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Two fluid layers of constant density lying one over the other on top of a rigid horizontal lower
boundary with either a free upper surface or a rigid upper boundary can support solitary waves. The
existence of a unique branch of such waves emanating from the horizontal flow at a critical speed U, is
demonstrated in both cases by use of the Nash-Moser implicit function theorem. These results
complement the global results of Amick and Turner (1986) and are analogous to the work of Friedrichs
and Hyers (1954) and Beale (1977) for surface waves. It is also noted that the most obvious variational
principle which characterizes these waves as constrained extremals (Benjamin, 1984) is of indefinite
type, having a Hessian with infinitely many positive and infinitely many negative eigenvalues.
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1. INTRODUCTION

Considered here are motions of a system consisting of two layers of inviscid fluid,
one over the other and each having finite vertical extent and constant density.
These layers are confined to an infinitely long horizontal channel and it is assumed
throughout that the fluid velocities, which will depend in a non-trivial way upon
both the vertical coordinate and the horizontal coordinate in the unbounded
direction, are independent of the spanwise coordinate across the channel. We take
it that this system is governed by the two-dimensional Euler equations and treat
questions of existence of solitary-wave solutions for both the case of a free surface
and that of a rigid upper boundary. Steady flow of uniform, purely horizontal
velocity U in which the upper layer has constant depth h, and the lower layer has
constant depth h, will always be a trivial solution to the equations of motion (1.2)
and (1.4) below. For speeds U near a critical value U, (which depends upon the
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26 J. L. BONA AND R. L. SACHS

densities p; and p, and the equilibrium depths h, and h, of the two fluid layers,
the gravitational acceleration g, and another side condition to be specified
presently), the existence of non-trivial, travelling-wave solutions that correspond to
solitary waves will be demonstrated. In the case of a fixed upper boundary, these
solutions may represent either waves of depression or elevation depending on
whether

e=(p:ht—p,h3)/(hyh,)? (1.1)

is positive or negative, respectively. In case the upper fluid surface is free, we
obtain solitary waves of elevation. In both cases, these solutions comprise a
smooth curve of small-amplitude waves bifurcating from a trivial flow in a space
of funétiotis which are analytic except at the interface between the layers. They are
all symmetric about a single crest and decay exponentially to the underlying trivial
flow away from their crest. The interface and the upper surface are likewise shown
to be real-analytic functions.

The Euler equations for a steady flow in the two-fluid system described above
with a rigid top boundary are the following system in which py is the density of
the upper fluid and h, is the undisturbed depth of the upper fluid, p, and h,
denote the corresponding quantities in the lower fluid and y=n(x) is the equation
of the interface:

AY=0  in Q={(xy):xeRn(x)<y<h,},

Y=ch, at y=hy,

Yy=0 at y=’7(x)’
AY=0  in Q,={(xy)xeR, —h,<y<n(x)}, (1.2)
= —Ch2 at s _hZ, and

P1LH|VY ), = e + 811 = 02 [4(|VY[?), -, - +g1] = constant

along y=n(x).

Here, x is the horizontal coordinate along the channel, y is the vertical coordinate
taken to be —h, at the bottom, Y denotes the stream function, and ¢ refers to the
horizontal velocity of the fluid at infinity or, equivalently, the speed of propaga-
tion of the progressing wave in a frame of reference moving so that there is no
flow at infinity. The system (1.2) is obtained by formulating the time-dependent
problem as a Hamiltonian system in terms of 4 and a conjugate variable
D(x)=p,¢(x,n(x)")—p,d(x,n(x)*) (Benjamin, 1984; Bowman, 1987) where the
Hamiltonian is the energy .
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| ﬁ=!5p1(%l~Y¢l3):dxdy+‘[I p4{VOP) drdy+ [dglos—pn*(x)dx. (13

nreser Qe

Here the, velocity potential ¢ is the harmonic function conjugate to the stream
function ¢, the Bernoulli condition corresponds to an equation for ®,, while the
kinematic condition at the interface is given by an equation for #,. In this
formulation, one regards ¢ as determined in Q, and Q, by @ through a
Riemann-Hilbert problem posed along the curve y=#(x).

The unknown interface y=#x(x) is a major source of complication in the
formulation (1.2). The Bernoulli condition shows that the velocity must jump
across the interface in order to balance the buoyancy force, but this jump is only
in the tangential .velocity since because of the kinematic condition, the free surface
must be a streamline which forces the normal velocity of the fluids to match. This
state of affairs seems to. prohibit use of the complex potential in (1.2) to eliminate
the free boundary. Instead, assuming ¥,>0 throughout, one may reformulate the
problem with x and ¥ as independent variables and y(x,y) as the independent
variable. Since i, is the constant ¢ for a trivial flow, the condition that ¥, be
positive will be satisfied for nearby flows. This change of variables eliminates the
unknown interface, but converts (1.2) into the non-linear, elliptic boundary-value
problem (2.1) for y. .

In the case where the upper boundary of the two-layer system is left free, both
the interface y=n(x) between the two layers and the free surface y=yx(x) are
unknown. The analog of the system (1.2), namely '

Ay =0 in Q,={(x,y):xeR,n(x)<y<yx)}
y=chy . at y=yx(x),
Yy=0 at  y=n(x),
Ay =0 in Q,={(x,y:xeR, —h,<y<n(x)}, (1.4)
Y=—ch, at y=—h,,
P1[¥(VV), =y + 1] = pa[4(|VY?), -, - +&7] =constant
along  y=n(x),

3(IV¥|?), -, +gn=constant, along y=y(x),

now features a second Bernoulli condition imposed at the free surface. The system
(1.4) may also be obtained from a Hamiltonian formulation.

Although the second unknown interface complicates matters further, the
question of existence of solitary-wage solutions of (1.4) may be addressed by the
same techniques that come to the fore in dealing with (1.2). For the system (1.4)
there appears to be two distinct branches of solitary waves which bifurcate from
distinct trivial solutions. Solutions on the branch bifurcating from the trivial flow
with a faster speed are always waves of elevation analogous to the surface solitary
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wave on a single, constant-density fluid layer of depth h=h, +h,, while those on
the other branch may be either waves of elevation or depression that move at a
slower speed and which have their maximum excursion from the trivial flow on
the interface between the two fluids, being thus closely analogous to the solitary-
wave solutions of (1.2). In the present account, only the former solutions will be
addressed.

- There is an extensive literature on solitary waves and their implications for

: theoretical and practical problems_in mechanics, dating back to the discovery of |

the phenomenon by John Scott-Russell more than 150 years ago. The exact theory
of such wave motion began with Lavrentiev (1943, 1947) and Friedrichs and Hyers
(1954). The present work follows the technical line of development on the problem

.. of surface solitary waves initiated by Friedrichs and Hyers and continued by Beale

(1977). Recent work on solitary waves in continuously stratified fluids (Turner,

.. 1981, 1984; Bona et al., 1983; Amick, 1984) has centered on global and variational

methods (see however Kirchgéssner, 1982). In this vein, Amick and Turner (1986)
attack the two-fluid system considered here by realizing it as a limit of
continuously stratified systems and thereby prove existence of a global branch of
solitary-wave solutions. The results presented herein complement their work by

-providing a more complete picture of the solutions near the trivial flow with

critical velocity. A simple explanation of the role of the parameter e and the
critical speed U, as well as an explicit approximation to the solitary wave are
derived from our local analysis. The model problem which emerges (the bifurca-
tion equation) is the KdV equation, which also explains why only supercritical
velocities are allowed and gives an approximate relation between the wave speed,
amplitude, and the rate at which the wave evanesces at infinity.

A benefit of the present approach is that symmetry of the wave and exponential
decay of the solution to the underlying trivial flow follow directly by being
incorporated into the function spaces. As an added bonus the solutions obtained
are found to be analytic in both variables throughout the flow domain except
across the internal fluid interface where the tangential component of the fluid
velocity has a jump discontinuity. This in turn implies the analyticity of the
interface. In the variational approach, these qualitative properties of the solution
are not so readily available.

In a very recent manuscript, Amick and Turner (1989) use a dynamical systems
approach as in Kirchgéissner (1982) to characterize all small solutions of the
problem (1.2). They find, in addition to -solitary waves, that there are small-
amplitude internal bores and internal cnoidal waves as well as conjugate flows.
This elegant work, being less directly concerned with solitary waves per se,
assumes neither decay nor periodicity in the x-variable and so requires consider-
able technical dexterity.

The plan of the paper is as follows. In Section 2 the aforementioned change of
variables is employed for the system with a rigid upper boundary to convert (1.2)
into a more tractable system. A stretching in the horizontal variable is then
introduced that leads to a nonlinear elliptic system involving a small parameter
¢>0. The Banach spaces of analytic functions used in our analysis are then
introduced and the existence problem for solitary waves reformuiated as a search
for zeroes of an appropriate mapping in the context of these spaces. The
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bifurcation point is then determined from the linearization of this map at ¢=0. It
turns -out -that- the: problem at ¢=0:is degenerate; so the usual implicit function
theorem does not seem to apply. Instead, a Nash-Moser type theory is used to
infer the existence of a branch of solutions emanating from the bifurcation point.
Section 3, which is ‘the heart of the paper, begins with a statement of the principal
result concerning solitary waves for the case of a fixed upper boundary. The
remainder ‘of the section is devoted to verifying technical conditions needed in
justifying the application of the Nash—-Moser implicit function theorem to obtain a
smooth branch of zeroes of the mapping, and thus a branch of solitary-wave
solutions of the original problem. The modifications of this program that are
needed for the case of a free upper boundary are described in Section 4. Section 5
is concerned with the smoothness of the solution branches whose existence is
guaranteed ‘in"the earlier sections; whilst in Section 6 a brief comment is made on
a variational characterization of internal solitary waves. It turns out that the
relevant quadratic formi is Indefinite with infinitely many positive and negative
eigenvalues. This aspect poses a severe difficulty as regards the prospects for
developing a stability theory of these solitary waves along the liries of the current
theories that are applicable to simplified models such as the KdV equation.

2. REFORMULATION OF THE PROBLEM AND DETERMINATION OF
THE BIFURCATION POINT

The solitary-wave problem in the case of a rigid upper boundary is reformulated
in the way indicated in Section 1 and an associated bifurcation problem relating to
the existence of small-amplitude travelling waves is derived.

Starting from the Euler equations for steady propagation given in (1.2), it is a
straightforward calculation to reinterpret this system by viewing y as a function of
x and . Assuming that y,#0 in Q, U Q,, the new system is

2
—(&) +1<1+2y*) =0 in Q ={(x¥):xeR 0<y<ch},
Yo/x 2 Yo Ju )

y=h, at yY=ch,,

2

—(&> +1(1+2y"> =0 in Q={(x,¢¥):xeR, —ch,<y <0},

Yy 2\ v Ju @.1)
y=—h2 at .I/=—Ch2,

y is continuous at =0,

1/yi+1
+gy(x, 0)] —p, [5 (y—z>
¥v=0- Yy

=constant.

{66 +()

The (unknown) interface is located at {(x,y):¥ =0} in the new variables, and is

+gy(x, 0)]

y=0*
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determined by requiring y(x,0) to be continuous while the other boundary
conditions in (1.2) are simply carried over to (2.1).

_A linear analysis of (1.2) or (2.1) near the trivial flow ¥ =cy shows that there is a
critical velocity c= U, at which the linearized .equations support waves. As worked
out in Lamb (1932, Section 231), the dispersion relation for frequency w as a
function of wavenumber k for the system obtained by linearizing (2.1) about a
trivial flow is g

wl= gk(pz—py) )
p,coth (khy)+p, coth (khy)

The long-wave limit wherein k—0 then yields the critical velocity U, whose value

_is found_ to be
U2 = (0, — _P_1+&),
+=£(p2 m)/(h1 "

Following Friedrichs and Hyers (1954) and Beale (1977), a scaling of the spatial
variable x corresponding to a hypothesis that the waves are long and a scaling of
the amplitude relative to the trivial flow corresponding to a hypothesis of small
amplitude may be introduced along with the relationship

2=U2e%, T (2.2)

where the constant o will be chosen presently and the small parameter & will
measure the supercriticality of c. For a given >0, the scaling is

x =g!?x,
E=y/c, (2.3)
y(xv é) C é + GW(x'a é)

The prime will be dropped immediately. The system (2.1) in the new variables is,
after cancellation of common factors of &,

w 1/ —2w,—ew? +e*w? ) L
- x 1 —2W —EWe T EWe) _ in {—h,<E<0}U{0<i<hy},
E(l+sw{),+2( Gtewd®  Ji {—hy<tx0} 0 é 1

w=0 at §=h1,
w is continuous at £=0,

w=0at é=—h,, (2.4)

— 2w, —ew} + ¢ wi) [ — 2w, —EWE -H:’wi) ]
] 3 - —P1 3
(1+ewy) £=0- (1+8wy) £=0+

+28(p2=P1) y(y g)=0.
C
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Ate=0, (24) reduces to the-equations
—wg=0 .in {—hy<é<0}u{0<é<h,},

W=0 at hl’ —hz,

w continuous at ¢=0, (2.5)

20(0, —

—2p2W§|¢=o- +2p1W§I¢=o+ + %W(X,O)=O.
*
The most general solution to (2.5) is
W(x)(é+hy)/h, for —h,<<O0,

L) = 2.6
Sobsic {W(x)(hl—é)/hl for 0<&<hy, &

where W(x)=wq(x,0) is arbitrary. (Note that since wo,(x,07)=W(x)/h, and
woe(x,0%)= — W(x)/h,, the Bernoulli condition follows from the definition of U2).
If one secks w(x, ) in the form of a perturbation expansion, the unknown function
W(x) is determined at the next order from substitution into (2.4). This equation
will be exhibited shortly and admits a unique symmetric, exponentially decaying
solution W(x)= A sech?(Bx) where the constants A and B depend upon p,, p,, hy,
h,, and a.

Rather than pursuing the perturbation—expansion approach, the system (2.4) will
be formulated as a mapping problem F(w,e)=0 in the present section and the
solution wy(x,&) at e=0 will be viewed as a point from which the desired
travelling wave bifurcates. In Section 3 this mapping problem will be shown to
have a solution which is close to w, for small, positive ¢ by an application of a
generalized implicit-function theorem of Nash-Moser type.

To begin, appropriate function spaces are defined. For a fixed ¢* and any o
with 0 <o <o* let X, be the Banach space of functions u(x) which are continuous,
even functions of x on the complex strip | x| < g, analytic in |#» x| <o, real for
real x, with norm

|jull =sup {exp (4| 2e x|)|u(x)]}

for some constant u>0 to be chosen presently. The Banach space Y, is the linear
space of functions u(x, £) defined for | S x|<¢ and —h, <E<h, such that u(-,&)
is a continuous mapping of —h,<&{<h, into X, for which u(x,h)=u(x, —h;)=0
for all x, equipped with the norm supg|u(-, &)|,. Use will also be made of the
spaces X, ; defined for positive integers j to consist of those functions in X, for
which all derivatives of order at most j exist and lie also in X,. Similarly Y, ; is
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the subspace of Y, of functions whose derivatives up to order j exist in the
subdomains.

Dy ={(x,%): |fmx| <0,0<é<h,},
and

D, ={(x, &):|Imx| <0, —h, <E<0},

having continuous extensions to each closed subdomain D, and D,. It is not
required that the derivatives are continuous across the curve {(x,&):£=0},
however. Both the spaces X, ; and Y, ; are given the obvious normed structure
induced by that of X, and Y,, respectively. It will occasionally be convenient to
- consider the restriction of we Y, to D, and D,; the set of all such restrictions are
denoted Y! and Y2, respectively, and these spaces possess a natural Banach-space
structure of their own.

The system (2.4) may be viewed as an equation F=0 where the mapping
F=(F,F3,F*) of 0,x[0,1)»Y!x Y2x X, is given by

. I
F'(w,e)= —g[ —= 4 1 ety +2£ ¥%) inD,
T+ewg/, 2 (142wy) ¢

=

1/ =2w,—ew? +&2w? )
FYw,e)= — Ws = & 3 =1 inD,,
(w,2) 8(1+ew;)x+2< (1+ew,)? : :

2.7)

—2w,—ew? +&2w2
4

]—Px [—2w¢—sw§ -I-zszwf,
£=o0- (T+ewy)

§=0‘]

2g(p2—p1)
+ BT ® w(x, 0).

Here 0,< Y, , consists of those we Y, , such that 1+ew,#0 for all (x, y) such that
|#oex|<o and {—h,<y<0}U{0<y<h,} and all ¢ in some interval [0,&,) where
&o is sufficiently small. Seeking a solution branch to F(w,&)=0 emanating from
(wo,0) will necessitate some additional considerations because of the degeneracy of
the equation F(w,0)=0 that was noted in (2.5) above. As in Beale’s paper, a
modified mapping F(w, ¢) is employed that gets around this degeneracy.

A computation at ¢=0 shows that

F'(w,0)= ~wg ~in Dy FXw,0)==w, inDj,

and

F2(9,0)= — 2pawilx,07) + 204wi(x,0%) L2220 )
%
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These three expressions are linear in w and are not independent because F; may
be derived from F' and F? as follows:

0
21 [ pyy, 0>(c+hz)d¢—% J Fion0e—hyde

hZ —hy
——( hawe(x,07) + w(x, 0))— ( hyw(x,0%) —w(x, 0)),

=F3(w,0),
since

glp2—r1) _p2

+
u: h,

These formulas suggest the introduction of a projection Q defined on the range of
F, namely

Q(6'(x, £),69(x, £), 6¥(x)):=(0,0, 6¥(x) + q(x)),

where _(2.8)
4]

q(x)=— 2;2 [ 090, &) (& +hy) d€+2p‘ IB“’(X E—hy)deE.

2 ~h

Notice the projection Q has the property that QF(w,0)=0. One may utilize Q to
introduce a modified mapping F(w, ¢) defined by

1QF(W, e)+(I—Q)F(w,¢) .for >0,
Fﬁ(W, 8): = ) ' (29)
QF (w,0)+(I-Q)F(w,0) for ¢=0,

where

d ;
FB(W,O) - %F(W’ E)Ia=0'

Since QF(w,0)=0, F is a smooth mapping from 0,x[0,1)>Y!xY2xX,.
Moreover, for £>0, F(w,)=0 if and only if F(w,e)=0.
The equation F(w,0)=0 has a unique, non-trivial solution wo€0,. First, since

QF(w,0)=0, the equation F(w,0)=0 implies F(w, 0)=0, which has a general
solution

W(x)(&+hy)/h, inD,,

w("’é’={W(x>(h1—c)/hl in Dy,

GAFD.--B
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with WeX, ,. Since F(w,0)=0, the relation F(w,0)=0 further entails that
QF,(w,0)=0. But F,(w,0) has components

ol(xs §)= _Wxx+ 3W¢W:C in Dl’

oz(x, é) = - Wxx + 3W¢W{g in Dz,

= 2
03(x, &)=3p,[w(x,07)]* ~3p [we(x, 0*)]2 —w(x,0) ﬂ'{;‘p—) %

R4

e=0

so one may compute the equation QF (w,0)=0 for w of the above form. Recalling
that ¢? = U2 ¢™, the result is

2
Z(p2ha+pih)Wo(x,0)+3( 22 — P4 [u(x, 0)]2 — 20 22 4+ 22 ) w(x,00=0.  (2.10)
3 h2 k2 hy = h,

This is the equation for a solitary-wave solution of the Korteweg-de Vries
equation provided the coefficient of the quadratic term is non-zero. (Note that,
according to (1.1) this coefficient is simply 3e. At the critical depth where e=0, our
theory does not predict solitary waves, and indeed there appears to be no such
waves in this case (see Amick and Turner, 1989)). The unique, real solution of
(2.10) which is symmetric about the origin is

W (x) = A sech?(Bx) (2.11)

where

20 (py Pz) 2 3alpy/hy+py/hy)
A==[=2+>2] and B*= ;
3e (hl h, 4(pyhy+p2h;)

This demonstrates simultaneously the supercriticality of the solitary-wave velocity
(x>0) and the agreement between the signs of the amplitude A and the
parameter e.

With we(x, ) in hand, the conclusion that there is a solution which lies near to
wo(w, &) of F(w,e)=0 for positive, sufficiently small ¢ will follow by appeal to a
Nash-Moser-type implicit-function theorem (Moser 1966; Zehnder, 1975). This is
elucidated in the next section.

While the values of A and B are dependent upon a, reference to (2.3) shows that
the approximate solution of the original set of equations (2.1) depends upon « only
in the form ae, and so only on the difference ¢?—Uj3. Nevertheless, in the scaled
variables the choice of a determines the x variable. These in turn strongly influence
the choices of o* and u that appear in the discussion of the function spaces given
earlier. To make this aspect more concrete one could, for example, choose a so
that B=1/2. The resulting function A4sech?(x/2) is analytic in the complex strip
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|me|<7t. and .has finite norm in Y, provided o<z and u<1. The specification
may be completed by choosing y=1/2 and o* =3, say.

3. EXISTENCE OF A BRANCH OF SOLITARY WAVES

In this section we prove existence of a branch of symmetric, solitary-wave
solutions associated with the two-fluid system with a fixed upper boundary. The
main result is the following.

THEOREM 1. Suppose the speed of propagation c to exceed the critical velocity

_[_&a=p) T
S [(m/hl + p;/hz)] ’ (3.1

where p, and h, connote the density and undisturbed depth of the upper layer of fluid
in a two-fluid system and similarly for p, and h, relative to the lower fluid layer.
Suppose also the parameter e defined in (1.1) to be non-zero. Then if c is sufficiently
close to U, there exists a unique, non-trivial, symmetric, exponentially decaying,
piecewise analytic solitary-wave solution y=y(x,y) of (2.1} with y—y/c positive if
e>0 and y—y/c negative if e<0. The solution y is given approximately by
J=y/c+ewy(e'2x)I({y) where

~ Y toro<y<ch, and
ch,
()= N
1+—— for —ch,<y <0
ch,

and wy(z)=A sech?(Bz) with A and B given explicitly in (2.11). The interface y(x, 0)
is an analytic function of x.

The crux of the existence theory as propounded here is the invertibility of the
mapping F(w,¢) introduced in Section 2, for (w,&) near (wo,0). A technical result
in this direction that is suitable for our purposes is the subject of the next
proposition.

ProrosiTION 2. There exist positive values e¢q and & such that for 0<e<e, and

||w—wo||,,<6, the mapping F,(w,¢) has an unbounded, linear, right inverse R(w, g)
with the properties

R(w,e): Yix Y2x X,~{v€0,:||v—wol, <8} x[0,e0]=V,,

for any o'€(0,0) and for any feYix Y2xX,, F (w,e)R(w,e)f =1 at least in the
space Y, x Y% x X,., and, moreover, there exists a constant M such that for all
feYixYixX,

IRw.8) Sy, S~ f

(6—0)®

Yixy2xX,:
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Proof The proof is accomplished by first considering the case A where =0
and then-the case B where ¢ is small, but positive. The first case is exactly where
the elliptic operator becomes degenerate, and it is just this degeneracy that
necessitates the use of the Nash—-Moser technique.

A. Invertibility at =0

For £=0, we have F(w,0)=QF(w,0)+(I—Q)F(w,0) and hence F, (w,0)=
F,.(w,0)+(I—Q)F,(w,0). Also, the mapping F(w,0) is linear in w, so F (w,0)v=
F(v,0). Moreover, F(v,0)=0 if v has the form

_ fo(x,0)(+hy)/h, in D,,
bx, &)= {v(x, 0)(hy — 2)/;: in D:.

It is thus natural to define another projection P by the formula

_ fo(x,0)(£+hy)/h, in D,
SO Ok in

for any function v=v(x,) defined and continuous on {(x, &):|#am x| <0 and
—hy;<&<hy}. Using both P and Q the mapping F, may be split into a 2x2
matrix of mappings, each of which may be analysed separately, namely

QF,(I-P) (I-QF,(I-P)

Since F,(w,0)P=0 according to the definition of P, it follows that the upper
right-hand entry in the matrix is the zero operator. In consequence, the entire
operator will be invertible if the two diagonal entries are invertible and the lower
left-hand entry is bounded. The latter point being clear from the definitions,
interest is focussed on the two diagonal entries in (3.2). Since Q maps only onto
the third component of the range and P is determined by w(x,0)eX,, one may
view QF (w,0)P=QF,,(w,0)P as a mapping from X, , to X,. Looked at in this
manner, its invertibility follows readily from existing theory.

LEmMMA 3. Qﬁw(w, O)P: X, ,— X, has a bounded inverse at (w,0).

Proof A direct computation of F,,(wq,0) yields the formula
(QF (w0, 0)P)o=3(p1h; + p1 hy) Vie()
+6(p2/h3 — p1 /R V(X)W (x) —2a(py /by + pa2/h2) V (), (33)

where V(x)=0v(x,0) and W(x)=w(x,0). The right-hand side of (3.3) is just the
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linearized form of (2.10), and it follows from results of Friedrichs and Hyers (1954,
lemma 7.1) and Beale (1977, lemma 1) that this operator has a classical, bounded
inverse mapping X, into X, ,. The idea of the argument is that a Green’s function
may be constructed using W,(x), which is odd in x, and a second solution, which
must grow exponentially, neither of whichis in X,. W

Since the inverse just obtained is bounded, the next result follows as an
immediate corollary.

LEMMA 4. There exist positive constants 3, and e, which are independent of o such
that QF (w,e)P is invertible for all w with ||w—w0||,<5o and all ¢ such that
0<e<e,.

To conclude the proof of invertibility of F (w,0), consider the lower diagonal
entry (I-Q)F,(w,0)(I—P) in. the matrix (3.2). Since F(w,0) is linear in
w, F,(w,0)v= F(v, 0), which has components (f!, 2, f3) given by

fl=—v§¢(x,€) fOI‘ 0<§<h1,

f2=—U<§(x,é) fOI‘ —h2<5<0,

f3=—=2p,0(x,07) +2p,0x,0%) + ﬂ;j—z_—&l v(x,0).
*
Also, (I—P)v(x,&) has the property that it vanishes at (=0 in addition to
vanishing at £€=h, and é= —h,. T‘l_le inversion of (I — Q)F (w,0)(I — P) amounts to
solving the equation (I—Q)F,(w,0)I—P)v=/ uniquely for v given
Se—Q)Y!x YZ2xX,):The relation (I —Q) f = f implies

0 LIt
P00=22 | pAx -+ dE =2 | P - h)de
1

hy
and consequently it is enough to solve the system
—v=f1(x,&) for0<&é<h,,
—v=f3(x,&) for —h,<¢<0, (3.9
v(x,0)=0, wv(x,hy)=0, v(x,—h,)=0.

The homogeneous problem corresponding to (3.4) has no non-trivial solutions and
one readily constructs v(x,{) using an integral representation involving linear
functions of ¢. This gives a unique solution v such that v, v, and v, may be
estimated in the Y,-norm in terms of the Y;-norm of f! and the Y2-norm of f2.
To obtain differentiability in x, use is made of Cauchy estimates on the domain
obtained by shrinking ¢ to ¢’ <o.

Thus F,(w,0) is invertible, albeit with loss of regularity, for w sufficiently close
to wo. Moreover, since there are no nontrivial solutions to F,(w,0)v=0, the
inverse is two-sided. [l
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B. Invertibility for e>0

From the definition of F in (2.9), it is deduced by direct calculation that F (w,é)v
has components

3.2 2
fle—¢ Uy _ _ EW.Us _(vs(l+e “’;)_ i W*U"z in0<é<h,y,
L+ew, (1+ewy)? (14ewg) (1+ewe)” /s

X. .

o 3.2 2
fi=—g Uy EWD, - ve(1+e"we) e w_‘v,z in —hy<&<0,
T+ew: (14ewy)?)/, (1+ewy)®  (14+ewg)?/,

frmp, (—2v;(x,0-><1 +80m(%,07))) | 262 w,(x%,07)0,(x, 07) ) (3.5)
(1+ewg(x,07))* (1+ewg(x,07))?

oo (20 07 ) (1 +£3(wi(x,0))7) | 267 w,(x,0")0s(x,0")
i (I+ewe(x,0"))° (1 +ewg(x,0"))?

+ 28(9(2:2_;01) U(x, 0).

To solve the equation F,(w,&)v=f, the problem is -aga'i’n split into four pieces
using the projections P and Q introduced previously
If the matrix of operators in (3.2) is written symbolically in the form

S B

€ 2)
Then the reasoning just concluded regarding invertibility of this matrix of
operators at e=0 was that #=0, ¢ is bounded, &/ has a bounded inverse, and 2
has an unbounded inverse. For ¢ positive but small, this argument is modified to
establish that ¢ is bounded, # has a small norm, & is boundedly invertible and 2
possesses a generalized inverse, all of which still implies the entire matrix of
operators to possess an unbounded right inverse.

As determined already in Lemma 4, the upper diagonal entry o/ =QF P is
certainly invertible at (w,¢) provided ‘w is near enough w, and ¢ is sufficiently
small. As before, ¥=QF,(I—P) and #=(—Q)F,P are bounded operators.
Moreover, # is small as the following result attests.

LEMMA 5. For w near wy in Y, , and ¢ near 0, there is a constant C independent of
w and € such that

|l ec.
Proof Because (I —Q)F (w,,0)P=0, it follows that

(I_Q)FW(W’ B)Pv=(I—Q)[Fw(W’ 6)_ﬁw(w0’ O)JPUa
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so (3.5) shows [F,(w,e)—F,(w,,0)]P to be of order ¢ if w is near w, and e is
small. The same is true after applying the projection I—Q. W

Thus it remains only to show that (I—Q)F (w,&)(I—P) is suitably invertible.
Since F=(1/e)QF +(I—Q)F, it suffices to consider only (I-Q)F (I—P). Here is
the result in view.

LEMMA 6. For positive, small values of ¢ and w near to w, in Y,, the equation

(I—Q)F,(I—-P)yv=(I—Q)f has a unique solution ve Y, , for each feY,. Moreover,
there exist constants C,, C,, Cy such that

@ [ollo=Cil| 1]l
(i) [le" ol [olle < Cal| ]l
(i) {[evsellor (6 0.l ogello < Cs1f -
The proof of Lemma 6 is complicated by the linear operator’s dependence upon
w. This problem is circumvented in a standard way, by considering the full

equation as a perturbation of a scaled Laplacian and then iterating, The
conclusion regarding the scaled equation is stated in the next lemma.

LEMMA 7. If v solves the boundary-value problem
—&U—Vge=J inD, UD,,)
v(x, —h;)=0 \ (3.9

v(x,00=0 / xeR,
v(x,h,)=0 J

then v is unique and for £>0 sufficiently small, we have

max {{[ofle [|e*Z0.llos[[oellos evsello 162 sel o ogell o} < comst. || £l

In fact, “sufficiently small” means that

i1 1) =
¢'/2 <min {h—l, h_z}F

Taking the validity of Lemma 7 as granted, we now address the proof of
Lemma 6. Let v=) %2, v with v" the solution of

_sv(i’l_vg.{):Luu_l) in Dl UDZ:
5, ) =0 ' B2

W(x,0)=0 for xeR,

UU)(X,hl)=0 -
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for j=1,2,..., where

Lo=( —g2 - Y _ g2 Wik 5
14+ew, (14+ewg)* )«

(3.6b)

tf g2 Wes . 3w, — 3ewi v, — 2 W3y +&?wlv, ,
(1+ewy)? (L+ewy)’ ‘
and

—aQ—vP=f inD;UD,,
vO(x, —hy)=0
v'9(x,0)=0 for xeR.
0O (x, hy) =0

Formally, the function v then solves (I—Q)F(I—P)v=/. From Lemma 7, there
follows estimates on v in terms of f and on v? in terms of LvY~". Since
we Y, ,, one easily checks that

Loy, <eClloPlly, .,
where C is a constant depending only upon ||w||ya ,- Hence, for ¢ sufficiently small

the series Y 2o v converges in Y, ,. Uniqueness follows from the ellipticity of F,,
and thus Lemma 6 is established. WM

Now consider Eq. (3.5). First, notice that uniqueness of a solution corresponding
to a-given f €Y, follows by multiplying the equation by v and integrating over
D,uD,. The solution v can be constructed explicitly by use of the Fourier
transform. If d(k, &) denotes the transform of v with respect to the variable x, then

1]
| g(k&nfk,ndn, for —h, S0,

—h

ok, &)= (3.7a)
hy
ggl(k;é,n)f(k,n)dn{ for 0SE<hy,

where
sinh (6'/2k(¢ + hy)) sinh (—¢"/*kn)
U _p,< =0,
¢k sinh ("2 kh,) 2EE<nS
galki &)= o . (3.7)
sinh (¢/2k(n + hy)) sinh (—"%kS) . _r<p
6112ksinh(8”2kh2) 2=r’ é: )

and
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sinh (¢'/k(h, —n)) sinh (&

; | B Ef.fz.k 5ir.lh (Elfz.khll

g1k é,n)= s " (3.7¢)
sinh (e'/*k(h, —&)) sinh (¢'* kx) 2 2

£k sinh (¢ kh, ) AEmwetat

1/2
ke) 0=¢<n=h,.

Except across the line {(&,n):&=n}, these kernels are analytic in k and decay
exponentially to zero as |#e(k)|—+oo in the complex strip | (k)|<
e~ Y2 mmin(1/hy, 1/h,). Since feY,, f is analytic in a fixed complex strip in the
variable k and also decays exponentially to zero as |91’e (k)|-—>oo. These facts imply
that #(k, &) enjoys the same properties as long as ¢ is sufficiently small. Thus # is
seen to lie in the class Y, ,. The various norm estimates follow from the explicit
formulas above and elementary facts about the Fourier transform. Thus Lemma 7
is established. W

Combining all these results, Proposition 2 has now been proved. An application
of the following generalized implicit-function theorem (Moser, 1966; Zehnder,
1975) will now lead to a proof of Theorem 1.

TueorReM. Let {W,} and {Z,} be families of Banach spaces for 0<o <1 such that
Jor o’<a, W,,.o W, and ”u“,-é“u”, for ueW,, and similarly for Z,. Suppose that
F:0,—Z, is smooth and commutes with the inclusions and that F (wo,0)=0 for some
woe W, where the neighborhoods O, are given by {(w,e)e W, x R:|lw—w,l||,<3,
0<e<g,} for some fixed positive constants & and €,. Assume moreover that there
exists an unbounded right inverse R for F, such that for all zeZ,, R:Z,—W,. with
RF (w,e)z=z in W,., for every o' <o and

-

C|:-r|Zcr

”R(W,8)2| (o___dr)ﬂ’

w, <

Jor some values of C and P. Then for each ¢>0 sufficiently small, there is a unique
solution in Wy, of F(w,e)=0 such that (w,&)€ 0,,,. Moreover, if R(w,¢) is also a left
~inverse for f,‘, in the sense that for all (w,e)e0, and all veW, we have
R(w,&)F (w,e)v=1v in W,. for any ¢’ <a, and if in addition the inclusion W, W,, is
injective, then the solution w=w(e) is unique in a W,-neighborhood of w, for any
0=1/2, and is Lipschitz-continuous in ¢ in the W,.-norm for any o’ <1/2.

Proof of Theorem 1 To check the applicability of the theorem, use the spaces
Y, » as W, and Y, as Z,. These certainly have the correct relations between the
o-norm and the ¢’-norm. The inclusions are injective by analytic continuation and

the mapping F is smooth and commutes with inclusions. The desired estimate for
the norm, namely

1Row, ) £y, , < ElYlle

‘2 = (G'—'I‘.T,}ﬂ,

was established for w near wo and =0 earlier. For £¢>0, an estimate for R(w,¢) f
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in Y, , appears in which x-derivative estimates blow up as e—»0". Note however
that in Lemma 6 bounds for R(w,e)f in Y, along with ¢-derivatives were found
which are independent of &. Using Cauchy estimates one can thereby find bounds
for the x-derivatives which have the desired form in all strips of width |.?‘m x|<
o’ <o. Analyticity of the interface {(x,y(x,0)):xeR} follows because y—y/c lies in
Y, and hence y(x,0)e X, since Yy =0 at the interface. H

4. THE CASE OF A FREE SURFACE

When suitably modified, the argument presented in Section 3 may also be used to
establish the existence of a smooth branch of solitary waves when the upper
surface is left free. The Bernoulli condition imposed on the free surface involves the
parameter g/c? and the critical value of ¢ is determined from the roots of a
quadratic equation as in Peters and Stoker (1960). This quadratic has two real
roots and a bifurcation equation can be worked out corresponding to each of
these. There are technical difficulties associated with the operator equation for
waves corresponding to the slower speed, and attention is henceforth restricted to
the faster speed which corresponds to waves of elevation whose maximum
amplitude occurs at the free surface. Such waves would appear to be more similar
to the classical surface solitary waves (see Beale, 1977; Friedrichs and Hyers, 1954)
than to the interfacial waves discussed in the preceding sections. Because the
arguments parallel those given in detail in Section 3 for the case of a fixed upper
boundary, they will only be sketched in the case of a free surface considered now.

After changing variables and rescaling as in (2.3), the system (1.4) to be solved
takes the form

w 1/ —2w.—ew?+e*w? .
i x - -3 3 x = R —h ,0 R O,h y
8<1+ew¢)x+2( (1+owy)? ){ 0 inRx(—hy,0URX(0,h,)

w=0 at é — hz,
e
w continuous across =0,

p — 2w, —ew} +&*w} [ —2wg—ewi+ 87w 4.1)
N A+ew)? Jemo- I\ (I+ew)?  Jemon

+2@ w(x,0)=0,

—2w—ew} +e2w? P18
= +2—=2w(x, h,)=0,
pl( (1+8W§)2 _— Cz W(X 1)

analogous to (2.4). As before, the speed ¢ depends upon ¢ in a way to be made
precise presently. At ¢=0, the system (4.1) becomes
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—W§§=0 inDluDz,
w=0" at&=—h,,

w continuous at £ =0,
4.2)

—2p2w¢|¢?0- +20,Wyls=0+ +2§(—‘9—2‘§L‘) w(x,0)=0,

—2p,w;|¢=,,.+2g—f—2—‘w(x,hl)=0.
0

The most general solution to the system (4.2) has the form w(x, &) =W (x)I(£) where
(&) is the piecewise linear function

hz =r="
O™ viigh,— - -
Us/ghy—(h,— 1
Ui/ghl_l ] 0§é§hl,

normalized so that I(0)=1. The critical velocity U, satisfies an equation arising
from the imposition of Bernoulli’s law on the interface, namely

P2 P (p2—p1)
—f2, R +5 =0,
hy ~ hy (#— 1) ht#

where pu=U2%/gh,. This latter equation is equivalent to the quadratic equation

h P\ h
- 1+—2) +<1——‘)—2=0, (4.4
( hy # P2/ hy

mentioned above. This equation always has two real roots pu, and u_. with
O<u_<l<p, since static stability requires p,/p,<1. In case u=pu_, it follows
from (4.3) that I(£) changes sign in the interval (0,h,). Moreover, for practical
values of the parameters (u_ <1/2), one has |I(h,)|<1 and the maximum displace-
ment then occurs along the interface {¢=0}. Henceforth, interest will focus on the
larger root u, and the associated critical velocity

Ui=%g[hl+h2+\/{(hl—h2)2+4h1h2%}:| ! (4.5)
1

As in (2.2), set ¢2=UZ e* where a is to be determined.

-
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To establish the desired existence theory, regard the system (4.1) as a four-

component mapping G defined on an appropriate scale of Banach spaces. The
components of the mapping G are

o2 L 22
Gl (w, )= —g| 2= +1 =2 swgts ¥%), inD,,
L+ew:/, 2 (1+ewy) c
1/ —2we—ew? +e2w? )
GZ ,E)=— Wy = 3 g x D
(w,2) t‘:<l+ew¢)x+2< (1+ew,)? )é’ %z,

2 e
G (W, &)= —2p,Wy|emo- +2p1Welemo+ + % w(x,0),

(4.6)

GH(W,8) = —2p, Wleon, + f(p;w(x hy).

The function G maps 0, x [0,¢,) into Y. x Y2x X, x X, where the spaces Y2, X
are as defined previously in Section 2 and Y! is the Banach space consisting of all
functions u(x, &) defined for |fm x|<a and 0=¢=<h, such that u(-,¢)eX, for
0<¢<hy, with norm supgg.<p, ||u( ,&)||x,- (Recall that the previous space Y}
incorporates u(x, h;)=0 which is not relevant to the free surface case.) The
neighborhood 0,< Y, 5 is defined in complete analogy with our earlier discussion.

Having observed already that the system G(w,0)=0 is degenerate, a modified
mapping G may be introduced in exactly the same fashion as in (2.9) above, except
that the projection Q@ which annihilates the range of G(w,0) is given by

Q(8(x, &), 6”(x, £), 0(x), 8(x)):=(0,0, ¢(x), 0), (4.7)

where

2(x) = 09(x) + U /8 -09x)~ 20, [ 69x, ey de— 2plje<”(x,:>z( £ de,

Ui/ghl —h

with 1(£) given in (4.3). The modified equation G(w,0)=0 has a unique solution
given by wy(x, &)= W(x)I(£) where W(x) satisfies the ordinary differential equation
analogous to (2.10), namely

(p2—p1) P
wloi @i § roc]an[mn)oon]

3 P P+
w3 1 ! =0. 4.8
2 [,,2 frf{p+—l}2+h§(u+—l)’] @9
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The expressions within brackets in (4.8) are seen to be positive, and so positive
solutions that decay to zero at infinity exist for a>0, that is, for supercritical
speeds ¢ > Uy,. The solution W(x) has the form W(x) = A sech?(Bx) with 4 and B?
linear in a. As in the discussion at the end of Section 2, once the value of « is
decided, a suitable exponential decay rate and domain of analyticity is then
obtained and the scale of Banach spaces determined. As before, a convenient
choice of « is that which makes B=1/2,

To verify the applicability of the Nash-Moser-type implicit-function theorem,
the invertibility at the cost of loss of regularity of G, (w,e) for (w,¢) near (we,0)
must be checked. This proceeds very much like the corresponding argument for
the fixed-boundary case. At =0, we use the projection Q defined earlier and
another projection P given by (Pw)(x, &) =w(x,0)I(¢) to write G, (w,0)p= S in the
form of a 2 x 2 matrix of operators as in (3.2). As before, one off-diagonal entry is
the zero operator and the invertibility reduces to being able to solve the linearized
form of the KdV equation (4.8) as in Lemma 3 and to solving a simple ordinary
differential equation in ¢&, as in (3.4) above. This equation now reads:

—vg=f1(%8) forO<é<h,,

—vg=f2(x,&) for —h,<&<0,

=2p10¢fg=n, +2% v(x, hy) = f4Yx), (4.9)
E 3
-0(x,0)=0,
v(x, —h,)=0.

One again finds a unique solution with good estimates on ¢-derivatives, but no
estimates on x-derivatives. Using Cauchy estimates on subdomains, one establishes
the invertibility for (w, 0) near (wo, 0).

For £>0, the classical invertibility of 0G (w, €)P is combined with the solution
of the approximate problem analogous to (3.5), namely

—vax—v¢¢=01 in Dl’

— &0y, —Vge=0, inD,,

- Hyy28L2—p) o
—ZPZU;(X,O )+2p10;(x,0 )+2 Ui U(X,O)—63, (410)

—2p,05(x, hy) + 2821 (x, h,) =0,
Uz

v(x, —h;)=0,
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with 0=(0,,6,,05,0,) and 6§ =(I —Q)6. The weak formulation of (4.10) leads to a
coercive problem, a claim that is verified by proving the absence of negative
. eigenvalues. This follows by solving —uvg,= —a?v with the Bernoulli conditions.
Using the condition at ¢=h, along with the normalization v(0)=1, one readily
finds v to be given by

sinh (o(¢ + h))

—-h,<EL0,
sinh(ah,) 25620
v(x, & a)=
) .| coth(eh,)—pu,ah,
, 0Z¢<h,.
cosh (a{)+smh(a;)|;u+ahlCoth(ahl)_l <ésh

Imposing the Bernoulli condition at £ =0 leads to the equation

0, ' P coth (ah,)—p, ah, 1
“2 [ah, coth (ah,)—1]=22| ah . s (41
hy ol Ea = h,[a l(,u\;ozhlcoth(ozhl)—l Be—1 D

The left-hand side of (4.11) is positive for a#0 whilst the right-hand side is
negative, hence there are no negative eigenvalues. (This argument uses essentially
the fact that p, —1>0, and fails if u_ replaces u.). Solving (4.10) by taking
Fourier transforms in x establishes the analogue of Lemma’ 7.

The linearized problem (I—Q)G,(I—P)v=(I—Q)f will again be solvable by
iteration using (4.10), as in Lemma 6 above. This yields an inverse in Y, , of the
desired form. One may therefore apply again the Nash-Moser implicit-function
theorem to establish the following result.

THEOREM 8. For the two-layer system with free upper surface, there exists a unique
branch of non-trivial, positive, symmetric, exponentially decaying, piecewise analytic
solitary waves for speeds c> U, with c— U, sufficiently small, where

1 p 172
U*=|:§g<hl +h,+ {(hl—h2)2+4h1th—2}):| .
1

The solution y is given approximately by y=1\y/c+ewy(e'>x)I(W/c) where I({) is
given by (4.3) and wy(z) is Asech?(z/2) where A is

1 phy (i —1) }/[ﬂz Py Pilts
A= /=2 — 4+ 0,h LS + s
3[ a1 P2 T Wi =12 Wy — 1)

with c2=U2e* and

_ 1 pyhy(pd-1) (p2—p1) P
““3[ (ps —1)? +””h2]/[ phy +(u+—l)h:]'

The free surface y(x,h,) and the interface y(x,0) are analytic functions of x.
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5. SMOOTHNESS OF THE SOLUTION BRANCHES

Considered here is the smoothness in the parameter ¢ of the solitary-wave
branches whose existence was the object of the theory heretofore. The outcome of
the analysis is that for any oc<1/2, w=w(e) is a C®-function when viewed as a
mapping of [0,¢,) into Y, , or ¥, ,. This result is valid for both the fixed and the
free upper boundary. As the proofs are quite similar for both cases, we present
them for the case of a fixed upper boundary only and state the results for the
other case..The proofs rely substantially on our previous calculations. The
notation from the earlier sections is taken over entirely here.

The first step in establishing the advertised smoothness of the solution branch to
(2.4), the fixed boundary case, is the demonstration that the unbounded inverse
R=R(w,e) is C* in ¢ when viewed as a mapping of O, x[0,g,) into the Banach
space of bounded linear operators from Y!x YZx X, to Y. x Y% x X, where
g <o.

LEMMA 9. Let ¢y and the inverse mapping R=R(w,¢) of F, be as determined in
Proposition 2. Suppose also that ¢’ <6 Zg*. Then the correspondence (w,e)—R(w,e)
mapping 0,x[0,¢&) into L(YixY2x X, YL x Y2 xX,) is infinitely differentiable
in e

Remark The symbol #(A;B) where A and B are Banach spaces connotes the
collection of bounded linear operators mapping A4 to B.

Proof The mapping R was obtained in Section 3 using separate arguments for
>0 and e=0. For ¢>0, the constant coefficient problem (3.5) and an interation
were used to construct solutions to the linearized equation. It is a standard result
in functional analysis that the inverse of a mapping depending smoothly on an
external parameter ¢ is also smooth in & Thus the smoothness of R for ¢>0 is
assured and it remains to check the special point ¢=0.

Recalling the splitting based on the projection Q and its complement I—0Q, it
follows from Lemma 3 that the piece of R related to the range of Q, namely the
linearized ordinary differential equation (3.3), is smooth even at ¢=0. Therefore the
remaining task is to analyze the behavior of the solution of (I—Q)F (w,ev=
(I—Q)f as e-0". This will be accomplished by checking continuity and then
applying a bootstrapping argument to obtain higher differentiability in .

From Lemma 6 and Lemma 7, it follows that the difference between the
solution operators for (I—Q)F,(w,e)v and the constant coefficient operator (3.5)
studied in Lemma 7 tends to O in operator norm as ¢—0%. Thus the issue of
continuity is reduced to studying the constant coefficient case as e—0*. Now recall
that the solution of this problem was achieved using Fourier transforms. Indeed,
the formula for v is precisely

[

LT}
v(x,&e)= | [ e*g(k;&n) [k, n)dndk=G(e) S, (5.1)

—o —h2
where
g2k &) for —h,<E<0

g(k; &, '1)={g1(k; &n) for O0<é<h,



48 J. L. BONA AND R. L. SACHS

.and g, and g, are given by the formula (3.7) above. Since f decays exponentially,
the integration with respect to k may be split into the integral over {k:|k|=¢~'/*},
.nWhich is.negligible as.€—07*, and the integral over the interval {k:|k|<e '/*}. A
direct calculation using (5.1) shows that as e—»0% with |k|<e” ”“ the solution
v(x, & &) approaches the solution of the x-independent problem

—U‘:§=f2 in —h2<é<0, (5.2)

—2p,06(x,07) +2pv,(x,07) + 2% v(x,0)=f3,

*

that satisfies Qu=0, where f=(I—Q)f.

It is now shown that G is smooth in ¢ via a bootstrap argument. Fix an ¢ in the
interval [0,g,) and let h be such that e+h also lies in this interval. The function
x=L[G(e+1)—G(e)]f satisfies the equation

_EXxx_x€§=h(G(B+h)f)xx in {0<é<hl} v {_h2<6<0}7

~2022(5,07)+ 20,205,094 2802 2 5 0) <o,

*

ie. y=hG(e)LG(e+h)f whére the matrix L of differential operators is L=
diag (02, 82,0). Thus the difference quotient satisfies 8

% [G(e+h)—G(e)] f =G(e) LG(e+h) f,

and so by the continuity of G as a function of ¢, we obtain that G is differentiable
as a function of ¢ and that

G'(e) f =[G(e) LG(e)]S. (5.3)

Since the right-hand side of this relationship is a continuous function of ¢, G is
seen to be a C!'-function of & Now that G is known to be continuously
differentiable in &, we may argue inductively from (5.3) that G is C* as a function
ofe. Thus Ris C® in e as well. M

TueoreM 10. The solitary-wave solution w=w(e) of (2.4) corresponding to the
two-fluid system with a fixed upper boundary is a C® mapping of [0,e0) into
Y!x Y2x X, for any 6 <1/2.

Proof Since R is known to be a two-sided inverse, it follows from the
Nash-Moser implicit-function theorem that w is Lipschitz. Hence there is a
constant C independent of ¢ such that
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w(e)— w(e)

yixyixx, < Cle—¢|, (5.4)
for all ¢,¢ in [0,¢,) and any o <1/2. Now, by Taylor’s theorem, we have
0=F(w(¢), &) — F(w(e), e)

=F, (w(e), e) (w(e) — w(e)) + F(w(e), e)(&' — &) +0(||w(&) — w(e)|

%’l, x yzq x xu + IB' —Elz).
Applying R(w(e), ¢) to this relationship yields

w(e) —w(e) + R(w(e), &) F(w(e), £) (' — &) =0

)

where (5.4) was used to bound the norm of w(g)—w(e) in the remainder term.
Thus w'(¢) is seen to exist, and, moreover,

w'(€) = — R(w(e), &) F (w(e), ¢). (5.5

Again, one deduces that w(e) is a C! function of ¢ because the right-hand side of
(5.5) is a continuous function of ¢ with values in Y!x Y2x X,. The relation (5.5
may now be used to obtain the desired result. W )

The case of the free upper surface proceeds in a completely analogous fashion.
The precise kernel for the constant-coefficient approximation to (I— Q)G (w,e)v = S/
is- of course different, but its limit as ¢—0" is again determined by a direct
calculation based on Fourier transforms. The rest of the argument is unchanged.
Thus the following result obtains in this case.

THeOREM 11. The solitary-wave solution w=w(e) of (4.1) corresponding to the
two-fluid system with free upper boundary is a C® mapping of [0,¢) into
YoxY2ZxX,x X, for any a<1/2.

6. REMARKS ON A VARIATIONAL CHARACTERIZATION OF THE
SOLITARY WAVE

The original system of Euler equations for the full time-dependent problem has a
Hamiltonian structure (Bowman, 1987) similar to that discovered by Zakharov
(1968) for the analogous free-surface problem. In this formulation, there are two
variables, which correspond to the deviation of the interface n(x,t) from its rest
position and a potential variable

V(ix,t)= pa(d(x, ”(x, t), t))x . pl(d’(x’ n{x,t), t))x

where ¢ is the velocity potential. The variable ¥ may also be expressed in terms of
¥, the stream function. The total energy of the system is given by the functional
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1 1 1
H(n, Vy={f 5 p\|V¥|? dxdy+[f - p| VW[ dxdy+[ S(p2—pi)n*dx,  (6.1)
[o 11 2 Q3 2 R 2

where Q,={n(x,0)<y<h,}, Q,={—h,<y<n(x,t)}, and V determines ¥ via a
Riemann-Hilbert problem. The evolution equations have the form

n\ _( 0 —a,\/H/én
v), \-a, 0 J\oH/V)

and traveling waves with velocity c thus satisfy

0 —0d,\[oH/én\ _(—cn, ¢ 0 —a,\/dl/dn
-3, 0 J\6HWV) \—cV.] "\ -8, 0 J\oI1/6v)

where I = [ Vyydx. Thus the solifary wave satisfies

0 —0,\/8(H—cl)/dn -0
-3, 0 \S§(H—ch)ysv)
With appropriate conditions at co, this leads to the requirement that H'—cl’=0
when evaluated at a solitary wave.

Benjamin (1984) proposes an approach to the existence of solitary waves based
on this variational problem, which may be regarded as searching for an extremal
of H for a given value of I. It is here remarked that this attractive idea presents
severe technical difficulties because the functional in question is not bounded
above or below. More precisely, note that H involves the L,-norm of n and
essentially the H'-norm of  or ¢ over the full domain. By standard Sobolev trace
theory, this is equivalent to the H™'2-norm of the value of ¢ on y=# (assumed
smooth), which is equivalent to the H'?> norm of V. Thus I=|Vydx, which is
clearly indefinite, cannot be dominated by H and therefore H —cI is indefinite. The
Hessian H”—cI” evaluated at the solitary wave is a symmetric operator with
infinitely many positive and infinitely many negative eigenvalues. Besides compli-
cating any existence theory, an analysis of the stability of solitary-wave solutions
of this system cannot be carried out-using the known Lyapunov techniques
(Arnol’d, 1966; Benjamin, 1972; Bona, 1975; Bona et al., 1987 and the references
contained therein). These theories all rely upon H” —cI” having one negative and
one zero eigenvalue.

The same difficulty arises in the case of a single homogeneous layer with a free
surface.
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