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Abstract

A system of equations is proposed for the dynamical interaction of
progressive surface waves and bottom sediment in near-shore zones. This system is
shown to model the formation of stable, bar-like structures that are familiar

features of many coastal areas.
<

Introduction

In this paper, interest will be directed toward the description of surface
waves in comparatively shallow water and their mutual interaction with the topo-
graphy over which they propagate. Because the water is shallow, the fluid motions
extend to the bottom and so the waves typically undergo a change of form as they
progress. If the fluid lies over a bed of loose sediment, such as sand, then the
passage of waves may in turn have an effect on the bottom. As the bed changes
shape, the surface waves will deform differently. Thus the entire system in view,
comprising both the fluid and the bed surfaces, admits the possibility of complex
self-interactions.

A neimarv motivation ef this study is the desire to understand the formation



of bars a1ong fﬁe coasts of large bodies of water. We will accardingly con-
centrate on a fﬁa-dimens1ona1 situation wherein deep-water, plane, periodic
Wavetrains impinge on shallow-water zones. Field observations of situations that
roughly correspond to this idealization have repeatedly identified quasi-static
arrays of bars and troughs. In the more controlled environment of the labaoratory
wavetank, experiments have shown that periodic wavetrains incipient on an ini-
tially featureless bed of sand will eventually organize an equilibrium con-
figuration of bars and troughs. An ocean coast may have incoming, deep-water waves
with typical wavelengths of a hundred meters and sand bars spaced one-quarter to
one-half a kilometer apart, whereas the scales that pertain in the laboratory may
be a hundred times smaller. Despite the disparate scales, the 1abofatory and
field phenomena of bar formation are strikingly similar, leading one to conjecture
that such manifestations'may depend upon some ré]ative]y simple and universal
wave-bottom interaction. This optimistic view is quickly tempered by the variety
that nature provides, and it must be candidly admitted that no single explanation
is 1ikely to cover all situations. Nevertheless, the ideas put forth below appear
to have an interesting range of applicability.

The main accomplishment here is the derivation of a simple, but useful, model
for two-dimensional, wave-bottom interaction. This model is analysed in various
qualitative and quantigative aspects, and predictions stemming from the model are
set against observations. The outcome of the comparisons justifies a somewhat
sanguine appraisal of the prospects for such models, in spite of the very con-
siderable restriction their use places on the wave and sediment regimes.

The rest of the paper is divided into four Sections. Section 1 is devoted to
the derivation of a comparatively simple model that allows for time variations of
both free surfaces. The equilibrium configurations of this system are studied in
Section 2. A numerical scheme for the integration of the time-dependent equatians
is presented in Section 3 and used to show that solutions generally evolve into
equilibrium formations. The forementioned comparisons between theory and obser-
vation are also made in Section 3. Some general commentary and suggestions for

further development are given in the concluding Section.



1. The Mathematical Model

When ;t;;mpgyhg to model wave-bottom interaction it is very helpful to keep
observational %jﬁhings in mind. Especially useful for our purposes is a series of
experiments peffgﬁmed in a rectangular channel with a paddle-type wavemaker
mounted at Shekgﬁafqhd an energy absorber at the other. The bottom was laid with
sand in various”{ntgial configurations before the channel was filled with water.
The paddle was then driven at constant frequency and amplitude for many hours, and
both the waveform and bedform were monitored over time. A detailed description of
these tests is gi?en by Boczar-Karakiewicz, Paplinska and Winiecki (1981), so we
content ourselves with a summary of the salient points. The experimental set-up

used by Boczar-Karakiewicz et al. (1981), along with a typical equilibrim bed con-

figuration, is pictured in Figure 1.
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Figure 1. Typical equilibrium bottom profiles in a wave tank experiment:
a) 1initial bed configuration at T =0,
b) equilibrium profile at T = 80217 t;; the A, are the normalized
harmonic amplitudes of the wavefield, j = 1,2, and t, is the wave
period (after Boczar-Karakiewicz et al., 1981).




The principal point one observes is that in the laboratory scales
appertaining to these tests (the flume was 0.5 meters wide, 21 meters long, the
water depth was typically 0.3 meters at the wévemaker end, and the wavemaker
period was usually about 1.8 seconds) the wave deforms in seconds, whereas the bed

experiences significant alteration only over periods of hours. This is not

surprising, but it does provide a firm basis for selecting two time scales for the
description of the system, one for the evolution of individual waves, and another
for the development of the bed. Because of the wide disparity between these two
time scales, the bed appears fixed from the viewpoint of an individual wave. 1In
consequence, the modelling may be approached in two stages. In Section 1.1 the
wave field is modelled for time intervals that are short enough for the bottom
topography to be considered fixed. In Section 1.2 a longer time variable is

introduced and used to describe the waves' cumulative effect on the bottom.

1.1 Description of the Wave Field

In the first stage of the modelling, we seek a simple, but sensibly accurate
description of a two-dimensional wavetrain as it propagates over a temporally fixed,
but spatially variable depth. For the nonce, the spatial region R of interest
is, therefore, considered fixed.

We begin by defining the spatial coordinates as follows. Let z denote the
vertical coordinate, i' the horizontal coordinate, and let the undisturbed free
surface of the liquid be located at {(x,z): Z = 0}. Here and in what follows,
variables adorned with an overbar are dimensional and unscaled. The surface
bounding the 1iquid from below is taken to be ((x,z): =7Z = =h(x)} (see Figure
2). Suppose also that the spatial region R of interest lies in the range where
0 <x <M. The point X = 0 will be identified with the physical point at which
the incoming, deep-water wavetrain first comes into the purview of the model. The
point x =M is, in applications, thought of as the point closest to the shore-
line where the model is to be applied. It must be emphasized that no attempt is
made here to account for the zone very near the water line of a beach. Rather,

the present development assumes the waves to be more or less completely dissipated



in the ver& nearshore region. This point will be amplified later.
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Figure 2, Definition sketch for the two dimensional model: here Eb is a typical
wave amplitude, 15 2 typical wave length, Fb a typical water depth, 7§
is the thickness of the boundary layer containing suspended sand,

+Z = - h(x) the variable bottom, and Z = 0 denotes the rest position of
the free surface of the fluid.

An issue that immediately presents itself is wave breaking. Even on a gently
shelving beach, it is not uncommon for incoming progressive waves to break and
reform several times. +The quantitative description of this process is beyond our
present capabilities. However, the experimental data suggests that breaking is
not a central ingredient for the sort of bottom structure whose genesis is con-
sidered here. For one thing, while the fluid under breakers tends to be more
sediment-laden, the general character of the bed deformation there does not appear
different than in non-breaking zones (cf. Boczar-Karakiewicz et al. 1981). The
sand movement seems to be closely related to the local harmonic content of the
- flow, especially the first two harmonics. (This is not unexpected since the
higher harmonics are not in general energetic enough to move particles on the bot-
tom unless the water is quite shallow; see Section 1.2 below). The evolution of
the harmonic content of the wave as it progresses, particularly as regards the

fluid motion near the bed, does not appear to be greatly affected by breaking (see



Figure 3), This may be because, 1f the area very near shore is excepted, breaking
only affects the f]ow catastroph1ca11y near the surface; at depth the flow may be
quite smooth (cf. Thornton and Schaeffer, 1978). F1na11y, it has been observed
that breaking is not required in the formation of stable structures in a sandy

bottom (cf. Benjamin, Boczar-Karakiewicz and Pritchard, to appear).
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Figure 3. Wave-profile transformation over a fixed bed in a wavetank experiment:
(a) experimental configuration, (b) spatial evolution of the two first
harmenic amplitudes Aj (j=1,2) of a non-breaking wave, (c) spatial evo-
1 _ lution of A for a break1ng and reforming wave; the harmonic amplitudes
Aj are norma11zed by A Aj(O).

Analysis of the typical scales that obtain on a gradually-sloping beach indi-
cates the shallow-water approximation to the Euler equations as a possible

descriptive mode for the wave field (cf. Peregrine 1972, or Whitham 1974). Such a



model {s inexpedient because jts solutions develop singularities near the shore
where the actual wave breaks. Because of this feature, and because of the view
enunciated above that breaking is incidental to the process that it is our

ultimate interest to describe, we have elected to retain dispersion in the
description of’the wave motion. The resulting theory is due originally to
Boussinesq (1871), It forms a basis for the accounting of the wave field that

avoids the singularities inherent in the shallow-water equations. In following

this line we are in good company (see e.g. Mei and Méhauté 1966, Madsen and Mei

1969, Lau and Barcilon 1972, Lau and Travis 1973, and Svendsen and Buhr-Hansen 1978).

The Boussinesq approximation to the Euler equations,

Gf +gn *+ uug - = h%U==z =0, (1.1)

is derived under the assumptions that nonlinear and dispersive effects are of the
same, small order of magnitude ;nd that the bottom varies gradually. H;re g is
the magnitude of the acceleration due to gravity, T is elapsed time, Tn(x,t) is
the vertical deviation of the fluid surface from its undisturbed position at the
point X at the time T, and T(X,T) represents the depth-averaged horizontal
velocity of the fluid{above the point X at the time t. This system of
equations can be put into a variety of other forms by taking diffgrent dependent
variables and by using the ;eroth-order approximation to alter the first-order
nonlinear or dispersive corrections; see Bona and Smith (1976), and the references
contained therein. Here, it is convenient to work with the following non-

dimensional variables;

C = n/ao, h = h/ho,

where ag, and g denote a typical amplitude and wavelength, respectively, in
the wavetrain, and hO is a representative depth in the region R of interest.

In these variables the Boussinesg equations become



u, + g *oau --;—h"'s"’uxx = 0,

t t
(1.3)
g + (u(az + h)]x =0,
where
a h
0 0
a = ’ and B i (1.4)
ho A0
Define also the parameters
e == max [|n'(x)],[n"(x)]1, and S5 =<7, (1.5)

0<x <M ]

where W = M/xo. In the vartables displayed in (1.2), u, z, and their partial
derivatives with respect to x and t are assumed to be of order one. The for-
mal validity of (1.3) as an approximation to the Euler equations subsists on the
assumptions that the fluid is inviscid, irrotational, and incompressible, and the
motion is planar, that a, 8, and e are small c5mpared to 1, and that h and
S0 are order one. The Stokes number S0 (Stokes 1847, Korteweg and de Vries
1895) is a measure of the relative importance of nonlinear and dispersive effects
experienced by the wave train. Nonlinear and dispersive effects will contribute
to order-one changes i? the wave profile on temporal or spatial scales of order
a'l and 3'2, respectively. If the bulk of the wave motion is only in one
direction, say in the direction of increasiﬁg X, then a simpler description is

available, namely a variable-coefficient, Korteweg-de Vries-type equation (Johnson

1973, Svendsen and Buhr-Hansen 1978),

3 ] 1 '
g v g f_g- % " F 82hzl;xx’t‘. tyceie=0, (1.6)

“where c¢(x) = [h(x)]LQ. Here, advantage has been taken of the leading-order rela-

tion 3, = -€3, to rewrite the dispersive term -é azhzc; appearing in the

XXX
last-quoted references. As explained by Benjamin et al. (1972), this results in
capturing more accurately the full, linearized dispersion relation for surface

water waves. In the present study attention will be given exclusively to



progressive waves, and so the just-mentioned simplification would be available.
However, at a later stage we expect to allow for small reflection effects and so
the level of generality inherent in the Boussinesq equations, the possibility for
waves to propagate in two directions, has been retained. |

The hypothesis that S0 is of order one {s troublesome. Even on moderately
sloping beaches, say a mean slope of 0.5°%, the local value of the Stokes number
reaches 20 to 30 in regions of interest. As it happens, the Boussfnesg-type
approximation performs’quite accurately in just this sort of regime. As a case in
point, reproduced in Figure 4 there is a comparison made by Bona, Pritchard and
Scott (1981) of a laboratory observation and an associated numerical solution of
essentially equation (1.6) in a regime corresponding to the aboye-mentioned Stokes
number. It should also be noted that this type of approximation 1is substantially
correct even for considerably larger values of S0 (cf. Zabusky and Galvin 1971,

Hammack 1973, Hammack and Segur 1974, Svendsen and Buhr-Hansen 1978).
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Figure 4. Wave measurements (the diamonds) of waves at Stokes number S0 = 26,3
compared with computed values (the solid lines) of the free surface
elevation using a KdV-type model, as a function of time at three
d1fferent pos1t1ons in the wavetank (after Bona gngg:).
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With approximate initial and boundary conditions, the system (1.3) constitutes

a well-posed problem. A set of auxilliary specifications that suits the region R

is the following:

C(X,O) = gl(x) , u(x,0)
‘(Ovt) Co(t) z(M,t)
u(o,t) uo(t) u(M,t)

gz(x), for 0 < x <M,

cl(t), for t 50, (1.7)

uy (),

where 915 99» 'ggs Uy ‘and u, are given functions., This corresponds to
prescribing the surface displacement ¢ and velocity distribution u at an ini-
tial instant of time, t = 0, and at the endpoints of the underlying horizontal
domain  {x: 0 < x <M}. For treatments of the well-posedness of (1.3) the reader
may consult Schonbek (1978) and Amick (1984)., For numerical schemes‘see Peregrine
(1967), Madsen and Mei (1969) and Winther (1979). As regards similar issues for
(1.6) wherein only ¢ need be specified as in (1.7), see Svendsen and
Burh-Hansen (1978), Bona and Dougalis (1980) and Bona, Pritchard and Scott (1981).
For neither model is the theory in a completely satisfactory state. Even if° 99
and 9, are set to zero, on the supposition that the initial wave configuration
will have no sensible effect on the long-term status of the system, it is dif-
ficult to measure accurately the data exhibited in (1.7). In the field one cer-
tainly cannot expect tgis much information. A more likely provision would be an
incoming wave spectrum at a point corresponding to x = O.

For several reasons a further simplification of (1.3) or (1.6) will be
carried out. The coarse-grained data that one can expect in'a field situation
means that the accuracy attained using (1.3) or (1.6) is somewhat illusory.
Moreover, it must be remembered that the present model will be coupled to a model
for the deformation of the bed in Section 1.2. In numerically approximating the
'equations for the liquid and sediment surfaces it will be required to predict the
waveform many times during the slow evolution of the bedform. Consequently, while
it is true that (1;3) can be efficiently integrated numerically, the computation
becomes extensive when the erosion of the bed is considered. Finally, the forth-

coming simplification has the salutory effect of allowing the use of analytic

techniques to answer certain questions.
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In the reduction to be effected now we explicitly follow the lead of Lau and

Barcilon (1972) (see also Armstrong et al. 1962, and Mei and Unltata, (1972). The
clue to this step is already evident in Figure 3, which emphasizes the rela-
tionship bétweé;zthe waves and their first few harmonic components. Assume now
that the wave incident at the ‘deep-water' end, x = 0, is a single-frequency, p]é-
nar, steadily-propagating linear wavetrain. This presumption corresponds closely
to the experimental conditions maintained by Boczar-Karakiewicz et al. (1981)
cited earlier. It isla1so reasonably veritable on some real beaches. As an
example there is shown in Figure 5 a representative energy density distribution
measured off a Baltic Sea coast by Druet, Massel and Zeidler (1972). (Similar
observations are reported by Guza and Thornton, 1980 and Elgar and Guza, 1984),
using measurements obtained on a California beach.) Note especially the deep-water

spectrum (solid line) that is sharply peaked about a single frequency wy

corresponding to a period of about 7 seconds. In this particular instance the

E(@)
fem?s]
7
600
800"

400

Figure 5. Energy_density distribution off the coast of the Southern Baltic Sea:

= OffShOPQ measurements (R, = 6.00 m), --- nearshore measurements
(Fg = 2.00 m).

waves were Pﬁbpfgaﬁipg normal to the beach and bathymetry showed that the assump-

rion of the waves two-dimensionality was valid. As the waves propagated shoreward,



there transpired a pronounced shift of energy to the second harmonic frequency, 12
wy = Zml, (dashed 1ine in Figure 5). This accords nicely with predictions we
shall make later.

In agreement with the assumptions leading to (1.3), the bottom configuration

h 1is taken to have the slowly-varying form
h(x) = 1+ f(x), (1.8)

for 0 < x <M, where ‘e is the small parameter defined in (1.5). Since h has
order one, we may take it that f has order one. However, (1.5) implies that
f'(x) has order a« . Because of this, it is indicated to introduce a new hori-
zontal variable X defined by

X = ax.

Let F(X) = f(X/a). Then the foregoing assumptions concerning f and e imply
that h has the form
h(X) =1+ F(X), (1.9)

where F and F' are both of order one, and ¢ 1is small compared to unity.

Following Lau and Barcilon (1972) a two-scale expansion will be introduced,
treating x and X as independent variables. For this to be effective a deci-
sion regarding the relative sizes of the three small parameters a, 8, and e must be
rendered. It will be presumed they all three have the same small size since this
is in fact the case in many near-coastal areas.

This latter assumption has associated theoretical difficulties which are now
explained. The supposition that e/a is of order one presents no problem. But
if o/g has order one, then the Stokes number 354 = o/8% has order 1/8 , and so
is representative of a regime in which nonlinear effects predominate. Thus the

_specified scalings appear contradictory, and indeed a proper 1imiting procedure

appropriate for (1.3) in which, say,

€, a, B »0, with S, and £ fixed,
a

would lead to a singularity in the forthcoming'model. (This point is not empha-
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sized in the earlier work of Lau and Barcilon 1972). The model will not be

applied in such a limiting case, however, but rather to situations involving
finite values of the parameters a, B8, and e. For the usual sort of values of g8

the difference between the variable X and the variable Y = szx more naturally
associated with (1.3) is the moderate-sized mu]tip]%cative constant SO. Looking
ahead to the way in which X enters in the model, it becomes apparent that the
choice in (1.8) is not crucial so long as fixed finite values of the parameters
are in question. In fact, this choice.of scales corresponds to assumptions,
intermediate between those leading to the Boussinesq equations and those leading
to nonlinear shallow-water theory, that emphasize nonlinearity, but do not ignore
disﬁersion entirely. Presumably what is important is how accurately the
overlying equation (1.3) or (1.6) predict wave phenomena in the regime that
corresponds to a particular set of parameter values. The previously-quoted work
of Svendsen and Buhr-Hansen (1978) and Bona, Pritchard, and Scott (1981) seems to
assure that for the range of parameter values of utmost interest for the present
study (a, B, € about 0.10, S0 in the range 10 to 30) the models predict rather
well. (It should be acknowledged that the good agreement between numerical pre-
dictions and the outcome of laboratory measurements obtained in the just-
referenced papers subsisted in part on appending to the model a dissipative
mechanism. For 1aboratqry-sca1e experiments there is little doubt that dissipa-
tion from the boundary layers and other sources is quite important. On field scales
these effects are much less important, and so are ignored here. They will be
incorporated in subsequent, more refined studies.)

Proceeding with the two-scale expansion, if r 1is a function of x and X,
then by the chain rule, _

-f}-,;r(x.X) =L+ aap - (1.10)

The relationship ‘embodied in (1,10) is maintained even when x and X are
treated as independent variables. Suppose the incoming wave-train is periodic

with a frequency w;. The normal modes associated to the linearized Boussinesq

equations ((1.3) with o = 0) which propagate in-the direction of increasing x are



1(k.x - w,t)
o v d Y

where wj = ju; -and kj > 0 is determined by the linearized dispersion relation

k.2
m-2 =_J—"_'. (1.11)

J
8 2

In the absence of nonlinearity the general periodic solution of (1.3) propagating

in the +x direction would be represented as a linear combination of the normal

modes. To take accountlof nonlinearity, the coefficients in the normal-mode

decomposition are allowed to vary. Keeping in mind that nonlinear effects acumu-

late over time scales of order a'l , 1t is natural to assume that the coef-

ficients vary on the spatial scale embodied in the variable X. Hence, we write
1(ij-m.t)

gX,t) = T gy(X)e % iemir
i

and - (1.12)

i(k.x = w:t)

u(x!xlt) = y UJ.(X)E J J + C.C.,
J

where we are following the usual method of representing a real function in terms
of complex exponentials by letting c.c. stand for the complex conjugate of the sum
it follows. As ¢ and u are of order one, so are the coefficients ‘j and
uj . On the basis of bdth field and laboratory measurements, attention is
restricted to the first two harmonics, j = 1,2 (see again Figures 1,3 and 5). The
resulting finite expansions are substituted into (1.3) and only terms containing

modes of the frequency wy or w, are retained, the others being assumed negli-

gible. Keeping in mind the relation (1.10), and writing

h(X) =1 + oG(X), (1.13)
yhere G(X) =-§ F(X), we obtain
Gt o - gi Yxxt T gy - oauu, ¥ ggéi Buxt
ay 282a

. uXXt + order (az), (1.14)

14



z **ux = - aly - a(ur,)x - aGux + order (a?) .
From the second equétfbﬂ in (1.14) and assumptions (1.12) it {s deduced that

Uj(x) "E’i' Cj(x) + order (a), (1.15)

for j = 1,2, The variable ¢ may be eliminated from the left-hand side of these
equations, so coming’ o:the single relation '
B2
Upp = Yxx = T Usxtt af= gyp *ug, Y OUt

2 (1.16)
gg- CGUy et - Uyxetd ~ %'(uz)xt + (), } + order (a®) .

Note that whilst g is viewed as fixed and non-negligible relative to one, so
dispersive effects enter, it is nevertheless small. Hence the dispersion relation
(1.,11) implies that wy Eikj’ j = 1,2, which in turn suggests that
Ky = 2Ky = wy = 20y + &k =isk 1s small (it 1s of ordet 82). Thus the variable
xa = (&/a)X may be taken as comparable with X, and so independent of x. In
equation (1.16) the terms of order o are ignored, as are all temporal harmonics
except and  w, . With these provisos, and because the first two harmonics
are linearly independent, equation (1.16) means that the coefficients of the first
two harmonics must each vanish. The result of this requirement is the
Lau-Barcilon equations, '

6" (X) + iF 2, (X) + 10,e' X g *00 5,(%) = 0,
Z (1.17)
5t (X)# 1,5, (0 + 10,0 XN g 2(x) = o,

where * denotes complex conjugation,

S e
Pt (] - 282
. ._mj

mjz)e(X), j=1,2,

(1.18)

15
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Ak

a

and & =

o

In deriving (1.17), repeated use of (1.15) has been made. Since (1.15) 1s applied
to terms that are of order a, the error implicit in its use is of order a?, and
so is neglected in the approximation considered here. Note that discarding terms
of order qz {s consistent with the use of (1.3). Notice also that Ak s of
order,l/So. :

The representation (1.12) coupled with the Lau-Barcilon equations (1.17) and
the relation (1.15) comprise our description of the wave field over a fixed,
gradually-varying bottom. 1t {s formally valid for times that are short compared
to those over which the bed topography deforms.

The Lau-Barcilon equations must be supplemented with the appropriate analog
of the auxilliary data (1.7). Because reflection has been ignored the boundary
condition at x = M 1s dispensible. The initial data has implicitly been set to
zero and it is only necessary to account for the conditions at x = 0. Because of
(1.15) it suffices to specify z(0,t), since u(0,t) is then inferred. The
assumed form;(l.{2) entails only the first two harmonics and consequently we need

only specify the projection of z(0,t) onto these harmonics. That is, if

z(0,t) = 7§ aqe“"jt + CuCuy
j=1 7

then our presumption is that aj is negligible for Jj > 3. Hence it is taken

that

it fw,t
z(0,t) = a,e Ve age 2 4 cuce,

whereupon the equations in (1.17) are to be solved subject to
6, (0) = a) , ,(0) = a. (1.19)
A special case thap corresponds to the experimental and field data described

: ; 0
sarlier obtains when a0 = 1/2 and a° = 0, so that g(0,t) = cos (wt).

In using the model for the wave field described above, it is often convenient
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to return to the variable X throughout, the '‘long' variable X having served

its purpose. To this end define
ay(x) = sy (X),  for J = 1,2, (1.20)
Then formulae (1.17 - (1.18) may be written in the useful form,

al(x) + 1efyf (03 () + 1ad,e’ &%ay (x)a,(x) = 0,

(1.21)
ag(x) + 1ef2f(x)a2(x) + iane'iAkxaz(x) =0,
where, for j = 1,2,
‘, - “;'Zzu -2 ., (1.22)

Q, and Qz are defined in (1.18), f 1is defined in terms of h 1in (1.8), and
&k = k2 - 2k1 as beforeQ*:The boundary conditions (1.19) apply without change to

the system (1.21).

1.2 Description of the Bottom Deformation

Still considering the bottom configuration as fixed and known, and assuming
ay and s, apd thereby ¢ and u, to be determined, it is possible to infer the
fluid velocity near the bed from inviscid theory. The horizontal velocity U at
a depth z below the undisturbed free surface is, .to the accuracy afforded by the

approximations made 1n deriving the Boussinesq equat1pns, given by the formula
U(x,t3z) = u(x,t) - Bzﬁ%:hz(x) - zh(x) --% 2%)u, (%t

(cf. Peregrine, 1972), Define u, to be the horizontal component of the fluid

velocity at z = = h(x). Then it follows that

up(x,t) = ulx,t) - B2 n2(xu (%) (1.23)

Using (Iolzlféﬂﬁ_(1-l5). u, may be expressed in terms of a, and a, s
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2w 2 ik x-w,t)
u (x,t) = y_;:-l (1 - = h2(xk Mas(x)e 7N 4 e (1.24)
b §=1"]

The view is taken that the layer of fluid near the bottom is viscous and
sediment-laden. Let 7§ denofe the thickness of this layer, and assume that
§ < hge It is our purpose now to analyse the sediment movement in this boﬁndary
layer. The overall instantaneous deformation of the bed_wi]] then be identified
with the differential movement of the sediment within the bottom layer of fluid.
(This very simple model is ideal to illustrate principles. More realistic models
for the sediment transport will be reported in subsequent studies of this general
model). ’

To provide a basis for our discussion, it is worth reporting some detail of
the laboratory observations of Boczar-Karakiewicz et al. (1981) in regard to the
sediment movement. Very soon after subjecting an initially flat bed of sand to
periodic wave motion, small scale ripples appear in the bed. The oscillatory
motion of the fluid over such ripples generates small-patches of vorticity that
are very effective at lifting the sand from the bed (Sleath, 1978). These
small-scale ripples persist, and from their inception onward there is a plentiful
supply of sand in the lower reaches of the fluid. (An idealized analysis of an
oscillating flow over.a ripply bed has been given recently by Longuet-Higgens,
1981).

| In the analysis to follow, no attempt will be made to describe the process .
whereby the sediment is suspended in the fluid. Rather, a distribution of sedi-
ment in the boundarxvlayer will simply be postulated. It transpires that the
resulting model is not highly sensitive to the assumed sediment distribution, and
the boundary layer depth can be scaled out of the model equations.

As a first approximation the suspended particles are presumed to be
transported with a velocity proportional to that of the ambient fluid, and their
influence on the flow is neglected. Hence interest naturally turns to the mass-
transport velqci§¥jqf the fluid near the bed. The approach taken to the mass-
transport velopjﬁy’is based on the seminal work of Longuet-Higgens (1953). The

genera]ijgea,Jrgppgnized already by Stokes (1847), is that fluid-particle orbits
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generated by the propagation of finite-amplitude waves are not closed. Repeated
passage of progressive waves therefore engenders a small drift velocity, called
the mass-transport velocity.

As the suspended sediment js concentrated near the bed, and since under our
assumptions a purely oscillatory motion would produce no mean movement of the
sediment, it is the mass-transport velocity in the lower reaches of the fluid that
is central. This is exactly what Qas studied by Longuet-Higgens in the setting of
Stokes' waves over a laminar, viscous boundary layer. His methods carry over
intact for the shallow-water waves of interest here. Of course, the motion near
the bed is really turbulent, as the description of the experimental observations
suggests. In such a situation the mean aspects of the motion could be described
by way of a coefficient of eddy viscosity whose value varies with distance from the
boundary. Using this sort of idea in the context of Stokes' waves, Johns (1970},
showed that for both standing and progressive waves the predictions of the model
only differed by a multiplicative factor from the description obtained via laminar
boundary-layer theory. Such differences may be taken into account by applying the
laminar theory with an eddy viscosity that is 10 to 100 times the ordinary kinema-
tic viscosity.

We begin the analysis by concentrating attention around a particular point
x on the horizontal séa1e. Longuet-Higgins' development simplifies considerably,
because near x the bed may be treated as horizontal and without curvature on
account of the assumption that the parameter ¢ defined in (1.5) is of order a.

In addition to the horizontal coordinate x, the stretched variable

n o= 2+ h(x) +6h(><) , (1.25)
where
gon [t 12 & (1.25)
no(gho)Dz hy

is used to describe the boundary layer. Here & is a dimensionless boundary-
layer thickness and v refers to an appropriate, dimensional eddy viscosity.

Observations 1nfthéf1§pqnatory indicate that typical values of & are about 0.05.
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Consideration is given to the mean horizontal velocity !I(x,n,t) 1in the houn-

dary layer n units above the bed at x at time t. In the approximation
afforded by the use of an eddy viscosity 1t is found (see Longuet-Higgins, 1953,
formula (155)) that

[S'S—t-—"z']U=BT. (1.26)

where, as fﬁéil.245, uy 1s tpe horizontal velocity at the bottom of the inviscid
layer. NatuF;]ly,gu:lsatisfies the no-slip condition at n = 0, and must essen-
tially agrge;ﬁitgflﬁb for large values of n which correspond to the top of the
viscous layer. .The form of uy 1in (1.24) compels the ansatz that

2 1(ij - wﬁt)

U(x,n,t) =T Pj(x.n)e + C.C, (1.27)
J=1

If the latter relation is substituted into (1.26), there results the equations

: 2
_ a2 B " g2 2 2
G duge - S5 0P = - 13;;?—[1 - & 20Kkl (x), | (1.28)

for j = 1,2._'The,general solution of these ordinary differential equations is-

g~ Sy =A:N w 2
e AN i
’.’J("'_'?.) S;(x)efy" + Ty(x)e *E% (1 - B—hz(x)kalaj(x),
v .;T

where

b4 e < -1 - 0k,

for j = 1 2 and the positive square root is meant., Since Pj must tend to the
.: "‘{f\,",ﬂ .o.

correspond1ng coeff1c1ent of ~u, for large n and to 0 as n tends to O, it

b

e'nAKj]e’(kJ'x - wit) 4 c.e. (1.29)
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t, = 2ﬂ/u1, we obtain zero. This is the usual state of affairs for small-

amplitude waves, in which there are no first-order currents. For the drift velo-
city one must look to the next order, as Stokes (1847) already appreciated. At
the second order the average over a period t1 gives the lowest-order approxima-
tion of the mass-transport velocity Up and is not usually zero. In fact,
Longuet-Higgins has determined its value generally, under assumptions weaker than

those in force here. In our variables, this has the form

t+t1 8Ub .
um(x,n,t) =4 { L5 (xot) fQU(x,n,s)dsds
(1.30)
t+t au )
P2 3f3 fe 1{['-g%(x,n'.r) - -;%(x,t)] fglgg(x,n',s)ds}drdn',

(see Longuet-Higgins, 1953, formula (169)). Using the previously obtained

expressions for U and Up» the mass-transport velocity, u_, may be evaluated

m
explicitly as

2 ws 2
= J 2ry _ BT 2 292
where
= - -2u,
Dj(s) = 5 - 8 ¥j cos(uj) +3 I
with : (1.32)

Buw, Buw.
e A R (C B

Note that Um is independent of the fast time variable t. In obtaining (1.31)
we have 1gnorgdfihe'sma11 quantities h'(x) and aj'(x) in favour of the order-one
terms retained above (and, as before, the terms multipliied by 82 arising from
_ dispersion are inconsistently kept). This would be mechanical if we had main-
tained the distinction between x and the 'slow' spatial variable X introduced
in Section l.1.

The goal;jn;ﬁjeg now is to determine how the depth changes with time. In the

present, very'simp]ified model the temporal evolution of the depth'will be intima-
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tely connected with the mass-transportlve1oc1ty, Upe As determined above, u
depends directly on the vertical coordinate n in the bottom fluid layer, and on
the horizontal coordinate x and time through 2y, 3, » and h. Moreover, a,
and a, depend on time only through variation of h over time. Introduce
another, temporal variable T which is such that significant changes in the bed
profile take place over time scales T of order one. From the observational data
we know that the time variable t representative of a wave period is essentially
infinitesimal with regard to T. The depth h 1is now explicitly allowed to
depend on time, but only through the very slow variable T , which is viewed as
independent of t. Because h = h(x,T), the amplitudes a, and a, also depend
on T, as does the mass-transport velocity Ut Of course z and u have a
dependence on T induced by that of a4, 35, and h.

Consider a short time interval, say in which t varies by order one, [T,T+aT],
and a small spatial interval [x,x+ax]. Let po(n) denote the assumed form of sedi-
ment density in the lower_ fluid. (For simplicity, p fis taken to be identically
zero outside the lower layer.) A typical distribution, having some theoretical
justification (cf. Raudkivi, 1976), is the exponential form, p(n) = poe'Yn. A
cruder assumption is to simply take the density to be constant in the tower layer,

say set at some appropriate average value, p(n) = p. In any case, define

A

M(x,T) = fgp(n)um(x,n,T)dn. (1.33)

Because of the assumption that the suspended sediment follows the fluid motion,
the quantity
A0k, 1) - M ax, ) M (1.34)

is proportional to the total mass accumulation in the region
1= (x't x_rg x < X+ Ax} during the interval [T,T+aT]. Since the concentration

of suspended sed1ment is time and space invariant, this mass accumulation must be

ref]ected-ﬂd 'jfferent1a1 amount of sediment on the bed, ‘namely

; "of:m[h(x',“ﬂ) - h(x',T)1dx', (1.35)



where is the average density nf the depnsited sadiments (the fact that the

P
0
layer of sediment near ‘the surface of the bed is a saturated porous medium is

ignored here). Let Kiibe the constant of proportionality to which allusion was

made above (1.34). fﬁén?odr mass balance has the form

kTG, - MOxeax, 1) dde
(1.36)

= pg f:+Ax[h(x',T;AI) - h{x', T)ldx'.

Upon dividing by axal r;nd taking the limit formally as ax and AT approach

zero, the instantaneous version of the mass balance appears, namely

o KM L men) Mn
ar pg X K -rO g X (x,n,T)dn. (1.37)

Again for the sake of simplicity we shall henceforth take p(n) = p, though such
an assumption 1s not needed to proceed. Absorbing the dimensionless quantity

?Vpﬂ into K, and setting

Um(x,T) =-% fgum(x,n,T)dn, (1.38)
(2,37) becomes
' au
_:hf = K'aTm' where K = &K. (1.39)

The variable Um {s readily evaluated in terms of 3y and a, to be

. 2w 2
- = 2 gt 2 ,
UpXaT) = %, f} lay (a0 = £ h2( Tk 1%y, (1.40)
where
2 _ -2v -V .
3 1 e j e J
D, =5(1 -5=) -3 + 4 (cos v, = sin v,)

v = (~—% Y2 gor § = 1,2, (1.41)
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The reader will note that after K replaces K in (1.39), the boundary Tayer
depth no longer appears explicitly in our formulas, In effect, the timescale T
can be rescaled to eliminate & from the model equations, a potentiality that has
been exercised throughou;.thé remainder of this paper.

The simple law (1.39) combined with the Lau-Barcilon equations (1.21) and

supplemented by the original bottom configuration,
h(x,0) = H(x), (1.42)

for 0 < x <M, serves .to determine the bed profile for T > 0.

In summary, the model suggested here has the general form

°a

1

= = Mlap 3

aa2

X . Az(aI’ azs h), (1.43)
2= My, a0,

where the functions A1 and A2 are defined in formulae (1.18), (1.21), and
(1.22), and H dis defined in (1.39), (1.40), and (1.41). The system (1.43) is

supplemented by the ad&iliigby conditions

2,(0,) = a,° ,
(1.44)
0
aZ(O,T) =a, ,
for T >0, asf}n-(l.lg), corresponding to a fixed, incoming, deep-water
wavetrain, an@ulﬁgu_fi
h(x,O) = H(x), (1.45)

as in (1. 42). COPPGSPOdeng to a given initial bed profile. Whilst several

somewhat drast1c simp]ifications have been made in the construction of this model,
...... h




predictive power, even in 1ts present, preliminary stage of development.

2, Equilibrium Configurations

Since one of our principle aims is to explain in some measure the formation of
stable bed structures in near-shore zones, it is natural to consider what kind of
time-invariant so1ut1onsi§fe possessed by the model developed in the last Section.
Before embarking on a tudy.of equi1ibridm solutions, it is useful to understand
certain general aspects of the equations more fully.

As in the derivation, attention is given first to the situation wherein the
bed is fixed, In this égée we are concerned only with the Lau-Barcilon equations
(1.21). As noticed by Armstrbng et al. (1962), this system of equations admits a
conservation law, namely

UL |ay(x) |2 Bl
T, . .

C!Ql

That is, for all x > 0, E(x) = E(0), and so E is determined by the initial data
(1.19) for the incoming wavefield.

Consider first that the bed is flat and horizontal, so that h(x) =1 and
f(x) = 0. The system (1.21) simplifies to
31'(x) + iane1Akxa1*(x)a2(x) =0,
(2.2)

azi(x) ¥ 1aQ2e-1Akxa12(x) =0,

for 0:< x '« M, with

0
31(0) = al s 32(0) = 320'

“In this form tbélﬁqqations admit an exact solution, given already by Armstrong

et al. (1962,_569'3150 Mei and Gh]ﬁata, 1972). The salient results are merely

Aol SR

e 4

reported here. TEﬂRbrarilyiﬁefine new variables as follows:

0T, T (2.3
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lay (x)] g lay(x)] P
= ] X s o
PR (g 72
and
; = 001(0Q2E0)L2x0 (2'5)

View v and w as functions of X rather than x.

energy expressed in (2,1) becomes

w2(x) + v3(x) = 1,

Then the conservation of

(2.6)

The solution of (2.2), expressed in the variables given in (2.3)-(2.5), is

v¥(x) = vaz * (vb2 - vaz)snzt(vc2

w2(x) =1 - v3(x),

where sn denotes the Jacobian elliptic function, v 2

a
real roots of the cubic equation

0= p(vE) = (1mvn? - Lr e b sy -

with
&
an(uQZED

1 Al =

)LQ d
r = w2(0)v(0) cos(s(0)),

and the modulus 1 of sn has the value

-Ped,set within themselves.

O )

[, &, v(0), w(0), e(0),

Y1, (2.7)

2 2
< L < vc are the three

vEON;-

and ;a are

The exact forms of these
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in the X variable, where K 1is the complete elliptic integral

K = K(y) = f"’z vzsinz(y))']"zdy .

In the original variables,, the period of a complete cycle of exchange of energy

Setween the two harmonics is

L - L)
23 B2, (aE) 72

This ‘distance will be called the repetition length of the system (the same para-

meter is named variously by other authors). This sort of periodic variation of
the first two harmonics certainly accords qualitatively with what is observed in
the laboratory (see again Figure 3(a)). An incoming wave train alluded to earlier

0

that is especially interesting for our purposes is when alo =, 3, = 0. The

above formulae then simplify considerably:

2 .1+ (f.g.)2]1/2 2, -1

’
CVb

1]

v
b 2

In the fury dﬁst given, ‘the system's predictions have been set against a con-
siderable ran?ﬁ;@fﬁlqbqratary data.(see Mei and Unldata, 1972). The results of
this °°mpar15§§;559“athe repetition length, L,, to be rather well predicted,
especially fdrkiiéﬁer'values of AQ. since the repetition length seems to be a
major factor as regards the spacing of bar-like structures in the bed, the
reliability of the mode1 in this aspect is welcome.

If the bed"smspgtial]y variable, an analytical solution is not available.

However, for n bottom configuration h(x) it is an easy task to accqrate1y

approximate\n_merfia11y the so1ution a; and 52 of (1.21). The system of
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equations 1s not stiff, and a straightforward application of the standard,
fourth-order correct, Runge-Kutta discretization procedure gives very satisfactory
results (cf. Isaacson and Keller, 1966). It is found that while the harmonic
amplitudes Aj(x) = |aj(x)|, j=1,2, are nét typically periodic over a gently-
varying bed, they neverthless present a pattern of rhythmical exchange of energy.

Examples of this phenomenon are pictured in Figure 6, where a fixed, incident

".
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Figure 6. Rhythmical exchange of enérgy between the harmonic amplitudes
Aj(x) = |aj(x)|, j = 1,2, of an incident, sinusoidal wavetrain propa-
gating over gently varying bed topographies: (a) a flat bed; (b) a wavy
bed with corrugation-length scale shorter than the repetition length,
LA; (c) a wavy bed with corrugation-length scale longer than the repeti-
tion length, LA; (d) wavy bed "tuned" to the repetition lenght, L (e)
development of the wavetrain over a slightly sloped bed.
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sinusoidal wavetrain is shown impinging on several, different slowly-varying bed
topographies. Figure 6a shows the waves' response to a flat bed, and incidentally
a nice disp1ay of the repetition that occurs over a flat bed. In 6b and 6¢, the
surface wave meets a wavy bed, but in both cases the length scale of the bed is
quite different from the flat-bed repetition length. These bottom profiles draw
about the same response as a flat bed. It is otherwise in 6d where the wavy bed
is 'tuned' in length to the flat-bed repetition length, resulting in a substantial
increase in the mean energy of the second harmonic. In 6e, an interesting example
is presented where the wave encounters a gentle slope. Because the basic pattern
of variation of A, and A, is similar over a wide range of topographies, it is

tempting to use the term repetition length to mean the distance between successive

minima of A2, even in sftuations where this quantity varies with distance toward
the shoreline. This terminology has proved to be of practical utility, and con-
sequently it will be employed henceforth.

Turning now to equilibrium solutions, these are obtained from the full modal
by setting éﬁ?éfié 0 in (1.43), and solving the resulting system of equations.
Since ah/af = O;Iﬁ js a function of x alone, and hence so are 3, and aye

Moreover, frbm‘(1.39), aUm/ax = 0, whence there is a constant A such that

The constraint (2.8), when coupled with the Lau-Barcilon system (1.21), comprises

the equations for a steady state, namely,
(a8 ¢ e f 00y () ¢ a0’ *%a *(x)a,(x) = 0,

S ORSEAOINOR iag,e” *%a (x) = 0, (2.9)

with G ;,Hf -

(2.10)



for j = 1,2, where Aj - |aj| as befare. Also let
co(x) = 29(x) - ¢p(x) - x&k . (2.11)

The existence of the conservation law (2.1) implies that the four real differen-
tial equations represented in complex form in (1.39) may be integrated once, as
Armstrong et.al. (1962) have noticed. The resulting system is

dA,
T = - oA sin(e),

dAz 2
de A12 |
H = = A - ef(X)(ZfI - fz) + G(Qz A_' - 2Q1A2)C°5(9)-
2

The equations (2.12) are just the Lau-Barcilon equations in another guise. Fof

steady configurations, they .are still constrained by the last equation in (2.9),

: 2 2
e 1, %Afu - & h20k, 2%, = o, (2.13)

and the conservatjon 1aw

2

) QL = of, (2.14)
=1 j

where E is a ;qﬁsﬁant. Because of (2.13) and (2.14), Al’ AZ’ 8, and h

&Y J

':,‘,f'f Sk

are not 1ndgpqﬁ§éht;f For example,.if A1 is known, then A2 is determined from
(2,14), h ‘1si}ngﬁ?bbtained from (2.13), and e 1is found using the last equation

in (2.12). “IQpﬁui%%pqincip1e the system describing steady states may be further

ey

=)

N?phs-in two unknowns, say A, and 6. All this is predicated

i ki. 01. and

: Ihgse_in turn are all determined once « and 8 are spe-
.gb%ﬁ\
] (L j .
ar1a?}gs defined in (1.2), the fundamental wavelength is 1,
ot I -
cand - w, w, = 2w, and k, are determined by the disper-

cified. sfiﬁ; he

Consequently Kk

sion FEIQtiﬁhzf ‘ .'héjamplitgde and wavelength parameters, o and B
hii@gﬁ?alues—consistent with the order of magnitude assump-

e TV

respective
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tions posited earlier. The values of E and A depend upon how a1y 35, and h

have been normalized. If hj 1s taken to be the value of the inittial Jepth at
X =0, then
h(0) = 1, (2.15)

Moreover, because u and g are order-one quantities when referred to the

variables as they appear here, it 1s natural to pose

2 20y « L |
A,7(0) + A°(0) = 7. (2.16)
In addition the phase is normalized by the stipulation that

8(0) = 0 . : (2.17)

The simplest steady-state solutions are those where . Al’ A2’ 8, and h are

all x~independent, say equal to Alo, Azo. 89 and HO' respectively., Such a

solution necessarily satisfies

e0 a 0, H0 =1, - f(x) z 0,
(A
K - 2°‘Q1 2 + “Qz __ﬁ_ =0, (2.18)
A
and
cqp Oy2 0,2 _1
0

Combining the iast two equations in (2.18) leads to a quadratic equation for A2 s

say, from which one deduces immediately that

2, 2 2
g 0 2 &+ L(&)" + a%y(20) +0p)]
2 Za(2q; * Q) .
A0 - - whavr,
8 = 0, H0 = 1.

The equiIibriﬁm"cohfigurations written in (2.19) are not especially interesting.
In particular. the notion of a repetition 1ength plainly has no validity in their

regard. However, these solutions may be perturbed to produce time-independent

~ 1.
.,', o
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solutions with more structure. ]
To cgngtruct more geneba1 equilibrim configurations, it 1s helpful to reduce

the system (2.12) along the lines already indicated. The choice of A2 and o

as the primary dependent variablés is convenient for the purposes at hand.

Because of (2.14),

A, (x)
Ay 2(x) = Q,[eE - -15——- 1, (2.20)

and so Al is determined as the positive square root of the right-hand side of

(2.20). For brevity, write

A (x) = F(Ay(x)), (2.21)

where

2
Fly) = Q[ - %; 1172,

Using this relation in the last two equations in (2.12), there appear

dAz .
5 " anF(Az(x)) sine(x),

(=N [=H
>l

- Mk + ef(x)(f2 - 2f1) - ZuQIAz(x)cose(x) (2,22)

F2(A,(x))
+ a[Qz —A—'(—‘)— ]COS B(X)

To complete the reduction to the two unknowns A2 and e, the depth variation
ef (x) = h(x) =1 appearing in the second equation must be related to A, and .

This is accomplished using (2.13) in conjunction with (2.21). Briefly, write

R 2 u 2 2
0 =nh" 8" 3 2 . h2 - k.A.2
(x) 7 35 wgky7AyT 0y - hEx) T o= wgk RS,
j=1 j=1 .
T2 8200 (2.23)
+ A."(x D - A .
jerky '

= Ah"(x) - Bh2(x) + C,
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say. Nhenévegu,ﬂi:.appearsf dse (2.21) to express it in terms Qf Ay The

resditing quadratic equation may pe solved thusly;

say, so expressing h? as a function of AZ' The negative sign is taken in the
solution of (2.23) because”h {s to be order one. Taking the positive square

root, ef 1s obtained as a function of Ay,

2 2 /)
ef(x) = 2= CgA - 8AE172 (2.24)

= G(Az(x)).

Combining (2.24) with (2.22) gives a system for A2 and 8, written symbolically

as,
dA2
a')"" . K(AZ’B),
(2.25)
ds . L(A,s0)
dx P2 =Y
where
; Kly,z) = oQ,F(y)?sin(z)
and

’ L, . 2
Liy,z) = =& +' (f2 - 2f1)'G(y) - ZqQchos(z) + ml'_Q2 ﬂ.;’;l_ Jeos(z).

The plane autonomous system (2.25) is investigated in a neighborhood of the
constant solutions A%, AL, 8p = 0, Ho = 1 given in (2.18). The point
(Azo, 90) comprises a critical point of (2.25), and therefore the behavior of the
system close by this solution may be inferred from the properties of the

linearized system
d(ﬁz)

0
= KA, 0g) - (88y(x), 60(x)), (2.26)

ﬂégﬁl " vL(AZO,eO);(sAz(x),se(x)),
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near the origin (0,0). Here W = (aK/aAz,aK/ae) and similarly for. vL. After a

11ttle manipulation, (2.26) is put into the simple form *
2
d (aAz)

dx?

- - a0y (A )28, (), (2.27)

dx
h
= 3, ﬁr'(l -4 1o, mi B Y 1) B%" :
o B2 ugky(1 - & kzzmlm?_f’)2 * ugky (1 - g— k210,49 %)
and ‘ Alo 2
W, = Wol2f, - fy) + 4aQ; + aQy( ;;U- )
As ”1 > 0 in the range gf parameter values that interest us, the solutions of

(2.27) ére periodic of period 2n/(A10/EﬁEWI). Thus infinitesimal perturbations
of the constant states show periodicity, a kind of infinitesimal version of the
repetition 1¢ngth discussed earlier, only now the bottom also has a periodic structure.

In any case, the foregoing calculations imply that (0,0) is -a center for the
linearized system (2.26), and the general theory of plane autonomous systems (cf.
Coddington and.Levinsqn, 1955, chapter 15) assures that (Azgeo) is itself a
center, or e1§e a1sp1ra1 point, of the full nonlinear system (2.25),

The possihf]ity of (Az?eo) being a spiral point 1s discarded using the
following érg?ﬁent; Supposing the contrary, let (Az(x),e(x)) be an orbit of
(2.25) that spirals into the critical point (A)3e)) = (A,0,0), say as x » + =
Then by a translation of the independent variable, the normalization (2.17) that .
g(0) =0 may be enforced let o > 0 be the first iero of 68(x) for x > 0.
| Such a point a ex1sts since (A (x),8(x)) spirals around (A2 ,0) Define new

functions (r(x) #(x)) on [-a,a] as follows:

i =f*ﬁ2(x)' 0 <x <a, a(x), 0 <x <A,
r(xj{f’_”:, s(x) = (2.28)

-8(-x), -a < x <0,




A close exemieeeion convinces one that (r(x),e(x)) 1s a solution of (2.25) on 35
the entire interval of its definition, and that (r(a),s(a)) = (r(-a),¢(-a)).
Extending the'f@nct1on5 (r,4) to all x by asking that they be periodic of
period 2;!feéloe;;1n'a closed orbit, that is, a periodic solution of (2.25). It
follows that (rk;).¢(X)} = (Ay(x),8(x)) for a1l x, since if two orbits inter- -
sect they are.identiEai. by uniqueness of solutions to the initfal-value problem.
This contradicts the assumption that (A,,8) spirals in to (A2°,0) and proves that
(AZO. 8p) s a eenter.

Figure 7 shows the dependence of the infinitesimal repetition length, the
periods of the solutions of the linearized system (2.26), as a function of « and
g. Note that. ﬁi decreases with an increase in either a or 8, but that LX

depends more strongly on 8 than on a. This squares with the trends observed in

the laboratory for the{hepetition length over a horizontal bed (see Figure 8).

La .
=0,
Neeo | a¢= 0.10= const |
(@) 40
2.
o i A | U (| 1 A i i
Q04 008 e X B
La
r. 8= 0.ll=const
(b) 4
o A A 1 1 A | —

Figure 7. Dependence of the infinitesimal repetition length, L, the periods of
the solution of the system (2.24), as a function of the wave parameters
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Figure 8, H?vetank data for the repetition length t}/zo as a function of the
wave parameters: (a) B with a = const, (b) a with B8 = const;
(after Boczar-Karakiewicz and Bona, 1981).

The pre§en;e-of p;r1od1c solutions to the linearized system is taken as an
encouraging butcome. suggesting that it would be worthwhile to study the full,
time-dependgqt version of the model. In this respect, the steady configurations
can play qngther useful role, serving as ‘'exact' solutions on which to test the

accuracy of'éAtjme-dependent numerical scheme. These developments are reported in

the next Sgétjoﬁ._

3. Time-Dependent Configurations

The qg§11t§tjve_match of theory and experiment obtained in Section 2 regarding
the steady-state solutions of the model suggested that the investigation of time-

dependenpfgdlgtidnh was worthwhile. In this section, a series of numerical

'lnfﬂ’h‘(‘l"“ﬁ‘fiﬂﬁt‘;‘ﬂ’f.'},hﬂ eroamnlaka bdmm dAamandand ook af maanatdane 1 42\ w311 ha
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described. In the present paper, only two types of initial bottom profiles are

examined, namely, a ramp configuration (used in the wavetank experiments of
Boczar-Karakiewicz et al. 1981, see Figure 1) and a flat bottom. In later stages
of this investigation, more complex initial bed profiles will be introduced. Of
especial interest are gently sloping beds which are typical of many different
field situations.
A standard, forth-order correct, Runge-Kutta algorithm was used to
integrate the first two equations in (1.43). A predictor-corrector scheme with
a small amount of artificial damping was used to advance the bottom to the next
time level. More precisely, the strong evidence of two, very disparate time scales,
as described in Section 1, indicated that it would be propitious to decouple the
temporal and spatial integrations. At a fixed time T, the wave harmonics
the bed configuration h{x,T) to be fixed. The updated bedform h(x,T+aT) is
then determined from the third equation in (1.43). The process ijs then iterated.
It gets its start from the given initial bed profile, of course.
The precise technique utilized is now described. The region of space and

time of interest is the rectangle compriéed of those points (x,T) for which

0 <x <M aqd 0<T < TO’ Consider the grid (iax,jaT) fin (x,T) space where
i and J ‘a;é 1nteg§rs with 0 <1 <N, 0 <jJ <d, M = Nax, and T0 = JaT. For
x = iax and T = jaT, let hij denote the approximate value of h(x,T), and

let f1j denote the approximate value of f(x,T), where f is the function
defined 1h (i.é) that corresponds to h. Let aij and a;j denote the
approximate values of a, and a,, respectively, at the same spatial and tem-
poral point. Suppose at time T that hij is known for each value of 1 bet-
ween 0 and N. Then values of aij and a;j. for 0 <1 < N, are computed from
equation (1.21) using the standard, forth-order correct, Runge-Kutta scheme (cf.

Isaacson & Keller, 1966, Ch, 8). The boundary conditions explained in (1.19)

are imposed in the form
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and used to 1n1t1ate the numerical integration of (1.21). Once a{J, a;j, and

11 0<1 < N are An hand, an approximation ¢1j to the function U~ at the
points x = 1Ax, 0 <i <N, at time T is immediately available by application
of formulas (1. 40) and (1. 41) A fourth-order approximat1on yiJ to
g/ x at the points x = 1Ax. T = jaT, 0 <1 <N, is then obtained using stan-
dard, centeredyﬁifferénce formulas, with appropriate modifications near the
left- and right-hand endpoints of the spatial domain. An updated approximation
hi"j+1 , 0 <i <N, of the bottom profile is then obtained using a split-step
technique cdnsisting of the fourth-order correct Moulton's method (see, again,

Isaacson & Keller, 1966) to predict a first version R 1,341 of the bottom

followed by an averaging step

plad*l o ggi=1a3*l 4 g3, glehdvly s,

The initial bottom profile, h(x,0), is used to start Moulton predictor step for
the case j = 0.

The spatial averaging that is featured in the method outlined above is used
to add stability to the computational algorithm. It amounts to integrating the

nonlinear parabolic equation

h oy 3% ) . AX
— =, — ¢+ where vy = lim > 0, (3.1)
of 3 axz 3x ax 40 Al
AT 0
rather than the conservation law
s3h _ 3 .
T (3.2)

The damping term deserves some comment. As far as the present article is con-
cerned, this term 1s strictly artificial, and has been introduced to stabilize the
temporal integration. However, we will argue in subsequent studies that a term
something 1ike this should appear when more detailed modelling of the sedimen-
tation proceSsjiﬁ considered. As long as the solution of the differential
equatfon (%;?fijs smooth, then the error introduced by the damping term becomes

negligible in the limit as the d1scret1zat1on parameters ax and AT tend to

2ar0 aopropr1ate1y.



Thexréf{55¥1ity of the integrations was checked in some detail. The tem- =

poral 1nte§ﬁ§fﬁgbﬁgayg more trouble and the solutions did vary slightly (a maximum
of about 10%) as :AT was decreased, but their global behavior did not change
S1gﬂ1f1¢anf1y;';As;regards fhe spatial integration, a convergence study was per-
formed with deﬁreas1ng values of ax . For such a study the exact, constant solu-
tions of the steady-state equations (2.19) were used as test cases. For these
solutions, the values of 1\ and % must vary by quantities that are of order
one so that Al and A2 remain constant. Figure 9 shows a log-log plot of the
absolute value of the maximum error in A1 and A2 over the spatial interval
(0,10). The ordinate gives the percentage error and the abscissa shows the number
of intervals used in the spatial 1ntegrat10n. Notice that at a point lying bet-
ween Ax = 1/16 and AX = 1/32 numerical roundoff appears to prohibit any further
increase 1n:the.accuracy,of the integration. The slope of the dotted line shows

how accuracy should behave in the fourth order scheme. This behavior is observed

in the range where ax > 1/16.

Error [%]
% ‘\ {x) error in A
o™ (o) error in A2
\‘\ ]
o ™
l el B ™
\\\x
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LY
-] “
2k b
(op : \\
N X
» °
\\
10-3}+ X \\
[ \\
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J N\
D- 1, 1 1 [
30 B0 B0 320 Nx AX

Figure 9. A convergence study of the numerical scheme for integrating the model
equations (2.19). The predicted corvergence rate for the integration
“algorithm used should be O(ax").

Figure 10 depicts several stages of the- evo]ution of an initial ramp bottom

profile as well as the associated wave field's harmonic components. The incident
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wave field is characterized by o= 0.1 and g = 0.08, values that correspond

closely to-Qaiﬁgéfé?'ihése parameters that obtain in actual flume experiments,

S -"- ;:_h;-:.: o

The depth?gﬁ;ngés relatively rapidly in the earlier stages of the integration, but
the entire sy;tgﬁ settles down to an equilibrium configuration in due course
(shown at T:=36405f). Not;be in Figure 10 that the left-hand side of the (x,z)
domain, wheréfiﬁe waves enter the system, appears to reach 1ts final configuration
first. This cgrrespﬁnds to what 1s observed in wavetank experiments (see again
Figure 1 and the.afticle of Boczar-Karakiewicz et al., 1981), |

A sample of the long term equilibrium solutions of our model system is pre-
sented in Figure 11. In these examples, the bottom configuration was completely
flat at T = 0, and incident wave field was given four different pairs of para-
meter values I(a = 0,05 and 0.15, g = 0.07 and 0.09). Notice that the
equilibrium iépetition lengths appearing in Figure 11 vary with « and g8 in the
same way that they do in the graph in Figure 7. The repetition length decreases
with 1ncréasiﬁg .a and B, and depends much more strong1ylupon g than a. |

The equilibrium states of Figures 10 and 11 are all qualitatively simi]ar.
In more extensive studies we have found that a comparatively wide range of initial
bottom configurations evolves into equilibrium bottom configuratfons that are
periodic in x with a well defined repetition length that characterizes both the
exchange of energy between the first and second harmonic components and the bottom

variation. Again, this’is the same state of affairs that obtains in wavetank

experiments.
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Figure 10. Final state solution (at T = A40aT) of the time dependent model
equétions starting at T =0 from an initial ramp bottom profile. The
horizontal coordinate gives distances in units of the wavelength, the
incident wave parameters are a = 0.10 and g = 0.08; - connotes the
value of Al(x) and =~--- connotes the value of Az(x).



42

R T=64| . aT
Ooc -"‘"“.“\;"‘fﬂ-m-. L i : s NN TN NN TN
f:.hﬂ;: 171:' Ch,
0.50F - K Q50
(0 e e e & e Qoo o
-0s0f -Q50)
-|.OOF == ’h — -1.00F N"\/‘:\-/\"Chw
Qo 50 Q0 Q0 40 80 120 B0
« =005 : x =005
; L,=3.80 ; Lys2.20
A Af
N Palth Y Y .Y
'c'h 1 ;Oh 1h
050 4 030r 4
A '/ s, N \/ AN
QOO 7 v . Q00% o v %
-Q50t -Q50F h
1.00F == — 400 NV NS N
Q0 20 40 - Qo 20 4.0 60
«=0.15 « =0.15
B.:007 - B =009
Ly =240 : Ly =1.80

Figure 11, Final state solution (at T = 641aT) of the time dependent model
_equat1ons starting at T =0 from an initial flat bottom profile. The
horizontal coordinate gives distances in units of the wavelength, the
incident wave parameters are o = 0.05 and 0.015; g = 0,07 and
0.09; Llﬁfdenotes the corresponding repetition length; - connotes the
values of iﬁl(x) and --- connotes the values of Az(x).
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4, Conc]usions

It is a well known fact that the interaction of shallow water waves and bot-
tom sediment may lead to the formation of equilibrium bar and trough con-
figurations. Here we have used a simple, two-dimensional model to relate the
change over time of a bottom profile to the spatial development of the wavefield's
first and second harmonics. The resulting set of equations has been investigated
both for eq;{libfium'so]utions and for time-dependent solutions. It has been found
that time-dependent solutions may evolve toward an attractor which is an
equilibrium solution.

Although data from wavetank experiments does not yet permit realistic quan-
titative comparison with our theory, the length scales and qualitative features
predicted by our model agree tolerably well with laboratory findings. Preliminary
experiencelQith ﬁhe model as regards field situations also holds up promise for
its utility (cf. Boczar-Karakiewicz and Bona 1981, Boczar-Karakiewicz et al.

1984). Further investigation of the model's predictive power in both laboratoy
and espectally field situations seems warranted,

It is worth emphasis that the model developed here has been kept as simple as
possible,.and that there are many ways in which it might be improved. First,
reflection is 1mport{nt on many real beaches, and this should certainly be taken
into account in modelling the wave field. Secondly, dissipation of the wave field
is important in some regimes to which the model might apply, and this too should
be incorporated into the model. At a more sophisticated level, there is no reason
why Boussinesq or Korteweg-de Vries type equations could not be used in modelling
the wavefield, rather than passing to the two-harmonic approximation. One could
even imagine retaining the full Euler equations if need be. More complex models
for the boundary layer and the associated mass transport could be incorporated
(cf. Bagnold 1963, Drew 1979, or Bowen 1980). And, one need not fix the sediment
distribution in the fluid, but rather determine this locally according to the wave
field. fjna11y, it would be worthwhile extending the model in the other spatial

dimension, so allowing for some gradual variation along a coastline.
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i

We expécﬁ-fd réport on various of these theoretical and practical issues at a

later stage. |
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