infinite number of degrees of freedom. We will also
consider systems whose evolution is not determined by the laws of mechanics,
such as the evolution of temperature in some continuous medium.

More specifically, our paper is intended to provide a rigorous general
mathematical foundation for treating simplified mathematical models of
physical problems arising naturally in connection with (a) vibrating strings,
(b) gravity waves in the ocean, (c) sound in a box (e.g., noise in a room),
(d) turbulence in an incompressible fluid and the Burgers-Hopf one-dimen-
sional model for it, (€) the heat conduction equation (which also describes
diffusion and shear flows in a viscous liquid), etc.

A careful review of what was then known about many specific problems,
with bibliographical references, was given 10 years ago by one of us [34], ina
book [56] which also contains several other relevant articles on the statistics
of gravity waves (for which cf. also [36]), turbulence, etc.' We shall concen-
trate here on recent developments.

Classical statistical mechanics, which has the kinetic theory of gases as an
important application, as formulated by Maxwell (1859, 1866), Boltzmann
(1895), and J. W. Gibbs (1902), consists esssentially in taking the following
steps?:

(Ia) Definition of the phase-space Q) (a 2k-dimensional variety, if the system
has k degrees of freedom), whose points represent the states of the system
(position and velocity). Thus for a pendulum, Q is a 2-dimensional cylinder

in R3; for a system of m molecules (points) in Euclidean space, Q is R®"; and
sO on.
(Ib) Proof of an existence, uniqueness and continuity theorem for the
solutions of the associated system of ordinary differential equations (Hamil-
ton-Jacobi equations). To each w, € ) corresponds one and only one solution
w, = T,(e,), which represents the state (motion) for —eco <t <+ of the
system whose state at 1 = 0 is represented by w, ; this solution defines the
orbit I'(wy) = {w,} - 2 <; < - Corresponding to the evolution of the system, the
set of solutions defines a steady flow w, = T, @, in Q; the set of transforma-
tions {T;} has the group property (Huyghens principle) T,., =T, T, =T, T,.

(Ic) Choice of a probability measure p. The initial states of the system
occur with a specified probability distribution g, so that, for any Borel set
A,

problw, € 4] = u(4) is defined.

! See also the article by one of us in A. Blanc-Lapierre and R. Fortet, “ Théorie des
Fonctions Aléatoires,” Masson, 1953, and the articles in Chapters 8 and 9 of M. Rosen-
blatt (ed.), ““ Time Series Analysis,” Wiley, New York, 1963.

2 See Khinchine [38] for 2 more complete discussion.
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Owing to i
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Let us clarify these generalities by a few examples.

Example 1. Vibrating stri
X . g string. H "
satisfies g. Here the transverse displacement u(x, 1)

Uy =1u
. xx > 1.3
Wlthn:q:landm=2. ( )

Example 2. Three-dimensi
i . - ensional so ;
tial equations® und waves are governed by the differen-

* Other mathematical fo; i
e A rmulations are possible; we here ad
dynamics,”” Section 285. Cambridge Univ. Press’ Loncfz: ?S;Zthat F . Lpmb, * Hydro-
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d*plort = AV?p, V2 = k; 5:7 (1.4a)

a¢/ot = (p — po)lPo- (1.4b)

Here ¢ is the velocity potential, so that u = — V¢ is the velocity.

For sound waves in a rectangular box, the functions p, ¢ can be continued
analytically by reflection so as to fill all space (all of RY).

! .
Example 3. For the heat equation in a homogeneous medium, we have

v, = aVZu. (1.5)

We can have n = 1,2, or 3, depending on whether we are dealing with a rod,
a slab or plate, or a solid. In the case n = 1, the same differential equation
(DE) also governs shear viscous flow in a homogeneous incompressible fluid.

The preceding DE’s were linear. The DE of shear viscous flow is also a
special case of the following example.

Example 4. The Navier-Stokes equations for incompressible viscous flow

are
ou; u; 10dp
] o Wi — —— 1.6a
3= T LG, TV T i)
du

ays reduce normal systems of DE’s such as those
t-order in time (i.e., for which m = 1). For
f Example 1 can be reduced to

Formally, one can alw
above to systems which are firs
instance the vibrating string equation o

dujot = v, ot = d%ufox*. (1.7
Here the auxiliary function v(x, t) represents the transverse velocity of the
point x of the string at time #; m =1 = | and g = 2.

In order to reduce the mathematical problem to its simplest form, we will
always suppose that the domain has no boundary (is the whole of R"). Thus
the solutions will depend only on the initial conditions v(x). Hopefully, our
conclusions will be applicable to physical problems in which the boundaries
have little effect on the evolution; homogeneous turbulence in a wind tunnel
is an important example of these circumstances.




6 G. Birkhoff, J. Bona, and J. Kampé de Fériet

These examples suggest that any discussion of the statistical mechanics of

continuous media should include the following ste
poriinous g steps, analogous to those of

(.a) specifying a class of “admissible vector fields™ on a physical domain
which describe the possible “ states” of the medium;

(@) cgnstructmg a ft_mction space % whose points are these states, with an
appropriate topology (i.e., notion of continuity); ’

(b) specifying a system of partial DE’s i i

_ governing (in the mathemati
model) the evolution of the medium in time; matical
f(b )tprlo]c;fE of exlllstence, uniqueness, and continuity theorems for this system
of partia s, thereby realizing a flow which repre i
sents the
the systom 1267 p evolution of

(c) specification of a probability measure pon,

(¢) for conservative systems such as those of Examples 1-3, one has a
group and can hope Ato find a probability measure invariant under the action of
the group {T;} defining the flow of (6'). In such cases one can hope to have a
full gnalogy to classical statistical mechanics, with such deeper properties as
maximum emrop‘y. ergodic theory, etc. However. one cannot hope to have an
invariant probability measure for dissipative systems such as those associated

with the heat equation, viscous flow wi i
; without forcing terms. h
turbulence, etc. - S

Because they are exceptional, we shall defer our review of these deeper
aspects of classical statistical mechanics until Section V.F below. We mapke
here. only the general observation that, whereas conservative .systems in
contmuurp physics typically correspond to hyperbolic systems of partial DE"
fmd are still associated with groups of transformations T, on %, whose domai:
1s —o0 <t < 00, dissipative systems usual] y correspond to parabolic systems
of DE’s which give rise only to semigroups {T;} defined for 1 > 0.

. We em}?hasize that, to avoid becoming overwhelmed by te;hnica[ difficul-
ties, we will not deal with many fascinating problems. Thus random motions
can be produced by random forces (e.g., a vibrating string in a liquid sub-
mltted. to random impacts), but we will not consider DE’s with random
coefficients. Furthermore, as already said, we will not consider the effects of
boundary conditions, but will stick to pure Cauchy problems: as in [34], wi
sbgll consider only randomness introduced by the choice of the initial c,:on‘-3
ditions. Again as in [34], our existence, uniqueness, and continuity theorems
refeli exclusively to linear partial DE’s; indeed, the theory of nonlinea
partial DE’s (and of nonlinear semigroups) is very fragmentary and itsel;
very specnal Also, many of our deeper results (e.g., those involving metric
lran.smwty in Section V.F) are valid only for nermal probability distributions

Finally. we shall consider almost exclusively problems 'having spmia}
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homogeneity; it will be recalled that classical statistical mechanics suffers from
a similar limitation. Mathematically, this will limit us to linear partial DE’s
with constant coefficients, a limitation that has the great advantage of enabling
us to use the techniques of Fourier analysis (classical harmonic analysis).

B. MATHEMATICAL BACKGROUND

Our paper is devoted to the analysis of mathematical models for physical
systems such as those we have described. The evolution of such a system
having been defined by DE’s (1.2a)—(1.2b), the first step usually consists in
choosing a function space in which the passage of time corresponds to a
continuous flow. That is, one usually tries to establish existence, uniqueness,
and continuity theorems; when this has been done, one says that the Cauchy
problem is well set (in the function space selected).

We introduce a new point of view by relaxing the usual condition of sure
continuity. The existence and uniqueness property of the solutions still
being true, it may happen that continuous dependence on the initial values
fails. Thus it may happen that for initial values u,(x) very near to vy(x), the
value of u(x, 1) may be very far from v(x, t) with a small probability. We
shall call a Cauchy problem statistically well set in a given function space
when, for the probability measure p appropriate to the problem considered,
orbits initiating in a small enough neighborhood ¥ of v(x) are, at the time ?,
with probability very near one in any given neighborhood of v(x, ). We shall
see in Section III that this gives a good deal more freedom in the choice of a
function space.

There has been an abundant literature concerned with the selection of
function spaces in which Cauchy problems are well set. Our main purpose is
more to clarify and to introduce unifying principles than to add new ideas in

this field.
In broad outline, the literature on function spaces has passed through four

stages.

In the classical stage [24], mathematicians used the “space” of all func-
tions u(x) continuous and having all the derivatives explicitly contained in
the DE, while “ continuity” meant the pointwise convergence of all func-
tions and derivatives referred to.

Next there developed in the 1930°’s an emphasis on the Hilbert space
L,(R") of all Lebesgue square-integrable functions, with convergence signify-
ing mean square convergence. The appropriateness of this space for many
purposes had become apparent earlier from work of D. Hilbert, E. Schmidt,
and F. Riesz.* But it was its successful technical application by von Neumann

4 See the classical textbook, R. Courant and D. Hilbert,  Methoden der Mathematische
Physik,” Springer, New York, 1924.
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endency to shift the emphasis in the theory of > i
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posed by Carathéodory [14], Halmos [25]. Gnedenko and
23], Blackwell [9], and Bourbaki [13], we adopted the following
“A measure u on a topological space E is regular
d is the Lebesgue completion of its

regularity pro
Kolmogoroff [
one already given in [8]:
when it is defined on all Borel sets of E, an

restriction to these Borel sets.”
Thus great attention must be paid to the Borel structure of the function

spaces; using the basic ideas of Mackey [40] and the results of Parthasarathy

[43] on Borel structures in Polish spaces. our main result is as follows:

The spaces A, ', §', and D' all have standard Borel structures (a countably
generated Borzl space is called standard if it has the same Borel structure as
the real line). In each of the topological linear spaces A,. T, S the Borel sets
are just the Borel sets of D’ which happen to be contained in these subspaces:
moreover they are the same in the weak and in the strong topologies.

This result gives a unifying backgrou nd for the development of the theory
of random solutions of the (well-set) Cauchy problems we consider.

Fourier transform

In order to give a coherent discussion of the spectrum of 1
of a Cauchy problem, one not only needs to restrict attention to suitably
“regular’” measures, one also needs a decent Fourier transform theory.
This incidentally also gives increased depth to the concepts of autocorrelation

and spectrum.
It is therefore fortunate that such a theory exists in the spaces S’, D’ as well

as in the spaces L*(K") of square-integrable functions on tori (and other
locally compact Abelian groups). Unfortunately, the theory is restricted to
linear partial DE’s with constant coefficients in domains without boundaries:
in physical language. 10 problems having spatial homogeneity.

The Fourier transform also gives valuable clues concerning which Cauchy
problems should be considered as well set. Thus, reducing any given linear
partial DE or system to the standard first-order form

auJ/atzzpjl(Dl” Du)ul (1 S./slsq)s (]8)
we see that the Fourier component c(kK, )e™ * with wave-vector k should
evolve according to the system

dce/dt = Pe, P = P(K) = ||pjiky, - .- Tkl (1.9)

Hence, if 4y, ..., 4, are the eigenvalues of P(k), the rate of growth of the
Fourier component with wave-vector k should be max Re{4,(k)}. Hence a
natural condition for the system (1.9) to be deterministically well set is that

A = sup,_; Re{4(k)} < +c0; (1.10)
this is the Hadamard-Petrowsky condition for the Cauchy problem (1.8) to

andom solutions

be well set.
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Physical considerations

The reasons for preferring one function space % or probability measure
to angthcr need not be strictly mathematical. For example, consider again the
diffusion equation #, = u,, (Example 3 in one space dimension). Here
u(x. 1) can be interpreted as the absolute temperature at time 1 of the point
x on an infinite rod, which forces one to set u(x, 1) > 0. Or, alternatively
u(x', 1) can also be interpreted as the velocity of the sheet x in a shear flow ir;
which case the condition of positivity has physically no sense; the natu-ral

assur.nplion is that the energy of the portion of the fluid contained in a finite
box is finite:

b
f u(x, )? dx < + o0

forany a,beR.

Physical considerations may also dictate the choice of function space
Th.us, for Cauchy problems (1.8) in which the natural physical condition is.
ﬁr?lte total energy and having finite stability index A, one can construct a
Hilbert space % relative to which the problem is deterministically well set
but the norm in % depends on the energy functional [7]. ’

It is therefore remarkable that alf Cauchy problems (1.8) having finite
stability index should be well set in the space S’ of tempered distributions
(whereas u, = u,, is not well set in D', for example). This was essentially
prf)\-‘ed by Gel'fand and Shilov [21] and Friedman [20]; Schultz [47] has given
this basic result an especially simple formulation and proof.

C. SuMMARY

The main body of this paper is quite technical in tone; to make it more
.readab]e, we give here an informal summary of its contents. It is divided
into Sections II-VII and Appendixes A and B, most of which also have
individual introductions.

Section I and Appendixes A to D are preparatory; they deal with regular
probz'zbility measures on a number of particular fimetion spaces which seem to
provide especially appropriate settings for the consideration of Cauchv
problen?s from a statistical standpoint. These spaces are locally conve:g
sequentially complete topological linear spaces. In such spaces, a probabi!it);
measure is called regular when it is definable (up to sets of probability zero)
from the probabilities of being in specified open (or closed) sets by re-pcaled
use. of “not” and countable “and ”, ““or” combinations. Borelsets a;re just sets
wh.lch can be constructed from open (or closed) sets by such combinations
It is shown in Section 11 and Appendixes A and B that all the function spaces.
of interest for this paper have a standard Borel Structure, just like that of the

Statistically Well-Set Cauchy Problems 11

Borel sets of the real continuum. This means that, even though these func-
tion spaces may be quite sophisticated, regular probability measures on them
have most of the nice properties of ordinary measure on [0, 1].

Section Il is concerned with the question of when an initial value or
Cauchy problem for a linear partial differential equation (DE) or system with
constant coefficients should be considered as well set. We first review the
classical deterministic viewpoint of Hadamard: that a Cauchy problem is
well set when solutions for t > 0 exist and are unigue for any reasonable
initial data, and depend continuously on those data. Results of Hadamard,
Petrowsky, one of us [7], and Martin Schultz [47] are then recalled which
give a satisfactory criterion for this. Namely, for any system of DE’s of the

form
q
Oujlot = ,lejz(Dn s Dy (=1,....9). (.11)

and wave-vector k, the Cauchy problem for the initial value u(x,0)=
e® > f is easily seen to have the solution

u(x, ) = exp[tP(ik)]fe’® . (1.12)

The criterion is that the spectral radii of the matrices exp{tP(ik)] be uniformly
bounded [see (3.6)]: that the stability index A = sup{Re 1,(P(ik))} be finite.
Systems (1.11) with this property are called “regular.”

Next, we adopt the point of view of classical statistical mechanics already
described in Section I.A: we assume that a Cauchy problem is deterministical-
ly well set, but that its initial conditions are chosen at random. The properties
of the solutions are then only known statistically. This point of view has been
developed by one of us for many years (see [34-36]); the resulting theory is
greatly extended and generalized here.

Then a new probabilistic viewpoint is adopted : that one can obtain approxi-
mate values of the solutions for ¢ > 0 with arbitrarily high probability, by
approximating the initial data sufficiently closely. This is shown to have a
major technical advantage for Cauchy problems with “random™ (i.e., not
precisely known) initial data: it is less sensitive to the selection of the function
space E chosen to represent the problem. It also seems to offer a new philo-
sophical perspective, which could have interesting implications for physics.
Cauchy problems with this property are called statistically well set. Every
deterministically well set problem is statistically well set; Appendix C presents
a simple example of a Cauchy problem with random initial values which is
statistically well set without being deterministically well set.

Section IV calls attention to various particular classes of Cauchy problems
with random initial data having special properties, in which one can either
give simpler proofs, prove stronger results, or use weaker hypotheses. These
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are the cases of a compact (i.e., toroidal) domain, of a hyperbolic DE or
system, and of normal (i.e., Gaussian) and/or time-independent probability
measures. In the first case, one can avoid the technical theory of distributions
altogether and work in Hilbert space; in the second, one can use ordinary
distributions and avoid tempered distributions, Hence one can hope to avoid,
in these two cases, the restriction to linear DE’s with constant coeflicients, i.e.,
the assumption of a “translation group ™ structure on the underlying space
X, which limits the applicability of our results.

The assumptions that the probability measure yx is normal and/or time
independent are fulfilled in various applications. Thus the classical theory of
holonomic systems in statistical equilibrium depends essentially on the
existence of a time-invariant measure (Liouville's theorem). Analogous
theories can only hold for continuous media whea their governing equations
permit such a measure. This is the case for the wave equation, but not for the
diffusion (heat) equation, which is dissipative. We hope that, by considering
the implications of the above assumptions and those of compactness of X
and the hyperbolicity of P(D), readers will develop perspective on and appre-
ciation for the technical problems solved in the rest of our paper.

In Section V, we study properties associated with the correlation and spec-
trum of a homogeneous random vector field (HRVF)—i.e., one whose
probability distribution is invariant under translations x+»x +¢ of the
underlying space X. Here the first four sections (Sections V.B-E) recall the
known [8] general properties of these quantities in spaces of ordinary HRVF,
and extend them to homogeneous random tempered distributions (HRTD)
using a result from Appendix D. Then some impertant special properties of the
metrically transitive case® are derived. Finally, in Sections V.F-G, sufficient
conditions (on the smallness of spectral energy at large wave numbers) are
derived for generalized (*weak”™) solutions of a Cauchy problem to be
classical (* smooth ™) solutions with probability one.

Section VI determines the evolution in time of the spectral matrix measure
v, of admissible normal, homogeneous RVF under the action of a (partial)
differential operator associated with a regular Cauchy problem. This is done
in the context of tempered distributions. That is, we consider the RVF as a
HRTD in §'(X). We show (Theorem 6.2) that v, evolves through the action of
the differential equation

0v/dt = P(ik)v + vP(ik)", (1.13)

where P(ik) is the matrix P (iky, ..., ik,)| of (1.12), and 4 = 4*T denotes
the Hermite conjugate (transpose complex conjugate) of a matrix A.

$1t is generally believed that homogeneous turbulence is metrically transitive; see
Batchelor [2, Chapter 2).
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This result was conjectured by one of us (Birkhoff) several years ago; it was
first prbved in Bona’s thesis [10], and we pnl'esent his proof.‘ We r_egard the
precise formulation and rigorous proof of this rESi.Elt as the high pf)ml of our
paper: it gives a unified theoretical treatment (in the space of rtempvzrcd
distributions) of the evolution in time of normal homggeneous RVF, for all
linear Cauchy problems with constant coefficients wh{ch can reasonably be
considered as well set. When the spectrum is continuous, .the cor_n_;)I.ete
statistical behavior is then determined because this implies metric transitivity.

Finally, in Section VII, we apply classical methods to parab01.10 problems.
We show how the existence of a highly smoothing Greer.l function for 1 > 0
gives sharp results about the special properties of solutions of the Cauchy
prablem in this case, which do not follow directly fron'[ the general theory of
Section V1. We have included this section largely to illustrate ll_lc need fqr
supplementing the general methods of modern functional analysis by classi-
cal arguments, when “ best possible”’ results are wanted.

II. Probability in Function Spaces

A. FRECHET SPACES; THE FUNCTION SPACE A,

We begin by presenting some ideas and facts from modern functional an.aly-
sis, which will enable us to carry out steps (a) and (a") of the program outlined
in Section I.A. As was explained in Section I.B (see also Section III.A), the
basic problem is that of choosing the right function space % whose elemen.ts
are a suitable class of vector fields, suitably topologized. Each vector ﬁ_eld in
% is considered to specify a possible “state” of the system under considera-
tion. ] '

In this and the next section, we shall describe function spaces wl}lch se.em to
us appropriate for treating *“pure” Cauchy problems in domams.w1thout
boundaries. Specifically, we shall consider throughout only domams.X =
K*R"~° which are products of s copies of the unit circle K and n — s copies of
the real line R. (It is known that any connected locally Euclidean Abelian
group manifold can be presented in this way.) -

We shall also restrict attention to a few sequentially complete, locally
convex topological linear function spaces with separable duals: I{ldeed, our
primary concern will be with the spaces I' and A, taken.as baS{c in [8], and
certain spaces S’ and D’ of distributions to be defined in Section 11.B. We
shall pay special attention to A, and S'. Although we shall' deﬁne‘ ’Ehese

spaces below, for convenient reference, we will seldom use their d'eﬁmt'lons.
Instead, we shall be concerned with general properties of topologlcal linear
spaces defined by pseudonorms; we shall review these in Appendix A.
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In general, a topological linear space (TLS) is a linear space over the real or
complex numbers with a topology in which the operations of addition and
scalar multiplication are continuous. A TLS is said to be locally convex if it
has a basis for neighborhoods of zero consisting of convex sets. The condition
of locally convexity insures that the space has a nontrivial collection of
continuous linear functionals [55, p. 107].

The particular space A,, which was defined in [8] and will be redefined in
this section, arises naturally in many physical situations since the elements of
A, are typically those which have finite energy on bounded subsets of X.
The space S’ of g-vector-valued tempered distributions is technically con-
venient, since systems (1.11) can be handled there in a uniform and satis-
factory way (see Section III.B). Both spaces are subspaces of D', the space
of all g-vector-valued Schwartz distributions on X. In D', the intersection
A, n §’ is important since it enjoys many properties of both the spaces A,
and S'.

Definition 2.1. We let A, = A (X, q) be the space of all real (or complex if
we allow complex values) g-vector fields defined on X such that |u(x)|? is
absolutely Lebesgue integrable on compact subsets of X. [This space, with
p = 2, was used extensively in [8], where A, was simply denoted A and only
the case X =R” was considered. Evidently, when X =K® is a (compact)
torus, A (X, ¢) is just the familiar Banach space L,(X, g).]

The topology on A, is most easily defined by pseudonorms. A pseudonorm
p on a linear space F is a mapping p: F— [0, c0) such that if x, y € F, then

p(0)=0
P(Bx) =8| p(x)
px + ) < p(x) + p(y).

if pisa scalar (2.1)

A pseudonorm is a norm if p(x) = 0 implies x = 0 in F.

One way that a linear space F can be made locally convex is by specifying
a collection of pseudonorms which define convergence in F. Thus suppose
that {p,}, a € A, is a collection of pseudonorms on F. Then it is easy to see
[55, p. 24] that sets of the form

{xeFlp,(x)<g,1<i<n} 2.2

can be taken as a basis for neighborhoods of zero in F. The topology obtained
by taking as a basis for neighborhoods of an arbitrary point y the translations
of the basis at zero by y is called the topology induced by the pseudonorms
{p.). With this topology, F is a locally convex TLS [55, p. 26]. When the set
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of pseudonorms is countable, F is metrizable with metric

p(x.3) = ¥, 27 minlp.(x = y) 11 @2)

A locally convex TLS whose topology is metrizable, and which is sequen-
tially complete in this metric, is called a Fréchet space. The spaces Ay (X, q)
are all Fréchet spaces. We refer the reader to [30, 52, 55] and to [1] for exposi-
tions of the theory of a locally convex TLS and Fréchet spaces.

The topology on A, is induced by the countable family of pseudonorms

1/p
[lul, = UKE |uj(x)l”dm(x)} (n=1,2,...), (2.3)

where K, = {xeX| |x;|<nj=s4+1,...,n}, and m is Lebesgue measure
on X. The topology induced by these pseudonorms turns A, into a Fréchet
space. We can define A, = A,(X, g) similarly, as the space of all (real or)
complex g-vector functions on X which are essentially bounded on every
compact subset of X (with respect to Lebesgue measure on X). The topology
on A, is defined by the countable family of pseudonorms

], = ess sup{z luJ(x)I} (n=1,2,...). (2.4)
xeKn Jj=1
A, is also a Fréchet space.

If we let L,(K. q) be the Banach space of all g-vector-valued functions u
defined on a compact set K with values in (R? or ) C* for which each |1;|” is
integrable (on K) (or, if p = oo, for which #; is essentially bounded on X),
then the topology on A, defined above coincides with the projective limit
topology on A, induced by the spaces L (K, g) with respect to the filter of all
compact sets Kc X and the restriction maps pge: L(K,q)—~L, (K q) for
K = R given by restricting fe L(K.q) to K.

See [52, p. 514] for the definitions of these topologies.

Definition 2.2. Letting X and g be as above, we define I' = I'(X, q) to be
the space of all continuous g-vector fields on X.

Here the topology is defined by the pseudonorms
luf, = sup {[u@)|} (=1,2,...).

xeKn
This topology, the topology of uniform convergence on compact subsets of
X, turns T into a Fréchet space. Again, the topology coincides with that
obtained by making I the projective (or inductive) limit of the spaces C(K)
with respect to the filter of all compact sets K = X. Clearly, I is a Borel
subspace of A, = A, when p > p".
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For applications to the theory of homogeneous turbulence of an incom-
pressible fluid, which was the primary concern of [8], A, is the most natural
space since it contains precisely those velocity fields which have finite kinetic
energy on compact sets. The Fréchet spaces I' were also considered in [8]
because the classic notion of a Khinchine window set applies most naturally
to spaces of continuous functions.

B. SPACES OF DISTRIBUTIONS

In treating general Cauchy problems, it is convenient to consider also
spaces of distributions, since a powerful theory of well-set Cauchy problems
in such spaces is available [20, 21, 29, 47, 55].

Definition 2.3. Letting X = R", we denote by #(X) the space of all com-
plex-valued infinitely differentiable functions f defined on X such that f and
all its derivatives tend to zero at infinity faster than any power of 1/| x|, where
[x]? = x2 4+ + x,2

The space &(X) is normed as follows (see [30, 52]). Let m and k be non-

negative integers and fe $(X). Then we define the collection of pseudo-
norms.

1S llm, = sup sup(l + |x|)| D* f(x)I, (2.5)
laj<m xe X
where o = (¢, ..., &,) is a2 multi-index of nonnegative integers, |a| = o, + -
+ a,, and

Df = dVlfjoxy- - - axn

The topology induced on &(X) by these pseudonorms is the locally convex
translation invariant topology defined by the system of neighborhoods of
zero given in (2.2). In this topology, &(X) is a Fréchet space [52, p. 94].

Definition 2.4. We will denote by &’(X) the dual space [52, p. 35] of all
continuous linear functionals from #(X) to the complex numbers. The
elements of &'(X) are called tempered distributions.

Tempered distributions have a simple (global) representation in terms of
the concepts of classical mathematical physics. Namely, any tempered
distribution can be interpreted as a superposition of Borel distributions of
charges, dipoles, quadrupoles, . . . , 2"-poles, each of whose densities has at
most a polynomial order of growth. In mathematical language {52, p. 272],
any tempered distribution is a finite sum of (distributional) derivatives of con-
tinuous functions, each growing at infinity more slowly than some polynomial.
We have not used this result below, but think it could be applied with profit.
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We distinguish two topologies on &'(X); the weak and the strong topology
[52, Chapter 19]. A basis for neighborhoods of zero for the weak topology are

the sets
{TesX|IT@) <L 1<j<r}, 2.6)

where r is a positive integer and @y, ..., ¢, are elements of SP(._X). Actual]y_,
this topology is generally called the weak-star topelogy; but since &#(X) is
reflexive [52, p. 376], which means that the second dual of & (X) [the dua] of
(X)) is naturally isomorphic to F(X), the weak-star topology coincides
with the weak topology on &(X) induced by (X)) as above.

A basis for neighborhoods of zero in the strong topology are the sets

{Te 5”(X)| su;; | T($)] < 1}, 2.7

where A is allowed to be any bounded subset of #(X). The latter topolog_y is
the usual strong topology put on the dual of a locally convex topological
linear space. It is not a metrizable topology in this case.

We shall consider more generally the space of vector-valued :empered
distributions. We let S(X) = [#(X)]" be the product of g copies of £(X), and
endow S(X) with the product topology. Then S(X) is a F réche} space, caI.Ied
the space of infinitely differentiable vector fields rapidly _decreasmg at [Ilﬁ]?.lly.

The space of vector-valued tempered distributions is dcnmf:‘d b}’ S'(X)
and is equal to [(X)F, the product of g copies of #'(X). We give § (X') the
product topologies induced by the weak and the strong topology on .? (X).
These are called the weak and the strong topologies on S'(X), respectively.

It is useful to have alternative characterizations of 5'(X). One such charac-
terization is obtained by thinking of S'(X) as the collection of all continuc.)us
linear maps from %(X) to g-dimensional complex space C*. When we think
of §(X) in this way, if Te S'(X) and ¢ € #(X), then T(¢) is a complex ¢-
vector, and if T = (T, ..., T,), where T, € &#'(X). then the ith component of
T(¢) is T{(¢). That is,

T(¢) = (Ti(@), - -, Ty($))- 23

Finally, S'(X) can also be defined as the dual space of S(X); the continuous
linear functions on 5(X). When we think of §'(X) in this way, we will denotie
the value of the functional T e S'(X) atfe S(X) by (T - />. U T = (T, ..., T,)
and f = (f;, ..., [y, then

(T-1>= 3 TU). 29)
ji=1
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The spaces #(X), &'(X), S(X), and S’(X) are all amenable to Fourier
analysis. When X = R", the Fourier transform of an element ¢(x) € #(R")
is defined by

3O =Fo@ = e 909 dm(x),
where x & =) x;¢; is the usual inner product on R”. It is known [1, p. 71]
that the mapping % : ¥(R") »&(R") above is an isomorphism of the topo-
logical linear space &(R") in (2.5) whose inverse is the mapping

Fh) = @07 [ &% Y(E) dm(®).

This isomorphism extends to a unique continuous automorphism of &'(R")
by transposition; the extended mappings are denoted & and & again for
simplicity.

For the vector case of S(R") and S'(R"), we define # and & component-
wise and the same results hold. In particular, all the usual formulas for the
transform of derivatives, etc., hold. For details, the reader may consult
Arsac [1], Friedman [20], Horvath [30], Treves [52], or Yosida [55].

The space D'(X) of all g-vector-valued distributions on X is defined
similarly. We let 2(X) be the collection of infinitely differentiable functions
on X with compact support. We give 2(X) its usual topology [30, p. 170],
defined by the uncountable collection of pseudonorms

po(f) = sup sup |0(x) D ()] (2.10)

for fe 2(X), where « is any multi-index of nonnegative integers and © =
{6,} is any collection of continuous functions defined on X whose supports
are “locally finite” [e.g., for each x € X, 6,(x) = 0 except for a finite number
of multi-indices ). Its dual 2'(X) is the space of all distributions on X. As
above, the space D’'(X) of all continuous linear maps from 2(X) to C? will
be called the space of all vector-values distributions over X. The comments
regarding weak and strong topologies on S'(X) and %’(X) apply to D'(X)
and 2'(X).

These spaces are closely related as the following fairly ,obvious results
indicate; see also Appendix A.

Lemma 2.1, There are sequences of natural continuous linear one—one
mappings (continuous * monomorphisms’’):

FcAgycA,cApcAcD (p>p' >1), (2.11)
FnS cA,nScA,nScA,nScScD, (2.12)

where the topologies of T N S' < A, NS and A, N S’ are those induced by
I, A, and A,, respectively.
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The preceding statements refer to the strong topologies that we defined
earlier in this section on the various spaces. The result can be rephased in
terms of the topologies themselves; for example, Lemma 2.1 says that the
topology on A, that we have defined is stronger than the topology that A,
inherits as a subset of D’. Each of the spaces in Lemma 2.1 is dense in all the
containing spaces for the topology of the containing space. Concerning the
weak topologies on these spaces, we have a similar result.

Lemma 2.2. The sequences of natural continuous linear one—one mappings
in (2.11) and (2.12) are continuous for the weak topologies on these spaces also.

Proof. This follows directly from Lemma 2.1 and Proposition 3 on [30,
p- 256].

C. BOREL SETS

As usual, we define a subset B of a topological space E to be a Borel set
when it is a member of the o-field Z(E) generated by the closed subsets of E.
It is a remarkable fact that, although the function spaces discussed in Sections
11.A and I1.B have very different topologies, they all have essentially the same
Borel sets—moreover these are the same whether the strong or the weak
topology is used (cf. Theorem 2.1).

Even more remarkable, these function spaces all have isomorphic o-fields
of subsets; they are all “standard T;-spaces” which have ““standard Borel
structures” in the terminology of Mackey [40]. We shall now make these
notions precise.

Definition 2.5. A Borel mapping (of topological spaces) is a mapping such
that the inverse image of any Borel set is a Borel set. A topological space E
will be called a standard T,-space when it is a T;-space’ and there exists a
Borel bijection 8: E — [0, 1] (with Borel inverse $7!: [0, 1] — E) from E onto
the interval [0, 1].

Evidently, any continuous mapping is Borel. It is a remarkable fact that, in
the real interval [0, 1], and hence by definition in any standard T;-space E,
the Borel algebra of all Borel sets is the free Borel algebra (Boolean 6-algebra)
4, with countably many generators.?

7 A topological space is a Ty-space when every point is a closed set.
® G. Birkhoff, “ Lattice Theory,” 3rd ed., Chapter XI, §3, Amer. Math. Soc., Providence,
Rhode Island, 1967.
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As we shall see in Section II.D, standard T,-spaces furnish an excellent
setting in which to apply probability theory. Moreover, fortunately, all the
function spaces of greatest interest to us are standard T,-spaces. More pre-
cisely, we have the following theorem.

Theorem 2.1. The spaces A,, T, S', and D’ are all standard T,-spaces. In
each of the topological linear spaces A, I, S', the Borel sets are just those
Borel sets of D'(X) which happen to be also contained in these subspaces®;
mareover, they are the same in the weak as in the strong topology.

Theorem 2.1. will be proved in Appendix A as Theorem Al. It is a corol-
lary, as we shall also show there, that if E and F denote one of the function
spaces A,, T, and S', or D' or any intersection of these spaces, and £ < F,
then the o-field of Borel sets in £ forms a closed ideal in the Borel algebra
of Borel sets in F. For example, a set in A, n S’ is Borel as a subset of S’
if and only if it is a Borel subset of A,. In particular, T, A,, and S’ are all
Borel subsets of D',

In proving Theorem 2.1, extensive use will be made of the following con-
cept.

Definition 2.6 (Bourbaki [13]). A complete separable metrizible topologi-
cal space is called a Polish space.

It is a basic theorem that any Polish space with a continuum of points
(e.g-, which contains a straight line) is a standard T,-space.

More generally, from any topological space S one can construct the Borel
structure (S, %) consisting of S and the o-field of its Borel subsets. Such Borel
structures have been thoroughly investigated by Mackey [40], Parthasarathy
[43]. and others. These authors define a Borel structure to be standard when
it is isomorphic with the Borel structure of a Polish space (e.g., of [0, 1]).
Thus a T;-space with a continuum of points is *“standard” in our sense if
and only if it has a standard Borel structure.

We next show the equivalence, in the above spaces, of the usual notion of
Borel set as defined above with the different notion of a * Borel set ™ proposed
by Gel'fand and Vilenkin [22] and Mourier [41]. These authors first define a
cylinder set in a topological linear space E as a subset C < E such that, for
some finite set of continuous linear functionals @y. ... ¢ 0onE (ie., elements
of the dual space E' of E), and some Borel set B = R",

feC ifand onlyif (¢,(f),..., ¢.(f)) € B. (2.13)

9 See Lemma 2.1 of Section I1.B.

{
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These authors then define a “ Borel set” in E as a member of the o-field
¢ generated by all the cylinder sets of the form C = {xeE|lag < @ix)<b;
(I £i<n)} in the real case and, in the complex case, those of the form
C,={xeE|ay;_, <Re¢yx) <by;-,} and C,={xe E| i < Im z;&,{xl_<
by} i =L, ..., n. These cylinder sets are analogues of the classical open Khin-
chine window sets, which provide the most natural way to reconstruct a
function from experiments in physical applications. o

Since the Borel sets in R" are generated by the open intervals or “shcc?s
a; < x; < b;, the o-field € contains all the cylinder sets: A.ctually, % consists
precisely of the weak Borel sets of E (i.e., the Borel sets in its weak topology).
Although the weak Borel sets of a general topological linear space are not gll
Borel sets in the strong topology, we shall prove the following result in
Theorém A2.

Thw‘rem 2.2. Let E be a locally convex topological linear space whosle
strong Borel structure is standard, and suppose that its dual E' f.s‘ separable in
the weak-star topolagy. Then the weak Borel sets of E are precisely the strong
Borel sets generated by the strong topology on E.

Theorems 2.1 and 2.2 yield the following corollary.

Theorem 2.3. In the function spaces A,, ', S', and D', the weak Borel sets
are the same as the strong Borel sets.

It also follows that, in the preceding spaces, the drﬁm't_ions of a Bon?l set”
proposed by Mourier [41] and by Gel'fand and Vilenkin [25] are equivalent
to the standard definition (in either the strong or weak topology).

D. REGULAR PROBABILITY MEASURES

In many applications [34] one is interested in the statistical behavior of
solutions of Cauchy problems (1.8) having random initial values—e.g., whose
initial data are given by homogeneous random vector fields (HRVF). In treat-
ing such statistical Cauchy problems, we will rely heavily on the concept of a
regular (probability) measure introduced in [8].

Definition 2.7. A measure u on a topological space E is regular when it.is
defined on all Borel sets of E, and is the Lebesgue completion [25, p. 55] of its
restriction to these Borel sets.

This concept was introduced in [8] in order to provide a rigoro_us .mathe-
matical formulation for the following generally accepted'® principle. A

19 At least, in the theory of homogeneous turbulence!
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separable stationary Gaussian random function is uniguely determined (ie.,
its probability measure p is uniquely determined) by its autocorrelation
function—and hence by its “energy spectrum ™ (if continuous). To make this
literally true, one must identify all i which assign the same measure u(B)toall
Borel sets B, and the simplest and most natural way to do this seems to be to
consider only probability measures which are “regular” in the sense just
defined. Our definition is closely related to other notions of “regular™
measures in the literature.

The theory of regular measures in standard T,-spaces is especially nice,
because there is a natural bijection between regular measures in any such
space and completely additive set-functions on the Borel algebra 4, of all
Borel sets in [0, 1] which, as we noted in Section I1.C, is simply the free
Borel algebra with countably many generators. It follows that any regular
probability measure on a standard T;-space is isomorphic (with respect to
measure and set-theoretic operations) to Lebesgue measure on [0, 1]; see
[40] and [43]. This avoids various pathological possibilities which might
otherwise occur; see Blackwell [9].

Our definition of a “ regular ” measure is closely related to other notions of
“regular ” (probability) measures in the literature, due to Halmos [25, p. 224],
Carathéodory [14, pp. 238-9], Berberian [6, Section 591, Mourier [41, p. 162],
and Gnedenko and Kolmogoroff [23, p. 18). The following theorem sum-
marizes some of the more important results in this vein.

Theorem 2.4. Let p be a regular probability measure on T, A,, S, or D'.
Then p is perfect in the sense of Gnedenko and Kolmogoroff and is both inner
and outer regular in the sense of Halmos.

Using the results on the Borel structure of the relevant function spaces
stated above, we can derive some useful facts concerning regular measure on
these spaces.

First, since the Borel sets of these spaces are generated by the cylinder sets,
which in turn are generated by the Khinchine window sets, a regular measure
pt is just the measure constructable from the values of y on the window sets by
the classic constructions of Borel and Lebesgue. Thus to specify a regular
measure on the spaces of interest to us, it is enough to define it consistently
on the window sets.

Second, since the Borel structures of ', A,, S, and D’ are so nicely related
we see that, if E and F are among these spaces or intersections of two of them
and E c F, then the regular measures on F whose support lies in E are (ignor-
ing sets of measure zero) the regular measures on E. For example, the regular
probability measures p on A, with u(A, n §") = 1 coincide with the regular
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probability measures on A, N S’. This last proposition generalizes Theorem
4 of [8], where the same result was obtained for T = A,.

Finally, since all the Borel structures in question are standard. they are
countably generated. Therefore any regular measure g on these spaces is
strictly separable, in the sense that the o-algebra of y-measurable sets modulo
p-null sets (i.e., the Borel sets in this case) is countably generated; see [8, p.
669] and [25, p. 168]. It follows from Theorem B of [25, p. 168] that, if u is
o-finite (e.g.. if u is a probability measure), then u is metrically separable.
That is. the space of Borel sets is a complete separable metric space (a Polish
space) under the stochastic distance dS. T)=pSu T)—pu(SnT):

Theorem 2.5. The space of Borel sets in any of the spaces I.A,,S,orD
is @ Polish space under the stochastic metric induced by any regular probability
measure .

E. ADMISSIBLE AND HOMOGENEOUS PROBABILITY MEASURES

In this section, E will denote one of the function spaces described in
Sections 1LA-B, and g will denote a regular probability measure on the
Borel sets B(E) of E. We now consider a further limitation of the measure u
which will be necessary in some of what follows. The condition we will
require will be called admissibility. It is a generalization of a notion defined
in [8] for the space A, (which was denoted A in [8]).

In [8, Part A], the term admissible was used for probability measures on the
Borel sets of A, which gave finite energy expectation to bounded (or, equi-
valently, compact) subsets of X. That is, if u(x, w) is the random vector field
associated with a measure p on A,, then if D is a compact (or bounded)
subset of X, the “energy in D” is defined as

Ep(w) = jD |u(x, )] 2 dx, (2.14)

and the “energy expectation™ as
E(D) = [ Ep(®)du(). 2.15)
Az

The measure p was called admissible in [8] when E(D) was finite for all
compact sets D < X.

This definition is equivalent to another definition. The dual space of all
continuous linear functionals on A, is denoted A,’. Tt is not difficult to
determine that A, consists of all g-vector fields g which are square integrable
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on X and which have compact support. The duality between A, and A, is
given by the inner product

(w.8)= [ w0 g d, 2.16)

where ue A;andge A, Thenitis easy to check that E(D) < oo for all com-
pact D is equivalent to

[ 106 ), g60)1? du) < oo, @17)

for all ge A,’. Thus admissibility in the sense of [8] i iri
s the same as
(2.17) to hold for all ge A,". D
Sfated in the form (2.17), the appropriate generalization is strai ghtforward.
If E denotes the dual space of E, and (T, [) denotes the value of Te E’ applied
to fe E, then we proceed as follows. Let *(u) = I(E. Z(E), 1) be the collec-

tion of u-measurable functions 4: E — C that are square integrable with
respect to u.

. Deﬁniti9n 2.8. The measure y is called admissible if E' = I(u) and if this
inclusion is continuous for the topology on E’.

That is, if T'e E’, then we first require that

J 1@ aun < . @.18)

Second, we require the mapping
T 2 ,
fE | T(NI* du(f) (2.18")

t(; lzg con)tinuous. For the spaces discussed in Sections II.A-B, the continuity
of (2.18’) follows from (2.18) by a category argument given by D i
[19, p. 776]. g . o

In particular, a regular measure uon A, is admissible if and only if, for any
compact set D < R", we have

u(x, e

pr fD [u(x, w)|” dm (x) du(w) < + oo. (2.19)
A final notion that can apply to regular measures on E is the following

notion of (statistical) homogeneity.!!

11 H 1 H
This notion was first introduced by G. I. Taylor in the context of turbulence. Taylor

falso de‘signed an apparatus for producing (nearly) homogeneous turbulence experimentally
in a wind tunnel.
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Definition 2.9. A regular measure p on E, a function space over X, is called
homogeneous when p is invariant under any transformation of E induced by
a translation of X.

More precisely, we define the transformations of E as follows. If fe E is a
function on X and x — x + ¢ is any translation of X, we define 7./ =g by
g(x) = f(x — c). (We assume that the topology of E is invariant under trans-
lations of X, so that 7_ automatically carries Borel sets of E into Borel sets,
and regular measures into regular measures.)

If AeA(E) is a Borel set in E, then t, 4 means {1.g|g € A}; clearly p is
homogeneous if and only if

u(z, A) = p(4) (2.20)

for all A € Z(E) and all c € X.

F. PrODUCT MEASURE THEOREM

Many authors, including Wiener and Doob,'? consider random functions
and random vector fields (RVF) as defined by a measurable function u(x, w)
on the product X x Q of the domain X with an abstract probability space Q
(the “ sample space ’). We will now show how to obtain such a function from
our definition, according to which a RVF is defined by a regular probability
measure u on an appropriate function space E, whose points are vector-
valued functions on X.

In many cases, as suggested by Doob [18, Chapter 2, §2], it suffices to set
Q = E. If E = I'(X), this can be done since for each given x and w = u(x) € Q
= I'(X) the value of u(x) = u(x, @) is unambiguous. For random distribu-
tions, one can set Q = D'(X); while for tempered distributions, one can set
Q = S'(X). If one does this, the derivation of a satisfactory u(x, w) is again
trivial. Thus, if u is a regular probability measure on $’(X), then the function
u=u(¢, w) on L(X) x §'(X) to C? given by u(¢, w) = w(¢) is continuous,
and hence measurable on the Borel sets of &(X) and the y-measurable sets
of S'(X).

For E = A,(X), the following product measure theorem interprets each
e A (X) as a sample function u(x, ®) in a way which is consistent with
our formulation in terms of probability measures on the Borel sets of E.
This result was essentially established in [8, p. 670, Lemma 4] and [8, p. 674,
Theorem 5]; we shall simplify and generalize the proof below. Our result

12 In [18, Chapter 2, §2], Doob considers a definition of stochastic processes which, like
ours, makes 2 be a function space. He refers to stochastic processes so defined as ““of
function space type.”
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avoids a serious difficulty in the usual theory, mentioned by Halmos [25,
p. 142, Ex. 2] and discussed carefully by Blackwell [9]; see Appendix B.

Theorem 2.6. Let u be any regular probability measure on A, = A, (X, q),
1 < p < . Then there exists a Borel function v(x, ) from X x A, to R? such
that v(x, ) is represented for any fixed w € A, by itself.

Proof. We construct such a v(x, ) as follows: Let » stand for one equiva-
lence class of functions of A,. For each positive integer j, let h=27J and
define for any u(x) € @ of A(X, g):
h h
| V(% ) = (2h)—"j f WOt +Cpy e, Xy +€) dey e de,. (2221)
—h —h
This is a continuous function of x for each & = h(j), and the mappings
a0 — vi(x, 0), B;: (X. @) > Vi(x, w) are continuous from A, to I' = A, and
from X x A, to R, respectively.
Consider the function v(x, @) defined as follows:

v(x, w) = lim vi(x, 0) wherever this limit exists, 2.22)
jmeo
v(x, w) =0 elsewhere. (2.23)

The hypotheses imply those of the Lebesgue density theorem [25, p. 268],
which implies that, for any o, v(x, w) belongs to the equivalence class of w.
Moreover, since the mappings f; are continuous, the set defined in (2.22) is
Borel in X x A, and the function v(x, ) is a Borel function fron X x A, to
R4

i Corollary 2.1. The function v(x, w) is (m x p)-measurable on the product
X xA,.

Proof. Tt is measurable since it is Borel, and the measure on A, is regular.

Again, we note that by [8, p. 699, Lemma 1], the functional E, defined in
(2.14) is p-measurable.

Random functions v(x, w) which are (m x p)-measurable have especially
nice properties. Thus one can apply to them the Fubiniand Tonelli theorems,
a fact which has many important implications such as the following.

Corollary 2.2. If i is admissible in Theorem 2.6, then the coordinate functions
v;(X, w) of v are pth power m X ji integrable over D x A, for each compact
domain D < X.
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Proof. Since the functions are jointly measurable by Corollary 2.1, it
suffices by the Fubini and Tonelli theorems to prove that the iterated
integral of |z;(x, w|” is finite. However, as we have already remarked above
(2.19), this is a direct consequence of the admissibility of .

IILI. Well-Set Cauchy Problems

A. WELL-SET CAUCHY PROBLEMS

By definition, Cauchy problems are concerned with the evolution in time of
solutions u(x, 1) of specified partial differential equations (DE’s) or systems of
partial differential equations, given the initial values u(x. 0) = r(x). For this
reason, they are also called “initial value™ problems. Loosely speaking, a
Cauchy problem is called “ well set™ when this solution exists, is unique, and
depends continuously on the “initial data™ v. It is classic, for example, that
the Cauchy problem is well set for the heat equation u, = u,, and the wave
equation u,, = t,, ; it is not well set for the Laplace equation w,, = — . The
same is true of their #-dimensional generalizations to v, = V2u, u,, = V?u, and
U, = —Viu.

We shall deal here primarily with a special class of Cauchy problems:
namely, those involving systems of linear partial DE's with constant coeffi-
cients. These include Maxwell’s electiromagnetic equations, the equations of
homogeneous elastic solids, and many other systems arising in classical
mathematical physics.

Technically, then, we shall consider a (g x gq)-matrix differential operator
P(D) = |Py(Dy, ..., D,)|l, where P;(xy, ..., X,) is an element of the poly-
nomial ring Clx;, ..., X,] over the complex field C, and D, = 0/dx;. Thus
we shall be studying initial value or Cauchy problems defined by systems of
partial DE’s (*“evolution” equations) of the form

q
qufot =3 Py(Dy,.... Dy (j=1,...,9)- 3.1)
k=1

We shall consider them both classically (see Section L.B) and as defining
“flows™ in the function spaces described in Sections 11.A-B.

Classically, essentially following Hadamard, the deterministic Cauchy
problem for a given system (3.1) is said to be well set (bien posé) in a given
function space E (e.g., a Fréchet space) of g-vector-valued functions, when
there exists a dense subset D < E of initial values

u;(x, 0) = v;(%) G=1L...,9 (3.2)

_—-——*
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such that (i) for each v = ¥(x) € D, the DE (3.1) has one and only one smooth
(i.e., classical) solution u(x, 1) for t > 0 with u(x, 0) = v(x). and (ii) u(x, t)i==
u(t) € E depends continuously in E on v = u(0) € D. Since the set D of initial
values is dense in E, there is at most one way 1o extend the classical solutions
by continuity so as to define a flow in all of E, whose streamlines (** trajec-
tories” or *orbits ) are the paths u(¢) in E x [0, o0) which corresponds 1o
solutions u(x, ) of the system (3.1) or to their limits,

When such an extension exists, we shall say that the Cauchy problem for
the DE (3.1) is (deterministically) well set in E. This idea has strong physical
and intuitive appeal. An excellent informal discussion of it was given by
Hille already in 1948 [26, Chapter XX]. In particular, Hille emphasized the
fact that, whereas (linear) hyperbolic probiems gave rise to groups, parabolic
problems led only to semigroups.

Hille’s approach was developed further, and the notion of an infinitesimal
transformation ** made more rigorous some years later by Hille and Phillips;
see [27, § 23.6-23.8] for their comments on the connection with the Cauchy
problem. Yosida'® working largely independently, developed similar ideas in
the more general context of Fréchet spaces. However, his applications to
concrete Cauchy problems were limited to a few special equations in Banach
spaces [55, Chapter XIV].

Concurrently, the powerful theory of distributions was being developed; it
extended the idea of a flow in phase-space (and corresponding theorems of
existence, uniqueness. and continuity) to a class of orbits consisting of a still
more general class of “ solutions ™ of (3.1).

The following definition applies to all of the preceding phase spaces.

Definition 3.1. A Co-semigroup in a topological linear space E is a one-
parameter family of continuous linear operators T, : E— E (¢ > 0) such that

(a) Ts’Tt=T‘s+l’ T0=I?
(b) lim,, T,x=T,x foralls>0and xe £

Every Cy-semigroup {T.} on E has an infinitesimal generator L, defined by
Lv =lim h™ (T, v — v); (3.3)
a0

the domain of L need not be all of E.

Conversely, if L is any linear operator on a dense subspace of E. then the
abstract Cauchy problem for L comsists in finding a Co-semigroup whose
infinitesimal operator is an extension of L. For instance. if’ [, =P(D)is a

'3 See [55, p. 231] and the references given there.
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linear differential operator, a Cy-semigroup on E \_vhose ir}ﬁnlte51ma] o;;jcratoi
is an extension of L may be called a solution semigroup (in E) of the abstrac

Cauchy problem

Ou/0t = P(D)u [1(0) = ], 34

ich is j 3.1) in an abbreviated notation. . . .
Whl;(::oh;' : JC]‘Jos-tsfemi,t);roup to be a solution semigroup of (3.1 in E is essTntlgll);
equivalent to the assertion that the Cauchy problem is well set in the ¢ ;sts'lca
deterministic sense of Hadamard and Hil'le;'apd the pr.ecedmg condi 1(1Jlns
express the idea of physical determinism for m@mdua] solutlc?ns Ver.y.naturat ﬁ/
But unfortunately, they are ambiguous: the‘lr fulfillment is sensn.tlve dtoﬁ ez
particular choice of E. For example, when X = R, the:2 heat equa_tlorll1 efin :
a “well-set” Cauchy problem in the Hi]l?ert space [*(X) and in t e.spetl}(ie
S’(X)‘ of tempered distributions, but not in .the space A, czf [81, fEus)rhmartz
spacé I'(X) of all continuous functions, nor in the space D'(X) (]) cf W pey
distributions. Again [7, Example 4]. consider the Cguchy prob er:: orn'
system u, = w, w, = u, . obtained from the wave equatlor} Up = uuz y sg Lng_
u, = w. This problem is not {deterministically) \rvell set in E=[L ()L()] ),( ]ez
causé(u(O), w(0)) € [L,(X)]* does not necessarl'ly imply (u(t), w(t)z) e[ zz(d )”2.
However, it is well set in the Hilbert space having the ’1’1orm2[j"(w ;}-u, )dx]
associated with the square root of the ““ wave energy” [(w* + u,*) dx.

Reéular Cauchy problems. Fortunately, there exi.st§ fmother purel;f( altg}?-
braic.criterion for the Cauchy problem to be .(determlmstlcally) well s?t orf Ee
constant-coefficient system (3.1), which is independent of thg choice of E.
This can be easily motivated in terms of the concepts of Fourier anallyms:

F01r each wave-vector k, the system (3.1) is equivalent to i;[(}-]f fol o‘wmg
system of ordinary DE’s acting on the Fourier component f(f)e’™ * associate

with this particular wave vector:
| f'(1) = P(ik)f(1),
where P(iKk) is the g x g amplification matrix || p;(iky, ..., ik,)||. As t increases,
the asymptotic growth rate of f(t) is
A(P(iK)) = 121}; qRe{/lj(P(ik))}, 3.5)

where the A;(P(ik)) are the eigenvalues of P(ik).

Definition 3.2. The stability index of the constant-coefficient system (3.1) is
the number
A(P) = sup A(P(ik)). (3.6)
ke X’
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The Cauchy problem defined by (3.1) is regular when the system has a
finite stability index—in other words, when the asymptotic growth rate of all
Fourier components is uniformly bounded.

Notice that this definition, which is essentially due to Hadamard and
Petrowsky, does not depend on the function space E. This contrasts with the
ideas of an abstract Cauchy problem formulated above.

Most mathematicians today [20, 29, 47, 55] agree with Hadamard and
Petrowsky that the Cauchy problem should be considered as well set for
(3.1) if and only if it is regular. Moreover it is known [7] that, given a regular
system (3.1), one can always construct a Hilbert space in which the determi-
nistic Cauchy problem is well set. The relevant norm is the square root of
physical energy in many classical examples; this observation is in line with the
dictum of Hadamard and Poincaré: that physics is the best guide for deciding
which initial or boundary value problems are well set.

From a technical standpoint, the analysis of [7] is much simpler than that of
Hille, Phillips, and Yosida; thus it avoids altogether the problem of defining
abstract “infinitesimal operators” with dense domains, and the ““abstract
Cauchy problem ™ of reconstructing Cy-semigroups from their infinitesimal
generators. Moreover, as will be explained in Section 1V.B, it is adequate for
treating problems on compact domains X = K".

Unfortunately, in unbounded domains such as R”, Banach spaces are not
adequate. Since the total “energy” of a HRVF is infinite with probability
one, it seems to be impossible to construct reasonable Hilbert or Banach
spaces for such functions in which the Cauchy problem is well set. Hence the
results of [7], which refer to Cy-semigroups on Banach spaces, are inappli-
cable.

Instead, one must use Fréchet spaces like A, (X) which are not Banach
spaces, or more general spaces of distributions like S'(X) and D'(X) which are
not even metrizable. Moreover, the theory of C,-semigroups on Fréchet

spaces other than Banach spaces has not been developed to the point of
being applicable to concrete Cauchy problems; see [55]. Hence, when X is
unbounded, it is necessary to appeal to the theory of distributions.

B. THE THEOREM OF SCHULTZ

Fortunately, for linear constant-coefficient systems (3.1), one can use a
beautiful recent theorem of Martin Schultz [47], of which we now give a
slightly simplified proof. This theorem shows that, in the space S'(X), a
Cauchy problem (3.1) is well set if and only if P(D) is regular in the sense of
Hadamard and Petrowski as defined in Section 111.A.

Schultz’s result will be important for us in Section VI, for it is precisely the
class of regular systems (3.1) for which we can characterize the evolution of
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random solutions in terms of the evolution of the spectral matrix. His result
is analogous to a theorem of Birkhoff [7, Section 1V]; it 1s technically clo§ely
related to results of Friedman [20, Chapter 7, §3], and Gel'fand and Shilov
[21, Chapter 2].

Theorem 3.1 (M. H. Schultz). The abstract Cauchy problem (3.1‘) in S'(X)
is regular if and only if the matrix functions of tP(iK), {exp[!P{ik)l}., forma one.-
parameter Cg-semigroup in S'(X) and, in this case, there is a unigie go—sem:—

group that solves (3.1) given by T.v = F(expltPUK))) + v, where & is the
inverse Fourier transform and % denotes convolution.

Proof. First suppose the Cauchy problem is regular. Using 'the fact that
the Fourier transform & is an isomorphism of S'(X) (see Section Il..B). we
see that a Co-semigroup solving (3.1) in 5(X) is equivalent to a Co-semigroup
solving

oajor = PGk,  Hi(0) =1, (3.7

in S'(X), where the overcaret signifies “Fourier transfm:m of.” A. matrix
O(x) of polynomials is regular in our sense if and only if exp[tQ(ix)] is a
multiplier in §'(X), as Schultz proves or as one can s¢e from [2.0,.(2..13), P
171]. Thus exp[tP(ik)] is a multiplier in §'(X). Let M* be :_nu]lylphcatlon by
expltP(ik)] in S'(X). Then {M }¢s0 defines a Co-semigroup in S’(X). Indeed,
the semigroup property is trivial and the continuity property 1sla consequence
of the continuity in ¢ of exp[tP(ik)] viewed as an operator on S'(X). The latter
can be seen again from [20, (2.13), p. 171).

It is a straightforward calculation that the semigroup {M,} solves the initial
value problem (3.7) in S'(X). Hence, the C,-semigroup {T,} defined by

To=FM,*v 3.3

solves the Cauchy problem (3.1) in S'(X). ‘

The uniqueness of this semigroup derives from an abstract uniqueness
theorem in this context. For if {T;} is any solution semigroup as defined in
Section III.A, then a semigroup {M,} acting on S'(X) which “solves”
(3.7) is defined by

M0 =FT, 79, 3.9
Applying [20, Theorem 6, P. 177] to (3.7), and recalling from Section II.B

that the dual of S'(X) is S(X) = [#(X)]%, if there exists a solution to the
modified adjoint problem (3.10)

opjot = —P(K)T  for 0<t<to, ®to)=to, (3.10)
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:ﬁ Sﬁ)ﬁ'], tEI:]c[r)l there is at most one solution to the Cauchy problem (3.7) on
e interv, <t <t,. Since t, is arbitrary, this will vi i %
(M et s of £ o Y, this will yield the uniqueness of

But (3.10)Tcan be solved explicitly. For P is regular and hence so is its
transpose. P Th.erefore, exp[—(t — to)P(ik)T] is a multiplier in S(X) for
t < ty. Given ¢, in S(X), we define

bk, 1) = exp[— (t — 1) P(ik)"] do(K). @3.11)
One checks without difficulty that this solv i joi
th

S oy es the modified adjoint problem

Thxs.sho‘:\'s!thal if P is regular _in our sense, then exp({tP(ik)] is a C,-semi-
group in S{A) and that T,v =& exp[tP(ik)] * v defines the only Cgy-semi-
group in §'(X') which solves (3.1). ’
. Novf suppose that {exp[tP(ik)]},., is a Co-semigroup in S'(X). Then
.oilowmg., S.Chlf]lz [4? Theorem 5.4], we note that this means that exp[!P(fk)j
is @ multiplier in .? (X) for each t. Now since exp[tP(ik)] is continuous in ¢ as
an operaFor.on §'(X), each entry of the matrix exp[tP(ik)] is bounded by a
polynorplal in |k| on any compact interval [0, T]. Let p(A4) denote the spec-
tral radius of a (g x g)-matrix A. Then

pA? < |A|? <Y |ag |2 . (3.12)
ik
Hence
p(expltP(ik)])? sg’:‘ exp[tP(ik)]? , (3.13)
SCA+ k)R for 0<t<T,

where C is a constant. But
plexp[tA]) = exp[t sup Re Ai(A)] (3.19)
i

ﬁ?r any (g x q)-matri?{ A with complex entries where AfA), 1 <j<gq, are the
eigenvalues of A. Using this and taking the logarithm of (3.13), we (;btain

2t AP
i‘i-EqRe A{(P(ik)) < log C + R log(1 + (k). (3.15)
An application of the result of [20, Corollary, p. 219] yields
122 \ Re 1,(P(ik)) < const (3.16)
and this holds for all k. Therefore,
A(P)=sup sup Re 1,(P(ik)) < o0 G.17
q

keR* 1<j<

and so P is regular. This completes the proof of Theorem 3.1.
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The condition that the linear system (3.1} be strictly stable in the usual
sense is, of course [7, Section 1I1], just the condition that A(P) <0. Any
reguiar system (3.1) can be reduced to the strictly stable case by introducing a
new 'variable w(x, ) = e AP+ D" y(x 1). Yosida has proved that if A(P)< 0,
then the semigroup {M(1)} is equicontinuous in the sense [55] that:

For any continuous seminorm p on E, there exists a continuous seminorm j
on E such that p(T,u) < p(u) for all t >0 and u € F.

C. STATISTICALLY DETERMINATE PROBLEMS

One of us has already studied many special Cauchy problems of physical
interest from the point of view of statistical mechanics in a series of publica-
tions; see [34] for @ survey of this work. These problems were investigated in
special function spaces, chosen to make them ** deterministically well set” in
the dense defined in Section I11.A; they were almost all of the form (3.1).

We are here trying to initiate a more general and systematic statistical
theory which will be applicable not only to deterministically well-set prob-
lems of the form (3.1) but to many others. To emphasize the broad scope of
the ideas, we begin in a much more general setting than was considered in the
last two sections.

Let L; be a time-independent partial differential operator (j=1,...,q)
Let E be a real (or complex) space of g-vector-valued (possibly generalized)
functions defined on our underlying domain X = K°R"™°. We shall assume
that the operator L = [L;] is defined on a dense subset of E and consider the

Cauchy problem

‘ dujot = L[u], u0)=vekE, (3.18)

wheke v is a given initial value in the function space E.

Essentially, as in [34], we define a Cauchy problem with random initial
values to be a space E and a system (3.18), as above, together with a regular
probability measure 4 on E. We refer the reader to Section I1.D or [34, §16]
and Appendix B for discussions of regular measures; the measure p is to be
thought of as assigning the statistical distribution of initial values in E.

Much as in (3.4), we define a solution of the Cauchy problem (3.18) in E
as al function u(t) from [0, oo) to E such that

lim [u(t + k) —u@®)h=Lu©®] (@llt20).

As in Section 1I1.A, we shall call u(t) the ordit (or trajectory) of the solution,
and u(0) = v its initial value.

However, we shall propose in this section and the next some notions of a
“well-set” Cauchy problem that are weaker than Hadamard’s. We shall not
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require that the mappings e’ defined by (3.18) be everywhere defined and
continuous, but only that they be almost everywhere defined and Borel.
More precisely, we require that, for all v in some subset M of E of u-proba-
bility one,'* there exists a unique solution of (3.18) with u(0) =v, thus
defining a “ flow ™ along the orbits u(t) = T,v with initial values in M. These
flows need not be linear or continuous, but must be Borel mappings. More-
over for the systematic theory to be given in Sections IV.B-C and Sections VI
and VII, we will specialize to the regular linear constant-coefficient systems
described in Sections I11.A-B.

Definition 3.3. A Cauchy problem with random initial values is called
statistically determinate when there is a dense Borel set M c E with the
following properties:

(@ pM)=1
(i) For all v e M, the problem (3.18) with initial value v has a unique
solution with orbit {u(¢)} in E.
(iif) The mapping T, : M — E given by T,(v) = u(¢) is a Borel mapping for
allt>0.

We call the set M the subset of initial values for orbits.
When condition (iii) is replaced by the stronger condition

(iv) the mapping T,: M — E of (iii) is continuous for each t > 0,

then we call the problem statistically continuous.

The following result relates this notion to the concept of a deterministically

well-set problem defined in Section III.A, it is a simple consequence of the
definitions involved.

Theorem 3.2. A statistically determinate Cauchy problem is statistically
continuous if it is deterministically well set in E, and the subset M of initial
values for orbits has probability one.

Induced measures

When the solutions of a Cauchy problem (3.18) evolve in time under the
action of L, it is natural to ask how their probability distribution changes.
Provided that the mappings T, are all Borel mappings, the following concept
allows us to answer this question.

'*In Sections V.G-H, we shall show that this condition is implied by a wide class of
conditions on the (energy) spectrum.
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Definition 3.4. Let T: E— F be a Borel mapping between topological
spaces, and let u be any regular probability measure on E. Then the measure
induced'® by T on F is the regular probability measure v =T (1) defined by

v(S)=pu(T'(S))  for any Borel set S < F. (3.19)

Trivially, (3.19) defines a Borel probability measure vo on F, with vo(T(E)) =
1 and, since [T~ '(F)]' = & (the void set), vo[T(E)]=0. The Lebesgue
completion of v, is the regular probability measure induced on F. R

Clearly also, for any statistically determinate Cauchy problem W}lh initial
probability measure p1,, since the 7, are Borel mappings, at any time 1 > 0
the randem functions u(x, f, ®) can be considered as distributed with the
regular probability measure y, induced by T, from u on E.

The preceding ideas can be generalized to other linear boundary value
problems (e.g., to elliptic problems), by letting E be a (function) space of
boundary value functions, and F that of interior values.

D. STATISTICALLY WELL-SET PROBLEMS

The definitions of Section I1I.C weaken the classic concept of a (determinis-
tically) * well-set” Cauchy problem adopted by Hadamard, Petrowsky, gnd
Hille in two simple ways. They weaken the existence and uniqueness require-
ments on solutions from “all”” to ““almost all ” initial values, and they weaken
the requirement that the T, be continuous to the requirement that they be
Borel mappings. .

The weakening of the concept of a well-set problem which we propose in
this section is much more subtle; instead of requiring that each T, carry all
(sufficiently) nearby points into nearby points, it requires that this be true
with a very high degree of probability.

Definition 3.5. Consider a statistically determinate Cauchy problem (3.18)
with random initial values given by a regular probability measure g in a
metric space with metric 4. Let M be the specified Borel set of initial values for
orbits with u(M) = 1. Then the problem (3.18) is statistically well set for
p when, for any v(0)e M, e >0,1>0,and t >0, there exists 6 > 0 such that
the conditional probability that d(u(r), v(t)) < 1, given that d(u(0), 1(0)) < 9,

“exceeds 1 — . [In symbols, we must be able to choose > 0 so that

wd(u(®), o(8)) < n]d@(©), v(0)) < 8) > 1 —&, (3.20)
where p(A | B) means the conditional probability of A4 given B]

15 In the terminology of [25, p. 162], the mapping T is ** u-measurable.
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Thi .. . .
Stateslso s;flr;sttl;)n g;sertsk that, given the probability distribution of initial
m, i we know the initial state sufficient]
know its current state at i ol v
any later time ¢ ver i i

St b y accurately with a high degree of
Vaggefdeﬁr;:tlon z’above is made in a metrizable linear space setting, and so is
valid or ; e Fr’echet :spaces I and A,. For more general nonmetrizable
h}:} W .f}:z‘c a|s-| S’ or D', we must substitute a definition based on neighbor-
load - -1 Such spaces, we propose the following definition (which is equiva-
ent in Fréchet spaces to the one indicated above).

5 ?ﬁiﬁi?“l; ;ﬁals]tac:istica[ly determinate initial value problem (3.18) [such
i ed statistically well set when, given a soluti
|l ! L on u(t) of
ii,;:? :lél;nl([]) E'J'U.f,[ £d> 0,and t >0, and a neighborhood ¥ of #(1) (tée?c
vex circle i j -
wmadbyt neighborhood U of ¢(0) such that the conditional

u(u(®) e V]u(0) e U)>1—e¢. 3.21)
In other words, we require that
ul(w(®ev) n O e))>1- e)u[u(0) e U]. 3.22)

We now digress briefly to discuss th i i
W e technical quest i
the conditional probability in (3.20). We define flucstion o the exstence of

N’ ={ueE|d,v) < o} (3.23)

'ofl': {(]:(;nccl{itionijf prc;lbabil.itiesof (3.20) will all exist provided u(N,%) > 0 for all
nd v € M, where M [with u(M) = 17ist o ol
for orbits. If we define the set W by 1is the specified set of initial values

W ={ueE|35 > 0 with u(N,%) = 0}, (3.24)

:l;en it S;j?'ice; for the proof to show that (W) = 0. For then we can make all
¢ conditional probabilities in (3.20) exist b i

; k y subtracting W from M. Thi

a]t;ra‘u#on do?s not change the statistical determinacy of the problr:m =

deﬁnc;d,;s will b;shown m.Appcnde B, any regular probability measure u

e on any o Ih.e _funcuon spaces of primary importance in this paper

e Sections 11LA,B) is inner regular in the sense of [25]. Thus, in these spaces

w(W) = sup{u(K)|K = W, K compact}. (3.25)

But if K = W is compact, then K ca
s n be covered by a finite number of
of the form B = {u|d(u, v) < &}, with v & W and u(B) = u(N,%) = 0.(;1 :‘21};:;:
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that any such compact set K has probability measure u(K) = 0. Hence, from
(3.25), u(W)=0 as desired. Throughout the above calculations, we have
assumed that we are working in a linear metric space. By substituting convex
circled neighborhoods for the metric spheres used in (3.23), etc., the same
proof works in the more general situations of interest here. We have proved

Theorem 3.3. Let p be a regular probability measure on T', A,, S', or D,
and (et W be defined for a Borel set M with p(M) = 1 as in (3.24) above. T hen
(W) =0, and hence the conditional probabilities of (3.20) and (3.21) exist.

We turn to the relation between being statistically well set and the notions
of Section 111.C.

|
Theorem 3.4. A Cauchy problem with random initial values that is statisti-
cally continuous is statistically well set.

Proof. Both problems are statistically determinate, and so we need only
establish (3.21). Given v and a neighborhood V of 1(), we choose a convex

circled neighborhood of U of v so that

T(U)c V. (3.26)
We can arrange this by the continuity of the mapping T,. Then (3.21) will
be satisfied for any & > 0.

Combining Theorem 3.4 with Theorem 3.2, we see that a deterministically
well-set problem is statistically well set if the initial values are sufficiently

smooth with probability one.

Corollary 3.1. A Cauchy problem with random initial values which is
deterministically well set and for which the dense subset M of initial values for

orbits has probability one is statistically well set.

Perhaps more interesting is the fact that the converse of this corollary does
not hold; there are problems that are statistically well set but not determinis-
tically well set. In Appendix C, some examples of this phenomenon are given.
These examples establish our claim that our notion of a statistically well-sel
Cauchy problem is indeed a weaker concept than the Hille-Phillips-Y osida
notion of a (deterministically) well-set problem. They show that even if a
problem is not well set in a particular function space. it may be statistically
well set when one takes into account the @ priori distribution of initial values.

1]
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IV. Some Special Conditions

A. INTRODUCTION

Our most complete and systematic general results, to be presented in
Sections V and V1, rely basically on Schultz’s theorem. They apply to Cauchy
problems for regular systems (3.1) of linear DE’s with constant coefficients in
Euclidean spaces R" and their Cartesian products with tori, X = K'R"™".
In such spaces, one can use the theory of tempered distributions.

Unfortunately, no analogue of this theory is known for other manifolds.
Consequently, extensions of our results to well-set Cauchy problems involving
linear partial DE’s with variable coefficients on general manifolds may prove
difficult.

However, there are two important special cases in which our results can be
obtained without appealing to the theory of tempered distributions. These are
the cases of a compact manifold and of a hyperbolic system (3.1). We shall
treat these cases in Section IV.B and in Section IV.C, respectively.

Specifically, in the compact case one seems not to need the theory of distri-
butions at all; the theory of C,-semigroups acting on Banach spaces seems to
be adequate. Moreover, in the special case X = K" and a system (3.1), the
spectrum is always discrete and so one can expand solutions in multiple
Fourier series with random coefficients. These facts are established and some
of their implications exploited in Section IV.B.

With hyperbolic systems (3.1) by contrast, one can always use the space D’
of Schwartz distributions, and analogous spaces can be defined for vector
fields on general manifolds. A few obvious implications of this fact will be
derived in Section IV.C.

The preceding special conditions (of compact X and of a hyperbolic system)
were considered primarily because of their mathematical implications. In
Section 1V.D, we turn our attention to the consequences of assuming the
physically interesting condition of *“homogeneity,” especially as regards the
““order of growth” of functions.

Next, in Section 1V.E, we derive some consequences of assuming that the
distribution of the random initial vector field is normal (Gaussian), and show
that the property of normality is preserved in time under the action of any
statistically determinate linear system (3.1), and hence in the space of tem-
pered distributions for any Cauchy problem which is regular.

Finally, in Section IV.F, we discuss the conditions under which a nontrivial
time-independent ““ statistical mechanics > can be constructed, so that one has
an analogue of the ergodic theorem in classical mechanics.
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B. CompacT DOMAINS

We shall now apply the preceding results to Cauchy problems (3.1) in
compact spatial domains X = K" (with duals X’ = Z"). In this case, the expect-
ed total “energy” is usually finite, and A, = Ay(X) = [Z(X)] is ordinary
Hilbert space. Since X = K" and the expected energy is finite, one can express
almost every RVF as the sum of a suitable multiple Fourier series; thus

v(X, ®) =k2;,f(k, w)e™ X, 4.1)

where k = (ky, ..., k) withk; =0, £1, +2,.... Using the results of Section
11.C and Appendix A, the Borel sets in A, are easily described, as follows.

Theorem 4.1. The Borel sets in A, are generated by the *“ window sets™ of
Fourier coefficients in (4.1) such that, for some keZ" and a;,b;,c;,d;
(i=1,...,9),

a;<Re{fik} <b;, ¢ <Im{fik)}<d:. (4.2)

Hence the regular probability measures are those defined by compatible
measures on the window sets (4.2); we omit the proofs, which are straight-
forward.

The series (4.1) represents a normal homogeneous RVF if the vectors
f(k, ») and f(l, w) are normally distributed and independent for any k #1.

When X is compact, moreover, S’ = D', and so Schultz’s theorem (Section
111.B) ensures that every regular Cauchy problem (3.1) is deterministically
and hence also statistically well set in D’ by the corollary to Theorem 3.4.
However, even for compact X, the usual norms need not be satisfactory.
Relying on [7] for various technical facts, we now investigate this situation in
detail. .

By [7, Section V], any regular system (3.1) with g =1 does define a Co-
semigroup in A, = L,(X), hence a deterministically well-set problem there.
Moreover it was proved in [7] that one can always construct a ¢ direct
integral” norm on the Fourier transform space of the functions of finite
“energy,” for any regular Cauchy problem. This makes the Cauchy problem
well set on the resulting Hilbert space of functions of finite norm = (energy)*’?,
in the sense that (3.1) acts on this Hilbert space as a C,-semigroup. Since the
initial values for orbits are the whole space, we can combine this result with
Theorem 3.2, to obtain

Corollary 4.1. Any regular system (3.1) defines a statistically determinate
problem on a suitable Hilbert space (defined by a suitable direct integral*®
norm). )

16 §ince X — K" is compact, this direct integral is actually a direct sum over X =Z".

I .



—<?—

40 G. Birkhoff, J. Bona, and J. Kampé de Fériet

But when ¢ > 2, unfortunately, a regular system (3.1) need not define a
deterministically well-set problem even when Y is compact. As we observed
in Section I1I.A, the Cauchy problem for U =10, 0= u. isnot well sét in the
Hilbert space [IX(K))%, K the unit circle, because (u(0), (0)) € [I*(K)]? need
not imply u(t) e (X)) for t> 0. [This problem is, however, statistically
well set in the preceding space for many typical probabilities and associated
energy spectra; see Appendix C.]

We shall now sharpen the result stated in the corollary above for a general
class of regular Cauchy problems (3.1) and compact X. As in [7, Section 11],
the Cauchy problem (3.1) for random initjal data u(x, 0, w) = v(x, w) given
by (4.1) is solved formally by writing

ux, 1, ) =y &Pk () pikex, 4.3)

Moreover, as was shown in [7], one can obtain a Co-semigroup on another
Hilbert space & by using a distoried basis of vectors by (k), ..., b,(k) for each
k obtained by a linear transformation B = B(k), relative 1o which B~ P(ik)B
assumes a Jordan canonical form. If

ﬂ(k)=' sup (| Bf|/|Bg|) @4

f=lgl=1
is the associated distortion JSactor, then the inequality
Y. 1k, @) 2f*(k) < + oo “.5)

for almost all w guarantees that ue [[2(X)]7 almost surely in (4.3) for all

t > 0. Moreover, by Theorem 4.1 (4.3) defines for each t > 0 a Borel mapping

of the subset of v whose Fourier coefficients satisfy (4.5) into [(X)=H.
We introduce the (discrete) energy spectrum E of the HRVF u of (4.3) by

Ek) = [ e £, ) ? du(e), (4.6)
H
where u is the probability measure associated with u [8, Part B] and k is any
Wwave vector in X". The energy spectrum is the trace of the Fourier coefficients
(*“transform™) of the q X g covariance matrix T’ = IT:;1 given by
Iyl = fHu,-(x +h, 1, ) u(x, 1, )* du(ew) @7
or, using (4.3) [we assume f(k, w) and 1, ) are independent for k #1],

Ty = T e [ [k, )l [ @ik, w)]* du(e).

These notions are only defined in the special case of discrete spectrum
(X a torus) considered in this section. In Sections V and VI, we shall say more
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about covariance and spectrum in the general case. Here we remark only the
following result.
|

Tl‘leorem 4.2. The Cauchy problem for any regular equation (3.1) is statistical-

ly determinate in Ay = [I*(X))? for any torus X and initial HRVF whose energy
spectrum satisfies
| Y B*() E®) < + o, 4.8)
‘ k
where B(k) is the distortion factor required to reduce P(ik) to Jordan canonical
form.
|

Prioof. By hypothesis, the initial spectrum [(4.6) with t=0] satisfies
(4.8). Hence the function

; B ®)| /&, w)[? (4.9)

is integrable with respect to u. Hence it must be finite almost everywher_e
with respect to u and the desired result now follows from (4.5) and the defini-
tion of statistically determinate in Section 111.C.

C. HYPERBOLIC SYSTEMS
I

We next consider hyperbolic systems. As defined ir.1 Friedman [20,3.. 196]
(see also Harmander [29]), these are systems (3.1) “ihlch are “reg_ular in the
sense that the roots 4,(k) of the characteristic equation | P(ik) — AI| =0 have
real parts uniformly bounded above and below:

1 A < Re{A,(k)} < B, where —0 <A< B< +00. (4.10)
ai / i i i f (3.6).
Certainly a hyperbolic system is regular in thf: sense o
For g = n= 1, the most general hyperbolic system (3.1) has the form
oufot =i i Pa; dufox’  (alla;real, i=./—1). 4.11)
=o

Anogher thoroughly understood class of hyperbolic systems with n =1 is
defined, for real a;; and b;, by
|

. (0u;f8t + b; du;ldx) = 0, 4.12)
Jj=0

: i 17
where a;; is any nonsingular (real) square matrix.
|

17 See Courant-Hilbert, Vol. 2, for a complete analysis of systems of the form (4.12).
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Every hyperbolic system (3.1) defines a deterministically well-set Cauchy
problem in D'(X). In more detail [20, pp. 197-8] any linear hyperbolic
system (3.1) has a Green’s function G(x, t) for any real t, which is a Schwartz
distribution with compact support. There is thus for any fixed x and t a
finite domain of dependence, which is a cone in (x, t)-space for systems having
constant coefficients like (3.1).

If v(x) is of class C™ with m = g +n + 2, then the convolution ¥(x) * G(x, t)
=u(x, t) is a classical solution of (3.1). Furthermore, the mapping v —u
defined above is continuous on D'(X) [20, p. 78, Theorem 40]. Hence u(x, ) is
a solution, which is unique in D’'(X). These facts have the following imme-
diate corollary.

Theorem 4.3. For any hyperbolic system (3.1), the Cauchy problem is
deterministically well set in the space D'(X) of Schwartz distributions.

To prove even statistical determinacy, we need information about the initial
values. Here the facts stated above imply the following result, in which I’ (m)
denotes the subset of those functions on X whose derivatives of order m
exist and are continuous. Thus, the I' of our previous notation is ')

Theorem 4.4. The Cauchy problem for any hyperbolic system (3.1) is
statistically determinate in T and hence in any A,, provided that the initial
data correspond to v(x) € T'™ with probability one, where m =q +n + 2.

In the following sections, we shall try to determine sufficient conditions
to make v(x) € S'(X) and v(x) e C‘™ with probability one. Such conditions,
taken in combination with theorems like those just above, imply that weak
solutions to random Cauchy problems are actually classical solutions with
probability one.

D. SPATIAL HOMOGENEITY ; WIENER’S THEOREM

As we have mentioned already, the Cauchy problem is not (deterministi-
cally) well set in D’ or in A, for (regular) parabolic DE’s such as the heat
equation: uniqueness fails. Hence the approach of Section IV.B also fails for
such parabolic DE’s in D" and A,.

We shall adopt a different approach in the present section, exploring the
consequences of assuming spatial homogeneity, an assumption which was
made in [8]. Random vector fields u(x, ), whose measure p is invariant
under translations of X, are also called (strictly) “stationary” [18, p. 94],
and the notions of correlation, spectrum, and harmonic analysis have been
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developed for such (spatially'®) homogeneous RVF. We recall the definition
of homogeneity from Section 11.E.

I
Definition 4.1. A (regular) measure u on a function space E = E(X), whose
topology is invariant under every translation x - X + a of X, will be called
homogeneous when, for any Borel set S in E and every a € X, if U,(S) is the
set of all u(x + a) for u(x) € S, u[U(S)] = u[S]

The assumption of homogeneity will also be important in Parts V and VI,
while in Part V1I, it will yield some new results about random classical sotu-
tions of parabolic problems.

Cauchy problems whose initial data are homogeneous in the above sense
have a number of fairly obvious properties such as the following.

Theorem 4.5. If u is a homogeneous regular probability measure on E, and
the well-set Cauchy problem in question is invariant under space translations,
then so is the induced measure (Section 111L.C) y, for any t > 0.

Indeed, one easily verifies

1LULS)] = WIT, (UaO)] = plU(T ()]
= ulT,7 ()] = wlS]. (4.13)

Theorem 4.5 applies to any system of partial differential equations with
constant coefficients (e.g., the Navier-Stokes equations), provided that the
system defines a statistically well-set Cauchy problem.

Theorem 4.6. If % is a semigroup of linear transformations {T} of E, and if
the restriction of each T, to some fixed Borel subset M of E with p(M) =1
is a Borel function, then ¥ is p-measurable.

Proof. For any Borel subset B of E, let S = B n T,(M). Then T, 1(S) will
be a Borel subset of M, while T,” (B — S) will be a subset of E — M, and
hence of p-measure zero. It follows that 7,”'(B) will be p-measurable, with

W(T,H(B) = W(T,(S)).

It is a corollary that T, induces from the y-measure on E a p,-measure on
every Borel subset of T(M). This can be uniquely extended to a perfect
probability measure on E.

The next result, whose proof depends on a generalization of a classic
theorem of Wiener, shows that homogeneous measures on A, give RVF in

18 We shall discuss temporal homogeneity in Section IV.F.
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S’ with probability one. This result allows us, for example, to reduce questions
about homogeneous measures on A, to questions in A, S’ where Fourier

analysis can be applied. Actually, we prove more than is stated in Theorem 4.7;
see Corollary 4.3.

Theorem 4.7. Let u be an admissible homogeneous regular probability
measure on A,, 1 < p < . Then MM, N S') = 1: that is, almost every sample
Junction is a tempered distribution.

Proof. Define w(x) by
w(x) = f |u(x, )|? du(w).
Ap
This is finite for almost every x since, for any compact set D < R",
f w(x) dx < 00
D

by Corollary 2.2. By homogeneity, w must be constant almost everywhere,
say w= L a.e. Hence,
j w(x) dx = m(D)L,
D

where m(D) is the volume of D, and so, by Fubini’s theorem, since u is
jointly measurable by Theorem 2.6,

J,

Letting D = S(a) ={|x| < a} be the ball of radius a centered at the origin of
R", and defining

[ﬁ fD| u(x, w)|? dx] du(w) = L. (4.14)

£ 4

flw)=a" f lu(x, »)|” dx, (4.15)
S(a)
we see that (4.14) yields
| i) duw) = k 4.16)

for all @ >0 and in particular fora=1, 2, ....
is the volume of the unit ball in R".

We claim that, for any fixed a > 1, f,(w) < &° for all sufficiently large a
almost surely. To prove this, let

A4, ={w| fi(w) > a%} 4.17)

Here, K =, L where =,

and
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Then p(A4) =0, for
(A) = lim y(U A,,) <Tim Y p(A,)- (4.18)
= o azi l-wazxl

Bu‘t (4.16) and the definition (4.17) together with the fact that f, > 0 imply
| u(4,) < Kja* for all a. 4.19)

|
Since Y .a”“ converges for « > 1, the right-hand side of (4.18) is zero. Thus,
almost surely, w is not in A, whence f,(w) < a* for sufficiently large a. Hence,

i i ((@)/a) < o,

|
} a—+aw
alrr;xost surely. That is,
| im (1/a)"*e j lu(x, )| ?dx < o, (4.20)
} a—® S(a)

almost surely. .

The desired result now follows from a generalization of one of Norbert
Wiener’s basic tools [54, p. 138, Theorem 20], which we state and prove
separately. We let X be the unit sphere |x| =1 in R", do surface Lebesgue
measure on X, p= x|, and E=x/pe X,

Lemma 4.1. If u(x) € A (R") satisfies, for some r > 0,
fsm [u(x)|? dm(x) < Md', @.21)
Jor all a > 0 sufficiently large, where S(a) is the ball |x| < a, then
u(x)/(1 + |x|)?e ’(R")  forall q>rfp. 4.22)
éroof. By the Fubini theorem, in the above notation
| 90) = [ 0B dot®)
exii‘ts for almost all p > 0. Moreover,
[, Juoo1? dmi) = J o)~ dp = G(a)

|
i
an?

a n—1
[ et + ixy e dmeo = E2E gy = s@). @23

5@ (1 4+ p)y™
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Integrating (4.23) by parts,

Gla) e Glp)
Ja) = ——_ i, | A
(a) [] +£.I}N fO ({ + p]ﬂqT’

Hence by (4.21) we have, for all large enough a,

dp.

r

J(a) < Ma o

(e * M0 ], e 4

Since J(a) is an increasing function of @ and bounded if pg > r, the conclusion
follows.

Corollary 4.2. If, for some K(8) € I(X), and r > 0,

[ 1we0r dp <1+ 0) Ke®) (4.24)

then (4.21) holds with r = n.
Proof. From (4.24), we deduce

fo lu(p&) |70 dp < K(&) (1 + a)".

Hence, by an application of Fubini’s theorem,
[a(x)|? dm(x) = au Po"ldpd
[ Ju0017 dmx) = [ [ (o) 75"~ dp doe)
< +ay fK(F,) do < M(1 + a)" < La"
3

for a sufficiently large. the inequalities (4.23), etc., can now be repeated.
[N.B. The assertion is that the factor " in (4.21) can be replaced by (1 + a)’,
which is more convenient for some applications.]

To complete the proof of Theorem 4.7, we need only remark that, by
combining the last lemma with (4.20), we have, almost surely,

u(x, w)

whenever pg > (n 4+ «). Thus ve L,(R") = S'(R") almost surely, and thus
u= (1 + |x|*)"?v € §'(R") almost surely.

v(x, @) = e LR, (4.25)

We note the following corollary to the above proof. This will be useful in
Section VII.C. It states that, with probability one, 2 homogeneous RVF on
A, cannot grow very rapidly at infinity.
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Corollary 4.3. Let p be a regular admissible homogeneous probability on
A (R"). Then, almost surely
u(x, )

@y = H

whenever s > (n + 1)/2p.

Proof. Fix s > (n+ 1)/2p, and choose o > 1 so small that s > (n + «)/2p.
Lemma 4.1 then combines with (4.20) to show directly that u(x, )/(1 + |x|?)*
€ L,(R").

E. NORMAL PROBABILITY MEASURES

For linear Cauchy problems with random initial values, one can say more.
Following Fréchet, we define a probability measure u on a linear topological
space E to be normal when, for every continuous linear functional « on E,
the regular probability measure u, induced on the real or complex field (as in
Section III.C) by the map « is a normal (Gaussian) measure.

For various reasons (see [8] and Section II.C), one is often especially interes-
ted in normal homogeneous random vector fields (normal HRVF). [This is
not always the case; thus real temperatures cannot be normally distributed
except in the trivial deterministic case of zero variance, because u(x, @) > u,
(absolute zero temperature) otherwise holds with probability zero.]

Let 1 be a normal probability measure on a topological vector space E, let
T: E — F be a continuous linear transformation, and let v be the probability
measure induced as in Section III.C on F by T from p. If « is any continuous
linear functional on F, then the composite § = a o T is a continuous linear
functional on E. Moreover the measure on the real or complex numbers
induced by o from v is the same as the measure induced by f from u: in
symbols, «[v] = a[T[u]] = Blu]. Since B[u] is normal on R or C by hypo-
thesis, it follows that so is a[v]; hence v is normal on F.

It will be essential in Section VI to know that normality is preserved under
the action of a system (3.1). This we now prove.

Theorem 4.8. Suppose the Cauchy problem (3.1) is statistically determinate
in the function space E for a normal probability measure p. Then y, as defined in
Section I11.C is normal for all t > 0.

Proof. By the definition of statistical determinacy, there is a subset M — E
with u(M) = 1 such that (3.1) has a unique solution for any initial value in M.
Further, the mapping T, : M — E given by T, v = u(f) where u(1) is the unique

R =3
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solution of (3.1) for initial value v, is Borel measurable. Hence the measure
#, = po T, " is a Borel probability measure on E.

Since (3.1) is linear, the mappings T, are linear transformations. By the
remarks preceding the theorem, then, y, is also normal.

Note that the preceding discussion does not imply that a given normal
measure p on E is determined by the associated u,. However, this is true in
certain cases (see Section V).

Again, Fréchet’s idea and the preceding discussion apply just as well to
linear Borel mappings (including functionals) as they apply to continuous
linear mappings. Hence we have the following result, which has implications
in many important physical problems.

Corollary 4.4, Let & be a semigroup of linear transformations T, of a
Junction space E associated with a statistically determinate Cauchy problem
(3.1). Then every regular normal probability measure w for initial values

defines a regular normal probability measure i, on the u(x, 1, w), for any t > 0.

F. TiIME-INDEPENDENT MEASURES

An interesting question concerns the determination of those nontrivial
Cauchy problems with random initial values which have time-independent
measures. Such measures occur typically with conservative systems of
continuum mechanics—e.g., for u, = u, (convection equation); for u, =v,,
v, = u, (Wave equation); and for u, = v, v, = —u,, (vibrating beam equa-
tions). When they occur, one can apply many concepts of ergodic theory, as
one of us has pointed out elsewhere [34]. We now show that no asympiotically
stable system (3.1) can admit a nontrivial time-independent measure.

Accordingly, let E be any locally convex topological linear space, and let
T be any one-one'? linear operator acting on E. Let u be any regular proba-
bility measure on E which is invariant under T. We call T asymptotically
stable when, for all veE, lim,  T"(v)—=0. A special case arises when
we have a system (3.1) which is strietly stable (as defined in Section I11.B,
A(P) < 0), and which defines a Cy-semigroup {T}i20 on E. (This is always
the case if £= ', by Theorem 3.1.) Setting T = T, = "™ _ it follows from
the semigroup property that T" = T,,, and it follows from strict stability that
T,vo0asn— oo, forallveE.

'® This hypothesis plays an essential role in the proof of Poincaré’s recurrence theorem,
Acta Math. 13 (1890), 67; C. Caratheodory, Berliner Ber. (1919), 580-4. For a more
recent version, see M. Kac, Bull. Amer. Math. Soc. 33 (1947), 1002-10, where the condition
j+A > 0 is omitted at the foot of p. 1005. Note that the hypothesis of one-oneness is always
fulfilled in Cauchy problems (3.1).
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Lemma 4.2. If u is a time-independent probability measure on E which is
invariant under an asymptotically stable linear transformation T, then u¥y=1
JSor any neighborhood V of 0.

|
Prqof. Since p is regular, ¥ and its complement ¥’ are both measurable.
By Poincaré’s recurrence theorem, if p(¥V”’) > 0, then almost every ze V'

woulﬁ recur to V' infinitely often, contradicting the hypothesis 7"(r) — 0.
|

|
Thkorem 4.9. If 0 E has a countable set {V,} of neighborhoods with
Vi ={0}, and the regular probability measure p is invariant under T, any
asymptotically stable linear operator acting on E, then u(0) = 1.

This result applies to the heat equation , = V2u in E = I?(— o0, o), even
though this DE is not strictly stable.

Proof. Let W, =ﬂ,’:=1V,,; then u(W,) =1 by Lemma 4.2. Hence u(0) =
u(ﬂ W,) = 1. [Note that the hypothesis of Theorem 4.9 is fulfilled in the
spaces A,, I, S’, D'.]

Heuristically, a conservative system (3.1) is a system such that all matrices
P(ik) are diagonalizable and have pure imaginary eigenvalues. This is the
condition that all the components of formal Fourier transforms f(k, 1) of
solutions u(x, t) of (3.1) should be bounded away from 0 and oo as t — cc.
Hence, physical intuition suggests that this condition [essentially AP) =
A(—P) = 0] should be necessary and sufficient for “energy” conservation,
and hence (perhaps) for the existence of a nontrivial, time-invariant measure.

V. Correlation and Spectrum

A. THE CORRELATION MATRIX

Two of the most important and characteristic properties of a homogeneous
random function u(x, w) are its correlation function and its spectrum. These
were originally defined by Wiener [54, p. 150] for individual sample functions,
essentially as follows. The correlation function of u(x) is

R(h) = lim %{ fx u(x + h) u* (x) dx, (5.1)

X->w
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where u*(x) is the complex conjugate of u(x); the spectrum of u(x) has for
(spectral) energy density at the wave-number k

lim f

Hoo Y —

H

o(k) = 21—” HR(h)e'“‘" dh, (5.2)

where we have assumed a continuous spectrum for simplicity.

Remark. Here and in Part VI, many of the proofs are restricted to the case
X=R". This is mainly because the theory of distributions has been developed
primarily for this case, but also (for metric transitivity) spectral matrix meas-
ures can be continuous only in this case.

In the metrically transitive case to be considered in Section V.F, this defini-
tion [by means of the space-average (5.1) or, in the case of a time series, the
corresponding time-average] is equivalent to an average with respect to
probability measure. This latter average has the advantage of always existing
for any random vector-valued function (RVF) u(x, w) which is admissible in
A = A,(X, q) in the sense defined in (2.15). The condition for this is that, for
any bounded set D,

f f lu(x, w)|? dm(x) du(w) < + . (5.3)
A*D

A quite satisfactory theory of correlation and spectrum was developed in
[8] for RVF which are admissible in A. We shall summarize this theory next.

Definition 5.1. For any admissible RVF u(x, o), we define (i) its average or
mean as

1) = [ u(x, o) du(w), G4
A
and (ii) its covariance matrix as T = ||T';|l, where

T Y) = [ 405 0) u*@, ©) du(@). (5.5)

Lemma 5.1. The mean and covariance of any admissible RVF are well

defined.

Proof. First notice that, since u is admissible, the energy expectation (5.3)
is finite for any bounded set D. This shows that u(x, ) e [I2(D x AP,
and hence, by the Fubini theorem, the integral in (5.5) converges for almost
all x and y. Further, by the Schwarz inequality (using the fact that p is 2
finite measure), the integral in (5.4) converges a.e. by the same reasoning

1l
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The covariance matrix has some obvious properties. For example, it is
Hermitian symmetric:

Tu(x,y) = rltj(ys x). (5.6)

Furthermore, the matrix I'(x, y) is positive semidefinite for each choice of x
and y in X. That is,

9
kZ ll";k(x, VEE*=0 (5.7
=
for all elements & = (¢, ..., £) e CLI(x,y) is also of positive type. That is,

[ (x@, x®) g@e®* >
jzk§ ]k( )f; ék —0> (58)

whatever the values of xV,...,x™eX and &= (P,..., &, ..., &)
€ C™. Notice that (5.8) implies (5.7) by specializing to m = 1. These facts are
established in [8, Part C, Section 1].

Lemma 5.2. (See [8, Part C, Section 81.) If the probability measure u is
homogeneous as defined in Section ILE, then the mean is constant and
I'(x, y) = R(x — y) depends only on the difference of its arguments.

Proof. Let x —y =h so that x =y + h. Then
Ty +b,3) = [ w0y + b @) (. ) du(@)

= J:\ 7, u;(h, w)t, X0, ) du(w),
where 1, is translation by y as defined in Section ILE. Thus,
Ta@ +1,9) = [ 400 @) w0, @) di o 77 (@)
and, since y is homogeneous, o 7, ' = . Hence,
Tay +1,9) = [ (b, 0) 40, @) du(@) = Tu(h, 0),

showing that I'(x, y) is only a function of x —y.
Similarly, let f be the mean of u and f; its jth component. Then

100 = [ i @) du(@) = [ 7,00, ) du(e)
A

= f,\ 2,0, w) du o 17 Y(w) = j (0, w) du(w)
— £,0).

Thus f; is constant for all ;.
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Definition 5.1. If the RVF is admissible and homogeneous, the (g x q)-
matrix R = |R;|| of Lemma 5.2 is called the correlation matrix. Thus,

Rj(h) = fA u,(x + b, 0) 1*(x, ) du(w) (5.9)
for any x e X.

In the metrically transitive case to be discussed in Section V.F, for X = R",
we have

R;(h) = lim (24)™" f g f‘ u(x +h o) u*x,w)dx  (5.10)
A- > —A —4

and so, in this case, (5.9) is equivalent to Wiener’s definition a.e.
The following result characterizes the correlation matrix of an admissible
homogeneous RVF (see Birkhoff and Kampé de Fériet [8]).

Theorem 5.1. 4 (g x g)-matrix function R(b) = |R; ()| is the covariance
of an admissible homogeneous random vector field in A if and only if it is
continuous and positive definite.

In the homogeneous case, we can define the spectral matrix measure of the
RVF. For it follows from Theorem 5.1 and Bochner’s theorem that any
continuous positive definite matrix function is the Fourier-Lebesgue trans-
form of a matrix of measures S = ||S;,|| defined on the Borel sets in wave-
vector space X' = Z°R""°, That is,

Ry(h) = J.X'e""’ ds (). (5.11)

In general, the measures S, are complex valued. For a careful discussion of
this result, we refer the reader to [8, Part C, §§1-3].

Definition 5.2. An admissible homogeneous RVF on A will be said to have
the (complex) spectral matrix measure S = ||S ;1| if and only if its correlation
matrix satisfies (5.11). [Note that, by Fourier-Stieltjes transform theory, there
is at most one S (l) satisfying (5.11) for given R;,(h), hence for given p.]

A Hermitian matrix measure is a matrix of g-additive set functions on a
Borel field # over a set M which is defined and nonnegative definite for all
Borel sets B in #. That is,

Zk Siu(B)E;&* >0 (5.12)

forall§ =(&,,...,¢)eC?and Be B.
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Theorem 5.2. The class of continuous positive definite matrix functions
on X = K°R"™% is identical with the class of Fourier-Lebesgue transforms (5.11)
of bounded Hermitian matrix measures on the Borel sets of wave-vector space
X' =ZR"S

Proof. This is [8, Part C, Theorem 2].

Definition 5.3. The energy spectrum of an admissible homogeneous RVF
on A is the trace of its spectral matrix measure and so is a positive measure on
the Borel sets of wave-vector space. The trace of the correlation matrix is
called the energy correlation.

Compact case

The case of X = K" of a (compact) torus was already considered briefly
in Section IV.B. In this case, we can write

u(x, o) =Y f(k, w)e™ %, (5.13)

where the summation is over all k € X’ = Z" (where Z is the integers). If we
suppose that f(k, w) and f(l, w) are independently distributed, then u is
homogeneous and the correlation matrix is given by, for he X,

RyW) = 3 & [ £ )0, ) due) (5.14)
Hence, we obtain a discrete spectrum for which
Si(B) =lechjk(])» (5.15)
where
cl) = jA F, @) f*(1, w) du() (5.16)
and Bc X' =27".

Notice that the energy spectrum in this case is

EWl) = '21 S;;) = _il c;(M

= [ T 1£0, ) du(w) = fAml, )|? du(w), (5.17)

and this agrees with the earlier definition (4.6) for ¢ = 0.

——-_4
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B. EXTENSION TO TEMPERED DISTRIBUTIONS

ln_ the next four sections, we shall establish analogues of the results of
Section V.A in the space 5°(X) of vector-valued tempered distributions. Ous
results will play an essential role in Section VI, where the evolution of the
spectrum of a random tempered distribution (RTD) under the action of a
system of the form (3.1) will be determined. Our exposition will follow
[10, Chapter IV]: some of the most technical arguments will be deferred to
Appendix D.

M‘any of the underlying ideas and techniques are most easily grasped in the
sp'ec-lal case X = R of an ordinary stachastic process, and have been treated in
this c:?ntext by Gel'fand and Vilenkin [22, Chapter 1], with special emphasis
on Wiener processes. The extension of these ideas and techniques to (generali-
zed) RVF (“random fields") is sketched in Sections 5.5 and 5.6 of Chapter
I1I of this treatise where consequences of assuming homogeneity and isotropy
are stated (cf. also Dudley [19]). )

Because tempered distributions are not ordinary point functions in a
locally Euclidean space, one cannot in general define the covariance matrix
pfa RTD by (5.5). Instead (cf. [22. pp. 247, 298]), in general one must define
Its entries as continuous bilinear functionals on the Cartesian product
F(X) x F(X) of the space $(X) of rest functions (infinitely differentiable
and rapidly decaying at infinity) with itself. (See Section IL.B.)

In t‘he important special case that an RTD is in A with probability one, the
covariance as defined below (and in [22]) can be interpreted as an ardinary
covariance as described by (5.5); see Section V.E.

Suppose, then, that y is an admissible probability measure on 5'(X) as
defined in Section IL.LE. We will say, in this case, that g defines a random
tempered distribution (RTD). As was noted in Section ILB. S$'(X) = &'(X) x

* % ¥(X) (g copies), and so we can compose u with the projection P; on
the ith coordinate to get a probability measure u; on F(X). Now y; is an
admissible measure on ¥/(X), forif ¢ = &(X), then certainly l

U()|? d — )
L"(nl ()|? du, (U) fs,(x)'P:T(‘ﬁ)lz du (T),
= [ 1@ du(m
S'(X)
< fs,(x)mqs)l du(T), i)

where T; is the ith component of Te S'(X) and U e #(X). This inequality
shows that ¢ e I*(y,) and that the inclusion mapping #'(X) < [*(u,) is
continuous,
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Remark. The formidable-looking integrals in (5.18) are actually ordinary
Lebesgue integrals with respect to the measure ¢ on the function “space” of
all mappings ¢: T — T(¢). This is because each such mapping takes S'(X) into
C*?, whence the mapping T | T(¢)|? is real valued.

Definition 5.4. The mean of the RTD p is the element M € S’(X) such that
if ¢ € #(X), then
M@) = | T(@)du(T), (5.19)
5'(X)

where the integral is taken componentwise. That is,

M@ = [ TU@du(T) = [ T du(Ty,
§4(X) §'(X)

where M, is the ith component of M. (For this definition, and the definition of
the covariance matrix which follows, see {22, p. 298].)

Lemma 5.3. The mean exists as a well-defined element of S'(X).

Proof. By the Schwarz inequality
M@ <[ IT@Pdu(D) [ du) = [ |T@)I du(T) = I$]2*
5(X) S(X) S(X)

where || ||, is the norm in I?(n). Since u is admissible, we know that ¢, =0
(weakly or strongly, it is the same in the Montel space & (X) by [52, p. 358,
Corollary 2]) implies that ||#,|, =0. Hence M is sequentially continuous at
zero for the weak or strong topology. Since M is clearly linear, it is thus
continuous for sequential convergence in the Fréchet space &(X) and so must
be continuous for the strong (metrizable) topology by [52, Proposition 8.5].

Definition 5.5. The covariance matrix of the RTD u is the (g x g)-matrix of
continuous “sesquilinear” forms T (¢, ) defined for ¢, ¥ € £(X) by
Tu@ W) = [ T(@) Twy* du(T), (520
S(X)
where T, is the kth component of the vector-valued distribution T"and z* is the
complex conjugate of z. (Since T; and T, are linear functionals on F(X),
T;.(¢, ¥) is linear in ¢ and conjugate linear in ¥, which is what * sesquilinear
means; see, for example, [52, p. 60].)

Lemma 5.4. T, is a well-defined continuous sesquilinear form on £(X) x
F(X) in the strong topology.
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Proof. The T sk are clearly sesquilinear. We check that they are wel
defined and continuous:

2
Irjk(¢’ 'p)lz = ‘L’(x)r’_(d)) T;c(d’)* dH(T)’
< L'(x)l TI(¢)I2 du(T) fs'(x)l T(¥)|? du(T)

2
< fs oo T du(T) fs oo T du(T)
< Nl

Thus I'j, is certainly well defined and sequentially continuous in each variable
separately. But a form continuous in each variable separately on a product of
Fréchet spaces is Jointly continuous, i.e., continuous as a mapping on the
product topology by [52, P. 354]. Thus I';, is contnuous in the strong product
topology on #(X) % F(X).

If we view T(¢) as a column vector, and let T(¢)? denote the conjugate
transpose of T(¢), then we have the following formula for the matrix I";

rg.v=| o TO TG du(T),

where T(¢) T(¥)¥ is matrix multiplication and the integral is taken compo-
nentwise.

We com.pute some elementary properties of the covariance matrix. Clearly
I is Hermitian symmetric:

Tiu(@, ¥) = Ty,(0, ¢y~

Furthermore, F (¢, ¢) is nonnegative definite for ¢ #£0. Forifzis a complex
g-vector, and if z¥ denotes the conjugate transpose of z, and zT(¢) =
zf_“j T}(¢'J; then

(5.21)

TG, 0" = | o TO T du(D) = | o0 2T T du(T)

= 2T ()| du(T) > 0.

[y, 1T@1 du(my > 0 (522)
More generally, T is of positive type in the sense that if by, ...,
c!em;nts of #(X), then the (gr x gr}-matrix Q, whose (g x g)-submatrices
are given by I'(¢_, )l <a, < r). is Hermitian definite, To see this, let

Z=(Z1,---,Zr)=(zu,... »Z,)ECT

s ql;'--;zlr,'-
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be the row vector obtained by concatenating the row vectors Zy=(z,...,
Z,6), 1 < B < r. Then ZQZH is a scalar, and we have the following inequality:

ZQZ” - ;‘; Za r(¢a ’ ¢ﬁ)ZﬂH
= T [ 2T T6p)"2," du(T)
=2 fs,mza T($s) [Z; T(dp)}* du(T)

RN [; 2,79y ducr)

J:S'(X)

C. HoMOGENEOUS RANDOM TEMPERED DISTRIBUTIONS

i du(T) > 0. (5.23)

2Z,T($)

In this section we study the consequences of assuming that the RTD defined
by p is spatially homogeneous. We will see that this again allows us to define a

correlation matrix, just as in A.
We recall from Section ILE that a measure on §'(X) is homogeneous when

it is invariant under translations of the underlying domain X.

Lemma 5.5. Let p be admissible and homogeneous. Then the mean of u
is a constant complex vector.

Proof. Let M € S'(X) be the mean of u. Then if he X, M(z, ¢) = M(¢)
for all ¢ € #(X), where 1, is translation by h as defined in Section II.E. For

M@g) = [ T(w9) du(T)
= [T du(T)
S'(X)
= [ U@ dw-h).
S'(X)
But ;' =1__,and so potil=po Ty = i, since y is homogeneous. Thus
M@ @) = [ V@) du(v) = M)

whence the mean M is invariant under space translation: 7, M = M for all
h e X. It follows from (30, p- 337] that M = c e C4.
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One would expect that the covariance, as well as the mean, of a homo-
geneous RTD has a special form just as for the space A. We fix j and k and
consider the sesquilinear form I'j, mapping #(X) x #(X) to C. Since p
is homogeneous, moreover a repetition of the calculation used to prove
Lemma 5.5 yields

Lty @, ta¥) = T (o, ¥). (5.24)

The next theorem asserts that, because of (5.24), I'; is defined by a single
tempered distribution R, € &'(X).

Theorem 5.3. Let u be an admissible homogeneous RTD and let T be its
covariance matrix. Then

Li¢, ¥) = Ryl * ) (5.25)

for ¢,y € #(X) and some R, € &'(X). Here * denotes convolution and \j is the
conjugate reverse of \; i.e., Y(x) = Y(—x)*.

Proof. We adapt the arguments given for the one-dimensional case in
[22, Chapter III §3.3]. The proof divides naturally into two parts that
we separate as lemmas.

Lemma 5.6. There exists a tempered distribution G € #'(X x X) such that
T, ¥) = G(¢(x) Y(¥)*). G is invariant under simultaneous translation of its
first and last n arguments by the same vector.

Proof. The kernel theorem for tempered distributions, [52, p. 534], states
that any continuous bilinear form H: #(X) x &(X) - C can be written in

the form H(¢, ) = G(¢(x) y(y)) where G € #'(X x X) is a tempered distri-
bution on X x X. Hence there is a tempered distribution G such that

T (@, ¥) = G(¢(x) Y(y)*)- (5.26)
Now finite linear combinations of the form Y ,¢u(x) ¥, (y)*, where ¢,y €
&(X), constitute the tensor product ¥(X)® £(X); moreover this set is
dense in (X x X) by [52, p. 530]. From (5.24) and (5.26), furthermore,
G(d(x + ) Yy + b)*) = G(¢(x) ¥(¥)*).

Since #(X) ® FL(X) is dense in L(X x X), we conclude that G is invariant
under simultaneous translation of its first and last n arguments by the same
vector h e R". That is,

G(f(x,y)) = G(f(x + b,y + h)) (5.27)

for all fe (X x X). This is the required result. .
The next lemma is essentially a corollary of (5.27).
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Lemma 5.7. Let G € &' (X x X) be invariant under simultaneous translation
of its first and last n arguments by the same vector. Then there isan He & "X)
such that if f(x,y) € #(X x X), then

G(f) = H(fx f(x, x — y) dx),

where H is viewed as being applied to the variable y.

(5.28)

Proof. We transform variables in (5.27) so as to get a distribution ir}de-
pendent of x. Accordingly, consider the mapping 4: X x X = X X X given
by A, y)=(x+y.x—y). 4 is an isomorphism of the topelogical ln.u:ar
structure on X x X. Thus A4 induces an isomorphism B: #(X x X)—+
(X x X) defined by Bf(x,y)=[(A(x,y)). Then F=Go-B is again a
continuous linear functional on #(X x X). Furthermore, F is independent of
the first n variables. For if heR” and k = (h, 0) is the 2n-vector with
(hy, ..., hy) =N in the first n places and 0 in the last n places, then for all
feF(X x X),

W F(f(x, ) = Flr_ f(%, ¥)) = F(f(x = h,y)) = G(Bf(x — h, y))
= G(f(Ax —h,y)) = G(fx +y—h x—y —h)
= G(f(x + ¥, x —y) = G(f(4(x, ¥)))
= G(Bf (x,y)) = F(f(x, )).
Since F is independent of its first n variables, it can be written in the form
[30, p. 333]

R0, 9) = B[ £x ) dx),
where R € &'(X) is applied to the components (y;, ...

([ 70y dx) = F(7cx, ) = 6(876% )

, ¥o) of y. Hence

and so
65, 9) = R B~Yx ) dx) = R([ g0, ) ).
Moreover 47! maps (x, y) onto ((x +y)/2, (x— y)/2); hence
(766, 9) = R( [ S(0x-+ 902, x = 92) ).
X
Letting w = (x + y)/2 in the preceding integral, this becomes (for H = 2R)
6(ftx, ) = R(2 [ fom,w = )i ) = ( [ fon.w =) dv)

thus establishing Lemma 5.7.



60 G. Birkhoff, J. Bona, and J. Kampé de Fériet

Now we easily construct the correlation matrix. If ¢, Y € #(X), then
(5.26), (5.27), and (5.28) imply

Cald, ) = Ry 800y = e ax).
This can be written compactly as,

Ui, ¥) = Rj(¢ + lﬁ),

which proves Theorem 5.4.

(5.29)

Definition 5.6, The matrix R =

R il is called the correlation matrix of the
homogeneous RTD.

D. DISTRIBUTIONAL SPECTRAL MATRIX MEASURES

In this section we will prove that a spectral matrix measure exists for any
homogeneous admissible RTD. This result is stated without proof in [22,

Chapter III, §5.5]; we shall adapt the argument used in [8, Part C, §§3,4] to
prove an analogous result.

Definition 5.7. A measure v defined on the Borel sets of X — R” will be
called rempered when

f (1 + X)) dv(x) < o0 (5.30)
X

for some ¢ > 0.

One sees without difficulty [22, p. 145] that a measure v is tempered if
and only if the mapping

¢+ [ () dv(),
X
is a continuous linear functional on &(X); i.e., a tempered distribution.

By a Hermitian tempered matrix measure we shall mean a Hermitian matrix
measure whose entries are tempered measures.

¢ € P(X), (5.31)

Theorem 5.4. Let i be an admissible homageneous probability measure on
S(X)andlet T = ||I' jill be its covariance matrix. Then there exists a Hermitian
tempered matrix measure o = ol such that if ¢,y e &(X), then

T, ¥) = Flo )¢ * ), (5.32)

where & denotes the inverse Fourier transform, = is convolution, and \ is the
conjugate of s reversed as defined in Section V.C.
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Defimition 5.8. The matrix measure ¢ associated with a. homogeneous
admissible measure u on S'(X) will be called the spectral matrix measure of p.

Proof. Since u is homogeneous, we know from Theorem 5.3 that there is a
correlation matrix R = || R|| such that

Tu(e, ) = Rj¢ = ‘]’) (5.33)
'q
Further, from (5.22), we know that if ¢ € #(X) and z=(z;,...,2) e C%,
then
i L@, ¢) z;z* = 0. (5.34)
k=1
Combining these relations,
> Rul¢ # P z;z*=0 (5.35)
J K
for all ¢ € #(X) and ze C* ,
Now if we fix z € €9, and let R € &¥'(X) be defined by
q
RW) = ) z;z* Ry(), (5-36)
i k=1
then R is a positive definite tempered distribution in the sense that
Rp*d)=0 (5.37)

Il ¢ € £(X). - '
fofljlile qBSochn(er—)Schwartz theorem [22, p. 152] asserts that a p(.)S'lthC deﬁmtde
tempered distribution is the inverse Fourier transform of a positive tempered
measure. Thus there is a measure o, defined on the Borel sets of X and depend-

ing on z, such that R = #[o] in the sense that
R@) = Flol¥)

i le, by Dudley [19].
S(X). This result has been observed, for example, ]
forlr?lplyallllrt?cula(lr )letting z=(0,...,1,...,0), where the 1 is in the jth pla(}::, we
see that there is a positive tempered measure d;;, 1 <j<g, so that R;; =
‘?T[:gi: letting z; = 1 = z, and z, = 0 for r ¢ {J, k}, we get from{SE) a positive
. " i, fios
tempered measure vy, . Similarly, letting z; =1 and z, =i=./—1, we get a
positive tempered measure y;, from (5.38). Thus,

(5.38)

Flvid = Rj; + Ry + Ry + Ry,

(5.39)
Flyid = Rjj — iRy + iRy; + Ry
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Solving (5.39) for R;, and R,; in terms of R;;, Ry, vj, and y, , we are led to
make the following definition:

o =3V + vy — (A +Do;;+ ow]- (5.40)

Notice that this formula is consistent with the case j =k also. As defined,
o is a complex tempered measure. ’

We claim that the tempered matrix measure ¢ = ||o;]| has the desired
properties. A simple calculation shows that

Floj) = Ry (5.41)
Hence, using (5.33), if ¢, ¢ € #(X),
L@, ) = Floul(@ * ). (542

To finish the proof of the theorem, we must show that ¢ is Hermitian definite.
That is, we need to prove that zo(E)z” > 0 whenever z € C? and E is a Borel
set in X. Notice that it is clear from (5.40) that

0;(E) = oy (E)* (5.43)

whenever E is Borel in X.

Letz=(z,..., z,) be fixed in C% To show that zo(E)z" > 0 for all Borel
sets E in X is equivalent to showing that the tempered measure v = Y z;z%0y;
> 0. A tempered measure v is positive when

f £(x) dv(x) = 0 (5.44)
X
for all >0 in £(X). As is shown in [22,p.150], the collection

0 ={|¢|*|¢ e #(X)} is dense in {f>0]fe F(X)}. Hence, to show that
v > 0, it suffices to show that

fx |6(0)|? dv(x) = 0 (5.45)
for all ¢ € £(X). Now we compute
f |¢(x)|2 dv(x) = Z Z; z,* J. o(x) p(x)* do'jk(x) = Z Z; zk*[ajk](¢¢*)
¢ J.k X Jk
. Zkzj Zk*yz[ajk](vg"(d’qs*)) . Zﬁ Zj Zk*ff[ajk](g"_d’ * %)
= Z;\_ijk*rjk('of_d)’ F )= z;(zjzk*rjk(!//a ¥),
where #¢ = . The latter quantity is nonnegative by (5.34). This shows that

v> 0 and. since z was arbitrary, establishes that ¢ is Hermitian definite.
The proof of the theorem is now complete.
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E. NORMAL MEASURES WITH A GIVEN SPECTRUM

in this section. the problem of characterizing Gaussian probability measures
on A and S'(X) is considered. We will show that in the case of a normal
admissible homogeneous measure u with mean zero, the spectral matrix
measure defined in Section V.A for A and Section V.D for §(X) uniquely
determines y. We shall also discuss the relation between the spectrum in A
and S'(X).

For the case of A, we merely state the major results and rely on [8] for
proofs and technical details.

Theorem 5.5. Let S = ||S;,|| be a Hermitian matrix measure on the Borel
sets of X, where each S, is a finite measure. Then there is a unigue normal
admissible homogeneous RVF on A with mean zero. whose spectral matrix
measure is S.

Proof. This result is a combination of [8, Theorem 2, p. 696] and [8,
Theorem 3, p. 686]. ’

The analogous result is true for random tempered distributions; see
Theorem 5.7 below. To establish Theorem 5.7, we need the following tech-
nical result, to be proved in Appendix D.

Theorem 5.6. Let T = ||T;,| be a g x g covariance matrix; that is, let each
T ;. be a continuous sesquilinear form on $(X) x P(X) and T aof positive type
in the sense of (5.23). Then there is a unique normal admissible mean zero
probability measure p on the Borel sets of S'(X) whose covariance is T.

Assuming Theorem 5.6, then, we shall prove

Theorem 5.7. Let S =[Syl be a Hermitian matrix measure and suppose
each S is a tempered measure. Then there is a unigue normal admissible
homogeneous mean zero RTD whose spectral matrix measure is S.

Proof. Let v=|vy| be a (g x g)-matrix of tempered measures which is
Hermitian definite. Define H: #(X) x (X) - C? as follows:
Hu(@, ) = Fvul(d + ) (5.46)
for 1 < j, k <q. Then certainly each H;; is continuous and sesquilinear.

The plan of the proof is now as follows. First, we will show that H =
| H ;| satisfies the hypothesis of Theorem 5.6 (Lemma 5.8). Theorem 5.6 will
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;I:IT:: :[1}1 p‘[;. the .nlalxistf:nl:glt_l of a normal admissible measure on §'(X Jwith covarj
- We will next show (Lemma 5.9) that this mea i »
. i ; sure is homo, .
Zgalltn, ?J;lal;lymg ThEOl'CI:n 5.6, a spectral matrix measure can be associzi?:ie:l;tsl{
- It will follow that this spectral matrix measure is identical with the given

one. From this, uniqueness will f i i
ot ollow directly by the uniqueness statement

Lemma 5.8. The matri - : Ll
in (5.23). rix H = ||Hy;| is of positive type in the sense discussed

[,.Proof. Eet Praeees P, l_ie in #(X) and let Z=(Z,, ", Z,). where Z, =
h;ﬁé .(;‘I.J,n:gﬂ? € C% Then if Q denotes the (gr x gr)-matrix ||H(¢ , Ol ﬂwe
ming for o, =1, ..., r), and letting F, denote F¢,. G

ZQZ = a,zﬂza H(¢a5 ¢ﬂ)Zﬂ* = G’Z‘;Za gf[v](¢a * ¢ﬁ)zﬁ*
- Z Z ~ g * __ *
22T b x G2 = T2, [ FOOF () dvix)z,?
= X Tz | FO0 ) dvu(z,

= Z [, ZruF00 00 dvo,

(5.47)
and letting , = Z,-z,»pF,-, this reduces to the sum for k, / = 1 q:
Z2Q7* =
0Z* = ¥ [ V() *(x) div(x). (5.48)
So to show that H is of positive type it suffices to show that
[ 90 Ui0* v = 0 (549)

whenever ¢, ¥, € (X). N y
3y " ow . .
Borel set and z = (z‘i, s Zq)) cce t::nﬁrSt notice that if B is any bounded

N )
2z, d
’; J.B kZi dvg(x) = 0, (5.50)
since th ix vi i i
ik (;: ‘;rlx_]at;:x v Is nonnegative definite. We call a complex functional
ich is a finite linear combination of characteristic functions of

bounded Borel sets a simple functi 5
nction. 50) we wi 3.49]
Pt sy P ion. From (3.50) we will see that (5.49) holds
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For suppose Y, .- -, Y, are simple functions. Without loss of generality,
we can suppose that

V00 = zz W (1<i<a), (5.51)

where 7, denotes the characteristic function of the set 4y, Ay, ..., 4, being a
family of disjoint bounded Borel sets. Then

S [ R w* dn= % |3 7o) 3 25,0 dv®)
k,1vX kX i=1 ji=1

-3

i, 7=1

10 10T,z G- (55D

But

xi(x) Xj(x) = 5ij 1%, (5.53)

since 4; N A; = & for i # j. Thus the last sum becomes

§ [ 203 mrtano= 3, [5 [ wctna0]z0 659
X k, 1 i=1 Lk, 1Y 4

i=1

since each summand is nonnegative by (5.50).

The simple functions are dense in I2(v,,) for all k and [ by [45, Theorem
3.13]. Hence (5.49) holds for all functions in (i, 1 L*(v). In particular, then,
since each vy, is tempered, (5.49) holds for all elements of $(X). So H is of
positive type. This completes the proof of Lemma 5.8.

Applying Theorem 5.6, there exists a (normal) admissible measure p with
mean zero on S'(X) whose covariance is H. We will show that p is necessarily

homogeneous.

Lemma 5.9. The admissible measure u of Theorem 5.6 is homogeneous.

Proof. Let he X. We must check that p=po1,. Let 6 = pot,. We will
use Theorem 5.6. First, o has mean zero. For if M’ is the mean of ¢ and M

the mean of g, then M =0 and
M@=] T@da@=[ T@dun)D
S'(X) S§'(X)

[ TGa¢)du(T) = M(z, ) = 0. (5.55)

§¢(X)
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Further, ¢ is normal; for let ¢ # 0 in $(X). Then if E is a Borel set in C
o(¢; E) = o(C(¢; E)) = u(tuC(¢; E))
= w(C(z, ¢; E)) = (14 ¢; E). (5.56)

Thus a(¢ ; *) = (1, ¢; *) and, since the latter is Gaussian on C, 5o is the
former. Finally, we show that the covariance I of ¢ is H:

TG )= [ T@OTW de(T) = [ T(4) TG diu= w)T)

= [y, T ®) T di(T) = HEn g, )
= FDId * V), (5.57)

where we have used the definition (5.46) in the last step. On the other hand

W+ Wl = [t~y 1) dy
= [ bt~ ) my(—y) dy

=[x~y ~Wy(—y ) dy (5.58)

and, letting w =y + h, this becomes

Ty * T (%) = fxqs(x — W) Y(—w)* dw

= fxqs(x — W) f(w) dw = ¢ * J(x). (5.59)
Hence,
I(p, ¥) = Fl(tn ¢ * W) = FIVI + ¥) = H(o. ) (5.60)
as required.

S'o pand o are both normal admissible measures with mean zero and co-
variance H. By the uniqueness part of Theorem 5.6, then, we must have y = g,
and this shows that p is homogeneous and finishes the proof of Lemma 5.9.

Now we can finish the proof of Theorem 5.7. It remains to show that the
spectral matrix measure of y is v. If ¥ is the spectral matrix measure of p, then,
from Theorem 5.4 and the fact that H is the covariance of pu,

Hid, W) =F[l¢ « ) - (5.61)
for all ¢, Y € #(X). Combining (5.61) with (5.46),
f[vjk](fb * 1/7) - 9’—;[";‘1‘]((15 * '/7) (5-62)
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or, what is the same,
0=F[vy— Vul(d * V) =i — 5ul(F (@ * V). (5.63)

One calculates easily that F(¢ * ) = F¢F y*, where, as before, F ¢ is the
inverse Fourier transform of ¢. Such elements are dense in %(X). Hence
the tempered distribution [v;, — 7] vanishes on a dense subset of F(X) and
so must be identically zero. Thus v;, = ¥, and so the spectral matrix measure
of p is v as required.

As an application of Theorems 5.5 and 57, we now consider the relation
between the correlation and the spectral matrix measures defined in Sec-
tions V.A and V.D. We assume that y is a normal admissible homogeneous
probability measure on A so that, by Theorem 4.7, p(A N S'(X)) = 1. Since
is admissible and homogeneous, both the correlation and spectral matrix
measure exist.

Then x can be considered as a probability measure on S'(X) also since
A ~ S'(X) is a Borel subset of §'(X). Notice that u is admissible when con-
sidered as a measure on S'(X). For by [8, Theorem 4, p. 687]. the correlation
matrix R =Rl of the RVF on A is uniformly continuous on X. Let
T = |T;l be the covariance matrix of the RVF y on A. Then

Tiux,y) = Ry(x—y)

Since a uniformly continuous function grows at most linearly, the integral

forall x,yeX.

[ [ Tite ) 600 () dx dy (5.64)

converges absolutely for all ¢, Y e #(X). We apply Fubini’s theorem to
(5.64) and deduce that

[ [ i ) 900 dx [ty @)* p()* dy de) (5.65)

is finite, where u; is the jth component of the homogeneous RVF associated
with y. But

[ 769 609 dx = 1)@ (5.66)

is the definition of an element fe S'(X) N A operating on deF(X). It
follows that

[ T@m@*dum =] T L) duT)
$'(X) S'(X)nA

= i@ de (56D
S'(X)nA
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is finite. Thus u is an admissible measure on S’

normal and homogeneous when consi
, onsid
S'(X) also. -
Letv=|v

(X). It is easy to check that
as a probability measure 01;

jxll be the spectral matrix measure of # (asa RVF on A) Th
). Then

R..(h) = il-
et = [ e (. (5.68)

Now v, is a bounded measure by Theorem 5.2 and
tempered. Thus v is a tempered Hermitian matri;( meas
5.7, there is a unique normal admissible homogeneou
with spectral matrix measure v.

We claim that p, considered as an admissible probability on S’(X), also has

spectra i = ier—
P 1 matrix measure v [lv J~,(||. T'he Fourier Stieiljes transform R, (h) of
J

the latte[ 18 thuS a matrix o poin -fu Ctio de] our |[yp0tl 1S8ES, I o] -
f int nctions un
] eStab

hence it is certainly
ure and, by Theorem
§ measure ji on S'(X)

fs l(x)T,-(dﬂ LW)* du(T) = Fv,l( * ), (5.69)

as in (5.32). Using the calculation (5.64)—~(5.67), we obtain

I= n *
o B T () = [ [ T, ) 600 ) * dx dy. (510)

Substituting from (5.68) in this we get

I=[ [ [ e d) g0 i)* a ay.

Leth=x —y, so that y = x — h. Then

(.71

I= fx fx fxei"" G(x) Y(x — h)* dx dh dv (1)
- fx fx fx¢(x) Y — x) dx ™ * dh dv (1)
- fx fx¢ +§(h) ™t dh dv,,(I)
= [ 1o« F1av,00)

= [ij](g?[‘ﬁ * '/;])
- ﬁ[vjk]((b * ¢),

which is the required resuit,

(5.72)

P —
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Corollary 5.1. Let u be an admissible homogeneous probability measure on
A, Then p(A N S'(X)) =1, and the spectral matrix measure of pasa RVF
on A is equal to its spectral matrix measure when considered as a RTD on

§'(X)-
Note that the preceding argument shows further that, if I'" = ||Tj| is the
covariance of the RTD g, then also

T ¥) = [ ] T ) 6 y()* dxay, (573)

where I' = | T, |l is the convariance of the RVF pon A.

F. METRIC TRANSITIVITY

A very important property of homogeneous random vector fields (HRVF)
in free space X = R" with continuous spectra is their metric transitivity. By
this it is meant loosely that, for almost every sample function, “ space averages
are the same as ensemble averages.” For completeness, we give now a brief
discussion (mostly written before 1965) of this fact and some of its conse-
quences; our proofs will be sketchy.

Indeed, they will be based on results of [8]. whose discussion of metric
{ransitivity was in turn based on old results of Maruyama.?® Though it
would be desirable to make a fresh exposition, especially since there has been
1o recent exposition of the ergodic theorem over n-parameter groups,*t we
have not seen fit to do this. .

As in Section V.A, let  be an admissible homogeneous probability measure
« on the Borel sets of the space A = AL(X, g). By Theorem 4.7, the resulting
HRVF will be in S'(X) with probability one. and so the results of Sections
V.B-E will apply; however, we shall not use them. Let I= |l be the
covariance matrix of g, and S = ||S;;|| the spectral matrix measure associated
with T as in (5.5) and (5.11). Since ¢ is homogeneous, T';(x, ¥) = Rj(x — ¥

|
where R;(h) is the correlation matrix of (5.9).

1

If X = R" and the spectral matrix measure S;(K) is absolutely continuous
so that, for any Borel set K = X’ =R",

S(K) = | 0,®) dky - dky, (5.74)
K

20 Mem. Fac. Sci. Kyusyu Univ. 4 (1949), 49-106.

211 (8], reference is made to K. Ito, J. Math. Soc. Japan 3 (1951), 15769, and G.
Birkhoff and L. Alaoglu, Ann. Math. 41 (1940), 293-309. See also A. Calderén, Ann. Math.
58 (1953), 182-91; and Calvin C. Moore, Amer. J. Math. 88 (1966), 154-78.
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then sample fun.ctions on R" have the remarkable property of being metri-
calIy_ transitive in space with probability one [8, Part D, p. 330]. More
precisely, let ¢[u;, ..., u,] be any bounded Borel function. Then, for any
nonzero vector h,

[ $ocxs, @), .. utx,. )] dieo)

e
= lim f_A¢[u(x1 +sh, ), ..., u(x, +sh, 0)]ds,  (5.75)
with probability one in the sample space A, . For normal measures, the hypo-
thesis of boundedness can be replaced by

[expl—oCuy|? + -+ + [u,|)] [y, ..., uldu< +  forall a>0.

(5.76)

As a special case of (5.75), we obtain

Theorem 5.8 Let p be normal, admissible, and homogeneous. If the S (K)

are absolutely continuous, then with p-probability one the correlation matrix
R;(b) of (5.9} is the limit

R A A
Ry(h) = lim (24)”" f_A--- f_Au (X + b, 0) w*(x, w) dm(x).  (5.77)

As a special case of (5.77), we have further with probability one

lim (24) f“ 4 2 d
im(24)™" ool u(x, dm = 7
lim ¥ f_4| (x, ®)|? dm ,-=Zl R;(0). (5.78)
(Here, as before, dm = dx, - - - dx, is Lebesgue measure on X.) Hence almost
all functions have the same Zaanen norm.

Moreover,. We can now reconstruct ¢,,(k) in (5.74) as the Fourier transform
of R;(h); this uniquely determines u by [8, p. 686, Theorem 3], proving

Theorem 5.9. Under the hypotheses of Theorem 5.8, u can be reconstructed
from almost every sample function.

In other words, one can reconstruct the admissible probability measure g
of any HRVF with absolutely continuous spectral matrix from any sample
function, almost surely.

For absolutely continuous S;,(K), assuming that u(I') = 1, we now con-
Jecture an important extension of [8, Part D, Theorem 7). [Incidentally,
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[8, Part D, Theorem 7] does not apply to the covariance Rjy(h), since the
product u;(x) #,*(x + h) may be unbounded. However, we suspect that the
conclusion is still valid.]

‘Theorem 5.10. For a metrically transitive homogeneous random function,
continuous with probability one, the regular probability measure can be recon-
structed from any sample function by a countable sequence of periodically
spaced measurements, with probability one.

Remark. The preceding result, if true, establishes an almost surely valid
process for determining p as a limit of frequencies. It is similar to Borel's
results about “normal” numbers, and implies that periodically spaced
measurements almost surely form a “Kollektiv”’ in the sense of von Mises.

G. SPECTRUM AND SMOOTHNESS: THE CASE n = 1

In Section IIL.C, we defined a regular Cauchy problem (3.1) with random
initial values to be statistically determinate in a function space E when the
orbits of an appropriate C,-semigroup of Borel mappings of E represent
(classical) solutions with probability one. We shall now consider sufficient
conditions for this to be the case, i.e., for the orbits to represent smooth
functions with probability one. Throughout, we shall impose arbitrarily (for
mathematical convenience) the assumption of zero mean:

fuj(x, f,o)ydu@)y=0 (t=0,1<j<q), (5.79)

which is implied for systems (3.1) if §u;(x, 0) dup =0.

We shall use in all cases the separable version of RVF in the sense of Doob
[18, Chapter 2,§2]. Since “smooth™ functions are at least continuous, we
require that p(I") = 1 (I the set of essentially continuous functions defined in
Section 11.A), for which the separable version is trivially defined (see Section
IL.F). This is to avoid the ambiguity which is inherent otherwise if one con-
siders solutions in the function spaces A, (X), S'(X), etc., where they are
determined only a.e. If u(I') = 1, we can select the continuous representative
of each equivalence class of functions equal a.e.; this permits us to determine
their smoothness properties.

For normal RVF, the probability distribution at any time ¢ is determined
[see [8] and, for a generalization to S'(X), Theorem 5.7] by the covariance
matrix

T(X, ¥, 1) = f u(x, O w*(y, 1) dp. (5.80)
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In the spatially homogeneous case, we saw in Lemma 5.2 of Section V.A th t
5 . a
DX, ¥, 1) = Ru(x — y, 1); (5.81)

ﬁzﬁggedﬁfere?tgbéﬁty (with probability one) of the HRVF of the separable
ermin y the spectral matrix measure § i
the smoothness of the sam i o e ol
; : ples of each jth com 9
. _ ponent u;(x, 1, @) depend
. e cgagonal entries R;;(h, t) and S (K, ). Hence the qu;stion of smiith; =
:l-:e uced to the case ¢ = 1 of random functions. i
quﬁc;gunaﬁly, there are available numerous results concerning just this
i gpat:c v:; :::;; .th;e casc:s n =fl of homogeneous random function u(x) of
: : ¢ of general n will be treated in Secti
W;_ :\:.111 1?]sr.a hold ¢ ﬁ;;ed, and consider only differentiability in x e
€ case n =1, Hunt [31] has shown that i :
3 if the ener
S(K) = &(K) of a normal homogeneous random function satisifgs =

f_w[log(l +1kDPdSH) < +o0  forsome f>1,  (5.82)
then almost all sample functions are i
are continuous, whence u(I') = 1 as desi
Belyaev [4] hz_ls shown that condition (5.82) on the spechu(IPcan bis ei"'ed-
by the following condition on the correlation: i
R(©) — R(W) = O([—1og| k|17

for some o >1, (5.83)

as }f 1—»0, \;bich also implies almost sure continuity.
clyaev has also proved a partial converse e
) . of Hunt’s result. If
Is absolutely continuous, and if the spectral density o(k) sa1tisﬁetshe i
o(k) = C/[k(log k)?]

(C>0), (5.84)

for all sufficiently large k, then a.e. sample function is unbounded in every

finite interval. He has also i
' : proved a partial 5.83): i
R(k) is a concave function of A, and if R O oAy mamely; i

R(0) ~ R(A) = C/|log|h||  for some C>0, (5.85)

th . .
ti:: igf;ﬂ a.e. sample is unbounded on every finite interval. In this connec-
L ,a :a note also a remarkable dichotomy, established by Dabrushin [17]:

stationary (i.e. homogeneous) normal random function, almost ali

samples of the separable versi ]
nple On are either continuo
finite interval. See further Belyaev [4]. O R ot g

From (5.82) one deduces that the condition

+o
f_mkzl’[log(l+|kl)]”d5<+oo forsome f>1 (586
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implies the existence of the derivative R,(1 —s) = G2PR(t — 5)/6s” @17 which
satisfies (5.83); thus almost all samples of the normal homogeneous random
function w(x, ) belong to C?' in any finite interval and d”u(x, w)/dx”
admits R,(t — s) as correlation.**

Concerning the analyticity of samples of a homogeneous random function,
Belyaev [3] has proved the following proposition. If R(k) is analytic in the
circle || < r, then almost all u(x, w) are analytic in the strip |Im{x}| < r—
and hence analytic for real x. Moreover, this sufficient condition is also neces-
sary in the case of a normal homogeneous random function. On the other
hand [39, p. 137], it is known that R(h) is analytic in |#] < r if and only if,
as k - + 00,

S(lk, ) + S([— 0, —k]) = O(™™)

1t follows that, if (5.87) holds for @/l « > 0, then almost every (a.e.) sample
function u(x, w) can be extended to an entire function in the complex z-plane.

It is also known [39, p. 141] that R(h) is an entire function of order one and
exponential type; ie., |R()| < Me®#l for some finite positive constants M
and a, if and only if the energy spectrum is bounded. Analogous necessary and
sufficient conditions on S(K) for R(k) to be of other orders and types have
been given by Ramachandran [44]. [As mentioned earlier, the results stated
in this section all refer to the separable version of the measure in question.]

whenever 0 <a<r. (5.87)

H. SPECTRUM AND SMOOTHNESS: THE GENERAL CASE

Recently, Delporte has extended the preceding results?? to scalar functions

of several variables [16].
We suppose that u(x, ) is a normal random function satisfying (5.79) on

the n-cube [0, 1] x -+~ x [0, 1], and define

yx, y) = [ lux, @) — u(y, w)|* dp

= T(x, x) + T(y, y) — 2I(x, y). (5.88)

Then [16, p. 198] if, for all x in the n-cube and all sufficiently small ¢ > 0 we

have

y(x,x +hy < Cjlogo|™'7® for |h| <o, (5.89)

then a.e. sample (of the separable version) of u(x, ) is continuous in the
cube [0, 1] x [0, 1] x -+~ x [0, 1]

22 This result has been generalized by Delporte [16] to nonhomogeneous normal

random functions.
23 He has also considered random functions which are neither stationary nor normal, but

we shall restrict our attention to the normal case.
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If the normal random function is stationary (“h
omoge 22
reduces to y( geneous ™), (5.89)

RO)—Rh)< D |loga|~*¢ (D =C/2), (5.90)

for all |h| < o if ¢ > 0 is small enough. Since u(x, ) is stationary and normal
on X = K"R""™ and (5.90) holds near 0, u(x, w) is almost surely continuon
near 0 and hence, by stationarity, almost surely continuous on X. The sam .
true if the energy spectrum satisfies the n conditions i

f[log(l +kDPdS®) < +o0 (i=1,2,...,n) (5.91)

as follows from (16, p. 199] and the inequality
llog(1 + k)Y < Cp ¥, Mlog(l + |k 1)V,
i=1
where C, is a constant depending only on 8 and n, We define
I, y) = 8°T'(x, y)/x; dy;. (5.92)

Delporte has proved further [16, p. 3556] that if, for all sufficiently small
o >0 and all x,

I, x) + T + b, x + b) — 2T'(x, x + h)< C|log o~ 7¢, (5.93)
then u(x, w) is continuous a.e. and has a continuous derivative du/dx ; in any

finite interval.

In the case of stationary (i.e., homogeneous) normal rand i
€., om funct
(5.92) and (5.93) reduce to o

RY(M) = —*[RM®)]/3h;* (5.94)
and

RO0) — RO < Clog|h|)|™* (x> 1), (5.95)

1:espectively. Thus, by homogeneity, if (5.94) and (5.95) are satisfied for
= 1, ..., n, then almost all sample functions are continuously differentiable
{in symbols, u(x, @) € C'(X) with probability one].

The extension of the preceding results to normal HRVF is easy. Due to
(5.91), the gn conditions

fnnllog(l +1kDIPdS;) < +00  (B>1)

G=12,....,q,i=1,2,...,n) (5.96)
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imply that almost every sample of uy(x, ®) (j=1,2,..., q) is continuous; it is
obvious that the single condition

f llog(1 +K)|*dE(k) < +o0 (B>,

n . 5.97
k= (i;kiz)m, a6(k) = 3. dS;,(k) .

implies the continuity of almost every sample of the normal HRVF u(x, ).
By the same reasoning, the condition

f K2 |log(l + k)| de®) < +0  (B=1), (5.98)
L

implies that almost every sample of the normal HRVF u(x, @) belongs to

cY(X).
Introducing the trace of the correlation tensor,
M= Z R;i(x—Y), (5.99)
J
and putting
M
M® = 5.100
; Exj‘ a)' \ ( )
the condition
M9 +h, x +h) + MO(x, x) — IMD(x + h, x) = O[(—Inh|)]  (¢>1),
(5.101)

where i = 0 or 1, implies that almost every sample of u(x, ») belongs to c®
in any finite interval.**

VI. Evolution of the Spectral Matrix Measure

A. EVOLUTION OF THE INITIAL PROBABILITY

In the analysis of the evolution in time of a system with random initial
values, it is important to understand how its probability distribution evolves
in time under the action of its governing DE’s (3.1). In this part, we will relate
this evolution to the evolution of the associated spectral matrix measure.
The spaces A, and D'(X) are ill-suited to this problem because, for example,
the Cauchy problem for the heat equation is not well set there (see Section
111.A). The most appropriate general seiting seems o be the space S'(X). We

24 For conditions (5.92), (5.98), and (5.101), see J. Delporte, C. R. Acad. Sci. Paris 268A
(1965), 3554-3557, or Delporte [16].-
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shall therefore assume that (3.1) is regular in the sense of Section LA, and
that u is an admissible probability measure on S'(X) in the sense of Section
V.A. Under these assumptions, we shall deduce in this part the evolution in
time of u and of the associated spectral matrix measure. Our results and
methods will be based on [10].

First, by Schultz’s Theorem 3.1, we know that (3.1) determines a solution
semigroup {T,}; and that every mapping T,: S'(X)— S'(X) is one-one.
Further, T, is Borel since it is continuous. Also the space S'(X) is a standard
Borel space as defined in Section II.C by Theorem 2.1. Thus T, is a 1-1
measurable mapping of the standard Borel space S'(X) into itself. Hence by
[43, Theorem 2.4, p. 135], T, is a Borel isomorphism of §’(X) with the Borel
subset B = T;(S'(X)) of S'(X).

Let u be an admissible probability measure on S’(X), and let

udA) = (T, (4) ©.1)
for all Borel sets A in S'(X). Then g, is a probability measure on the Borel
sets # of S’(X) which gives measure one to B.

The measures y, give the statistical dynamics of the system. For, if u(x, w) is
the random tempered distribution having measure y at t =0, and we let u
evolve in time under the action of Eq. (3.1), then we get a random tempered
distribution u(x, t, w) for each ¢ which is distributed with probability x, on
S'(X).

To analyze the evolution of the measure p in the light of the results of
Section V, we need the following theorem.

Theorem 6.1. Let u be a normal admissible homogeneous probability
measure on S'(X) with mean zero, and let {T,} be the solution semigroup of a
regular Cauchy problem. Then the associated Borel probability measures p,
defined in (6.1) are also normal, admissible, homogeneous, and have mean zero.
Their Lebesgue completions will thus be regular.

Proof. Homogeneity of y, follows by Theorem 4.5. Normality follows from
Theorem 4.8.

We prove that y, is admissible. Let ¢ € #(X). As before (e.g., in Section
ILB), we let & denote the Fourier transform operator and & its inverse.
We evaluate

[ v@lPanmy=[ (V@) duo1,71(v))
S'(X) (X))
= ATV duv),
§(X)

where the preceding integrals are ordinary Lebesgue integrals by Section II.E
and the remark after Eq. (5.18), and the last expression is finite by assumption.
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We also know how T, operates from Theorem 3.1:
T, V($) = (FM, * V)($) = (M, FV)F ¢)-

Thus the ith component of the vector T, V{(¢) is
q

TV@)= 3 MIFV(F) = 3. FVMIFG) = Y V(FMIFY)

ji= =1

where V; is the jth component of the vector-valued distribution V. We let
0;; = FMIF$. Then 0;; € #(X) depends continuously and linearly on ¢
for all 7 and j. Further, the ith component of Ty(¢) is 3 ; V;(8;;). Now we can
estimate:

Pdp(T) = | LV -y T,V():|? du(V
fs,(x)|7(¢)l dp(T) fS,(X)I V(@) * du(V) EZI L'ml (1% du(v)
< 6:)|* du(V)<qy V(0:)|? du(V).
<q,.,zjfs,(x)lV,(0.,)I du( )Sqi'jfsml (6:)1* du(v)

The (i, j)th summand here is continuous in 8;; since y is admissible. Also, 6;;
depends continuously on ¢. This shows that

[ 1T@)1? du(T)
5°(X)

exists and is continuous at zero. From this it is easy to see that the above

integral is continuous everywhere on #(X). . '
Last, we show p, has mean zero. This is an easy consequence of linearity.

Let M denote the mean of y,. If ¢ € F(X), then
. T(¢) du(T) = T, V(¢) du(V).
M@= [ T@dum=[ T
We saw above that the ith component of T, ¥(¢) is given by Y _; V;(6,,), where

0,; = FMUF$ and V; is the jth component of ¥. Therefore, if M; is the ith
component of M, then

M@ =Y | V0, du(¥).
7 S0
But since the mean of p is zero, and 6;; € £(X),
| v dury=0
S'(X)

and hence each component of the last integral is zero. Thus each summand in
M (¢) is zero and so M (¢) = 0. Since ¢ and i were arbitrary, we see that
M = 0. This completes the proof of Theorem 6.1.
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B. EVOLUTION OF THE SPECTRAL MATRIX MEASURE: I

We showed in Section VI.A that if an initial homogeneous admissible
normal measure u with mean zero evolves under the action of a regular
system (3.1), then the measure y, is also homogeneous, admissible, and normal
with mean zero at any later time t > 0.

We can associate a covariance matrix I'* with such a measure y,, and, by
Theorem 5.6, y, is uniquely determined by I'*. Further, since the y, are homo-
geneous, we know from Theorem 5.4 that the action of I'* is given in terms
of the Fourier transform of a tempered matrix measure v,, as in (5.32).

We have now developed enough machinery to establish an unpublished
conjecture made by one of us several years ago. Namely, we will show that the
evolution of a normal admissible homogeneous probability measure with
mean zero under a regular equation is characterized by the motion of its
spectral matrix under a certain differential equation.

Theorem 6.2. Let u be a normal homogeneous, admissible probability
measure and let P(D) be a regular differential operator. Let v, be the spectral
matrix measure associated with p by Theorem 5.4, and consider the initial value
problem defined by

dvjdt = P(ik)v + v[P*(ik)]T  [v(0) = v,], 6.2)
where, for each t, v(f) is a q X q matrix of tempered measures on X . Then there
is a unique solution v(t) of (6.2); moreover, if y, is the measure derived from p
as in Theorem 6.1 then v(¥) is its spectral matrix measure.

The proof is fairly long and will be broken into two parts. In this section,
we will establish that the spectral matrix measure v, of p, does satisfy (6.2). In
the next section, the question of uniqueness will be considered.

Proof. Let {T}, t =0, be the Co-semigroup solving (3.1) and let g, be
the measure induced by T, as in (6.1). Let I'* be the covariance matrix of
the admissible homogeneous zero-mean measure g,. Recall that the ()
entry of I'* is defined by

Ty, v) = | o UA®) Uj)* du), (6.3)

s

where ¢,y € #(X), and U, is the kth component of the vector-valued
distribution U. Now we define the sesquilinear mapping X, : S(X) x S(X) - C
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as follows; let f and g be elements of S(X) and ¢ > 0. Then, in the notation
(U - f> defined in (2.9),

Ki(f.9) = _fs,(x)<U KU - g>* du(U). 64

One checks easily as in Lemma 5.4 of Section V.B that K, is well defined,
sesquilinear, and continuous in the topology on S(X). This follows from the
admissibility of u, (Theorem 6.1); for, in particular, if f is the vector field
whose kth component is &, ¢ and g is the vector field whose kth component is
6;.¥, where ¢, Y € #(X), then

K(f,9) =Tijo, ). (6.5)

Hence, by linearity, K, can be expressed as a sum of entries from the matrix
I'* and so is clearly continuous and sesquilinear.
Notice that K, can be written in another way. Namely,

Kiho)=[ <U-XU-g>* du0)

= f (TV - fXTV-g>* dulV) (6.6)
57Xy
and, applying (3.8),

K(f,9) = fs,m FM + V) [YUFM, + V) - g>* du(V)

= j (M FV-FIHMFV - Fgo* duV), 6.7
S°(X)

where M, is multiplication by exp[tP(ik)] as discussed in Section IIL.B. Letting
L, = M,” be the transpose of M,, this can be rewritten as

j (V- FLZFfV-FL, Fg>*du(V) = K(FL,Ff, FL, Zg). (6.8)
5'(X)

Comparing the above formulas, we see that
K(f,9) = K(FL, Ff, FL #9), (6.9

where L, = M,T. Let N, = L, so that N, maps S(X) linearly and con-
tinuously into itself. We use (6.9), which expresses K, in terms of the action
of K, on the flows N, in S(X). This allows us to compute the evolution of X,
in time, and hence, using (6.5), the evolution of I'. To show that the spectral
matrix v, of y, evolves according to (6.2), we use Fourier transforms twice:
first to define the semigroups {7;}, and again to pass from covariance to
spectral matrix.
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In detail, fix t > 0 and f, g € S(X); then form the differential quotient:

(U/BIK. 1S, 9) — K(f, 9)]
= (UDIKoN 44 f, Nisng) — Ko(N, £, N,9)]
= (/MKo(Ny+4 S, Nisg) — Ko(N, f; Ny 1ng)
+ Ko(Ne f, Niing) — Ko(N. f, N, g)]
= K/ esnf = Nef), Nerng) + Ko(N, f, (RN, 49 — N,9)).

(6.10)
But of course, if f'e S(X), then
(/BY(Nysn f = N f) = F(UIYM],, — MFF (6.11)
and, for w € S(X),
(U/R)M ;o — Mw(k) » P(k) M, wk) as h—0 6.12)

in S{X?, since the multipliers {M,} solve (3.7). Further, since M, is a
Co-semigroup (see the proof of Theorem 3.1),

Mt+hW—’M,W as h—0

6.13)
for w e S(X). So from (6.10)—(6.13), it follows that
},iné A/MK. (S, 9) — K(f, 9)]
= Ko(FP(K)'L, Ff, FL, Fg) + K(FL, F¥, ZP(ik)'L, Zy).
6.14)

,;j]so by the well-known properties of the Fourier transform in S’(X) [20, p.

FP(K)'L,Zf = P(— D' #L, Ff, (6.15)

Thus
0K (1, g)/ot = }’I_I'I; (/D)K. +4(f,9) — KL(f, 9]
= Ko(P(- D)'FL, Ff, FL, Fg) + Ko(FL,Ff, P(— D) FL,Fy)

= fy VP DI FLENY - FLFgy* du(y)

* fs,(x}V' FLFL)V - P(—D)'FL Fgy* du(V).  (6.16)
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We calculate the first integral above?®®:
fs'(x)<V- P(=D)'FLFf )V FLFg)* du(V)
- J.s'(x)<P(D)V. FLFf V- FLFg>* du(V)
= J-sy(x)«fM, * P(D)V) - fYU(F M, % V) - g* du(V)
N fs,(x)<P(D)[/FM, * V] fIUFM, + V) - g>* du(V)
= [,y POTY 1T 3% du¥)

= [ <LV P(=DYfXT, V- g>* du(¥)
S'(X)

= K{(P(-D)" £, 9)-

Similarly,
fm)w. FLFf)V - P(- D' FL,Fgy* dwV) = K{f, P(- D)'g).

Combining these two formulas with (6.16), we obtain
OK(f, 9)/ot = K(P(— D)f, g) + K/(f, P(— D)"g).

We now specialize f and g, choosing fixed indices i, j in the range 1, ..., q.
For simplicity, we do not indicate notationally the dependence of f or g on
this choice, but designate by f the element of S(X) whose entries are all zero
except in the ith row, where they are all ¢ € #(X). Likewise, g € S(X) has all
zero Tows except for the jth, which is . Then the /th rows of P(— D)"f and
P(— D)"g are P, (— D)¢ and P;(— D)y, respectively, for/ = 1, ..., g. Finally,
let ¢, € S(X) be the element which is P, (— D)¢ in the kth row and zero in
all other rows, and let i, € S(X) be the element equal to Py, (— D)} in the
kth row and zero in other rows, where 1 < k,! <gq. Then

(6.17)

P(-DVf= ¥ dur  P(-DVg= 3 . (6.18)
We apply (6.5) to get

K{P(-DF,9) = 3. Kidu:0) = S TiPu(~D)$.¥)  (619)

25 Here and elsewhere, we shall often write P(— D)T for the matrix transpose [P(— D)™ =
PT(—D).
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and similarly

K(f, P(~D)"g) = 3. (¢, Pa(—D)). (6.20)
k=1

Since p, is homogeneous, we know by Theorem 5.4 that the action of T is
given by a tempered spectral matrix measure v' = ||v};| as follows:

Ti(¢, ¥) = FIvi; 1 = ). (6.21)

Hence

K(P(-D)f 0) = 3, FUGNPu—D) + 1) = 3 FLLIPA(=D)S + )

=1

I
1Ma

BLIFE-D) + 90) = 3, DUPAIOF G + §)

4

It
Mo

[PAIIE » ) = F [ 3 Putioni| @+ D). (622

1

A similar calculation yields

K1, P D)) = F| 3, PR 4+ (623

Combining (6.23), (6.22), and (6.17), we see that

oxctf, ot = [ 3, P |6 )+ £ £ Picwi](@ + ). 620
Also, using (6.5),
K., )2t = tim (1)K, o(f.0) = K 9)
 tim (AT ", ¥) =~ T3 )
— tim (1/RIFDA 10 + ) = LG + D)
= lim (1O~ DLDIF@ * D) (6.25)
Putting (6.24) and (6.25) together,
tim (/%) ~ BEDIOH") = [ £, PuCiot | @) + [, prcwm| @0
(6.26)

where ¢ = F ¢ denotes the inverse Fourier transform of ¢. In (6.26), we have
proved just what we want to prove when the limit exists, as it must for the
subset M of elements of the form ¢y/*, which is dense since M = D(Xx). To
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complete the proof, we show that the differential quotients constitute an
equicontinuous subset of &'(X) for [h| <1, say; it will follow that the limit
(6.26) exists on all of #(X).

Lemma 6.1. The collection {Uy}_1 ch<,> defined by
(/D" — V(@) h#0,
U= | (5 P + T PIEO0)@, h= (6.27)

for ¢ € F(X), is equicontinuous in Z'(X).

Proof. First we show that the sesquilinear forms {By}_1 <n<1 given by

3 (/RIS (s ¥) — Tife, ¥))s
B Z,‘, r;;{Pil(_D)¢9 II/) 2 o ; r:l(d)’ le(_D)lI,)’

h+£0,
Bh(d), 'I/) h — 0’

are equicontinuous in the space of sesquilinear forms on #(X). To see this,
let I = [—1, 1] and consider the following statements:

(a) For fixed y € #(X), the linear mappings L,(¢) = B,(¢, V) are equi-
continuous in &'(X) for he L

(b) For fixed ¢ e #(X), the linear functionals L,’ () = B,(¢, ¥*) are
equicontinuous in #'(X) for he l.

Since the collections {L,} and {L,’} are weakly bounded for he I, and (X) is
barreled, the Banach-Steinhaus theorem [52, Theorem 33.2] implies that (a)
and (b) are valid statements. Thus we have a family of forms on the metrizable
linear space ¥(X) satisfying (a) and (b) and so, by [52, Theorem 34.1], the
family is an equicontinuous subset of the space of all forms on &(X).

Finally, the family of tempered distributions {Uy}_;<s<1 in (6.27) is the
continuous image of the family {By}-.az1 via the correspondence in
Theorem 5.4. Hence {U}}_y <u<1 is an equicontinuous subset of #'(X) and
the proof of Lemma 6.1 is complete.

Elements of the form Z(¢ * ), where ¢ and y are in F(X), are dense
in &(X). For elements p of this form, we saw above that, in the notation of
6.27),

Li_lg U(p) = Uo(p)- (6.28)

Now, as in [52, Proposition 32.5], an equicontinuous family that converges
on a dense subset converges weakly everywhere. Applying Lemma 6.1, we get
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that qh - ,UO weakly in #’(X). But weak and strong convergence are the
same in &'(X), so we may conclude that

1 q q
tim QT - 05D = | 3 Pution] + [ 3, ek il (629
- =1 =1
in &'(X) for each i and j. If we write (6.29) in matrix form, we get

8v'/dt = P(IKWV' + vP(k)T. (6.30)

So the spectral matrix measure does satisfy Eq. (6.2). Note that v° = v is the
correct initial value as well.

C. EVOLUTION OF THE SPECTRAL MATRIX MEASURE: II

' The uniquenes_s portion of Theorem 6.2 follows from abstract considera-
tion of Eq. (6.2) itself. That is, consider the initial value problem

Qu[ot = P(ik)u + uP(K)?  [u(0) = v] (6.31)

iq the space Mq(.S/”(X)) of (g x g)-matrices whose entries are tempered
distributions.

According to [20, Theorem 6] [with® =®, = E = M (#(X)) the space of
(g9 % g)-matrices whose elements lie in F(X)], (6.31) has a unique solution if
there exists a solution of the modified adjoint problem on each finite interval
[0, T]. But because the duality between M (¥ (X)) and M (&'(X)) is given by

(u,n) = Zq: uij(”lij)>

i 1

(6.32)

the modified adjoint problem is easy to solve. For the adjoint of the operator
P(ik): w— P(ik)u from M(&'(X)) to M(5'(X)) is the operator P(ik)":
M (#(X)) - M (%(X)) which maps 7 to P(ik)"n. Similarly, the adjoint of
the operator that maps u to uP*(ik)" is the operator that maps n to nP(ik)*.
Hence, to demonstrate uniqueness, we need only prove the following lemma.

Lemma 6.2. Given T> 0 and y e Mq(y’(X)), there is a solution to
onot = — P(ik)"n — nP*(ik)
n(T)=y.

O<t<T
(6.33)

Proof. This is quite easy. For, since P is regular, both exp[— (1 — T)PT(ik)]
and exp[—(t — T)P*(ik)] have entries that are multipliers in #(X) fort < T
(see Section II1.B). We let

n(1) = exp[—(t — T)P(K)"ly exp[—(t — T)P*(ik)] (6.34)
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for 0 < t < T. One checks without difficulty that this does indeed solve (6.33).
The proof of the lemma and of Theorem 6.2 is now complete.

We point out that the unique solution of (6.2) guaranteed to exist by
Theorem 6.2 is given by the formula

v(t) = exp[tP(ik)]v, exp[tP*(ik)]". (6.35)

The proof of this is a simple calculation. Formula (6.35) is well defined in
M, (&’(X)) because P is a regular linear differential operator. The following
corollary is also interesting.

Corollary 6.1. Let P(D) be a regular linear differential operator. If the
initial value v of the initial value problem (6.2) is a Hermitian definite tem-
pered matrix measure, then the unique solution v(t) is, for each t >0, a Her-
mitian definite tempered matrix measure.

Proof. Let I be the covariance associated with v via Section V.E and let u
be the normal homogeneous admissible measure on S'(X) associated with T.
Let y, be as defined in (6.1). Then v is the spectral matrix measure of u and, by
the last lemma, Eq. (6.2) has a unique solution vw(f) = v', where v' is the
spectral matrix measure of g, and so is a Hermitian definite tempered matrix
measure.

To review, Theorem 3.1 implies that any regular Cauchy problem (3.1) with
initial value in the space S’(X) of vector-valued tempered distributions defines
a unique Cy-semigroup on S’(X). If the initial values are random and given by
a normal homogeneous admissible probability measure p on the Borel sets of
S’'(X), then the solutions at time ¢ > 0 are again randomly distributed accord-
ing to a normal homogeneous admissible probability measure g, on the Borel
sets of S'(X). Furthermore, this seemingly complicated situation in which u is
evolving under Eq. (3.1) is reduced first to the evolution of the covariance of u
and then to the evolution of the spectral matrix. Finally, the precise equation
that governs the evolution of the spectral matrix and an integral of this
equation is provided.

Thus for homogeneous linear evolution equations with constant coefficients
and normally distributed random initial data, the development in time of the
autonomous system considered is entirely determined by the ordinary DE
(6.2), which governs the evolution of the spectrum. This result may have
applications to linear models of the statistical mechanics of homogeneous
media (e.g., of water waves). It would be interesting to extend it to inhomo-
geneous linear DE’s with random initial data and inputs (* forcing functions )
—e.g., to wind-generated water waves.

S S
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VII. Parabolic Problems

A. THE PAarRaBOLIC CASE

The solutions of Cauchy problems with random initial values, whose
existence for hyperbolic DE’s was established by general methods in Section
IV.C, are typically generalized functions (not even “* weak > solutions) unless
special assumptions are made on the initial smoothness (spectrum).

In the case of regular parabolic DE’s, however, the Green’s function is
typically smooth for ¢ > 0 (the high-frequency components of the spectrum
die out rapidly), and so by the results of Sections V.F-G, solutions of (3.1)
with random initial values are almost sure to be strong classical solutions,
except possibly at t = 0. Partly for the sake of contrast, and partly to bring
out what is not easily proved by the general methods described earlier, we
will now apply classical methods to parabolic DE’s with random initial values,
restricting attention to the case n =g = 1 in order to be able to use the results
of Section V.G.

When n = ¢ =1, (3.1) simplifies to

y.4

dujot = P(0/0x)u, where P(§) = Zo(oz,,, + iB,)Em. 7.1
We define, for k real,
A(k) = Re P(ik) = ay — Bk — oy k* + B k> + -+, 7.2)
O(k) = Im P(ik) = Bo + .k — B k> + -+ -. (7.3)
One says that the DE (7.1) is of parabolic 1ype when
lim A(k) = —oco. (7.4)
Ik] =+

(See [20, p. 191], where Shilov’s and Petrowski’s definitions, which agree
when n =g =1, are recalled.)

Thus the DE (7.1) is of parabolic type if and only if A(k) is of even degree,
the coefficient of the terms of higher order being negative?®:

Ak) = Ay + Ak + -+ + A, k%,

(7.5
Ajreal, A, <0, 2<2s<p.
This implies that there exists two real constant 4 and B > 0 such that
A(k) < A — Bk*  (all real k). (7.6)

26 The 5 used here and through Section VIL.C is of course not the s of the definition
X =K*R""*; here and below, we have X = R, which frees s and » for other uses.
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One has also
sup A(k) =0 < +oo. 1.7

—w<k<+two

The Fourier techniques used below are based on

Lemma 7.1 If the DE (7.1) is parabolic, then, for any polynomial S(k) and
t>0,

S(k)e'™™ e L(X) (7.8

forallr>1.

Proof.
| S(K)e'PR = |S(k)|e'*® < | S(k)| exp(At — Btk*>).

B. GREEN’S FUNCTION

Obviously, e™*"P(® js a solution of the DE (7.1) for each k; we will
define, for t > 0,

. — e ikx +tP(ik) k (79)
G(x, 1) = j e d

and show that this defines in the half-plane t > 0 the fundamental solution
of (7.1) [20, p. 285]. .
Observe first that, for >0, G(x,1) is, as a function of x, the Fourier
transform of e which by Lemma 7.1 belongs to I’ for all r= 1. The
continuity of G(x, r) in x follows immediately from the known properties of
Fourier transforms, and also (from the Riemann-Lebesgue theorem)
lim G(x,1)=0 (t > 0).

|x|=+e

(7.10)

There is one case when G(x, f) reduces (as a function of x) to a well-known
class of functions:

k) =0, (7.11)

since e"P% = ¢*M¥ 5 0, and G(x, 1) is, for each 1 > 0, a (in general complex)
correlation function or, what is the same, G(x, 1)/G(0, t) is a characteristic
function [39]. Then all the known properties [39] of these functions apply
immediately; we note only the most important:

(@) |G(x, 1| < GO, 1);
(b) G('—xs t) = G*(x, t);
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(©) G(x, 1) is continuous and positive definite in x [i.e., for any finite set
{x1, ..., %,}, the quadratic Hermitian form D Wi Y*G(x; — x;, 1) is non-
negative definite];

(d) G(x,1) is an entire function of x which is [44, p. 1243] of order
6 =25/(2s - 1).

We will establish the fundamental properties of G(x, ) in the general case

o) # 0. (7.12)
Theorem 7.1. (a) For t >0, G(x, t) has continuous derivatives of all orders
given by

Smn

2] + @ ] 3
g 006 = [ S TikyTRGIT dk.

(7.13)

(b) In1>0, G(x, ) is an analytic function of (x, t) and for each t > 0 an
entire function of x.
(© G(x, 9 is, in t >0, a classical solution of (1.1).

Proof. For 0 < 6 <t one deduces from (7.6)
| PO ~AGiRP(ik)T" < exp(—BOK™) k| ™| P(ik)|";

the right side being independent of (x,t) and belonging to L, one can
apply the rule of derivation in a Lebesgue integral, and thus (a) is proved.
Computing 6G/dt and P(D)G from (7.1) one immediately proves (c); in
symbols, 0G/0t = P(D)G for t > 0.
Next, we deduce from (7.13), for any ¢, > 0,

5, Z ) T 60, 19= 3 [ e XU (- WITPGOT

manm!  n! ax™ ot AT ) ni! nl

But, the series

5 x"(ikY" (t — 1)’ [P(ik)]"

m,n m! n! 4

being equal to ™** = *2P(® s uniformly convergent in |x| < p,, |t — 4] <
Pz, |k| < N.Thus, for |x| < +00, |t —ty| <1y, one has

x" (1 —tg)" @m*" T kxttPG
. ikx (ik) N
o ar 0% 10) f_w ¢ dk = G(x, 1),

m,nm' n!

which proves (b).
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Theorem 7.2. For any fixedt>0,andp,m,n=0,1,2,...,

am-l-n
"aﬂ,"G(x NelLnlI?

and one has the inversion formula
~m+||

dk’ [e'P("‘)(lk)'"[P(lk)]"] = ——J. e I ix)P —— PR G(x,t)dx. (7.14)

Proof. By Lemma 7.1, we have
dP{e P (i)™ [ P(ik)I"}/dk? € L n I2. (7.15)
Now fix m and n, and consider the sequence of pth derivatives in (7.15),
p=0,1,2,.... We prove

Lemma 7.2. If every f®)(k) is in L ~ I2, then the inverse Fourier transform

F(x) = f "% gk £y dk (1.16)
of f(k) satisfies, for all p, N
(a) xPF(x)e L n I?, and

() k)= (1]2m) f "% gmik(_ ix)? F(x) dx.

Proof. Since every fP)(k) € L, one deduces first

+@
(—ix) F(x) = j = (k) dk (1.17)
from (7.16) by integrating by parts and noting that f(k) and f'(k) € L imply
limy, .o f(k) = 0. By induction, applying the same reasoning to f'(k) and
f"(k), one has

+
(—ix)? F(x) = f ™ £k dk. (7.18)
Now, because £ (k) e I* by Plancherel’s theorem, we have
(-ixPFx)el? (p=0,1,2,...). (1.19)
the classical

Further, applying to the pairs: F(x), xF(x); xF(x), x[xF(x)]; ...
result [S1, p. 92] that

¢(x) and xd(x)e* imply ¢(x)eL, (7.20)

we have x’F(x)e L, p =0, 1,2, ... Thus (a) is proved from (7.19) and (7.20);
next, due to (7.18), (b) is proved by applying the Fourier inversion formula.
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Corollary 7.1. One has

+

1 .
lim — f ™ (—ix G(x, 1) dx = &,

o 27 ). (p=0,1,2..). (72

Proof. Apply (7.14) for m = n = 0 and make t = 0 in the left-hand member.

Note that (7.21) is typical for the Dirac delta-function, whose * Fourier
transform ™ is precisely the constant 1.

Remark 1. For later use remark that, if we set

vk, X, £) = e TR0, (1.22)

the pair of inverse Fourier transforms (7.13) and (7.14) with p =0 can be
written, for any t >0 and m,n=0, 1,2, ...,

+n + o i+
G = —
o 00 =] sammitx nak (7.23)
and
. gmtn 1 + o0 m+n
—ikx — —ik;
¢ i ar y(k, x, ) o f_we yay‘" v G(y, t) dy.
(7.24)
Theorem 7.3. One has, uniformly in x,
l‘ —ot a”‘”‘ o
1m e G(x,t)=0 (mn=0,1,2,..), (7.25)

4+ dx™ ét"
where o is defined in (1.7).

Proof. From (7.13) we deduce

m+n

ox™ gt°

e—ﬂl

+ o
G(x, 0 < j eTA® =l k| m| Pik) [ dk.

Now we have
(2) lim e'™M®=eI| k™| P(ik)|" = 0,
1+ o
expect possibly for a finite number of values of k for which A(k) = ¢; and,
by Lemma 7.1, for any >0 and ¢t > 6:
(b) fort >8>0, etA®—01 < JIARI=0] ap4 PlAKI=a)| f|m) P(ik)|" € L.

Thus the result follows by Lebesgue’s dominated convergence theorem.
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Remark 2. For G(x, t), one can easily establish the bound
|G(x, D] < et Kjt'/*, K=2 f:exp(—Bkzs) dk, (7.26)
simply by applying inequalities (7.6-7.9),
|G(x, )| < j f exp(At — Btk?) dk,

and replacing k by kt!/** in the integral. [Incidentally, (7.26) implies

lim e~ 4" G(x, t) =0,
1t+c

but this result is weaker than (7.25) because 4 > ¢.]

Theorem 7.4. The function G(x,t) has the semigroup property: for any
t,>0,t,>0,

1 + o
Gty + 1) == [ GO, 1)G(x —y, 1) dy. (7.27)

Proof. Apply the convolution theorem to the functions G(x, t,), G(x, t,),
and G(x, t, + t,), whose Fourier transformsare 7%, ¢"2P(0)_and e(*1* P00
the computation is legitimate since all the functions involved belong to
LnI

C. CONSTRUCTION OF SOLUTIONS

Let pu be a homogeneous normal probability measure on A, = A,(R).
From the corollary to Theorem 4.7 in Section IV.D, we know that, if

v(x, ®) € A,(R) (7.28)

denotes the sample function associated with the measure p, then, with
probability one,

v(x, @)/(1 + x2)" € L,(R) (allr >1), (7.29)
and so
v(x, »)/(1 + x*¥eL =L,[R) (all s > 1). (7.30)

Our first main result will be
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Theorem 7.5. If v(x, w) is a homogeneous normal random function in A, =
Ay (R), then with probability one,

1 + o
uwt,0) =3[ o, 0)GE-r)dy (7.31)
represents a classical solution of (1.1) for t > 0.

Proof. First we will prove that (7.31) exists with probability one for t > 0
or, more generally, ’

Lemma 7.3. For anym,n=0,1,2,..., all the integrals
1 + am +n
Up X, 1, W) =— wy, i -
et 0) = f_w 0, 0) s Gx =y, 0 dy  (132)
exist with probability one for t > 0.

Proof. Let us write

1
Up, (X, 1, ©) = —
O

+ w l-'(_l', w) am‘rn
1+ y?
(1 +y%) PR

G(x —y,t)dy.

Now from (7.29) (taking r = 1), we have ( ?) e 2 wi ili
> ¥, @)/(1 + y*) € ” with
one; and, by Theorem 7.2, L ¥ probability

T n

Foapn O =y el (7.33)

(1+»»)

Thus the conclusion follows.
Now let us introduce the Fourier transform:

V(k, 0) = % fj:e_"‘" ‘l"i_j? dx. (7.34)
Due to (7.29) with r = 1, this integral exists as a Plancherel transform and
Vik, w) e I2. (7.35)
From (7.34) we deduce by a change of variables that
e Y(—k w)= ZLn fj:e'i"’ f(:—l:‘li% dy. (7.36)
But from Theorem 7.2 we obtain

—ikx 1 M — il
e ™ I(k, x, t)=ﬂf_we P+ (x = y)21G(y, 1) dy (7.37)
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when [according to the definition (7.22) of y(k, x, 1]
2

d
Lk, x, 1) =9k, x, 1) = 27 7k, %, n. (7.38)

‘Now let us apply to the two pairs of Fourier transforms (all in I?)

G(k) = e~ ™ V(—k, w)

u(x — y, @)
1+(x—y)7°

F(k) = e~ ** T(k, x, 1),

fO=0+G&x=-»1G60.n, gy =

the Parseval formula [51, p. 50, (2.1.1)]

[ R0 G- dk=5- [ ") g0 d.

We obtain, using the definition (7.33), the new expression

u(x, t,w) = f

+ o
Tk, x, 1) V(k, w) dk, (1.39)

where the integral exists with probability one for t > 0.
A glance at formula (7.38) shows that, for each k, I'(k, x, 1) is a classical
solution of the DE (7.1) because
'y(k, X, t) . eikx+tP(ik)

is, for each k, a classical solution of (7.1). Thus, in order to prove that
u(x, t, ) is a solution of (7.1), we have only to prove that

mtn + am+n
= —gpl (K V(k, w) dk. 7.40
G b= [ Soen Tl x, ) Vik @) (7.40)

If one observes that

am+n Asmta d2 5m+n
Gear) O D= gt T e ar

one sees that this derivative is a linear combination of terms of the form
S(k)e™***P(® where S(k) is a polynomial. But by (7.6) the modulus of this
term is dominated by | S(k)|exp(At — Btk*®); thus, for t > 6 >0,
e A4 omtr(k, x, £)/0x™ Ot"
is dominated by the function |S(k)|exp(—B6k*)e [’ independently of
(x, t). Moreover
g

R T
e o Tk, x, 1) VK, ©)
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1Is/ dorzninatec.l py | S(k) | exp(— BOKk**) V(k, w), which belongs to L (because
Ve I#) and is fndependent of (x, t). In conclusion, the rule of differentiation
in a Lebesgue integral can be applied and (7.40) is proved.

D. BEHAVIOR AS t | 0

Finally let us consider convergence as t |0 initi
e g 1 0 to the initial value of the
From (7.38) one deduces easily

]' = 2y ikx
'1:;1 Ik, x, 1) = (1 + x*)e™™. (7.41)

This suggests proving that

lim u(x, t, w) = f+

P o IR ) ML TR

=+ [ "¢ Vik, ) dk. (7.42)

Theorem 7.6. If the Fourier transform V(k, w) is Lebesgue integrable, then

lim u(x, t, w) = l;(x, (.U)
tl0

forall x. (7.43)

Proof. If Vi(k, i . .
. of. (k, ) e L, then the integral on the right side of (7.42) has the

+

| €™ Wik, @) dk = o(x, 0)/(1 + 27, (7.44)
?y Lel])esgl;‘e’:1 d(;:minated convergence theorem. This is simply the inversion
ormula of the Fourier integral (7.34), whence the conclusi

(7.42), with probability one. onclusion follows by

But if 'v(x, w) satisfies (7.44), its Fourier transform V(k, ) belongs to I?
put not, in general, to L; a necessary (but not sufficient) cc;ndition for (7.44)
is that v(x, w) be continuous [which explains how (7.44) can hold for all x] and
that v(x, w)/(1 + x*) > 0if | x| — 4+ co. In the general case, when V(k, @) ¢ L
we can prove the weaker result: ’ ,

. rhu(x
lim [ 60
o Yo 1 +x?

_ b J'.'{.\." w)

= A (7.45)

for any interval [a, b].

Statistically Well-Set Cauchy Problems 95

First, due to (7.35), by a known result of Fourier-Plancherel’s transform,
we have [51, p. 74]
+o gikE |

Tk V(k, ) dk. (7.46)

¢ p(x, w)
d =
ol +x2 * J.

— @

Next from (7.39) we deduce

Zu(x,t,0) , E[ o4 .
foe® & [ [f_wl“(k, x, 1) V(k, ) dk] s
+ (2
-/ Uo r—ikf;_:) dx V(k, w)] dk, (7.47)

the inversion of the two integrals being permissible through Fubini's theorem
because I'(k, x, ) V(k, w)/(1 + x?) is integrable. By direct computation from
(7.38) we obtain

Tk,x,)=(0+ xyk, x, 1) + ik, x, 1).
Therefore, lim, , o T(k, x, /(1 + x2) = e**, whence we deduce

J>¢1_(k, x 1) = e —1
o 1+x2 ik

110
By application of dominated convergence in the integral, dueto the fact that
'k, x, /(1 + x?) is dominated by a linear combination of terms of the form
S(k) exp(At — Btk*’), we have
Sulx, t

130 Y0 1+x? -

+ o euif =1
T V(k, w) dk. (7.48)
i

From (7.46) and (7.48) we immediately deduce (7.43).

Appendix A: Borel Sets in the Relevant Function Spaces

The function spaces T, A,, §’,and I’ play a fundamental role in our paper.
Here, we prove that these spaces have standard * Borel structures,” and that
their Borel sets are generated in all cases by the Khinchine “ window sets.” To
prove our first result, it would probably be simplest to first show that our
function spaces are all standard T,-spaces; as in Section I1.C, this implies
that they have standard Borel structures. Instead, we shall discuss their
Borel structures directly, partly because this exhibits more clearly the purely
probabilistic (i-e., combinatorial) nature of the final conclusions, and partly
because the concept of ** Borel structures” is better established than our new
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notion of a “standard T;-space,” introduced in Section II.C. To avoid
confusion, we begin by defining our terms precisely.

A Borel space is a set M together with a o-field & of subsets of M. A Borel
space (M, %) is countably generated when there is a countable subclass of %
which generates the o-field 4, and separated when each singleton {x}, where
x € M, is an element of 4. (Thus, in the language of lattice theory, a ““ separat-
ed Borel space” is an atomic Borel algebra.) A Borel space (M, %) is called
standard when: (i) it is separated, and (ii) there is a Polish space ¥ such that &
and the Borel sets of Y, %y, are isomorphic as Borel algebras.

A topological linear space (TLS) that has a base for neighborhoods of 0
consisting of convex sets is called locally convex. A locally convex TLS is a
Fréchet space when it is metrizable and complete. In a locally convex TLS, an
absorbing, balanced convex, closed subset is called a barrel. Such a space 1s
called barreled when every barrel is a neighborhood of zero. A locally convex
Hausdorff TLS is called a Montel space when it is barreled and every closed
bounded subset is compact. The dual of any TLS F is the collection of all
continuous linear functionals defined on F, and is denoted F’. The weak
topology on a TLS F is the topology having the intervals | fi(x)| <& (i€,
some finite set, f; € F’ fixed, and x € F) as a neighborhood subbasis of 0. It is
the weakest topology on F for which all the elements of F’ are continuous.
The weak-star topology on F' is, dually, the weakest topology on F’ that makes
all the elements of F (considered as elements of F") continuous. The strong
topology on F"’ is the topology of uniform convergence on bounded subsets of
F. A TLS F is called reflexive when it coincides with its strong second dual
F’. The polar of a subset A of Fis denoted A° and is defined as

A°={feF'||f®)| <1 forall xeA}.
Dually, the polar of a subset B of F’ is

B ={xeF||f(x) <1 forall feB}.

Remark. If F is reflexive, then the weak-star and the weak topology on F’
are identical. Since all the function spaces considered in this paper are
reflexive, their weak and weak-star topologies are the same.

We will need several well-known properties of some of the systems defined
above. We state these now. These results will be referred to in the form K(n),
where K is a capital letter and n a positive integer. For example, the second
result of Part B below is identified by the reference B(2).

A. Results on Polish spaces [13, pp. 195-196] and Section II.C.
(1) A closed subset of a Polish space is Polish.
(2) An open subset of a Polish space is Polish.
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(3) A countable product of Polish spaces is Polish.
(4) The topological direct sum of a countable num
spaces is Polish.

B. Results on standard Borel spaces [40, §3]; [43, Chapter 1, §§2,3 and
Chapter 5, §2]. : ‘

(15 A subset B of a standard Borel space (A. &) is standard_m the
relative Borel structure if and only if it is a quel set. In this case,
the Borel subsets of B are precisely the intersections of Borel subsets
of A with B. .

(2) An injective Borel measurable function f from a standard Bgrel
space X to a countably generated separated Borel space Y is a
Borel isomorphism onto the Borel subset f(X)of Y.

(3) Countable products and countable sums of standard Borel spaces

are standard.

ber of Polish

C. Results on a continuous image of a Polish space in a Hausdorff space

13, pp. 197-206]. . o )
4} %f X is a Polish space and f a continuous m_]ecuon’ of X into the
Hausdorff space Y, then f(X) is a Borel sut;set of Y. .
(2) A 1-1 continuous image of a Polish space in a Hausdorff space 18

standard.

Comment. Concerning C(1), [13, p. 206] .states a _less gen?ral result:
merely that any 1-1 continuous image of a Pol.15h space in a metrlz.ab‘lel space
is sta;ldard. This is because a Souslin space 1s deﬁne'd in a restrlcul:e”way
[13, p. 197] as a continuous metrizable image of a qulsh space. Wes all use
here the more general definition of [52], that a sousllfa space Is abcommuouds
image of a Polish space in a Hausdor T space. It is 1edlousbutstralghlt‘;‘05wa::‘1 s
to verify that what is proved in [13, pp. 197-205] can also be prc;wn:t in i
more general context of a Souslin space. Probablj.; t?‘ne most d.lfﬁCl:1 t ds ep l|sf ?
construct a *“strict sifting” of a Souslin space. This is carrled.out in T;a:i R od
example, in {52, Appendix, p. 552). The statement of C(2) is easily deduce
from C(1).

esults on topological linear spaces. -
> Girll;rgla;ach—Alaoglﬁ theorem: If Uis a neighl?orhf)od of 0ina TLS I'?,
then the polar of U is weak-star compact 1n F’, (and hence an equi-
continuous subset of F') [37, p- 155].
(2) An equicontinuous subset of the dual of a separabl
TLS is weak-star metrizable [37, p. 164, ;I{a)]. ‘ o
(3) A convex subset of a locally convex TLS is closed if and only if it is
weakly closed {37, p. 154].

¢ locally convex
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(4) A subset of a locally convex TLS is bounded if and only if it is
weakly bounded [37, p. 155].

E. Results on Montel spaces.

(1) The dual of a Montel space, equipped with the strong topology, is a
Montel space [52, p. 376).

(2) A Montel space is reflexive [52, p. 376].

(3) On bounded subsets of a Montel space, the initial topology and the
weak topology coincide {52, p.376].

(4) Closed bounded subsets of a Montel space are compact [30, p. 231}.

(5) Products and strict inductive limits of Montel spaces are Montel
[30, p. 240]).

F. Results on spaces of distributions.
(1) The space S of all C* vector fields rapidly decreasing at infinity is a
separable Fréchet-Montel space [30, pp. 116, 137, 240].
(2) The space D of all C* vector fields with compact support is a strict

inductive limit of separable Fréchet-Montel spaces [30, pp. 16, 154
240, 241]). ’

An imp(?rtant property for the theory of regular probability measures on
such function spaces as I, A,, S’, and D’ is that the Borel structure be

standard (see Section I.C). We shall now show that all the preceding spaces
have this property.

Theorem Al. The Borel structures of A,, T, and S’ are standard. They are
all Borel subsets of the standard Borel space D’ of Schwartz distributions.

The proof will proceed via a series of lemmas. First note that, since T" and A,
are f:omplete separable metrizable spaces, they are both Polish and so auto-
matically standard Borel spaces [cf. C(2) above].

. Lemma Al. Let F be a separable Fréchet space. If V is a neighborhood of 0,
in F, then the polar of V, B = V°, is a compact metric space when considered as a
subspace of the dual F' endowed with the weak-star topology.

Progf. By the Banach-Alaoglu theorem [D(1)], B = V° is compact for the
yveak—star topology. In particular, B is equicontinuous and, by D(2), since F
is separable, B is metrizable in the topology induced on it as a subset of the
weak dual. Thus B is a compact metric space as required.

Corollary Al. In a separable Fréchet space F, the polar in F’ of any neigh-
borhood of 0 is a Polish space under the weak-star topology of F'.
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Proof. A compact metric space is complete and separable.

Lemma A2. The weak or strong dual of a separable Fréchet-Montel space is
a standard Borel space.

Proof. Let {V,} be a countable basis for neighborhoods of 0 in the separable
Fréchet-Montel space F. Let B, = V,°. By the corollary to Lemma Al, the B,
are Polish spaces in the weak-star topology. The strong dual of a Montel
space is reflexive and a Montel space by E(1) and E(2). Thus F’ is 2 Montel
space in its strong topology and so the weak-star and strong topologies agree
on bounded subsets of F’ by E(3). Hence the B,, being bounded, are Polish
spaces in either the strong or the weak-star topology.

Now F’ = )*,B,, for if fe F', then {f}° is a neighborhood of 0 in F,
making {}° > V, for some k, and hence '€ {f}°° = B,. Set D, = B\| J<nBs-
Then each D, is an open subset of the Polish space B, and so is Polish itself
A(2). Further, the D, are disjoint and their union is F'.

Let G = @2, D, be the topological direct sum of the D,. Then G is a
Polish space by A(4), and the map 4: G — F' obtained by injecting each D,
as a subset of F’ is bijective and continuous for the strong and, hence, for the
weak-star topology on F’. Thus F’, in the strong or the weak-star topology,
can be realized as a 1-1 continuous image of a Polish space; hence, F’ is
standard by C(1).

Lemma A2 implies that S’ is a standard Borel space, since S is a separable
Fréchet-Montel space by F(1). Note also that its proof implies more generally
that the weak-star dual of any separable Fréchet space is standard.

Lemma A3. Let F be a strict inductive limit of separable Fréchet—Montel
spaces {F,},2,. Then its weak dual and its strong dual are both standard Borel
spaces.

Proof. For each n, let F,’ be the weak (respectively, strong) dual of F,,. By
Lemma A2, F, is a standard Borel space. Moreover F’ is realized as the
inverse limit of the system {F,’, g,}, where g, : F,/ - F,_, is the dual of the
inclusion mapping F,_, - F,. Hence F’ is isomorphic, as a topological
linear space, to the closed subspace K of the product [[,F,’ of elements (f,)
for which g,(f,) = f,_;. In particular, F’ is homeomorphic to a closed subset
of the standard Borel space [].F,” by B(3), and, since a Borel subset of a
standard Borel space is standard by B(1), F' is a standard Borel space.

Lemma A3 shows that D’ is a standard Borel space, since D is the strict
inductive limit of the separable Fréchet-Montel spaces D(Ky) = C® of
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vector fields with support in the compact ““cylinders” Ky of xe X = K°R"~s
with [x;} <N, j=s+1,...,n.

Now an injective Borel measurable mapping of a standard Borel-Haus-
dorfT space X into a standard Borel-Hausdorff space Yisa Borel isomorphism
onto a Borel subset of ¥, by B(2). In particular, the canonical insertion of S’
into D' is continuous, and hence a Borel isomorphism of S’ with a Borel
subset of D’ which we shall also denote by S’

The spaces A, and I can also be embedded in D'. For if f(x) € A, ,say, welet
[f] be defined on ¢ e D by

(0@ = [ 19 - 9] dm0),

where [f(x) - ¢(x)] is the standard inner product of the vector fieldsf and ¢ and
dm(x) is Lebesgue measure on our underlying (connected, locally Euclidean,
Abelian group) manifold X. This is well defined since ¢ is continuous with
compact support and fe A, = A;. One easily checks that [f] € D" and that the
mapping f — [f] is a continuous linear injection. Thus A, can also be realized
as a Borel subset of D’. Similar remarks apply to I". The remarks of the last
paragraph now apply and the proof of Theorem Al is complete.

In a standard Borel space B, C = B is a Borel subset of B if and only if C
is standard. In this case, the Borel subsets of B are precisely the intersections
with C of Borel subsets of B by B(1). Consequently, a set in A, n S’ (both
considered as subsets of D’) is Borel in S’ if and only if it is a Borel subset of
A, . The Borel subsets of A, n S’ generated by the relative topology induced by
A, are the same as the Borel subsets of A, n S’ generated by the relative
topology inherited from S'.

Remark. In Lemmas A2 and A3, we proved more than we stated. We
actually showed that both §” and D’ are not only standard but actually one~

one continuous images of Polish spaces. This stronger fact will be used in
Appendix B.

We now come to the second major result of this Appendix.

Theorem ‘A2. On the spaces T, A,, S, and D', the weak and strong Borel
structures are identical.

Proof. The proof depends on two facts: the strong Borel structures on these
spaces are standard (Theorem Al) and their dual spaces are weak-star
separable. For I and A, weak-star separability follows from the separability
of these spaces. For S, weak-star separability follows from [37, p- 164, J(b)]
and the fact [F(1)] that S is a separable Fréchet space. For D', the result is
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obtained by applying [37, p. 164, J(b)] to the separable ’Fréf:het spaces D(K,)
defined after the proof of Lemma A3. Therefore D with the weak-star
topology is the inverse limit of a countable set of separable spaces and'hence
is itself separable. To complete the proof of Theorem A2, we next establish the

following result.

Lemma Ad. Let E be a locaily convex Hausdorff TLS whose dual is weak-star
separable and whose strong Borel structure is standard, Then the Borel sets of E
are the same in the weak as in the strong topology of E.

Proof. Let {f}7=, be a countable dense subset of E'. Let #~ be the denu-
merable collection of sets of the form

W ={xeE|a<fix)<B}

where x and f are rational numbers. (If Eris a iomplex ')I'LS, we must take real
and imagi its: otherwise the proof is the same. .
dn?h’:em;rg:::?(;\galhat W is a separating family in E in the sense that, given
x#y in E, there is an element We# such ;hat_ xe W and y.é W. By
linearity, it is enough to show that, for any z # 0 in E, there CX]SI'S a set
We "II-"’ with 0 € W and z & W. Suppose on the contrary that z € W for all
W e % such that 0 € W. Then in particular the sets

Wi = {x e E|—1/N <fx) < 1/N}

all contain z. Hence, f;(z) = 0 for all j. Since the f; are wea_k-gar densein E', it
follows that f(z) =0 for all fe E.Thusz=0,a COﬂﬂ'E}dlCllGn. .

Let & be the a-field generated by ¥ . Then (E, ¥) is sgparated (since the
family % is a separating family) as a Borel space. Let # b_e the o-field of
strong Borel sets in E. Obviously & :a:)'. \:e will show equality holds and so

i oving the lemma, and hence the theorem. ‘
ﬁnll.s:l F:rbe thi identity map from E with the Borel structure % to E with the
Borel structure €. Then i is an injective Borel mapping from a standard ].igrel
space to a countably generated and separated Borel space. By B(2),iisa
Borel isomorphism and so # = € as required.

The collection # in the last proof is a subcollection of t_he cylinder sets in
E. Hence, it is a corollary of the proof of Lemma Ad Fhat if a locally convex
TLS is standard and has a separable dual, then the window s_ets generate the
Borel sets. Since the spaces I', A,, §’, and D’ of primary interest for our
paper are standard and have separable duals, we can extract from the above
the following final result of this Appendix.
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T . s Np, ,and D', the (weak or Sfrﬂﬂg Bore]
sets dare generaled by a countable subcollection of the K.-"r.f'nchine h'fHdOJH set,
. f J.

Remark. Since this was written, we have learned that Fernique [11] ha
s

obtained results implying our Theore i i i
e rems Al and A2, using slightly different

Appendix B: Regular Probability Measures

Bl. Basic DEFINITIONS

The purpose of this Appendix is to correlate our definition of a ** reaular ™
pr?bapllity' measure in Section ILD with various related but more genaral
de_hnmons. due to Carathéodory [14], Mourier [41], Halmos [25] Befbee‘r
({3, 6]), Gnedenko and Kolmogoroff [23], and Gel'fand and Vil.enk' {:;ﬂ
The following terminology is basic. . "

. Dgimhon Bl. A measure on a set E is a g-additive, nonnegative real fune-
tion®" on a o-field # of sets B < E. Such a measure is called complete (or

“closed ™) when ud = i : i
o ;LEJ= ! nu Oand B 4 imply Be %, and a prebability measure

A probability measure u on a space E thus has two important properties
not possrssed.b.y general measures: y is finite and E is measurable.

These definitions follow Halmos [25, §7]; what we here call a “complete”
meafure, Gnedenk_o and Kolmogoroff include in their definition of a ** meas-
ure ™ [23, p.hl 7). Itis k[?own (125, p. 55, Theorem B], [5, Chapter 1]) that every
measure u has a smallest complete extension y, whi
ples il ¥, which we call the Lebesgue

Recall that the collection of Borel sets of a topological space X is the o-field
fio-;!algebra) 2 generated by the closed subsets of X. In [8] (and here), we have

efined a regular measure to be one which is the Lebesgue completion of a

measure defined on #. We shall now compare o it ;
i : ur defi
given by other authors. P efinition with those

B2. CARATHEODORY REGULARITY

'Cara'theOfiory, to whom the term *‘ regular ” measure is due, was concerned
primarily with locally compact separable metric spaces. In such spaces, every

7 1
s In the tex!. we he_wc occasionally used more general measures, e.g., signed and com-
Ec I. measures in Se:.:hon V‘. For these, see Rudin [45, Chapter 6]; many of the remarks
ow generalize easily to signed and complex measures.
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open set is a countable union of compact sets. As his basic concept was that of
an outer measure, some explanation is needed to correlate his definition with
ours.

Carathéodory [14, p. 238, I-IT] defined an outer measure on a set E as an
isotone, o-subadditive function u* defined for all S c E, such that p*@ = 0.
For any such outer measure u*, define J# = (1) by the condition that

M c E belongs to # if and only if
pH(A) = pXA4 0 M) + p¥ A4 a M)

forall AcE. (B1)

Then . is a o-algebra of subsets of E, and the restriction y of u*to fisa
complete measure. Carathéodory [14, p. 258, V] postulated the condition

p¥(4)= inf p*O) forall AcE, (B2)
C>A,CeH

which is purely measure-theoretic. Halmos [25, p. 52] calls such an outer
measure a regular outer measure. Such outer measures are precisely those
which are induced by a measure on some ¢-ring of subsets of the underlying
set E.

In addition, Carathéodory [14, p. 239, IV] postulated the following con-
dition relating measurability to the topology of E:

If inf d(x,y)>0, then p*(4 U B) = p*(4) + p*(B). (B3)
xeAd,yeB
He called an outer measure satisfying (B2) and (B3) ““regular”; we shall call
the associated measure Carathéodory regular; it is always complete. We next
prove?® that, in the locally compact spaces of interest to Carathéodory, his
notion of regularity and ours are closely related.

Theorem B1. Let E be a separable locally compact metric space. A o-finite
measure on E is Carathéodory regular if and only if it is an extension of a regular
measure on E.

Proof. First suppose yt is an extension of a regular measure on E.Let # be
the Borel algebra of all p-measurable sets; then # contains all Lebesgue
measurable subsets of E; i.e., all subsets which differ from a Borel set by a set
of p-measure zero. If we define the associated outer measure u* by

p*(4) = inf u(B), where A cE,
B2 A,Be®
then, since p is complete (and o-finite), the class ./ of u*-measurable sets
coincides with @& [25, p. 56]. Further, p* satisfies (B2) [25, p. 50]. Thus to

28 This corrects the result of [8, p. 666, Lemma 1}.
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show that u is Carathéodory regular, we need only verify that (B3) holds for
u*. Let A_and B_be subsets of E satisfying the conditions of (B3). Then their
closures 4 and B are disjoint. Let 4, B, and C, be elements of £ such that
Ay 2 A,B,oB,C, > A4v B, and

WA =p*(4), p(B)=p*B), p(C,)=pu*4 v B).

Such sets exist since (B2) holds and = p* on #. Let 4' = 4, n A n C, and
B'=B, nBn Cy; A" and B lie in # and they satisfy

Ac A < A= p¥(d) = p(4')

Bc B c By = u*(B) = u(B)
AuBc A UB cCy=>u*(4uUB)
=u(d’ v B').

Furt.her, since AN B=g, 4" nB = also, so u(4’ U B) = p(4’) + u(B).
Putting all these facts together, we obtain

H*(A U B) = p(4 U B) = p(4") + u(B) = u*(4) + p*(B),

as required.

Conversely, let u* be an outer measure on E defining a Carathéodory-
regular measure p. Let .# be the collection of u*-measurable sets. Since p is
known to be complete, it suffices to show that any closed subset of E lies in
. For then .4 contains all Borel sets, and so, by completeness, all sets which
differ from Borel sets by sets of u* outer measure zero. Hence u will be an
extension of a measure regular in our sense.

We first establish the following fact for p*:

A, TAcE implies u*(A4) = sup u*(4,). (B4)

Certainly p*(A4) > sup u*(4,). By (B2), given &> 0, there is an element
B, € # such that B, > A4, and u(B,?) < u*(4,) + ¢ for each n. Let C,* =
(k=B Since A, > A, for k=n,C;f> A, and C,°c A with u(C :I) <
u*(4,) + e Further, C\*c C,f<---. We let Ce) = | )2 ,C,F > A. B; tl;
countable additivity of u, u(C(e)) = sup u(C,?) < sup u*(4,) +& We let
C =ﬂf=1C(l/n). Then Ce A, C > A, and p(C) < sup u*(4,) + 1/k for all
k. This shows that p*(4) < u(C) < sup u*(4,), and we may conclude that
u*(A4) = sup p*(4,).

Now let C be a closed subset of E. Certainly u*(4) < u*(4 n C) +
y*(A n C’) for any set A. To show that C e .#, we must prove the reverse
inequality. Since E is a separable locally compact metric space, the open set
U = C’ = E\C can be written as a countable union of compact sets which can
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be taken to be increasing; U = | J;<,D,. Since D, is compact and C closed,
and D, n C = &, they lie at positive distances from one another. Thus

X A) = p*(A n (Cu D)) = p*((An C)u (4 n D))
=u*A4 0 C) + u¥A4 n D),

since A~ C and 4 n D, satisfy the hypothesis of (B3). Since D, 1C,
AnD,fAnC and hence p¥(An C’) =sup p*(4 n D,) by (B4). This
shows that

pHd) = p¥(4 0 O) + p¥A4 n C)

as required. The proof is complete.

B3. L-MEASURES

The following definition reduces to that of Mourier [41] when E is a
Banach space. Like Carathéodory’s definition and unlike our definition of a
regular measure, it fails to associate a unique probability measure to a
stationary Gaussian process with given continuous spectral matrix measure
(““ power spectrum ™).

Definition B2. Let E be a locally convex topological linear space and let E|
be its dual and p a measure on E. Then y is an L-measure when each element

of E’ is u-measurable.

In the following result, E stands for any of the spaces I', A, S’,or D.

Theorem B2. Let u be an L-measure on E. Then the completion ji of uisan
extension of a reqular measure on E.

Proof. Since jiextends pand p is an L-measure, so is fi. On the other hand,
by Theorem A2, the weak and strong Borel sets of E are the same, and, by
Theorem A3, they are generated by a countable collection %~ of window sets.
Moreover, since f is an L-measure, the Borel algebra (o-field) Z of all
j-measurable sets of E must contain #; hence, it contains the o-field (Borel
subalgebra) of sets generated by %". Hence 2 must contain all (weakly) Borel
sets of E.

We take the opportunity now to emphasize an essential difference between
measures “* regular™ in our very restrictive sense, and most other notions of
regularity, including those discussed in this and later sections: Theorems Bl
and B2 are typical. They assert that, for some theoretical purposes, 2 measure
is satisfactory if and only if it is an extension of a measure which is “regular™
in our sense. (The relevant * regular™ measure is of course unique.)
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As an important example, as was proved in [8, Part B], a stationary separ-
able Gaussian random function with given autocorrelation function deter-
mines a wnigue probability measure regular in our sense. For the more
general notions of regularity due to Carathéodory and Mourier, this result
does not hold. Similar remarks apply to perfect measures and to (probability)
measures regular in the sense of Halmos and Berberian, as we shall show in
the next two sections.

B4. HALMOS AND BERBERIAN

Where Carathéodory regularity refers to extensions of “regular” (pro-
bability) measures as defined by us, the emphasis of Halmos [25] and Ber-
berian ([5, 6]) in their discussions of “‘regularity ™ is on restrictions of such
measures. Perhaps because their deepest concern is with sets of finite Haar
measure in a locally compact topological group E, they do not even require E
itself to be measurable, a requirement which is certainly appropriate for
probability measures.

For their purposes, it seems most satisfactory to deal with completions of
Baire measures defined on the o-ring %, of Baire sets generated by the com-
pact G sets.?® They show [25, p. 228] that any such measure is automatically
regular in that it is both ““inner”” and “ outer ” regular in the following sense.

Definition B3. Let E be a topological space, and # a o-ring of subsets of E.
A measure p on # is inner regular when, for any Be 4,

uB = sup{uC|C c B, C ¢ #, C compact}. (B5)
1t is outer regular when, for any B € &,

uB =inf{uU|B < U, Ue &, U open}. (B6)

Completions of measures on the o-ring %, of strongly Borel sets generated
by the compact sets are inner regular if and only if they are outer regular
[6, p. 137]; whereas the Lebesgue completion of a measure on the set Z(Y) of
all the Borel sets B of a topological space Y, though “regular” in our sense,
may be neither inner nor outer regular.

However, there are important cases when measures regular in our sense are
also regular in the above sense. For example, a probability measure u regular
in our sense on any Polish space P is both inner and outer regular. For if 4 is

29 The assumption of [6, p. 137)], that u(S) = uS is finite for compact G, is trivially
satisfied by probability measures. What we here call a ** strongly Borel” set, Halmos and
Berberian call a * Borel ™ set.
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a p-measurable set, then B, « A < B,, where B,, B, are Borel sets and
p(B,\B,) = 0. By the results of Neveu [42, p. 64], then

p(A) = u(B;) = inf{u(U)| U open, U > B;}
> inf{u(U)| U open, U = 4} > u(4)
so that equality must hold everywhere; that is,
p(A4) = inf{u(U)| U open, U > 4}.
Similarly, we see that inner regularity holds,

p(A) = p(B,) = sup{u(K)| K compact, K = By}
< sup{u(K)| K compact, K c A} < u(4),

and so we are able to conclude that
u(A4) = sup{u(K)| K compact, K = 4}, (B7)

as desired. B
Thus, since T and A, are Polish spaces, a probability measure on one of

these spaces which is regular in our sense will be regular also in the sense of
Halmos and Berberian.

In Appendix A, we showed that S” and D" are standard Borel spaces. As we
remarked there, we actually showed more: we demonstrated that S’ and D'
were 1-1 continuous images of Polish spaces. We next establish a general

femma.

Lemma B1. Let P be any Polish space, and let X be any Hausdorff space
which is a continuous image of P. Then any probability measure on X which is
“regular™ (in our sense) is also both inner and outer regular, hence regular in

the sense of Halmos and Berberian.

Proof. Suppose P is a Polish space and f'a continuous bijection of P with
the HausdorfT space X. Then fis a Borel isomorphism. For the continuity of f
implies that the inverse image of any element of %y, the o-field of Borel sets of
X, is an element of #;, the o-field of Borel sets of P. And by result C(1) of
Appendix A and the fact that any closed subset of a Polish space is Polish, the
image under f of any closed subset of P is a Borel set in X. It follows at once
that the image under f of any Borel set in P is Borel in X. Finally, since f
is a bijection, f preserves all the Boolean operations on sefs.

Now let i be a regular probability measure on X and let & be the ¢-algebra
of Lebesgue measurable sets for y. The function f —1. X > Pis Bore! measur-
able, so we can define the probability measure u, on P by

ulA) = p(F(A)  for AeBp=1"(). (B9)
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Letting #' =f"'(#) and # be the o-field of sets M which are Lebesgue
measurable with respect to u,, we claim that ' = 4.

If B= A, where A€ ®p and py(4) =0, then f(A) e Bx and pu(f(4)) =
#(4) = 0. Since f(B) = f(A), f(B) is a subset of a set of y-measure zero
and so lies in #. Now f'is a bijection, so B ="' (f(B))ef  '(#) = #'. We
may conclude that .# < #'. Conversely, if B' € #’, then B’ = f~!(B), where
Be 4. Since Be #, we have B, « Bc B,, where B,, B, are in %y and
#(B;\B;) =0. Let B =f~'(B) for i = 1,2. Then B, B,’ lie in By, B, =
B’ <B,’, and u(B,"\B,") = u(B,\B,) = 0. Thus B’ € #, and so we have the
reverse inclusion &’ < /.

Thus the Lebesgue completion i, of u, is simply the extension of u, ob-
tained by using (B8) for all A in the Borel algebra & = f ~!(%) instead of just
fonj A in B, = f " '(%#y). The measure fi; so defined is, hence, a regular prob-
gblllty measure on the Polish space P. By our earlier calculations, j, is both
inner and outer regular. From this fact we now deduce that u is both inner
and outer regular. For B € 4, certainly

sup{u(K)|K < B, K compact} < u(B). (B9)

But /i, is inner regular, so, if 4 =f~'(B), then
W(B) = fi(A4) = sup{u(K)|K compact, K c A}
= sup{u(f(K))| K compact, K = A4 = f }(B)}.
pr sipce f is continuous, the collection {f(K)| K compact, K = 4} is con-
tained in the collection {K| K compact, K = B}. Thus
sup{u(f(K))| K = A4 compact} < sup{u(K)|K compact, K = B}.

The last two relations give us the reverse to inequality (B9), whence we
conclude that

u(B) = sup{u(K)| K compact, K = B}; (B10)

i.e., that g is inner regular.

. It now follows at once that u is outer regular. For let e > 0 and 4 € & be
given. Let B = X\A4. Then B € £ and so, by the inner regularity of y, there is a
compact set K = B with u(B) — u(K) < &. Now K is closed since X is Haus-
dorff. Let U = X\K. Then Uis open and, since K = B = X\4, U > A. Further-
more, u(U) — p(A) = p(U\A) = u(B\K) = u(B) — u(K) < e. Since ¢ > 0 was
arbitrary, we conclude

inf{u(U)| U open, U > 4} < u(A4).

The reverse inequality is trivial and outer regularity follows. This finishes the
progf of the lemma; since S’ and D’ are indeed 1-1 continuous images of
Polish spaces, we can conclude.
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Theorem B3. Any probability measureonT, A, S, or D’ which is *‘ regular”
in our sense is both inner and outer regular.

Conversely, the (Hausdorff) spaces I', A, S’, and D’ are all 6-compact, i.e.,
unions of countably many compact sets. This is evident from Lemma Al and
the proof of Lemma A2 in Appendix A. But now, if u is any inner reqular
measure on any o-compact Hausdorff space E, then p is defined on all com-
pact and hence (E being g-compact) on all closed sets of E. Hence p is defined
on all Borel sets of E and, if (Lebesgue) complete, u is an extension of a
measure on E which is regular in our sense. This proves

Theorem B4. Any complete measure on T, A,, S, or D' which is inner
regular is an extension of a measure which is ** regular” in our sense.

B5. PERFECT MEASURES

Around 1948, several disturbing measure-theoretic examples came to light.
One of these concerned a probability measure ¢ on a Borel field # of subsets
of a space X, and two real-valued p-measurable functions f and g such that

w(f 1A N g~ (B) = u(f T (g™ (B))

for every pair of Borel sets A and B in R, but not for any two subsets of R for
which the three probabilities are defined. For an account of these and other
pathological possibilities, see Blackwell [9] and the references given there.

Carathéodory’s notion of regularity, which was later refined by Halmos and
others into the conicepts of inner and outer regularity, is sufficient to avoid the
pathologies alluded to above. However, these notions have the defect of not
being purely set-theoretic: they are relative to an assumed topolegy on the
underlying space E.

To avoid pathological possibilities in a purely set-theore tic context,
Gnedenko and Kolmogoroff [23] introduced the following notion of a
perfect measure. Let (X, 4, y) be a measure space, and denote the extended
real line by R.

Definition B4. The complete measure u is called perfect if, whenever
f: X—R is a Borel function, the measure f[u] =u of ! defined on the
Borel sets of R is an outer regular measure in the sense of (B6) above.

Notice that this definition is independent of any topology X may possess.
According to Gnedenko and Kolmogoroff [23, p. 18], if X is a Polish space, if
& is a g-field that contains all Borel sets of X, and if y is a probability measure
on % which is complete in the sense of Lebesgue, then p is * perfect” if and
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only if it is outer regular on X in the sense of (B6). It follows from the results
of Section B4 that, if pis a probability measure on a Polish space that is
regular in our sense. then u is perfect. For as we showed, such a measure is
outer regular, and hence perfect from Gnedenko and Kolmogoroff's result
stated above. Thus regular measures on I' and A, are perfect. We now prove
that the same is true on S"and D', making use of the fact. proved in Appendix
A, that 8" and D’ are I-1 continuous images of Polish spaces,

If yt is a measure regular on a Hausdorfl space X which isa I-1 image of a
Polish space P under a continuous function f; then the measure Pp=gpef!
is also regular in our sense as we remarked in Section B4. But 1y is defined on
the Polish space P and therefore is perfect since it is regular. Now p is the
measure induced on X by the function f, Since f is measurable. and My is
perfect, it follows trivially from the definition of perfect measure that pis
perfect, Thus we have proved the following result.

Theorem BS. If a probability measure on any of the spacesT', A,, S, or D" is
regular in our sense, then it is a perfect measure.

Thus, due to the results of Gnedenko and Kolmogoroff about perfect
measures, we know that our regular probability measures on the function
spaces I', A,, S, and D’ avoid the pathological possibilities described by
Blackwell.

Appendix C: Cauchy Problems Which Are Statistically but Not Deterministically
Well Set

We describe here some Cauchy problems which are statistically well set
without being deterministically well set. Sharper and much more general
results can be proved; our aim here is simplicity.

Consider the vibrating string equation in the form

l), . uxx ’ (Cl)

on the unit circle K. The system (CI) defines an abstract Cauchy problem
[26, p. 387] on the Hilbert space H = I3(K) x I*(K) of all square-integrable
function-pairs (#(x), v(x)) under the norm

16 0 = {] 112 + o) 7). ()

The infinitesimal generator for this Cauchy problem is the unbounded linear
operator

u|=l),

0o I ]
L=[D2 0], where D=$. (C3)
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A (strong) solution for given initial w® = (1°, v°) € H is a continuous curve in
H’

o [10]

whose derivative exists and satisfies

w'(t) = lim {w(t + At) — w())/At = B w(r)
At=0

for all 1 > 0, and for which
. _ u© cs
ltl:':;l w(t) = [U(O)] . (o))

By the Riesz-Fischer theorem, H can be identified with the space of all
square-summable pairs of Fourier series

ag + i(a cos kx + by sin kx)
w(x) — [M(X)] — B k=1 ¥ ) ; (C6)

u(x) ©
o + Y, (o cos kx + By sin kx)
k=1

Formally, the solutions of (C1) have the form

(ap +agt) + i {a(t) cos kx + b, (t) sin kx)
w(t) =w(x,t) = = ; ((84)]

oo + i {oy(t) cos kx + B, (1) sin kx)
£=1

where, for k > 0,
at) = a, cos kt + (o /k)sin kt
by (t) = by cos kt + (B,/k)sin k¢
o (t) = —ka, sin kt + o, cos kt
Bi(t) = — kb, sin kt + B, cos kt.

(CT)

Evidently, the (pure) Cauchy problem defined by (Cl) is not deterministically
well set in H because, as was observed in [7, Part V, Example 4], the amplifi-
cation factors of the Fourier components of solutions are unbounded; hence,
the mappings T, = ' have unbounded norms and so are not continuous
(do not define a Cy-semigroup).

We shall now define a class of regular measures z on H for which the system
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(C1) does, nevertheless, define a statistically well-set Cauchy problem. To thig
end, let M be the Borel subset of elements of the form (C6) for which

Y k*a? + b < o, 2 K@ + i) < oo, (CB)

where Y means Y ;. Then M is a dense subset of H as defined above.

Theorem C1. The Cauchy problem (C1) is statistically determinate in H for
any initial regular probability measure p with y(M) = 1.

Proof. The Fourier series (C7)-(C7’), which satisfy (C8), yield strong, classi-
cal solutions of (Cl); for the details, see, for example, A. N. Tychonoff and
A. A. Samarskii, ““ Partial Differential Equations of Mathematical Physics,”
Chapter 2, Holden-Day, 1964. This proves existence; uniqueness is easily
shown since the sin kx components of any weak solution of the Cauchy prob-
lem in H must satisfy, for the L of (C3),

b/ =B, B O=-kb() (k=123..), (C9)

and so b,(t) and B,(f) must be given by (C7’). Similar formulas hold for the
cos kx components. (Actually, the sine components by themselves give the
mixed Cauchy problem of the vibrating string.) This completes the proof of
Theorem Cl1.

We now come to the main point: the construction of a nonvoid subset of the
probability measures of Theorem C1 for which the initial value problem CI is
statistically well set. For simplicity, we shall do this only for the mixed
Cauchy problem defined by the pure vibrating string, thus setting the coeffi-
cients of cos kx equal to zero.

Specifically, let {o,} and {r,} be sequences of positive numbers such that

Y k*o? < o0 and ) k%2 < 0. (C10)

For example, we might take g, = 1, = k~>. We then consider the sine series
with random coefficients [33] defined [cf. (C6)] by the initial conditions

w(x) = [u(x)] _[Y b sin kx]

v(x)}| By sin kx|’
where b; and B, are independent real Gaussian random variables with means
b, = B, = 0 and variances b,> = 6,2 and 8,2 = 7,2, respectively.

These conditions define a normal probability measure on H; for the details,
see [43, Chapter 6]. Moreover, if M < H is the set defined by (C7), then
u(M) = 1 and the Cauchy problem is statistically determinate for the reasons
given above. The measure y is regular; moreover, since each o, and 7, is
positive, u(U) > 0 for any open subset U < H.

(Cl11)
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Theorem C2. The (mixed) initial value problem for the vibrating string is
statistically well set in H for any normal probability measure p which satisfies
(C10) and is constructed as above, and M as defined by (C8).

To complete the proof that the preceding (mixed) Cauchy problem is
statistically well set, we need only show that (3.20) holds. Further, since
w(U) > 0 for any open set U = H, the set W of measure zero referred to in
Section III.D is empty. We shall now prove (3.20), slightly changing the
notation of (C11) (in which now a, = o, = 0), by replacing the b, of (Cll)asa.

Lett > 0, ¢> 0, and 77 > 0 be given, and let

Iy o sinkx
Wo(x) = [): B, sin kx]

be a fixed initial value in M. We shall show that, for § > 0 sufficiently small,

u(lwix, 1) — wolx, DIl = 1| llwx) — we(x)ll < 8) <, (C12)

where wq(x, ) is the unique solution of the Cauchy problem (C1) with initial
value Wy(x) and, similarly for w(x, 1), the solution associated with the random

initial condition
_[Yasinkx] _ [ux)
i = [Z bysinkx| — [v(@)]’

under the probability measure p. Here we can assume that we M since
#(M) =1, and hence w(x,1) is well defined by (C7). Also u(4|B) =
2(A m B)/u(B) is the conditional probability of the set A given the set B,
which exists since any open set has positive probability in this case.

But now, in H, by definition,

w(x) — wo(x)||2 = Z (a — ak)z + Z (b — ﬁk)z
and
w(x, £) — wo(x, DI1> = ¥ [(a, — o) cos kt + k™' (b, — Bi) sin kt)?
+ Y [(bx — i) cos kt — k(a, — ay) sin k2.
From these relations, one sees easily that it is sufficient in proving (C12) to
show that, for é > 0 small enough,
#(Z k*(a, — ak)z = Clz [(a, — “k)z + (b — Bk)z] < 52) <ég,

where { can be taken to be n?/2 for & sufficiently small. In the following,
which is the key to the examples constructed here, we show that this can be
done, thus completing the proof of Theorem C2.

To simplify the formulas, let ¥ =Y k*(a,—%)* and Z = Y@, — @)?
+ (b — Bi)*]- Let p; denote the probability u conditioned on the set B; =

(C13)



114 G. Birkhoff, J. Bona, and J. Kampé de Fériet

{Z < 6%}. In this notation, (C13) becomes: for § > 0 sufficiently small, prove
that

wp(Y=90<e. (C14)

To prove this, let E; denote expectation with respect to p;, i.e., the condi-
tional expectation on B;. We will now show that E(¥Y)— 0 as § | 0. It will
then be easy to deduce (C14) for 4 sufficiently small, completing the proof of
Theorem C2.

Lemma C1. E4(Y) converges to zero as 6§ | 0.

Proof. By the monotone convergence theorem, Ey(Y) =
Now clearly,

Z sz&([ak = ak]Z)-

E,([a, — “k]z) <é?
and

Ea([ak - 0(k]z) < E([ak - ak]Z) = O'kz + akz.

The first inequality holds since [a, — «,}* < 62 on B, and the second because
the restriction to a sphere with center w,, can only decrease the expected value
of [a, — o}>. More precisely, the second inequality results from Fubini’s
theorem combined with the inequality

f Xdv<P(X< a)f X dv, (C15)

X=<a ]

for a nonnegative random variable X on the real line and regular probability
measure on [0, oo]. The inequality (C15) asserts the plausible result that the

expectation of X, restricted to the set {X < a}, is less than the expectation of X.
This follows since

w 1
X dv=P(X < a)| ——— RS-
f,xar=px< “)[P{X <o l.X d”] RO “)[P(X = e X d”]
(C16)
Clearly,
1 [ xa Xd
P(X < a) Jx<a P(X Jp., "
so (C16) becomes
“Xdv=[P(X <a)+P e
j’o v>[P(X <a) + P(X > a)]P{X ol xa

from which (C15) follows since P(x < a) + P(x > a) = 1.
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Let A > 0 be given. By (C8) and (C10), we can choose N so large that

Y kol<i and Y Ko<

N+1 N+1

N
Then if 6 < /(3 k?), we have
1

Ey(Y) = ¥ KEy(lag - ) + )f K2Ey([ax — @)

<Zk252+ Z k(o2 +o2) <34,

N+1

and, since A can be made arbitrarily small, Lemma C1 follows.

Now we can prove (C14) very easily. Apply Markov’s inequality (Loéve,
“Probability Theory,” 3rd ed., p. 158) to the random variable Y and the
probability y;, obtaining

1s(Y = ) < (1/0EKY). (C17)

The left side of (C17) is exactly the left side of (C14), while the right side of
(C17) tends to zero with § by Lemma C1; hence, it can be made less than ¢
for 6 small enough. This finishes the proof of Theorem C2.

Actually, the assumption that each coordinate function b, or B, is non-
degenerate Gaussian is not necessary. In fact, by using Theorem 3.3 in
Section ITI.D and the regularity of u, we need only assume (C10) and that the
coordinate functions are independent random variables.

Finally, the proof of Theorem C2 has a straightforward extension to the
pure Cauchy problem for (C1) on L,(K).

Appendix D: Existence of Normal Measures with Given Covariance

We now establish Theorem 5.6 from Section V.E, for tempered distributions
over Euclidean n-space R” = X; for convenience we first restate this result.

Theorem 5.6. Let T =| T ;|| be a (g x q)-matrix of continuous sesquilinear
forms on $(X) x F(X), which is of positive type in the sense of (5.23). Then
there exists a unique normal admissible probability measure y on the Borel
sets of S'(X), whose mean is zero and whose covariance is .

Proof. For g =1, and the “weak” Borel sets of D'(X), uniqueness is
proved by Gel'fand and Vilenkin in [22, pp. 248-50]; their method is to show
that if u and v are two such probability measures, then p(S) = v(S) on any
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cylinder set S and hence in the g-field generated by cylinder sets—which is the
o-field of weak Borel sets.

The same argument can be used for §'(X) when g > 1; it proves that u(S) =
¥(S) for any cylinder set in S’(X). Since the weak and strong Borel sets are the
same in S'(X) (see Appendix A), this proves the uniqueness statement of
Theorem 5.6. (See also [18, p. 71] for the case X = R.)

When g = 1, Gel’fand and Vilenkin also prove the existence of such a prob-
ability u in 2'(X); we sketch the (trivial) adaptation of their argument to
&'(X). First, define u on the cylinder sets of &’(X) in the only possible way
[22, p. 337]. The remarks of [22, p. 339] explain how to extend this definition
to a possibly degenerate covariance T, i.e., one for which equality is possible
in (5.22) for some nonzero ¢, z. Then observe that, by the nuclearity of
F(X) [52] and a deep result of Minlos [22, p. 315], u can be consistently
extended to a countably additive probability on the weak (=strong) Borel
sets of &'(X).

Similar arguments can be applied when g > 1. Let I’ = ||T;|| be a given
g x g continuous, sesquilinear form on ¥ (X) x $(X) in the strong topology.
But, now S’(X) is the dual space of (continuous linear functionals on) S(X),
and S(X) is the space of column g-vectors f, g, ... with components f;, g, ...
in &#(X). Hence the sum

K(.9)= 3 3 Tlfis 0 (D1)

is a continuous sesquilinear mapping K: S(X) x S(X) — C of nonnegative
type, since I' is continuous, sesquilinear, and of nonnegative (positive
semidefinite) type. [Sesquilinearity and nonnegativity follow immediately on
specializing z and Z in (5.22) and (5.23), respectively.]

These observations reduce the problem to the one-dimensional case. In this
case, we again define a measure u on the cylinder sets of S'(X)ason [22, p. 337],
with respect to the K of (DI)—or on the cylinder sets of a suitable closed
subspace S, if Kis degenerate; see again [22, p. 339]. Since $(X) is nuclear,
so is S(X). Therefore S'(X) is the dual of a nuclear space and the criterion of
Minlos [22, p. 310] applies once more. (In the degenerate case, we must use the
fact that any quotient space of a nuclear space is nuclear and the remarks of
[22, p. 339] to justify the application of Minlos’s criterion.) Thus, to prove that
u extends to a countably additive probability on the weak (=strong) Borel
sets of S'(X) whose covariance is I, we need only show that, given 4 > 0,
e > 0, there is a neighborhood U of 0 in S(X) such that, for all fe U,

wUG E) = u({Te SX)| KT ] = 4}) <e, (D2)

where E ={ze C||z| > A}. This asserts the continuity of u(f; E) at 0 for
J€ 8(X). Note that (D2) is easily established in the present context since T,
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and therefore KX, is assumed to be continuous for the topology of S(X); the
proof consists of writing down u(f; E) in coordinate form.

This implies the existence of a unique probability measure x defined on
the Borel sets of S'(X) such that

K(f,9) =fs’(x)<U'f><U'g>* du(U). (D3)

Here (U-f>=% Uy(f)) as in (2.9); i.e., { ) expresses the duality between
S(X) and S'(X). Further, u is normal and has mean zero (and is regular and
admissible), considered as a probability measure on the space of £, g [which
is one copy of $'(X)].

It remains to transfer these properties from K(f, g) to I, ¥), thus
proving the following lemma. :

Lemma D1. The probability measure u in (D3) is admissible, normal, has
mean zero, and yields a continuous sesquilinear cavariance matrix T.

To achieve this transfer, we let ¢, i € &(X) be given, together with j and
k, and define f, g € S(X) by

fi=d,  fi=0 if %]
g =, g,=0 if I#k. (D4)
Then, from (D1I),
K(f,9) =T(¢,¥); (D5)

moreover, by (D3), we also have

K(fig)= [ <U-F3CU-g>* du(v)

5’
= [y, UA®) Ui* duv). (D6)

Combining (D6) and (D5),

T W) = [ Uf$) U)* du(v),

§'(X)

showing at once that y is admissible and has covariance T".

Again letting f'e S(X) be as in (D4), we see that, since 4 has mean zero for
the pairing ¢ ), then

0= WU-Hduv)=T U du), (D7)
5(X) S'(X)

and, since ¢ € ¥(X) was arbitrary, we see that i has mean zero.
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Finally, we show that y is normal. First y is normal for the pairing < ).
Hence if ', ...,f" are elements of S(X), then the measure u(ft, o M%)
defined on Borel sets E of C" by

u(f's .S E)= p({Ue SQOIKU [, ....KU-fM)eE})  (D8)
is normally distributed. Now let ¢ # 0 in &(X) and take r =g and
0

jthrow, i=1,...,q. (D9)

fi=|é
0
Then

(UeS XU f,....<UfH)eE}
— (UeSX)|(Us(@), .-, Uf$) € E}. (D10)

Hence the following measure has a multivariate normal distribution in C%:

u(f, .., f%5 E) = p({Ue S'X)|(U(@), .-, Uy(d) € E})
= u(¢; E), (D11)

which shows that g is normal. This finishes the proof of the lemma and the
proof of Theorem 5.6.
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