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Synopsis

The existence and certain qualitative properties of travelling-wave solutions to the Korteweg-de
Vries-Burgers equation,

u,+ uu, +du, —eu, =0,

are established. The limiting behaviour of these waves, when € tends to zero and when § tends to zero
is examined together with a singular limit wherein both € and § tend to zero.

1. Introduction
The Korteweg-de Vries equation,
u, +uu, +du,,, =0, 1.1

posed for x eR and t= 0, has been proposed as a model for small-amplitude, long
waves in many different physical systems. It incorporates effects of dispersion and
of nonlinear convection and has here been written relative to coordinates travel-
ling to the right at a normalised speed one. This equation, or its near relatives, has
been shown to yield good qualitative predictions of various observable
phenomena (cf. [11], [21]). However, to effect quantitative agreement of predic-
tions with experimentally obtained data, dissipation may need to be accounted
for, at least approximately. Dissipative mechanisms corresponding to physical
systems for which (1.1) may serve as an approximate model are disparate and not
always well understood. Accordingly, the equation

u,+ uu, +8u,,, —eu, =0 1.2)

has gained some prominence in studies where the practical need to model
dissipation arises (cf. [5], [10], [13], [14], [15]). Here ¢ and & are positive
parameters. We shall refer to this model equation as the Korteweg-de Vries-
Burgers equation (KdVB equation henceforth, the Korteweg-de Vries equation
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itself will be abbreviated as KdV equation) since it represents a marriage of the
Korteweg-de Vries equation and the classical Burgers equation,

u, + uu, — eu, = 0. (1.3)

A number of theoretical issues concerning (1.2) may have potential bearing on
its ultimate applicability as a mathematical model. Here consideration is given to
the travelling-wave solutions to (1.2), which are solutions of the form

u(x, ty=S(x—ct; ¢, 8), 1.4)

where ¢ is a fixed positive constant. Despite their very special nature, such
solutions are understood to play a significant role in the evolution of a large class
of initial profiles for both (1.1) and (1.3). A similar situation may well obtain for
the KdVB equations, though this is conjectural at present (cf. [7]). (Other
theoretical issues relating to the KdVB equation have been addressed in [1], [5],
[6], [7], [13], [16], and [19], for example.)

The travelling-wave solutions of the KdVB equation that are discussed here
have already attracted some attention. We point especially to Grad and Hu [10]
who studied what amounts to our equation (2.6) in the context of weak shocks in
a cold plasma. Johnson [14] suggested equation (1.2) as an approximate model
equation for waves in physical systems in which the weak effects of nonlinearity,
dissipation, and dispersion are present. He was especially interested in the
travelling-wave solutions and developed formal asymptotic expansions for the
particular regimes where e« 8 and where §<«¢. Interesting and suggestive
numerical calculations concerning the KdVB equation with especial focus on the
travelling-wave solutions were reported by Canosa and Gazdag [7]. Particular
aspects of their study will be referred to later. Mention should also be made of the
brief but incisive remarks of Whitham [20].

The present study goes beyond these earlier works in several respects. First, the
rigorous mathematical issues are clarified and set in good order, especially as
regards the uniqueness of these special waveforms. Second, supplementing the
work of Johnson mentioned above, the behaviour of S in the limits ¢ { O or 8 | 0
is analysed.

The paper comprises seven sections including the introduction. Section 2 is
devoted to establishing the existence and uniqueness of the solutions to (1.2)
having the form (1.4), and corresponding to given positive values of c, € and 8. In
Section 3, certain qualitative aspects of these solutions are proved, following on
the remarks in the earlier works mentioned above. Sections 4 and 5 delve into the
limiting behaviour of S(-; ¢, 8) as € | 0 and as § | 0, respectively. In Section 6, the
limiting form of S(-; ¢, 8) as e and & tend to zero is addressed, whilst Section 7
contains some brief concluding remarks. A more detailed view of the outcome of
the forthcoming analysis is given below.

Note that the function S necessarily satisfies the ordinary differential equation

—¢S'+88'+685"—-eS8"=0. (1.5)

Existence and uniqueness is established by global analysis of a vector field
associated with (1.5). For fixed positive values of € and & it is proved that (1.5)
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has a unique bounded solution S = S(§) = S(&; &, 8) such that

St =§lir£1 S(¢) and Sy =§1i1£1 S(¢&) (1.6a)
exist. The function S then also satisfies the additional asymptotic conditions
lim S9)=0, j=1,2,3,.... (1.6b)
|E]——+oo

Here, S® denotes the j-th derivative of S with respect to = x —ct and the two
asymptotic states S; and Sy are restricted by the requirements that ¢ > Sg and
S. +Sg =2c.

An analysis of the linearisation of equation (1.5) around the critical points of
the associated vector field yields information about the geometry of these solu-
tions. If dissipation dominates, in the precise sense that

e2= 4y (1.7)

where y = ¢ — Sg, then S resembles the familiar monotone travelling-wave solu-
tion of Burgers equation (1.3). If dispersion dominates, in the sense of the
negation of (1.7), then S has an oscillatory character as £— —o found commonly
in the theory of weak undular bores (cf. [15], [18], [20)]).

For fixed positive 8, S(¢; €, 8) converges to a solitary-wave solution,

Sg +3v sech? [(%)i(x—xo—ct)], (1.8)

of the Korteweg-de Vries equation (1.1), as ¢ 1} 0. Here v is as above and x,
specifies the location of the wave’s crest at t = 0. This convergence is somewhat
subtle because of the oscillatory nature of S when e « §, and because the KdV
equation itself does not admit a travelling-wave solution having distinct limits at
T oo,

For fixed £>0, the limiting form of S as & |0 proves to be the usual
travelling-wave solution to Burgers equation with speed of propagation c,
namely,

SR+7{1—tanh [g (x—xo—ct)]}. (1.9)

If £ and & are both allowed to tend to zero, but in such a way that the quotient
8/e? remains bounded, then S tends to the step function x given by

S;, for £<0,

x()= {SR, for ¢>0.

The function x(x—ct) is the well-known, weak, travelling-wave solution to the
conservation law u, +uu, = 0.

It is worth noting that the results concerning travelling-wave solutions to the
KdVB equation obtained in this paper go over without essential change to the
alternate model equation

U, + Uy + Uy, — Sl — £l =0,

derived in [3] and [18], and which was the focus in [5] of an extended comparison
of numerical predictions and experimental observations in a wave tank.
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2. Existence and uniqueness of the travelling wave

Here the fundamental question of the existence and uniqueness of a travelling-
wave solution to (1.2) is addressed. It will often be convenient to suppress the
dependence of a travelling wave S = S(£; ¢, 8) on & and 8, by writing simply S(¢).
As was already noted, S satisfies the equation

—cS'+8S5'+88"—eS"=0, (2.1)

where ' denotes differentiation with respect to ¢ = x —ct and ¢ >0 is the speed of
propagation of the wave. A search will be initiated for a bounded solution to (2.1)
joining states S; and Sg. That is, S will be determined so that (1.6a) holds. It is
useful to normalise S by defining

s(§) = 5(£) - Sk (2.2)

It follows immediately that
~(c—=Sg)s'+s5"+ 85"~ es” = 0.

If we define y = ¢ — S, this latter equation has the same form as equation (2.1)
with vy playing the role of c. Thus equation (2.1) may be represented as

—ys'+ss'+ 85" —es"=0. (2.3)

For s, the limiting conditions at infinity are

Elin_l s(§)=s50=5; —Sg and Elilll s(&)=0. (2.4)
The conditions '
|g}inl s =0, j=1,2,3,.... (2.5)

corresponding to (1.6b) will also be imposed. (In fact, (2.5) follows from (2.3) and
(2.4) as we shall see.) Notice that if s, s’ and s” vanish at +c0, then by integrating
equation (2.3) over [y, »), it is confirmed that (2.3) is equivalent to

—ys(y)+35%(y)+8s"(y) — es'(y) = 0. (2.6)

LemMA 1. Let s be a non-constant solution to (2.3) satisfying (2.4) and (2.5).
Then v>0 and sy=2+.

Proof. In equation (2.6), let y— — to obtain
—ySo+3s2=0.

So, either so=0 or so=2v. Now multiply (2.6) by s’ and integrate the result over
R to reach the relation

o s dy=tusi-iss .7

in which the left-hand side is inferred to be bounded since the right-hand side is
bounded by assumption. Note that if s,=0, then s’(y)=0 for all y, 80 5 is a
constant function, contrary to hypothesis. Therefore, it must transpire that
5o =2+, whence, from (2.7),

0< ej s'(y)* dy =3v>.
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Thus vy must be positive and the lemma is established.

CoROLLARY 2. Let u(x, t)=S(x—ct), ¢>0, be a travelling-wave solution to
(1.2) that satisfies the asymptotic conditions (1.6a) and (1.6b). Then

Sy —Sr=2y=2(c—Sr)>0, (2.8)
or equivalently
¢>Sg and S;+Sgr=2c (2.9)

Remark. In what follows, it will always be assumed that (2.9) holds. Thus, for
(2.3) it is presumed that y>0 and that so=2v.

The following result will be used several times in the subsequent analysis.

Lemma 3. Let s be a non-constant solution to (2.6). Suppose s'(&;) =0 for some
& in R. Then &, is an isolated extreme point of s and

(1) s(&) is a local minimum of s if s(&) €(0, 2vy), while

(ii) s(&) is a local maximum of s if s(&) €10, 2v].
Moreover, if s has a local maximum at a point £, where s(&,)<0, then s(&) <s(¢&,)

for all £+ &,.
Proof. If s'(£5) =0, then from equation (2.6),

85"(&o) = s (&) — %32('50)-

Therefore, s"(£&,) <0 if s(&) €10, 2vy] and s"(&p) > 0 if s(&) € (0, 2y). If s7(&,) =0,
then s is constant, contrary to hypothesis. Thus &, is an isolated extreme point and
(i) and (ii) are valid.

Suppose s has a local maximum at ¢; and s(&;,)<0. From above, &, is an
isolated local extremum. If the desired conclusion is false, then there is a point £,
closest to &; where s(&,) = s(&,). Somewhere in the interval between £, and £, s
must take a local minimum value, which contradicts (i). The proof of the lemma is
complete.

Because of the asymptotic conditions in (2.4) and (2.5), equation (2.3) is
equivalent to equation (2.6). Following Johnson [14], we define an auxiliary

dependent variable r=8s'. Then (2.6) is equivalent to the first-order system
¥=g (2.10)
r'=+ys+ed lr—1s? ’

The system (2.10) has just the two critical points (0,0) and (2v, 0). The eigen-
values of the system (2.10), when linearised about (0, 0), are

Ax=[e £ (e*+4758)1]/28, (2.11)
and the eigenvalues of the system, when linearised about (2A, 0), are

Ay =[e £ (e —4v5)3)/28. (2.12)

Thus (0, 0) is always a stable saddle point while (2+, 0) is a nodal point if 2= 4y
and a spiral point if €2<4v8. Since y >0, Re (A,)>0, regardless of the relative
sizes of ¢ and 8, and so (2, 0) is always unstable.
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Let ® be any bounded orbit of the system (2.10). We inquire into its
asymptotic states at + and —, its » and « limit sets, respectively.

First note that (2.10) admits no non-constant periodic solutions. For if (s, 1) is
a solution to (2.10) that is periodic of period p>0, then s, is a periodic solution
to (2.6). Multiply (2.6) by s}, and integrate the result over a period. By periodicity,
all terms integrate to zero except one, and so there remains the identity,

2]
s'[ si(y)*dy =0.
4]

It follows that s, is constant, and so (s,, r,,) is just one of the two critical points.

Because there are no non-trivial periodic solutions to (2.10) both the w limit set
and the « limit set must contain critical points of the system. (They might also
contain orbits connecting critical points, but that is easily excluded here as will
presently become apparent.) Since these sets are connected, they must each
contain exactly one critical point, and hence the orbit must tend asymptotically to
a critical point, both at +c and —«. It follows from (2.10) that the asymptotic
conditions (1.6b) pertain to this orbit. The limits at o cannot be the same, for
this would lead to a solution S to (2.1) with S; = Sg, which possibility is excluded
by Corollary 2. Hence any bounded orbit of (2.10) necessarily connects the critical
points (0, 0) and (2v, 0). Since (0, 0) is stable and (2, 0) is unstable, # must tend
to (0,0) at + and to (27, 0) at —. Moreover, since (0, 0) is a saddle point, the
general theory pertaining to such systems implies that there are exactly two
semi-orbits of (2.10) that converge to (0,0) as £€—+, and they both approach
the origin at the angle whose tangent is SA_ (cf. [8, chapters 13 & 15] or [12,
Chapter VIII]). That is, up to a translation of the independent variable ¢, there
are two solutions (s(&), r(£)) to (2.10) such that (s(£), r(£))— (0, 0) as §—+oo, and
for each of these solutions,

m 1€
Jim_ [s(g)] =8\ (2.13)

One orbit approaches the origin from the fourth quadrant Q.= {(s, r): s>0, r<0}
in the phase plane whilst the other approaches through the second quadrant
Q,={(s, r): s <0, r>0}. According to the above analysis, the continuation of one
or the other of these semi-orbits to all £€R provides the only possibilities for
bounded orbits. Consequently, if it can be shown that exactly one of these orbits
is bounded, the following theorem will be established.

THEOREM 4. Let v, 8 and € be given positive numbers. There exists a unique
bounded orbit R of the system (2.10) corresponding to these values. Moreover,
R <{(s,r): 0<s <3y} and R tends to (2v,0) at — and to (0,0) at +x.

Proof. Let (s(£), r(£)) be a solution to (2.10), defined at least for large values of
¢, that corresponds to one of the two semi-orbits that approach the origin. Since
both s(£) and r(¢£) tend to 0 as £—>+o, it follows from (2.10) that s'(¢) and
(&) = 8s"(¢) both tend to 0 as £— -+, A straightforward induction confirms that
sV(¢)—0, as £—>+oo, for all j=0.

Since (s(&), r(£)) satisfies (2.10), s satisfies (2.6). If equation (2.6) is multiplied
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by s’ and the result integrated over [y, ®), we obtain
bistyP b5 = e $'O7 de+3s0)" 219
Y

It is known from Lemma 3 that the zeros of s’ are isolated. Hence the integral is
strictly positive for any value of y for which s is defined for all {¢=y. Therefore,

for any such vy,
ys(y)*—ss(y)*>0,

from which one concludes that s(y)<3+y and that s never vanishes.

Consider the orbit &, that approaches (0, 0) from Q,. For large values of &,
s(£)<0. Since s never vanishes, this orbit must have s(£)<<0 for all ¢ for which
the solution is defined. Hence, this orbit cannot converge to (2, 0) as ¢— —, and
in consequence of our previous remarks it cannot be bounded.

The only possibility for a bounded orbit thus lies with the semi-orbit rep-
resented, say, by (s(£€), r(¢)) that approaches (0,0) from Q,. Since s(§)>0 for
large ¢, it follows that s(¢§)>0 for all £ for which the solution is defined. Thus
s(€)€ (0, 3v) for all £ over which s extends.

The system (2.10) is locally Lipschitz and thus it is assured that R can be
extended either over all £¢€R or until it becomes unbounded. As s(§) is already
known to be bounded, if r can be shown to be bounded the theorem would
follow.

First it is claimed that r(£) = —8y2/2e, say, for any £ Suppose this not to be the
case and let —pu <—8y?/2¢. Then, because r(£)—0 as £ — +x, there is a largest &,
where r(&,)=—u, and for £> &, r(¢)> r(£,). In particular, r'(§)=0. But from
(2.10).

r'(éo) = e87r(&o) +vs(éo)— %S(fo)z
= —eud M+ ys(€o) —3s(&)* = —epd T +3y? <0,

a contradiction. A similar argument shows that r(£) <3v28/2e, for all £ Suppose
this not to be true and let &, be the largest value for which r(¢;)= 3v28/2¢, so that
r(&)<r(&,) for ¢> ;. Of course, r'(£,) =0, but, on the other hand, since s <3y,

r(£) = e87r(&;) +vs(£) — 38 (1)
. %Y2+ vs(€1)— %s(§1)2> 0,

a contradiction. Thus the orbit & is bounded, and so defined for all ¢eR and
convergent to (2v, 0) as £{— —. It follows as before that s9’(¢)—0 as £ — —oo, for
all j=1. The theorem is proved.

This theorem is reinterpreted in terms of the problem to which attention was
originally directed.

COROLLARY 5. Let €, 8 and ¢ be given positive constants, and suppose that ¢, Sg
and S, satisfy (2.9). Then, up to translation in the independent variable &, there is a
unique solution S(£) to (2.1) satisfying the asymptotic conditions (1.6a). Moreover,
S also satisfies the additional boundary conditions (1.6b).

Proof. Let y=c—Sg as before. By Theorem 4, there is a unique (up to
translations) solution (5(¢), F(£)) to the system (2.10) such that §(§)—0 as £ >+,
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and §(§)—>2y as £— —. Moreover, §9(¢)—0 as |¢|—>, for all j='1. If S(¢)=
§(¢)+ Sg, it follows that S(¢) is a solution to (2.1) satisfying both (1.6a) and (1.6b).
If S is any solution to (2.1) satisfying (1.6a), let s(£) = S(£)— Sk as before. Then s
satisfies (2.3) and (2.4) with so=2v. We may write (2.3) as

d
pY: (—ys +1s2+ 85"+ es') =0,

whence it follows that there is a constant w such that
~ys+3s%+ 85" —es’ = p. (2.15)
If w=0, then s is a solution to (2.6) and therefore

{(s(8), s'(8)): —o< g <o}

is a bounded orbit of the system (2.10). We know there is only one such orbit by
Theorem 4, so after a translation of the independent variable, s = §, whence S=S.

The corollary will be in hand if it is adduced that u must be zero. Since s(£)—0
as £ —+oo, (2.15) implies that

dig (8s'—e5)=8s"—ges'—>p,
as {—+ow. Suppose u # 0. For sufficiently large &, 8s"(¢) —es’(£) will be bounded
away from zero. Hence for large enough £ 8s'(¢) — es(£) is either bounded below
by v or bounded above by -—v¢, for some positive constant », depending on
whether >0 or u <0, respectively. Since s(£)—0 as ¢ — +oo, it follows that s'(£)
is either bounded below by v£/28 or above by —v£/28, say, for large enough & But
if £>,

3
s©)-st)= | s ar
)
By letting £ — 4+, we obtain

s(y)= —J s'(r) dr.
y
However, the integral is plainly divergent, in the light of the upper or lower
bound on s’. We thus reach a contradiction, and so conclude that u =0. The
corollary is now established.

3. Geometry of the travelling wave

A more detailed description of the travelling-wave solution to (1.2) will now be
given. It will be shown that if dissipation dominates, in the sense that £2=4v8,
then S decreases steadily from S; to Sk as ¢ increases. Whereas, if dispersion
dominates, in the sense that 4y8 > ¢2, then S is monotone decreasing and convex
as £— +oo, but oscillates infinitely often as £— —. This geometric information is
deduced using a global analysis of the vector field associated with the system
(2.10).

THEOREM 6. Suppose = 4vy8. Let s(¢)=s(£; &, 8) be the unique solution to
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(2.3)-(2.5). Then, for all (R, 0<s(£)<2y, and s'(£) <0. Moreover, there is a
unique inflection point py of s such that (£ —pg)s"(€)> 0, for £€F po.

Proof. Let (s(£), r(£¢)) be a solution to (2.10) tracing the bounded orbit R. Then
(s(¢), r(¢))—(0,0) through the fourth quadrant Q,, as £— +o. Therefore, for
large values of & s(£)>0 and r(¢)<O0.

We first demonstrate that this latter conclusion is valid for all values of £ To
this end, recall that it is already established that & cannot intersect the r-axis.
Also, R cannot exit from Q, through the line segment [, given by

lo=4{(s,r):r=0,0=s5s =2v}. (3.1)
For if it did, let &, be the largest value for which (s(&), r(¢)) € l,. For £> &, it must
be the case that r(£) <0. Hence, r'(&)=0. But r(&) =0, so from (2.10),
r'(£o) = vs (&) —35(¢0)*>0
since 0<<s(&;)<2+v. This is contrary to our presumption. Now define
I={(s,r):r=m(s—2v),0=s=2+}, (3.2a)

where
m=3[e—(e>—4v8)3], (3.2b)

and the positive square root of £°—4vy8 is understood. Note that m >0, in
consequence of the assumption that £2=448. It will be shown that R never
intersects 1. On the supposition that the contrary holds, let £, be the largest value
such that (s(£€), r(¢)) el It follows that 0=s(£,) =2y,

r'(&o) =

r(éo) = m(s(€0)—2v), and =™

(3.3)

On the other hand, from (2.10),

r'(&o) _ vs(€0) —35(€0)” + €8 'r(£o)

s'(&0) 87 'r(&o)

_ s(£o)(s(£0) —27)
267r(&y)

2m

v

m

Hence
m2—em +38s(£,)=0.
But, since s(&y) <27,

m?—em +38s(&) = m>—em +v8 + 8(3s(&) — v) =38 (s (£&0) —2v) <0,

a contradiction.

Thus R is confined to the subset of Q4 bounded by the r-axis and the line
segments | and l;, a conclusion with several consequences. First, r(¢) <0, for all ¢,
or what is the same, s'(£) <0, for all & Thus s decreases monotonically from 2y to
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0 as ¢ increases. Moreover, since §'(¢§)—0, as £-»+o, there must be points &
where s"(£) =0, or equivalently, r'(£)=0. From (2.10), if r'(¢) =0, then

r'(§) = s"(E)(y —s(8)).

So if s(€)<+y, r'(¢€)<0 and if s(£)>1, then r"(£)>0. In the special possibility
where s(¢) =1y, then r"(¢£) =0 and

r(¢) = —(s"(¢))*<0.

Thus, at points ¢ where r'(£) =0 we have the following trichotomy:
(i) If 0<s(¢)<v, then £ is a strict local maximum for r,
(ii) if vy <s(¢)<2vy, then £ is a strict local minimum for r, or
(iii) if s(¢) =1y, then £ is a saddle point for r.

Since r(&) <0 for all £, and r(¢) — 0, as £ — £, r has a minimum value, which is
taken on at some point £, say. It is claimed that this global minimum is the only
local minimum that r possesses. If &, is any local minimum of r, then by (ii),
s(&,)>v. Suppose &, # &,. Then between £, and £, there must be at least one local
maximum value of r, and this would have to occur at a value of £ >+, contradict-
ing (ii). Therefore, if r'(£)=0 for some ¢# &,, it must be that s(£)=<+. If, on the
other hand, r'(¢£) =0 at a point £ where s(&) <+, then £ is a strict local maximum
of r and r(¢)<0. But r(£) = 0 as £ — +o, and so there would have to be a £>¢
such that r takes a local minimum at & Since s(&)<s(£) <1, this contradicts (i).
Finally, if #(£)=0 and s(£) =1, then £ is a saddle point for r, and, from (2.10),
r(€) = —8vy?/2¢. But in the proof of Theorem 4 it was shown that r(¢)=—8v?/2e,
for all £ Consequently, ¢ cannot be a saddle point. Hence &, is the only point
where r’ or s” vanishes, and s(&,) > . It follows that r'(£) has one sign for &> &,
and similarly for £ < ¢,. Since r(&;) <0 and r(¢) = 0 as £ — +oo, it must be that
r'(€)>0 for ¢> &, Likewise, r'(£) <0 for ¢<§, since r'(¢§) —» 0 as £ —» —ox, The
theorem is proved.

Attention is now turned to the case in which the dispersion tends to dominate
the dissipation.

THEOREM 7. Suppose 4v8> g2 Let s(£)=5(¢; €, 8) be the unique (up to spatial
translation) solution to (2.3)~(2.5). Then s(&)>0 for all &, and the following hold
good.

(a) If My =sup s(£), then M, is attained at a unique value ¢ = z,, and for £> z,,
s'(£)<0. i

(b) There is a £,> zo such that (§—£&y)s"(£)>0, for all £> zy, &F &.

(¢) the solution s(£) has an infinite number of local maxima and minima. These
are taken on at points {z;}i~o and {w,}i=, where z; > w;.;> 2,4, for all i=0, and
1i_)r£1° z; = }gnm w; = —, Moreover,

2y <s(ziz)<s(z) and 2y>s(wiq)>s(w),
for all i.

Proof. Since £?—4+v8 <0, the critical point (2v, 0) is an unstable spiral point of
the system (2.10). The general theory [12, Chap. VIII] asserts that any solution
(s(&), r(£)) to (2.10) that converges to (2, 0) as £ — — must have the form

(s(&)—2v, r(£)) = Ce™¢(cos (BE+ 8o+ 0(1)), sin (BE+ 0o+ 0(1))) (3.4)
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as £¢——», where @ = Re (A,)>0and g =Im (A #0, A, is defined in (2.12), and
C and 6, are constants that determine and are determined by the particular
solution in question. The bounded orbit & of (2.10) therefore has the form given
in (3.4) for large negative £ and so necessarily has an infinite number of points
where r vanishes. According to Lemma 3, these are all strict local maxima or
minima of s. Moreover, between any two strict local maxima (minima) there must
be a local minimum (maximum). Hence s has an infinite number of maxima and
minima, as £{— — and these are intertwined. Because s(£)>0, for all & from
Theorem 4, a local maximum corresponds to the orbit crossing the s-axis at a
point ¢ where s(£)>2v, and a local minimum corresponds to a point ¢ where
0<s(é)<2y.

Now, we know that (s(£), r(£)) e Q, for large £ and, as in the proof of Theorem
6, the orbit cannot intersect the line segment {(s,0): 0=5 =2y} from Q,. Thus R
must exit Q, at a point z, where s(z0)> 2y and r(z,) =0, so that z, is a strict local
maximum of s and s'(§)<0 for £>z, By arguing exactly as in the proof of
Theorem 6, it is concluded that there is a point £,> zo where s"(£5)=0, and
s"(£)>0, for £€> &, and s"(£) <O, for £<&,.

Let z; <z, be the nearest local maximum of s to z,, and let w, be the unique
intervening local minimum. By continuing in this way, we inductively define
{23 o, {wi)iz, decreasing sequences such that z; is a local maximum for s and w;
is a local minimum of s, and z; > w; 1> z; 4, for all iZ 0. Of course, s(z)>2v and
s(w;) <2, for all i.

Naturally, s(z;)<s(zo). For since all the maxima and minima are strict, the
orbit (s(&), r(¢)) always crosses the s-axis transversally. Hence r(¢)>0 for w; <
E<zy, and r(§)<0 for z;<g{<w,. If s(z;)=s(zo), then the curve
{(s(&), r(£)): w; = £ = z,} would have to intersect the curve {(s(&), r(§€)): €= zoh
That is, the orbit & would intersect itself, which is impossible. Inductively, using
at each stage this simple argument, it is determined that s(z;.,) <s(z;), for all i
Similarly, it is argued that s(wip)>s(wy), for all i=1.

Finally the z; and w; can only accumulate at —co. Otherwise (s(£), r(£)) would
take the value (2, 0) at some finite £ which is again impossible because distinct
orbits cannot intersect.

Interpreting Theorems 6 and 7 in terms of the original context, equation (2.1),
the following result emerges.

COROLLARY 8. Let ¢, 8 and ¢ be given positive constants, and suppose c, Sg and
S, satisfy (2.9) so thaty=c—Sg>0. Let S(£) = S(¢; &, 8) denote the unique (up to
translations in &) bounded solution to (2.1) satisfying the asymptotic conditions
(1.6).

(i) If e2=4v8, then S'(£) <0, for all & and S decreases monotonically from 8, to
Sk as ¢ increases. Moreover, there is a point &, such that S"(£)>0 for all £> & and
§"(£) <0 for £<&o.

(i) If €2<4v5, then S takes its maximum value at a point zo, and then S(§)
decreases monotonically from S(z,) to Sg as §> z, increases without bound. There
is a point &>z, such that $"(&)>0 for £>¢, and S"(£)<0 for 2o < €<,
Moreover, there are intertwined sequences {z;}i-o and {w Yoy, with ;> Wi > Zis,
for all i=0, decreasing to —, and such that S takes a local maximum value at z;
and a local minimum value at w;. Additionally, Swir) <8 <S(zy), foriz0. .
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4. Limiting behaviour as £ tends to zero

In this section, the behaviour of the solution S(&; g, 8) to (2.1) will be studied in
the limit as ¢ tends to zero whilst 8 remains fixed. It will be demonstrated that if
S(¢; ¢, 8) is suitably normalised, then it converges, uniformly on rays of the form
{¢; €2z a}, to the solitary-wave solution to the KAV equation given in (1.8). This
complements work of Johnson [13], [14], who, assuming the existence of S,
developed a revealing asymptotic expansion, formally valid for small e.

As before, we shall work with the dependent variable s = S — S, which is the
unique solution (up to translations in £) to (2.3)-(2.5). Since § is fixed, there is no
loss of generality in taking £ <4+, where v is the positive constant appearing in
(1.3). For each such g, let s, (&) denote s(¢£+ &; &, 8), where &, is the unique point
where s(-; €, 8) takes its maximum value (see Theorem 7). It follows from the
previous theory that s.(£) <0, for all £¢>0.

THEOREM 9. Let {s.}.~o be the family of travelling-wave solutions to (2.3)—(2.5)
defined above. Then for any a €R, and any integer j 20,

. d _da
ll% d—gf ss(g) . d§’ u‘y(g)’
uniformly on {&; €= a}, where
u, (€)= 3y sech? [(%)ig] . 4.1)

Proof. It has been established that 0<s,(£) <3y, independently of &>0.
Moreover, for all £ with 0 <g?<4+v8§, 5.(0)=2vy. We next show that the deriva-
tives s also possess g-independent bounds. If r.= 8s’, as before, then it was
shown in the proof of Theorem 4 that

Ire (Ol =3v*8¢e 7, (4.2)
or, what is the same,
lesu(EN=3v2, (4.3)
for all ¢& Returning to equation (2.10), written in the form
8s!=1ys, —3s2+es’, (4.4)
it is deduced that
3y

sup |s5(£)| =
femr )
Thus s is bounded, independently of e. Since s, and s” are bounded, it follows
that s_ is as well, independently of e. By differentiating (4.4), e-independent
bounds on all higher derivatives of s, may be deduced inductively.

In consequence of the bounds just derived, the Ascoli-Arzeld theorem, and
a diagonalisation process, if {¢, }x-, is any sequence tending to zero, then there is
an infinitely differentiable function U and an increasing subsequence {k;};=; such
that if

sl'(g) = S(§+ §0; ek,-’ 8)’

then s{’ — U®, as j — «, uniformly on any compact set in R, for all i=0. It is



Travelling-wave solutions to the Korteweg-de Vries-Burgers equation 219
plain that U satisfies U'(0) = 0 and, from (4.4),
sU"=yU-1U> 4.5)

The bounded real-valued solutions to (4.5) with U’(0)=0 are easily determined
(cf. Jeffrey and Kakutani [13]). The possibilities are that, either U=0, U=2A, U
is a periodic function (cnoidal wave), or else U is a solitary-wave solution.

It must be the case that U is a solitary wave, and in fact the solution given in
(4.1). For, s;(¢) is decreasing, for £=0, and so U is non-increasing, for ¢=0.
Hence U is not periodic unless it is constant. Thus if it is established that U is
non-constant, then U must coincide with a solitary-wave solution to (4.5). First,
since s;(0)> 27, for all j, U(0)=2A. Hence U is not the zero function. Multiply
(4.4) by s’ and integrate the result over [0,%). Because s;(0)=0 and 5. (&),
§2(£)—0, as £¢— oo, there appears

e[ i@ de = 1530 - 4s20) “6)
4]

Now, s/(¢£)<0, for ¢=0, and s_ is bounded, independently of . The following
estimate therefore applies:

e[ Isu@F de=—e suplsil | st de = esup o). 0)
0 £eR eR

0 £

and the latter converges to 0 as ¢ | 0. Hence, from (4.6),
3vs3(0)—s3(0) — 0,

as j—> . Since 5;(0) = 24, for all j, this forces s;(0)—3vy. This shows in particular
that U#2y and so U must be a solitary-wave solution to (4.5). That is, U must
have the form,

U(&) = a + b sech? (d¢),

for appropriate constants a, b and d.
If (4.5) is multiplied by U’, then the result may be represented as

d
pF: GV (&)*—1yU(©)*+3U(£)*) =0,

or, what is the same,
18U (6> =3yU(£)*—sU(£)*+B, 4.7

for some constant B. If the latter relation is evaluated at £=0, then since
U(0)=3y and U'(0)=0, it follows that B must be zero. The unique non-trivial
solution to (4.7), with B=0 and normalised so that U'(0)=0 is exactly the
function u,(¢) given in (4.1) (see again [13, §3.1]).

In effect, it has been shown that any positive sequence {¢, }r—; converging to 0
has a subsequence {g,}j~1 such that the associated travelling-wave solutions s;
converge to u,, uniformly on compacta, and the same holds good for derivatives.
It follows that, as & | 0, s¥—u, for all j, uniformly on compacta. This result
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may be immediately improved via the following observation. If K={¢; é=a} and
v>0 are given, let £&,>max {0, a} be such that u,(£)=w/2. Let £,>0 be such
that if 0 <e =g, then

[s.(&) (O] =7,

for a =£=¢,. In particular, s,(&)=v, so s.(§)=v for all £=¢,. Hence, for all
£=a,

Ise (g) - uy(f)l é V.

Thus, s, —u,, uniformly on right rays. On viewing the second equation in (2.10)
as an ordinary differential equation for r, and utilising the asymptotic conditions
r.(&)—0 as ¢ -+, it is inferred that

oo

(@)=~ | Gys.m)~s. ()= d,
3
It follows from this formula and the uniform convergence of s, on right rays that
e(s{~ul)—>0, uniformly on right rays. From (4.4) we then see that s,—u?,
uniformly on right rays. It may then be inferred that s_.— u/, in the same way. The
fact that s’ — u®, uniformly on right rays, now follows inductively by repeated
differentiation of (4.4) and (4.5). This concludes the proof of the theorem.

Remarks. According to the calculation in (2.7) and following,

e IsiPay=3

Thus we see explicitly that the L,-norm of s’ blows up as & | 0. Moreover, as
above, for small ¢,

e[ TsiP dys—e supls.(o)l [ siv) dy=es, 070,

0] £eR 0

as € — 0. Hence the oscillation of s, near — is sufficient that the square integral
of s. is not bounded, as ¢ | 0. Indeed, the asymptotic form of 8s.(¢)=r.(¢), as
& — —oo, is given in (3.4), From (3.4) and (2.12) it follows that as ¢ | 0, then « } 0
whilst 8 converges to (y/8):. Thus one cannot expect s, to converge to u,, as
e | 0, uniformly on the whole line, or even in Sobolev spaces on the line.

Theorem 9 is now reinterpreted in the context of solutions to (2.1) satisfying
the boundary conditions (1.6).

CoroLLARY 10. Let ¢ and 8 be given positive constants and suppose that Sy and
Sk satisfy (2.9) so that y =c—Sg>0. Let €2<4+8 and let S, (¢£) = S(£+ &, ¢, 8) be
the solution to (2.1) satisfying the boundary conditions (1.6), normalised by &, so
that S, takes its maximum value at ¢ =0. Then, for all j 20, S¥ converges to the
j-th derivative of the function

U, (€) = Sg + 3 sech? [(4—”5)5] ,

uniformly on rays of the form {¢: £z al.
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5. Limiting behaviour as 6 tends to zero

In this section, the behaviour of the solution S(£; ¢, §) to (2.1) will be studied in
the limit as § tends to zero whilst £ is held fixed. It will be shown that if S(¢; ¢, 8)
is suitably normalised, then it converges, uniformly on R, to the travelling-wave
solution to Burgers equation given in (1.9).

As has been the case throughout, we shall work with the variable s =S — Sg,
which is the unique solution (up to translations in £) to (2.3)—(2.5). Since ¢ is fixed
and positive, there is no loss of generality in supposing that 4y <e?, where v is
defined as before. Because of Theorem 6, it is known that s(&; ¢, 8) is strictly
decreasing in the variable &, taking the limit 2y at — and 0 at +. Because of
these properties, there is a unique value £, such that s(£; ¢, 8)=1vy. Define
55 (&) = s(¢£+ &o; €, 8), so suppressing the dependence of s on the fixed parameter
e. Then s; satisfies (2.3)—(2.5), s5(£) <0, for all & and s5(0) =, for all §>0.

THEOREM 11. Let {ss}s=o be the family of bounded solutions to (2.3)-(2.5)
defined above. Then, for any integer ij,

Ss(ﬁ) —50,(8),

s o dg’
uniformly for £€R, where

vy(§)=y[l—tanh (2%;- >] (5.1)

Proof. The proof is similar to that of Theorem 9. First it is shown that s;, and
all its derivatives, are bounded, independently for 8. For s; itself, it is known from
the results of §2 that 0 <sz; <24, for all §>0. In the proof of Theorem 4, it was
also shown that rs = 8s4 satisfies —8v%/2e =r; =3v28/2¢. Hence, for all £

2 2

_;Y__< 4 <_
e sa(é) =

and so s} is bounded also, independently of 8 > 0. Now view equation (2.3) as a
first-order equation for s3. Since s§(é) =0, as £— x», it follows that

550 =— [ Trss) - ss skt~ dy (52)
3
Since s; and sj are bounded, independently of 6 >0,
lsa(&)=¢e™" sup lys&(y) — ss(¥)s5(y)l,
Y=

and so s} is also bounded, independently of & > 0. If equation (2.3) is differentiated
once, there appears,

—ys5+(55)>+ 5585+ + 855" —es5 = 0. (5.3)

By viewing (5.3) as a first-order equation for s'5, we obtain,

s5(&) = J. {ysi(y) — s&(y)?—s5(y)sa(y)}8 te =098 dy.
¢
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Since s; s5 and si are now known to possess 8-independent bounds, it follows
that s; also possesses such a bound. On continuing inductively in this fashion, it is
inferred that s¢ is bounded, independently of & >0, for all j.

Now by applying the Ascoli-Arzela theorem repeatedly, and a Cantor diagonal-
isation, it is deduced that any sequence 8, | 0 has a subsequence {8 }x—, such that
if

s (€)= Ssk(§)>

then there is a function V for which s{’— V@, uniformly on compact subsets of
R, for all integers j= 0. It follows that the C*-function V has 0= V(£)=2+y and
V'(¢€) =0 for all £ and that V satisfies equation (2.6) with § set to zero, namely

—yV+3iVi—eV'=0. (5.4)

This is just the equation for the travelling-wave solution to Burgers equation.
Since V'=0, V is monotone non-increasing and bounded. It therefore has limits
at +oo, and from (5.4) these could only be 0 or 2+. If they were both 0 or 2, then
V would be constantly equal to this value. But V(0) = vy since s5(0) = v because of
our normalisation, so V cannot be identically 0 or identically 2. As V decreases,
it cannot take the value 0 at —o and 2vy at +o. It follows that V(£)—0 as £ -+
and V(§)—2vy as ¢——o, By integrating equation (5.4), subject to the just-
derived conditions we obtain

2y
V{E)=—
© 1+ Ke"¥=’
for some constant K. Further, since V(0) = v, it follows that K = 1, whence, after a
short manipulation, it appears that

V() = 'y[l —tanh (l g)]
2¢
as in (5.1).

The fact that s, and its derivatives converges to V and its corresponding
derivatives, uniformly on R, now follows in exactly the way we extended the
convergence in Theorem 9 to be uniform on right rays. As before, since the
limiting function V = v, is unique, it is concluded that s$’—v%, as § | 0, for each
j=0. The proof of the theorem is complete.

Theorem 11 has an immediate consequence as regards the travelling-wave
solution to (1.2).

COROLLARY 12. Let ¢ and ¢ be given positive constants and suppose that S; and Sg
satisfy (2.9) so that y=c—Sg>0. Let 4v6 <e? and let S;(£) = S(¢+&p; &, 8) be
the solution to (2.1) satisfying (1.6), normalised by &, so that S;(0)=c. Then for
each j =0, S$(&) converges to the j-th derivative of the function

V(&)= SR+7[1—tanh (% g)]

as & | 0, uniformly for £ eR.
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6. Convergence to a shock-wave profile

The limiting form of S(£;¢,8) as € and & simultaneously tend to zero is
examined here. In the case where the ratio 8/e” remains bounded, it transpires
that S converges to a shock-wave profile (weak solution to the conservation law
u,+u, =0, cf. [9)),

(€)= @(£)+ Sk, (6.1)

VRCTE 2v, for £€<0,
@ () ={ v, for £=0, (6.2)

0, forO0<é&

As before, let s =S — Si be the unique (up to translations) solution to (2.3)-(2.5)
and set Sua(6)= $(¢+£03 6, 8),

where s(&; €, 8) =y and s(£; €, 8) <y for £> &,. The general theory developed in
Sections 2 and 3 assures that &, is well defined for any given positive values of ¢
and 6.

THEOREM 13. Let >0 and M >0 be given. Then for any integer j=0,

d’
EI;IBO 'd—gT es(g) , (p(g)a (63)

8/e?=M
uniformly for ||z a.

Proof. Define a new dependent variable T by
T(€) = s.5(€f). (6.4)

The dependence of T on & and & is suppressed. A short calculation using (2.6)
reveals that

—yT+3T*+uT"'-T=0, (6.5)

where p = 8/¢2. The uniqueness result in Theorem 4 assures that T(§) =T, (§) =
s(&+&y; 1, ), where the normalisation &, is such that T, (0)=vy and T, (§) <+ for
£>0.

The relation (6.3) will be established by an argument involving sequences. To
this end consider sequences {e, }5—, and {8,}-; of positive parameters such that

g,—0, 6,—0, as n—oo,
and (6.6)

w.=28=M, foralln.

(]

Take any subsequence {n; }x—, of the positive integers for which v, = u,, tends to
a limit, say v, as k— o, Naturally we must have 0=v =M. Let T, denote T,, and
let v, (¢) denote the function y[1—tanh (v£/2)], as before.

Two cases are distinguished now, namely »=0 and »>0. If »=0, then
Theorem 11, with e =1, applies and it is thereby concluded that for j=0,

d’

a Ti(§) = dg' vy(-f),
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