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Abstract. Considered herein is an initial- and boundary-value problem that arises in
modeling the propagation of small-amplitude, long waves generated by a wavemaker at one
end of a homogeneous stretch of nonlinear, dispersive media. The principle accomplishment
is to show that the solutions to this problem depend continuously in strong norms on both
the initial and the boundary data.

1. Introduction. This paper is a continuation of an earlier one (Bona and Winther
1983) in which an initial- and boundary-value problem for the Korteweg-de Vries equation
was analysed. This classical model appears in the study of small amplitude, long wave
propagation in an impressive variety of physical situations. It was argued in this previous
work that the problem

Up + Uy + Ulg + Ugge =0, for z,6>0 (1.1a)

with
u(z,0) = f(z), for >0, wu(0,t)=g(t), for t>0, (1.1b)

is especially interesting and apropriate as regards the use of this equation in situations
where a wavetrain is created at one end of and travels into an undistured patch of the
medium of propagation. A common example to which the Korteweg-de Vries equation
might be expected to apply arises in a flume with a wavemaker afixed at one end which,
when appropriately oscillated, generates unidirectional, small amplitude, long waves that
travel down the channel (cf. Bona, Pritchard and Scott 1981, Hammack and Segur 1974 and
Zabusky and Galvin 1971).

The problem posed in (1.1) has been investigated by Bona and Heard, as well as in the
present authors’ earlier paper. The work of Bona and Heard provides existence of relatively
weak solutions corresponding to weak assumptions on the initial and boundary data f and

Received September 8, 1988.
*Work partially supported by the National Science Foundation, USA.
AMS Subject Classifications: 35B45, 35B65, 35C15, 35Q20, 76B15.

An International Journal for Theory & Applications



KORTEWEG-DE VRIES EQUATION IN A QUARTER PLANE 229

g in (1.1b). In our earlier effort, we were able to provide arbitrarily smooth solutions
corresponding to smooth initial and boundary data, provided that certain compatibility
conditions between these data obtain.

The principle accomplishment of the present paper is a result of continuous dependence
of solutions on the data in spaces that are as restrictive as the solutions allow. Continuous
dependence results are important, but somewhat rare for nonlinear evolution equations in
the rather strong topologies considered here. As a biproduct, we are able to bring the
existence theory into line with that available for the pure initial value problem

Up + Uy + YUy + Ugey, =0, for z€R, ¢t >0, with

(1.2)
u(z,0) = f(z), for z € R
(cf. Bona and Smith 1975, Bona and Scott 1976, Kato 1975 and 1983, and Saut and Temam
1976). Another consequence of our theory is some results of local smoothing of solutions
of (1.2) which are analogous to those obtained by Kato (1983) for solutions of (1.2). We
are also able to show that the local smoothing inherent in (1.1) depends continuously upon
variations in the initial and boundary data, as did Bona and Saut (1988) for (1.2).

The paper is organized as follows. Section 2 sets out notation, reviews the central theorem
from our previous paper, and provides a precise statement of the main results to which
attention is given here. In Section 3 bounds are obtained on the difference between two
solutions of problem (1.1) in terms of the difference between the corresponding initial and
boundary data. Such results are obtained by energy methods that were already exploited
in our earlier work on this problem. There follows in Section 4 a technical lemma that
provides a special approximation scheme for the data in (1.1b). With the bounds and the
approximation scheme in hand, the proof of our main result is readily deduced in Section 5.
The theory of local smoothing is established in Section 6.

2. Notation and statement of the main results. In this section, the notation in
force throughout is reviewed and the main theorem given precise enunciation.

With a few exceptions noted below, the notation utilized will be that which is currently
standard in the theory of partial differential equations (cf. Lions and Magenes, 1968). In
general, if X is a Banach space the norm on X will be denoted ||-||,. However, in the special
case wherein X = H’“(R*), the Sobolev space of real-valued, square integrable functions
defined on the half line R* whose first k derivatives are also square integrable, we shall
write

Ifllx for ||f||Hk(R+)
if f € H*(R*). Similarly, if g € H*(0,T), we write
|glk,r  for ||9||Hk(o,T) .

If k = 0, the subscript k£ will be omitted altogether, so that

Il = 1fll.me) and g7 =|gloT-

In Section 4 use will be made of the closed linear subspace HJ*(R*) of H™(R™). The space
H*(R*) is the closure in the norm || - ||, of the subspace C§°(R*), and thus an element
f € HF*(RT) has the property that f(0) = f/(0) = --- = 9™~ 1£(0) = 0. Of course, the
space HJ*(R*) inherits its topology from H™(R™).
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A central role in our theory will be played by the following, non-standard collections of
functions. For non-negative integers k, define Xy as follows:

X = {(f,9) € H¥** (R*) x HEF'(RY) - 99(0) = g)(0) for 0 <5 <k} (2.1)

loc

In this definition gU’(t) is shorthand for

a7
d_t; ¢ (22&)

and ¢(j) = d)ffj ) is defined recursively by

¢ = f and

. : 2 1o~ AN s s
qﬁ(ﬁ 1) -[ff{,(,,” _1_‘!,5?“}’ + E(Z (Z) ¢(1)¢(J 2))m] i

=0

(2.2b)

(The abbreviation FU) for the 5t derivative of F with respect to t will be used throughout,
even when F is a function of both x and ¢.) The class of functions Xy, is given the topology
induced by H3*+1(R*)x HE _(R"). Note that the traces to which reference is made in (2.1) all
make sense because H!-functions defined on open subsets of R have a realization as bounded,
continuous functions. Consequently, Xy is a closed subset of H3*+1(R+) x HFTY(RT).

A word of explanation is warranted concerning the relevance of these spaces to our en-
deavors. Suppose that there is to hand a solution u of (1.1) taking the initial and boundary
values f and g, respectively, smoothly in the closed quarter plane {(z,t) : z > 0 and ¢t > 0}.
It follows that

g (0) = lim g = lim — [uz(0,8) + w(0,t)ug(0,1) + gz (0, t)]

= —[f'(0) + F(0)£'(0) + f"(0)],

or, in the notation introduced above,

g@(0) = ¢{(0).

Inductively, one determines that g and f must satisfy the further relations

g (0) = ¢(0) (2.3)

for all j such that both sides of (2.3) are defined. This observation leads naturally to the
introduction of the function classes Xj.

In the precursor to the present work (Bona and Winther 1983) the following result was
proved.

Theorem 2.1. Assume that (f,g) € X for some integer k > 1. There then exists a unique
solution u of (1.1) in LS (R*; H3**+1(R™)) corresponding to the data f and g. Furthermore,
there is a constant ¢, depending continuously on T, ||f||sk+1 and |g|k+1,7 such that

||u||L°°(0,T;H3k+1(R+)) <ec.
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The purpose of this paper is to extend Theorem 2.1 in several ways. The major ad-
vance consists in showing that the initial- and boundary-value problem (1.1) is well posed in
Hadamard’s classical sense. That is, the mapping that assigus to suitable pairs of functions
(fy9) the unique solution u of (1.1) corresponding to specifying f as initial data and g as
boundary data is continuous as a mapping between their respective function classes. As is
well understood, this sort of property of a system is crucial to its perspicuity as a model
for physical phenomena that do not feature any catastrophic change of type. Moreover,
a good continous dependence theory is a strong indicator that satisfactory numerical ap-
proximations can be devised for the systemn in question, and is sometimes a useful tool in
analyzing numerical approximation schemes. As a minor consequence of the analysis, it is
also deduced that the solutions whose existence is guaranteed by Theorem 2.1 actually lie in
the stronger spaces C'(R*; H3**1(R+)) and, for each T > 0, in Ly(0, T; H3*+2(R1)). Here
is the precise result in view.

Theorem 2.2. Assume that the initial and boundary data (f,g) lies in Xy for an integer
k > 1. There exists a unique solution u of (1.1) in C(R*; H3*+1(R*))NLy 100 (R*; HFP2(RT))
corresponding to the data f and g. Furthermore, the map (f,g) = u is continuous as a map
from X, into C(RT; H¥HL(RT)) N Ly joc(RT5 HEEH(RY)).

Remarks. The continuous dependence result means that if {un}52, is a sequence of solu-
tions to (1.1) corresponding to the sequence {(fn, gn)}:o:1 of auxiliary data in X}, and

Il fn = fllsk+1 + lgn — gle+1,7 — O

as n — oo, for all T' > 0, then (f,g) € X and if u is the solution of (1.1) corresponding to
the data (f, g), it follows that

lun = tllz,0,7; Hok+2(0,R)) + tn — ull oo, Horsr @sy) — 0

as n — oo, for all positive R and T.
Since u satisfies the KdV equation and lies in C(R*; H***+1(R*)) N Ly(0, T; HEFEFZ(RTY),

ocC

it follows immediately that u, € C(R*; H*~2(R*)) N L,(0,T; H~}(R*)). A simple in-
ductive argument yields regularity of higher-order, temporal derivatives. The outcome of

this argument is summarized in the next theorem.

Theorem 2.3. Let (f,g) € X, where k > 1 and let u be the solution of (1.1) corresponding
to the initial and boundary data f and g, respectively. Then u lies in

loc

k
Y = () {C/RY; B DV RY)) 0 Ly oo (RY; HEE-DH3R*))
j=0

Moreover, the correspondence (f,g) — u is continuous from Xg into Y.

3. A priori bounds. The purpose of this section is to derive bounds for the difference
between two solutions u; and uy of the initial- and boundary-value problem (1.1). These
bounds, which are derived via energy-type arguments, may be expressed in terms of corre-
sponding differences in the initial and the boundary data for the two solutions. Such results
comprise an essential tool in the proof of Theorem 2.2 given in Sections 5 and 6; they are
collected together in Lemma 3.3 below.
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Throughout this section we shall assume that (f1,g1) and (f2, g2) are two sets of data for
the problem (1.1) which lie in X;. By Theorem 1.1 the corresponding solutions u; and us of
(1.1) will be elements of L2, (R*; H*(R*)). If the data (f1, g1) and (f2, g2) happen to lie in
Xk+1 where k > 1, then the solutions u; and u, are in L, (R*; H3*+4(R*)), and, moreover,
there exist constants Cy r which depend continuously on T, | fi[|sk+1 and |g;|k+1,7, % = 1,2,
such that

il poo o, 7513641 R4y 1035100, )o,r < Chor, (3.1)

for i = 1,2. Whilst not stated explicitly in the paper of Bona and Winther (1983), (3.1)
is a consequence of the arguments that lead to what we have here called Theorem 2.1 (see
particularly formula (6.7) in the proof of Proposition 6.4 in the last-quoted reference).

To begin the derivation of the desired bounds, introduce the notation

Af=fi—fa, Ag=g1—g2, and w=u; — u,.

From (1.1) it follows that the function w satisfies the variable-coefficient, initial- and boundary-
value problem

1
wy + wg + 5((u1 + ug)w)y + Wepr =0, for (z,t) € RT x RT,
w(0,t) = Ag(t), for t € RT, (3.2)
w(z,0) = Af(x), for z € RY,

If j is a non-negative integer, remember that ugj ) = (9,,’ u;, for i = 1,2, and w¥) = 8{ w. Then
w'k) satisfies the partial differential equation

w® +w® 4+ (uw® + uw)g + wh), = FK) | (3.3)
where
1v k (k—3) (k=3)1,,,(3)
(k) — _ = =J —J j
F¥ = 5 j2=1 (J) ("™ +uy @) . (3.4)

The first result is a bound for the L2(R*)- and H'(R*)-norms of the difference w.

Lemma 3.1. Assume that (f;, g;) € X, fori = 1,2. Then, for any T' > 0 there is a constant
Cr depending continuously on T, || f;||s and |g;|2,r, i = 1,2, such that

t
lw(, ) +/0 w;(0,5)ds < Cr{|Af|* +|Agl £} (3.5)

and .
lwa - D)2 + /0 w?, (0, 5)ds < Cr{||AFI2 + 1Ag 2} (3.6)
for0<t<T.

Proof: As mentioned above, these assumptions imply that u; € L*(0,T; H*(R™)), for
i = 1,2. Membership in this function class suffices to justify all the calculations below.
Also, from (3.1) it follows that there is a constant Cp such that

il Lo 0, 7:14(R+y) < C1 (3.7)
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for ¢ = 1,2. Here, and below, Cr will denote different constants possessing the same prop-
erties as the constant Cr specified in the statement of the lemma. To establish (3.5) let
y = w—r where r(z,t) = Ag(t)e™*. Then y satisfies the initial- and boundary-value problem

1
Y+ Yz + 5((“1 + 'UZ)y)z + Yooz = h

y(O, t) =0, y(z,O) = Af(x) - T‘(.’IJ,O),

where h = —(ry+ 7, + 3 ((u1 +u2)r), + 250 ). Upon multiplying (3.8) by 2y and integrating
over Rt x (0,¢), there appears after integrations by parts the relation

I DI+ / y2(0,5) ds+ / /0°°(<ul+u2>y)wydwds=||f—r(-,0)n?+2 / /O°°<hy>dzds.
(3.9)

(3.8)

Further integrations by parts shows

o0 1 o0
/ ((u1 + ug)y) ydz = —5/ (w1 + uz)zy? dz,
0 0

and so from (3.7) and the definition of r we obtain that
(w1 + u2)z|| Lo (m+x(0,1)) < Cr

lAllL2 @+ x 0,1)) < CrlAgh,r,
and
I7lloo 0,722 (R+)) < Cr|Agl1,7
It thus follows from (3.9) and Gronwall’s Lemma, that for 0 < ¢t < T

t
G, Ol + / y2(0,5)ds < Cr {|ASIP + 1Ag ),

and this implies (3.5).
To demonstrate(3.6), multiply (3.2) by —2w,, and integrate over R* x (0,t) to obtain
the relation

¢ ¢
lw(-, )||? + 2/ 9¢(8)wz(0,8) ds + / (w2(0,s) + w2,(0,s)) ds
0 0 (3.10)

B ”wa:(,o)”z +/0 /300 ((Ul + uz)w)zwm dx ds.

Integration by parts gives the expression

/000 ((u1 + u2)w) Wog dz = — (w1 + u2)4(0, s) Ag(s)wy (0, s) — %(ul + u2)(0, 8)w2(0, s)

(oo} 3 o0
- / (u1 + ug)gowwy dz — o / (u1 + uz)mwi dz,
0 0

from which one adduces using (3.10) along with (3.5) and (3.7) that

t t
(L DI + / w2, (0,8)ds < Cr{|AFIE + |Agl 7 + / s, )2 ds)
0 0

for 0 <¢t < T. Hence, (3.6) follows from Gronwall’s Lemma and the proof of Lemma 3.1 is
thus completed. §

In order to prove continuous dependence results in higher-order Sobolev spaces, we will
obtain bounds similar to the bounds derived in Lemma 3.1 in higher-order Sobolev norms.
Such results can be derived from the estimates of the functions w(®) = OFw given next.
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Lemma 3.2. Assume that the data (f;,g;) € Xk4+1 where k > 1 is an integer. For any
T > 0 there are constants Cy r depending continuously on T, ||fillak+1 and |gi|x+1,r for
1 = 1,2, such that

t
2 =
lw® (-, 8)]2 + / (w(0,5))* ds < Crr{IAfI3 + [Aglk s 7} (3.11)
and
ps 4 2
(I + / (w® (0, ) ds <
0 (3.12)
D k
Cor {1 F13ks1 + 1891410 + 1o e xio,ry * 168 12200, riprz ey }
for0<t<T.

Proof: Note that since (f;, ¢;) € Xr+1, Theorem 2.1 implies that u; € L*(0, T; H3*+4(R™)).
Membership in the latter function space is suflicient to justify the calculations below.
Define a family of constants Cpr which depends continuously on T, || fils and |lgi||2,7
such that the estimates (3.11) and (3.12) hold for k¥ = 0. This is possible on account of
Lemma 3.1. The present lemma is proved by induction on k. Assume that the estimates
(3.11) and (3.12) regarding w9 hold for 0 < j < k. To establish (3.11) for j = k, it is

convenient to write
y = w® — k) ’

where
B — Ag(k)e—w

and Ag*) denotes 8¥Ag. From (3.3) and the definition of y it follows that

Yt + Yz + ("Ully)a: + Yzzz = h,

y(0,8) =0, y(z,0) = w®(z,0) — r®(z,0), (3.13)

where
h=F® — (ugk)w)w - (rt(k) + ) 4 (g r By, - rR))

and F®) is given in (3.4). After multiplying (3.13) by 2y and integrating over R* x (0,1),
we obtain

t t oo t o)
(o)l + /0 y2(0, 5) ds +2 / / (ury)sy dzds = [ly(, )% +2 / / hy do ds. (3.14)
0

Note that

oo 1 [o o]
/ (U1y)my dr = 5/ (U1)zy2 dz
0 0

and that, from (3.1),
l(u1)zll Lo R+ x(0,1)) < Cr,7-

(Here, and below, C, 1 denotes various constants having the same properties as those spec-
ified in the statement of the lemma). Also, from (3.1) and the induction hypothesis,

Al L2 r+ (o, < Crr {1AFllsk—2 + |Agles1,7} -
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Finally, from the definition of 7(¥) one sees immediately that
ly( 0l < Cror {IAF sk + |Aglksr,r} -

Using the preceding facts in (3.14) and applying Gronwall’s Lemma, it is confirmed that

¢
lyC, )12 +/o y2(0,8)ds < Cr o {IIAFII3 + |AglE sy 1}

for 0 < ¢ < T. This latter relation implies (3.11).

For the derivation of (3.12), multiply (3.3) by —2w$® and integrate over R* x (0, ¢). After
suitable integrations by parts, there appears

lwi (., 8> + Z/t g* D (9)w (0, 5)ds + /t (w(0,))” + (Wi (0,5))?) ds
0 0

. . (3.15)
=||w;’c>(-,o)||2+2/ / (uw® 4+ u{Fy) k) dwds—?/ / F®y®) qr ds .
o Jo 0o Jo
First observe that
oo o0
/ F®Ow® gz = ~ PO (0, 5)uwi®) (0, 5) — / (F®),0®) gz
0 0
and that (3.1) and the induction hypothesis imply
[F®(0,)|r < Crr{||Afllsp-3 + |Agle,T}.
Note also that (3.3), (3.11) and the induction hypothesis entails the inequality
[Pl zoe 07134 )) < Cor{1AFlla + |Aglessr}
for 0 <j <k —1. This in turn implies that
IEN 2 x 01y < Cer {1 Afllsk + |Aglet1,r} -
It follows from the estimates above that
t 00 ot
L[ PP das < | o ds + Cer{IAfIE + Ao enr} . (316)

Next, integration by parts gives

oo oo
1
/0 (b w®),wk) g =/0 {EUI ((wé’“))Z)m + (ul)ww(k)w;/;)} dz

= - 30100, 5)(@(0,9) + (1)a(0, 0 M0, )90,

3 o0 o0
- 5/ (1) (wik)? de —/ (u1) sz w®w dy
0 0
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Therefore, by (3.1) and (3.11) it follows that

/ / (w100l dz ds < Cr{ A1 + 1 Agl24e 1 + / lw®|2ds}  (3.17)

for 0 < t < T. Finally, consider the term fot fooo(ugk)w)wwgfc) dzds in (3.15). As before,
integrate by parts to obtain

/ WP w)w® de = — @Pw)4(0, 8wl (0, s)
0
/ {(§)zew + 200§ )sw0z + P wae Jul® da.

Then (3.1), (3.11) and the induction hypothesis again give

// u wzw(k)dwds<

t o (3.18)
Crr {IAFI3 + Al z + /0 l®|? ds} + / / (@) ggww® do ds

for 0 <t < T. To gain control of the last term on the right-hand side of (3.18), write

t [ k t o]
/ / (ug ))Mwwék) drds S/ / (”z ))mw] + ( m kY2 d ds
0 JO 0 JO

oo (3.19)
. e
< Nl oo @+ x 0,1y ° ua§ )”%2(0,T;H2(R+)] +‘A A (wi)? dz ds.

The estimate (3.12) is now a consequence of (3.15), (3.16), (3.17), (3.18), (3.19) and Gron-
wall’'s Lemma.
This completes the induction argument and hence the proof of the Lemma. il

An inductive use of (3.2) and (3.3), combined with the estimates derived in Lemma 3.2
immediately gives the following estimates for |lw(-,t)||ax and ||w(:,#)||lak+1, |65 w(0, )T,
and |93%+2u(0, -)|r.

Lemma 3.3. Assume that the data (f;,g;) lies in Xy 1, for i = 1,2, where k > 1 is an
integer. For any T > 0 there is a constant Cy r depending continuously on T, || fil|ak+1 and
|9ilk+1,7 for i = 1,2, such that for 0 <t < T,

lw(, )l + 183+ 1w(0, )7 < Crr{IASI3k + 12917410} (3.20)

and

lw(, ) lI3ke1 + 1035+2w(0,)|2 <

(3.21)

Crr {IAF13kr1 + 18918 41,7 + 10l F o m+ x(0,my) * 820320 1iprsksamey } -

If the last results are specialized to the case wherein fo = g = 0, so that ug = 0, a useful

improvement on the bound (3.1) is obtained. This improvement is recorded here for use in
the smoothing theory worked out in Section 6.
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Lemma 3.4. Let (f,g) € Xyy1 where k > 1 and let u be the solution of (1.1) corresponding
to the initial data f and boundary data g. Then for any T > 0 there is a constant Cyr
depending continuously upon T, || f|sk+1, and |g|k+1,7 such that

llul, )13k + 1025 u(0, )7 < Crr {lIfl3% + 1912417} (3.22)
and

luC, )l13e41 + 1025 2u(0,)F < Cex {IfI3ks1 + l9lRr1r}- (3.23)

4. Smooth and compatible approximation of the data. To use the result of
Lemma 3.3 in the estimation of the difference of two solutions of (1.1) in the norm of
L(0,T; H3*+1(R)), the present theory requires that the corresponding initial and bound-
ary data lie in the space X41. However, our goal is to establish that the map

(frg)—u

is continuous from Xy, into C'(R*; H*+1(R")). To prove continuous dependence with respect
to the norms advertised in Theorem 2.2, the natural strategy is to approximate elements of
Xy by elements of Xy, where n > 1. The existence of smooth and compatible approxima-
tions of the data will be established in this section. In Sections 5 and 6 these approximations
are used, together with the results from Section 3 to prove the desired continuous dependence
theorem.

The main accomplishments of this section are collected in the following proposition.

Proposition 4.1. Let there be given (f,g) € X where k > 1. For any integer n > 0 and
€ € (0,1] there exist functions

(fe:9e) € Xin N (H®(RY) x Hi (RT))
such that for any T > 0,

(1) Ife = Fllsk=s)+1> |9 — glo+1—j, 7 = o(e?) for k > j > 0, and

(1) || fellatkiy+1s |9elhrjrr,r < ce™ forj >0
as ¢ | 0, where the constant c depends only on || f||sk+1, |9lk+1,7+1, 4, n and T. Furthermore,
the convergence in (i) depends upon j,n and T, but is uniform on compact subsets of

H3+Y(R*Y) x H**1(0,T + 1). Finally, for any fixed ¢ € (0,1], the map (f,g) — (fe,gc) is
continuous from Xy into X4, N (H®(RY) x HX (RT)).

The desired approximations in Proposition 4.1 will be constructed via two operators,
a cut-off operator K, and a smoothing operator J.. Before presenting the proof of this
proposition, these operators and some of their relevant properties are delineated.

For the rest of this section, let # denote a fixed C*°(R)-function with the properties

f(z)=0 for x <1,
f(z)=1 for z > 2, (4.1)
0<0(z)<1 forall zeR.

For each € € (0,1] and f € L?(R") define K.f € L?(R*) by (K.f)(z) = 8(x/e¢)f(x). The
operator K. maps H™(R™) continuously into HJ*(R*) for any m > 0.

The following lemma exposes the most important property of the family of operators
{K¢:0 < e <1} for the present purposes.
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Lemma 4.2. Let m and k be integers such that 0 < k < m. Then, as € — 0,
I Kef = flls = o(e™*)

for all f € HF*(R'). Furthermore, the convergence is uniform on compact subsets of
H"(RT).

Proof: If m = 0, the result is easy, so take m > 1 and assume that f € H*(R"). We first
prove that

|Kef = fll = o(e™) (4.2)

as € | 0. Since f € HJ*(R') it follows from Taylor’s theorem with remainder that

z) = 1 N _ gym—1 ¢(m)
(@) ARG G

(m—-1

and consequently

2¢e
|Kef — fII® = /0 (O(z/e) — 1) f(z)|? dz

1 2 2e 2¢ —1iig{em) 9
S((—m-_—m)/0 (/0 o — €™ ()| de) " de
#2 s _ ¢|2m-—2 B (m) 2
S((m—l)!]/o /0 |z —¢] dfdm/o |£ (€] €
) 2
< et [ 11 dt.

Since foze |f(™)(€)]?d¢ — 0 as € — 0, uniformly on compact subsets of HJ*(RT), (4.2)
follows.

Note particularly that (4.2) implies the desired result for £ = 0. Also, by interpolation,
the desired result for 0 < k < m will follow from the estimate

I(d/dz)™(Kcf — £l = o(1) (4.3)

as € — 0. To demonstrate the validity of (4.3), define operators Ke(j ) for each integer j > 1
and € € (0, 1] by the formula

(K& f) (@) = €769 (z/e)f(x),
where 1) (z) = (d/dz)’6(x). Note that
d " m : .
— Y K.f—f)=K. (m) _ £(m) i (#) p(m—j)
(G)™Kef = f) = Kf™ — f +jZ:1 i) EOf
Because (4.2) is valid, the inequality (4.3) follows from the estimate
IKD £l = o(1) (4.4)

aselOfor fe Hg(RJf) and j > 1, a fact which is established next.
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From the definition of the operator K’ it appears that for any f € Hg(R‘*)

2¢
KD f|? = 2 / 169 (2/€) f(z)]? do

€ 2¢
< (G max 60 ) e /02 ([ lo-er 1791 ae)" aa.

G- v

By the Cauchy-Schwartz inequality it therefore transpires that
. -~ 26 ~p .
IKOfIP <o [ 17D de o
0

as € | 0, where the convergence is uniform on compact subsets of Hg(R+). This establishes
(4.4) and hence completes the proof of the Lemma. §i

In addition to the cut-off operators studied above, we shall also use a family of smoothing
operators J.. To define these operators, let ® be a fixed C*°-function on R with the properties

support ® C [-1/2,1/2], ® >0, and / O(z)dr = 1.

For each € € (0,1] and f € L*(R*) define J.f € H®(R*) by

(Jef)(z) = /0 T ("5 (e e

€

Note that the integration is only taken over R*. However, if we let f be the extension of f
to all of R defined by f(z) = 0 for z < 0, then the formula

T —

J.f(z) = /_ T a(C = e ae

€

defines J. f(x) for all real z. The map f — f is continuous as a map from H*(R*) into
H™(R). Hence, by an argument completely analogous to the proof of Lemma 5 in Bona and
Smith (1975), the following result may be established.

Lemma 4.3. Let f € H*(R*) for some integer m > 0. Then, as ¢ — 0, the functions J, f
have the following properties:

IJef = fllm—1 = o(¢?), for m > j >0, (4.5a)
NJefllm+j < ce?, for j >0, (4.5b)

where the constant ¢ depends only on ||f||m and j. Furthermore, the convergence in (4.5a)
is uniform on compact subsets of H*(R*).

Before proving Proposition 4.1, it is worth noting that Lemma 4.2 and Lemma 4.3 both
have analogous versions in H{ . (RT). By using precisely the same arguments that come to
the fore in the proofs of these previous lemmas, the following lemma may be validated.
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Lemma 4.4. Let g € H{,’)‘loc(R’L) for some integer m > 0. Then, as ¢ — 0, the functions

K.g and J.g have the properties that for any T > 0

|Jeg o glm—j,Ta |Keg - g|m—j,T = O(Gj)a for m >3 >0, (4.6&)
|Jeg|m+j,T < ce™? ) for J 2 07 (46b)

where the constant ¢ depends only on |g|m,r+1 and j. Furthermore, the convergence in (4.6a)
is uniform on compact subsets of H{*(0,T + 1).

We are now in a position to prove the proposition.

Proof of Proposition 4.1: Let (f,g) € X be given, where k > 1. Let ¢(z) = 1 — 6(x),
where 6 is a fixed, smooth function with the defining properties (4.1). Then ¢ € C*(RY)
and
P(z) =0, for z >2, ¢¥(0)=1,
and -
E)W(o):o for j>1.
Consider first the given initial function f € H3**+*(R*). Let

3k

pile) =9(2) Y f9(0)

Jj=0

Ij
ﬁ,
and let fo = f — py. Define

fe(m) = .fO,e(-'E) +pf(fl?),

where fo . = JsKsfo with § = €1/3. Clearly, one has
fe—f = foe— fo=(Js — )Ksfo + (Ks — I)fo,

and so Lemma 4.2, Lemma 4.3, and the definition of the operators K. and J, therefore
imply that

fe = fllae—j)+1 = o(€?), for 0<j <k, (4.7a)

I fellagk+4)+1 = O(e™), for j >0, (4.7b)

¢9)(0) = ¢49)(0), for 0 < j <k, (4.7¢)
e

(%)er(o) =0, for j > 3k, (4.7d)

where ¢) and ¢£" ) is shorthand for the functions qbgtj ) and qb(fje ), associated as in (2.2b) to the
functions f and f., respectively. Furthermore, the bound (4.7b) holds uniformly on bounded
sets of H3**1(R*) and the convergence (4.7a) is uniform on compact sets in H3*+1(R*).

To define the approximations g. of g, first apply a procedure similar to that used to
construct the family {fc}. Define the function

k ' t]
Py(t) = (1) Zg(’)(o)(ﬁ) :
=0 ‘
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where, as before gU) = (d/dt)?g. Furthermore, let
go =9 —DPg
and let

9e(t) = go,e(t) + py(2)
where go = JcK.go. Finally, define g.(t) by

ge(t) - ge(t) il he(t))

where

It follows from the construction of f. and g, that they are both smooth functions satisfying
the relation ' .
69(0) = g9(0) for j=10,1,-- ,k+n,

and consequently (fe,ge) € Xpin N(H®(RT) x HX (R*)). Observe also that for any T' > 0,
Lemma 4.4 implies

|Ge — 9lk+1—j7 = o(ej), for 0<j<k+1, (4.8a)
|Gelk+144,7 = O(e79), for j >0, (4.8b)

where the bound (4.8b) holds uniformly on bounded sets of H*¥+1(0,T + 1) and the con-
vergence (4.8a) is uniform on compact sets in this space. The desired properties of the
functions g. will therefore follow from the estimates

helhr1jr < eedt1/? 4.9
JY

for j < k + 1. Here the constant c is to depend only on || f|l3x+1, 7 and n.
The validity of (4.9) is now established. Note first that a direct calculation shows

|helkt1—gr < Ee3T1/2

for j < k+1, where the constant ¢ depends on ¢>£1)(0) for integers 7 in the interval [k + 1, n]
and on j. Furthermore, for any ¢ > 0, ¢£Z)(O) can be bounded independently of ¢ by constants
only depending on || f||3x+1 and j because of (4.7a) and (4.7d). Hence, (4.9) follows and the
desired estimates (i) and (ii) are now consequences of (4.7), (4.8) and (4.9).

The continuous dependence result that refers to the mapping (f,g) — (fe,g¢) is a con-
sequence of the continuity properties of the operators J. and K. and the fact that the
map

£(0), £(0), -+, FBR(0) — R,

is continuous from R3**! into H®°(R*). §

Finally, we shall derive a bound for the solution of the equation (1.1) with data (., g.)
generated by Proposition 4.1. This result will be used in Sections 5 and 6 to bound the
norm of uy appearing on the right-hand side of the estimate (3.21). The result is obtained
via energy arguments similar to those used in Section 3.
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Lemma 4.5. Assume that (f,g) € X, where k > 1 is an integer, and let (fe,gc) € Xp+2
for € € (0,1] be approximations to (f,g) whose existence is guaranteed by Proposition 4.1

with n = 2. If u. denotes the solution of (1.1) with data (fe, g¢), then for any T > 0

letell oo 0,751r34 42 )y < Crre /2.

Here the constant Cy r depends only on T, ||f|lsk+1 and |g|k+1,741 -

Proof: First observe from (3.1) and Proposition 4.1 that

lwell oo 0,1 135 +1 (R +)) < Cr s (4.10)
where here, and below, Ci r denotes constants with the same properties as those specified

in the statement of the Lemma. Thus, the desired estimate will follow from the validity of
an inequality of the form

l[ttell oo (0,7 195 +3 (R +)) < Chyre (4.11)
Furthermore, because of the equation (1.1), (4.11) will follow from
||81’:c+1us||L°°(0,T;L2(R+)) < Cy,ret. (4.12)
If uld) = ugj ) connotes 3{ e, then for j > 1 the function u() satisfies the equation
ugj) +ul) + (wu®), + uld), = FO(u), (4.13)

where u = u, and

) 1 2 N
FOw) =18, (z) uDyi—1)

i=1
For any non-negative integer j, let () (z,t) = ggj)(t)e‘x and define
y = uB+D) _plktD)
Then y satisfies the equation
Yt + Yo + (uY)z + Yooz = h
with initial and boundary values given by

y(0,t) =0, y(z,0) =u*(z,0) - rE+1(z,0),

where
b= _(T§k+1) + Ta(ckﬂ) + (m,(k+1))z 4+ plE+1) ¢ F(k+1)) _

TTT

After a little manipulation, we obtain

1 t [e%s] t oo
ly(, O + / y2(0, 5)ds +2 / / (uy)ey dzds = [ly(-, O + / / hydzds. (4.14)
0 0
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t oo 1 t 00
/ / (uy)zydeds = = / / ugy? dz ds,
o Jo 2Jo Jo

and thus by using (4.10) it follows that

t [ore) t
/ / LT B / Iy, )| ds
0 0 0

for 0 <t < T. From the properties of (fe, g.) and the definition of y it also follows that

Note that

ly(, )l < Crpe=?/?

and
Al L2(r+ x0,7)) < Cr,ret.

Hence, (4.14) and Gronwall’s Lemma imply that

Yl Lo 0,7;L2(R+)) < Chyre™".

This in turn gives (4.12) and so completes the proof. i

5. Proof of the main result. The purpose of this section is to begin the proof of
Theorem 2.2 using the auxiliary results derived in Sections 3 and 4. Two propositions will
be established, the first, Proposition 5.1, states that the solution u of (1.1) corresponding
to data (f,g9) € X is in C(R*; H3*+1(R*)), while Proposition 5.2 gives the continuous
dependence result in this space.

Proposition 5.1. Assume that (f,g) € Xy for some k > 1. There exists a unique solution
u of (1.1) in C(R*; H**1(R+)) corresponding to the data f and g.

Proof: Since it is already known from Theorem 2.1 that there exists a unique solution u
of (1.1) in L*(R*; H**+1(R*)) corresponding to the data f and g, it is only necessary to
show that this solution actually lies in C(R*; H3*+1(Rt)).

Fix a positive value of T, let a sequence of approximations {(f, ge)}ee(0,1] € Xk+2 to the
data (f, g) be constructed for which the properties delineated in Proposition 4.1 hold, and
let {ue}ee(o,1) denote the corresponding family of solutions of (1.1). From Theorem 2.1 we
have that

ue € L=(0,T; H¥*"(RT))  and  du. € L®(0,T; H3*+4(RT)).

Hence for all € € (0, 1], u, certainly lies in C(0,T; H3**!(Rt)). It will now be argued that
{uc} is Cauchy in C(0,T; H*+1(R*)). Suppose that 0 < § < € < 1. From Lemma 3.3 and
Proposition 4.1 there follows the existence of a constant Cy,r depending continuously on
[l fllsk+1, |9|k+1,7+1 and T such that for 0 < ¢ < T

lwe(-st) — us( )llsk+1 < Crr{Ilfe — Fsllsns1 + |9 — g6lhsr,7 .0
+ [[te = us|| Lo+ x(0,1)) * el L2 (0, 7;2r2642(R+)) } -

From Lemma 3.1 and Proposition 4.1 we have

l[tie = usllLoom+ x (0,79) < e — Usll oo (0,7, 11 (m+)) < Chre® .
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Also, from Lemma 4.5, it appears that

||u€||L°°(0,T;H3k+2(R+)) < Ck,T€_1/2 )

Together with the fact that

”fe . f6||3k+1 ’ Ige - g6|k+1,T —0, as € =0,
the last three inequalities entail that {u.} is a Cauchy sequence in C(0,T; H3**+(R*)).
Hence, as € — 0, {uc} converges to a function @ € C(0,T; H3*+1(Rt)). By continuity it

certainly follows that @ satisfies the differential equation (1.1) in the sense of distributions
on R x (0,T). Furthermore,

la(-,0) = fllar+1 < [|@(-,0) — we(-, O)lak+1 + ||.fe = fllaksr — O,

as €| 0, and

[%(0,-) = glk+1,7 < |@(0,-) — ue(0,)kt1,7 + |ge — glktr,7 — O

as € — 0. Hence @ is a solution of (1.1) with initial and boundary data f and g, respectively.
From the uniqueness result of Theorem 2.1 it is therefore implied that

u =1 € C(0,T; H3*}(R")). il

Proposition 5.2. The map (f,g) — u is continuous from Xy into C(R*; H3*+1(R™)),
where X}, is considered as a closed subset of the Fréchet space H3**1(R*) x Ht*(R*).

Proof: Let {(fa,gn)}nz; be a sequence in Xj that converges to (f,g) € X, which is to
say that for any T > 0

I fn = Fllak+1 + |gn — glk41,0 — 0 as n — oo.
Let u, and u be the solutions of (1.1) corresponding to the data (fn,g,) and (f, g), respec-

tively, n = 1,2,--- . Furthermore, let T > 0 be fixed but arbitrary for the rest of this proof.
By Proposition 5.1, it is known that

Un, u € C(0,T; H*TL(RT))
for all n > 1. The goal here is to show that

lun — ullco,r;aot+1R+)) — 0

as n — 0o. In order that this be established, define, for all n > 1 and € € (0, 1] approxima-
tions (fn e, gn,c) € Xit2 of (fn,gn) for which the properties stated in Proposition 4.1 hold.
Let also (fe, ge) be similar approximations of (f,g) and let u,  and u. be the solutions of
(1.1) corresponding to the data (fn,c,gn,c) and (fe, g), respectively, n =1,2,--- .

The difference u,, —u will be estimated by considering separately each term in the identity

Un — U = (Un — Un,e) + (Un,e — Ue) + (e — u).
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From the proof of Proposition 5.1 we derive immediately that

llue — ullc(o,r;mar+1(R+)) — O (5.2)

as € — 0. Consider next the difference u, — un . Again it follows from Proposition 5.1 that

un,e = unllcor;more+1me)) — 0 (5.3)

as € — 0 for all fixed n > 1. Furthermore, by Proposition 4.1,

“fn,e - fn“3k+1 y |gn,e - gn,k+l,T —0
as € — 0, uniformly in n. Also, Lemmas 3.1, 3.3 and 4.5, and Proposition 4.1 imply that

lltn,e ~ “n||L°°(R+x(o,T))||Un,e||L°°(0,T;H3k+2(n+)) < Ck,Tfk—l/za

where Cy, r is independent of n. Hence (cf. (5.1)), the convergence in (5.3) is uniform in n.
Let § > 0 be arbitrary. From (5.2) and the uniform convergence in (5.3), it is concluded
that there exists an ¢; € (0,1] such that

||un,€ — un||C(OYT;H3k+1(R+)) + |Jue — u”C(O,T;Ha’““(Rﬂ) <é6/2 (5.4)

for all € € (0,€;] and all n > 1. For the rest of this proof let ¢ € (0,€1) be fixed. From
Lemma 3.3 we have

ltn,e = telloo,r;maerr1w+y) < Cor{lfne = fellsk+1 + [gn,e — elkr1,T
+ [|tn,e = tellLoo(rt x(0,7)) * [tell Lo (0,136 +2 (R4 ) } 5

where the constant Cy,  is independent of n. From the continuity of the map (f, g) — (fe, g¢)
in H3*+1(Rt) x HFY1(R*) (see Proposition 4.1) it is readily concluded that

loc
| fn,e = fellsk+1 + |gn,e — Gelk+1,0 — O

as n — 00. Also by Lemma 3.1 and Proposition 4.1

“un,e - Ue||L°°(R+x(0,T)) -0

as n — oo. Hence, there exists a positive integer N = N(§) such that

un,e = vellogo,rmon1m+y) < 6/2

provided n > N.
Together with (5.4), this implies that u, converges to u in C(0,T; H3**+1(R*)). Since T > 0
was arbitrary, this completes the proof of Proposition 5.2. i

6. Smoothing of solutions. In this final section of the paper the proof of Theorem
2.2 will be completed by showing that the solutions of (1.1) that have been the focus of
attention thus far possess smoothness beyond what has already been established. These
results, enunciated explicitly as Proposition 6.1, are similar to those first discovered by
Kato (1983) and Bona and Saut (1988) for the pure initial-value problem (1.2). Indeed, our
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proof follows the lines laid out in Section 6 in Kato (1983) and in Theorem 9 in Bona and
Saut (1988). (Further work on the pure initial-value problem (1.2) along the lines of Kato’s
work may be found in Ponce (1988) where the initial-value problem for the Benjamin-Ono
equation is the principle point of departure). There is an important difference arising in the
proof of smoothing in the case where the underlying spatial domain is the half line, namely
the boundary conditions at = = 0 that appear upon integration by parts. These present
difficulties not arising in the previous theory.

The starting point is a one-parameter class {pgr}r>o of real-valued functions defined on
Rt which are at least piecewise twice continuously differentiable and such that

( pr(0) =0,

PR, Pk, Pk are bounded on R*,

ph(r) — 0as T — oo,
- (6.1)
prlz) =1 for 0< 2 <R,

and there is a positive p for which

Pr(z) — plph(z)] > 0 for all z € RT.

-~

Note that the last condition in (6.1) entails that p} is everywhere non-negative. The con-
struction of functions pg satisfying (6.1) presents no difficulty. Indeed, the choice

PRl = /0 “6(y) dy

where
1 for 0 <y <R, and
0(y) =

1 tanh(y — R) for R<y

satisfies all of the properties described in (6.1) with g = % , say. The family {pr} will figure
prominently in the proofs of the last proposition.

Proposition 6.1. Let (f,g) € Xy where k > 1 and let u € C(R*; H3**}(R*)) be the
solution of (1.1) corresponding to initial and boundary data f and g, respectively. Then for
every positive T,

u € Ly(0,T; HEFF2RTY). (6.2)

loc

Moreover, the map that assigns to (f,g) € Xy the unique solution of (1.1) in
C(0,T; H3*+1(RT)) is continuous from Xy, into L(0, T; HYEF2(RT)).

loc

Proof: To prove (6.2) it suffices to show that

T R
/ / |36+ 2u(x, t)|* d dt
0 0

is bounded for all finite, positive values of R and T. To prove the continuous dependence
result, it suffices to show that if {(f., )}, is a sequence from X}, converging to (f,g)
there, and if {u, }°2, and u are the associated solutions of (1.1) in C(R*; H3*T1(R*)), then
for each value of R and T,

T /R
/ / |35+ 2 (y,, — u)|2 dzdt — 0 (6.3)
o Jo
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as n — oo. As in Section 5, we begin by regularizing the data. Let {(frerGn.e) Yo<e<t
and {(fe,ge)}o<e<1 be families of approximate data in Xky2 as defined in Proposition 4.1
relative to (f,, gn) and (f,g), respectlvely, and let {un c}oce<1 and {u, }o<e<1 be solutions
of (1.1) associated to this data, n = 1,2, -- . Let W stand for either Un,e — Un,§ OF Ue — Ug
where 0 < 6§ < € < 1 and let U stand for Up,e in the first case and for u, in the second
case. Then the functions W and U lie in C(R*; H%*+7(R*)) and they satisfy the initial-
and boundary-value problem

Wi+ W+ WW, +(UW)y + Wepy =0 for (z,t) e R x Rt with
W(.’I,‘, 0) . fn,s - fn,6 for z € R+, and (64)
W(Oa t) =9n,e —9n,é for t € RT.

If W is standing for u. — us then the n’s are absent in (6.4).

Differentiate equation (6.4) 3k+1 times with respect to z, multiply the result by prOJHIW,
and integrate with respect to the spatial variable over R+ After integrations by parts, we
come (o the relationship

li/ R(2)|0% W (z, )2 x—l/ Pr(@)|8 W (2, 8)|2 do

2dt 2Jo
%/ [63k+1W63k:+2 W2)] d.’l:+/ pR(z)[agk+1W62k+2(UW)] dx
g / ()| 03T 2W (z,8)|? dw + / Pr(z)[03 Wk +2 W) dz

— O3FFIW (0, 1)83%+2W (0, 1) = 0.

Rearranging this formula and integrating with respect to the temporal variable over [0,T]
leads to

[o e}
/ / |63k+2W'2d dt = ;/ pR(x)langW(w,T)lz dz
0
1
+§/ PR(2)|83* W (2,0)|2 dz + - / / ()03 W (2, ¢) 2 dz dt (6.5)
0
_%/ / pR(z)[82k+1W82k+2(W2)]dzdt—/ / PR(CU)[ag’“"'lW@i‘k”(UW)]dzdt

/ / (z)[03F WSR2 W | dr dt + / FTIW (0,)82%+2W (0, t) dt.

Estimating the penultimate term on the right-hand side of (6.5) in a straightforward way,
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we come to the inequality

//|63’°+2W12da:dt< //[pR(.’E RO W |2 dx dt

<z / (@) {1821 W (2, 0)|2 — |02+ W (z, T)[2} da
0

& = 1
w3 [ [ R+ gk W, 0P ds
1 T < 3k+1 3k+2 2 3
3| [ ez wed ) asar (6.6)
T oo
- / / pr(@)[OF WA (UW)] da dt
0 0

T
+ / LW (0,1)03%+2W (0, ) dt
0

where use has been made of the last property of the weight pg specified in (6.1) to deduce
the left-hand inequality.

The goal now is to establish a bound on the right-hand side of formula (6.6) that is
independent of », and which tends to zero as ¢ tends to zero. Supposing for the moment
that such a result has been provided, the remainder of the proof is then straightforward. For
it first transpires that the family {u¢}o<e<1 is Cauchy in the space Ly(0,T; H3*+2(0, R)),
where R, T > 0 are arbitrary. It follows that u. — @ in La0c(RT; H3*+2(Rt)) as € — 0.
However, we already know from the results in Section 5 that as € — 0, u, — u, the unique
solution of (1.1) with data (f, g), in C(R*; H3**+1(R*)). In consequence, v = @ and it is thus
assured that u € Ly(0,T; HX*T2(R*)) for all T > 0. Similarly, u, € Ly(0,T; H*T2(R™))

loc loc
for all » and u,, — u, in this space. Moreover, for fixed, positive R and T,

[/ / |626+2 (1, — u)|? dxdt / / 1025%2 (1, — g o)) dmdt]
1/2
/ / 103542 (uy, ¢ — ue) |2d:zdt / / |83k +2 (4 u)|2dwdt]

Under the present assumption, the first and third terms on the right-hand side of the last
formula can be made as small as we like simply by choosing € small enough, and this holds
uniformly in n. Thus given v > 0, there is an ¢y > 0 such that for all € in (0, €o],

T rR 1/2 T pR 1/2
[/ / 02+, — )P dz ] <+ [/ / 022y — ) dzdt] . (67)
0 0 0 0

By the continuity of the regularization defined in Proposition 4.1, (fn e, gn,e) — (fe, ge) as
n — 00 in X443, and so Proposition 5.2 implies u, . — u. as n — oo in C(0, T; H3**+7(R+)).
Hence it follows from (6.7) that if € is fixed and less than ¢g, then

. T rR 1/2
lim [/ / |036+2 (4, — u)?| dx dt] <%,

and since y > 0 was arbitrary, it follows that u,, — u in Ly(0,T; H3**2(0, R)), as desired.
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Attention is thus focussed on proving the bound whose validity was just argued to imply
all the conclusions specified in the statement of the Proposition. To this end, it is useful to
notice the following properties of W and U which follow readily from Lemma 3.1, Lemma
3.3, Lemmna 3.4 and Proposition 4.1:

W (-, )llak+1 = o(1) as € — 0, (6.8a)
IW(, )]l = o(e*) as € — 0, (6.8b)
0 W (0, )l =o(1)  as e—0, (6.8¢)
|02 T2W (0, )lr =o(1)  as e — 0, (6.8d)
U5 H)llse+1 = O(1) as € > 0, and (6.8e)
NUC t)llaks2 = O(e7Y/2)  as e — 0, (6.8f)

uniformly with regard to n and ¢ in [0, T]. Indeed, several of these relations were already
commented upon and used in Section 5.

Turning now to consideration of the right-hand side of (6.6), since pg, P and p% are all
bounded functions, the first two terms are o(1) as ¢ — 0, uniformly in n by (6.8a). The
final term on the right side of (6.6) is also o(1) as ¢ — 0 because of (6.8¢) and (6.8d). Using
Leibniz’ rule, and with one integration by parts, the term that is cubic in W is written as

T ()
/0 /0 [(3k + g)pn(vc)Wac = %;D'R(:E)W] (O3 H1W)2 da: dt

1e5 (3k+2) [T (7 . .
+5> ( : ) / / pr(z) [ WO WO+ =W ] dr dt .
2 j=2 J 0 Jo

An examination of the various summands appearing in this expression and reference to
(6.8) shows each one to be o(1) as € — 0, uniformly in n. Using (6.8a) and (6.8¢), a similar
conclusion is readily reached regarding the integral explicitly involving U, except that the
term

T ()
/ / pr(z) [WOFT'WOSk+2U] dz dt
0 0
(

requires the use of (6.8f) and (6.8b).
The crucial bound being established, the proof of the Proposition is now complete. |
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