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Considered herein are model equations for the unidirectional propagation of small-amplitude, nonlinear, dispersive, long

waves such as those governed by the classical Korteweg~de Vries equation. Of especial interest are physical situations in which
the linear dispersion relation is not appropriately approximated by a polynomial, so that the operator modelling dispersive
effects is nonlocal. Particular cases in view here are the Benjamin-Ono equation and the intermediate long-wave equation
which arise in internal-wave theory, and Smith's equation which governs certain types of continental-shelf waves.

The initial-value problem for these equations is shown to be globally well posed in the classical sense, including continuous
dependence upon the initial data and, in certain cases upon the modelling of nonlinear and dispersive effects. Whilst the
results are stated for the specific equations listed above, the techniques utilized are seen to have a considerable range of
generality as regards application to nonlinear, dispersive evolution equations. Particularly worthy of note is our theorem
implying that solutions of the intermediate long-wave equation converge strongly to solutions of the Korteweg—de Vries

equation, or to solutions of the Benjamin—Ono equation, in appropriate asymptotic limits.

1. Introduction

The classical Korteweg~de Vries equation {1]
was originally derived in 1895 as an approximate
model for planar, uni-directional, irrotational
waves propagating on the surface of shallow wa-

ter. This model equation’s range of application has,

broadened considerably in the last twenty-five
years, and now includes many physical situations
that feature wave motion wherein a balance is
struck between the weak effects of nonlinearity
and dispersien-fef—refe: [2, 3]). Not all such situa-
tions lead to the Korteweg-de Vries equation,
however. For example, waves in certain crystalline
lattices have a cubic rather than a quadratic non-
linearity such as appears in the Korteweg—de Vries
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equation. More commonly, the Korteweg—de Vries
equation does not appear when the linearized dis-
persion relation P(§) for the full system of equa-
tions cannot be approximated adequately near
¢ = 0 by a quadratic expression of the form 1 — ¢ 2l
In this case the dispersion operator L that appears
in the model equation is usually nonlocal. It is to
this latter situation that the present paper is de-
voted.

The linearized dispersion relation for wave
equations is now explained in more detail. If the
full equations of motion for some wave phe-
nomenon in a medium that is homogeneous in the
direction of the waves’ propagation are linearized
around an appropriate rest state and plane-wave
solutions of the linearization are sought, there will
in general be determined a dispersion relation
w = Q(¢) that is implied in order that e/¢*~) be
a solution of the linearized equation. Here x is
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proportional to the distance in the direction of
propagation, ¢ is proportional to the elapsed time,
and the wavenumber ¢ and frequency w are con-
stants. A general motion of the linearized system
is then presumed to be realized as a superposition
of plane waves of the form

o(x,1) =5 [~ w(g)eieenag

- ;_ﬂfw w(E) e PO g

—oC

where P(§{)= Q(§)/¢{ and the weight w(£¢) de-
scribes the relative amount of the wave’s energy
that is present in wavenumber £ The associated
dispersion operator L is defined by ZB(g) =
P(£) 0(£), where a circumflex adorning a function
connotes that function’s Fourier transform. This
operator arises from the observation that the wave
motion represented by v formally satisfies the
equation v, + Lv,=0. (Here, and below, sub-
scripts denote partial differentiation.)

A telling example is the situation that arises
when one considers two-dimensional surface water
waves. In this case it transpires that P(§)=
[tanh (£)/£]'/? in suitably normalized variables. If
a long-wave approximation is taken wherein only
values of the wave number £ near to 0 are consid-
ered important, then it may be appropriate to
approximate P(£) by a simpler expression P(¢)
that i1s valid near £=0. For the case of surface
water waves, a natural choice of P(£) is 1 — 1£2,
which approximates P(¢) correctly up to order £*
and corresponds to the dispersion operator Lv =
v+ 0.,

In many situations where uni-directional wave
motion arises, the dispersion relation P(§) does
not admit a good polynomial approximation near
the origin. Important examples include certain
waves in stratified fluids (the Benjamin—Ono
equation [4, 5] and the intermediate long-wave
equation [6, 7]), continental-shelf waves (Smith’s
equation, see ref. [8]), and waves in rotating flows
(Pritchard [9] and Leibovich [10]). Assuming that
nonlinear effects still arise as they do for the

Korteweg—de Vries equation, such situations in-
variably lead to model equations of the form

u,+uu,— Lu, =0, (1.1)

where the dependent variable u depends upon x
and ¢ as defined above and L is an approximation
to, or the full dispersion operator for the system in
question. Eq. (1.1) 1s written relative to a frame of
reference that moves to the right with the phase
velocity of infinitesimal waves of extreme length, a
quantity that typically becomes equal to one in
suitable schemes for nondimensionalizing the in-
dependent and dependent variables,

Our purpose is to investigate several specific
equations of the form (1.1). Of especial interest
will be the pure initial-value problem for the
Benjamin—Ono equation, the intermediate long-
wave equation, and Smith’s equation, in which
u(x, 1) is specified for all real x at some fixed
time, say ¢ =0, and attention is given to proving
that a unique solution of (1.1) exists for all x and
all non-negative ¢t which has the specified values at
t = 0. In addition, a theory of continuous depen-
dence of solutions on the data is established, as
well as results concerning the continuous depen-
dence of solutions on the dispersion relation.

The theory for existence of smooth solutions of
equations like (1.1) with given, smooth, initial data
is derived by parabolic regularization. That is, a
small amount of dissipation is introduced into the
model, solutions obtained for this perturbed equa-
tion, and then the limiting form of these solutions
as the artificial dissipation tends to zero is sought
as the solution to the original problem. This tech-
nique proves to be effective in the present context,
as it was earlier in other, similar situations (cf.
refs. [11-13}), because of various a priori estimates
that obtain for these equations. The continuous
dependence of solutions on initial data follows
directly from the strong convergence of the dissi-
pated solutions to the solution of (1.1), as noted
already in the context of the Korteweg—de Vries
equation in ref. [14] (see also ref. [15]). The results
pertaining to Smith’s equation for continental-shelf
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waves and those of continuous dependence of
solution upon the dispersion relation rely upon
further a priori estimates, in this case for the
difference between solutions to different model
equations.

Although there has been enormous scientific
activity centered around the equations studied
herein, there has been comparatively little written
concerning rigorous theory for the initial-value
problems that form the backbone of most previ-
ous studies. The principle general results are in the
early paper of Saut [12] mentioned before, which
18 in many ways a direct ancestor of the present
paper. Later, results pertaining particularly to the
Benjamin-Ono equation were stated and used by
Bennett et al. [16] in a study of the stability of the
solitary-wave solutions of this equation discovered
by Benjamin [4]. Their theorem is established in
detail here. Very recently, lorio [17] has also writ-
ten on the initial-value problem for the
Benjamin—Ono equation, obtaining very interest-
ing results, some of which overlap with those
presented here. He does not deal with other than
the Benjamin—Ono equation, however, nor does
he address the issue of the solutions’ continuous
dependence upon the initial data and upon the
symbol of the dispersion relation. Also worth not-
ing is the manuscript of Ponce [18] dealing with
smoothing associated to solving the Benjamin—Ono
equation.

In addition to providing some advance in our
fundamental knowledge concerning the initial-
value problem for models for nonlinear, dispersive
waves that possess a nonlocal dispersion relation,
another point of our analysis is worth noting. It
will be shown that if the initial data are fixed, then
solutions of the intermediate long-wave equation
converge, uniformly on bounded time intervals, to
the solution with the same initial data of the
Korteweg—de Vries equation or of the Benjamin-
Ono equation, respectively, as the relative depth of
the two-fluid system that the intermediate long-
wave equation models approaches the limiting
value O or + oo, respectively. This result is already
suggested by Joseph’s analysis in ref. [6] of the

solitary-wave solutions of the intermediate long-
wave equation, and was conjectured explicitly in
ref. [19]. Indeed, detailed analysis by Santini,
Ablowitz, and Fokas [20] of the Benjamin-Ono
limit of the intermediate long-wave equation pro-
vided the first clue to a formulation of the inverse
scattering transform for nonlinear, dispersive
equations posed in two spatial dimensions.

It deserves remark that a good deal of the
analysis contained herein applies equally well to
certain systems of evolution equations for nonlin-
ear, dispersive wave motion, However, to keep this
article to a reasonable size, the discussion of sys-
tems such as that proposed by Liu et al. [21] as a
model for internal waves in a three-layer, stratified
medium will be given in a subsequent publication.

A good deal of the theory developed here ap-
pears first in the theses of Abdelouhab [22] and
Felland [23]. Their work was supervised by Saut
and Bona, respectively, and the present paper
owes its existence to subsequent, cooperative ef-
forts among the four authors.

The paper is organized as follows. The particu-
lar versions of eq. (1.1) studied here are recounted
in section 2, along with some elementary proper-
ties of solutions of the equation. Section 3 is
concerned with the invariant functionals for the
Benjamin-Ono equation, and the a priorni infor-
mation that may be deduced therefrom. Similar
information for the intermediate long-wave equa-
tion is presented in section 4. In section 5 the
Cauchy problem for the Benjamin—Ono equation
is solved, as regards existence, uniqueness, and
continuous dependence on the initial data, for
data that decay appropriately to zero at infinity.
Similar results are available via the same methods
for the intermediate long-wave equation, as is
remarked in section 6. In section 7 Smith’s equa-
tion is considered and the associated Cauchy
problem resolved by considering it as a perturba-
tion of the Benjamin—Ono equation. Section 8 is
devoted to proving that the Korteweg—de Vries
equation and the Benjamin—Ono equation arise as
singular limits of the intermediate long-wave
equation. Finally, section 9 deals with the periodic



L. Abdelouhab et al. / Nonlocal models for nonlinear, dispersive waves 363

initial-value problem for the foregoing equations,
in which the initial data are supposed to be peri-
odic in the spatial variable x and a solution is
sought that preserves this property.

The notations employed throughout are the
standard ones used in the modern theory of non-
linear partial differential equations. For most of
our symbolism, we may safely rely upon Lion’s
text [24] to guide the reader. There is one abbrevi-
ation followed here that should be explained: If X
is any Banach space of real-valued functions de-
fined on some subset of Euclidean space, its usual
norm will be denoted || ||,. In the special case
where X= H*’(R), s >0, is the Sobolev class of
L*(R) functions having derivatives of all orders up
to s which also lie in L?(R), the norm will be
denoted simply || ||,. The same applies to the
negative-norm spaces, H *(R). (If s> 0 is not an
integer, the norm of a function f in H® is defined
in terms of the Fourier transform f of f in any of
the usual ways, as for example in Lions and
Magenes [25]). Thus the L3*(R) norm is denoted
Il llo- Whilst the spaces H*(R), s< R, are all
Hilbert spaces, the only inner product that inter-
venes in our analysis is that of L?(R), which we
therefore write unadorned as ( , ).

2. Some noniocal, nonlinear dispersive equations

As explained in section 1 the equations to be
treated here can all be written in the form

u,+uu,—L(u,)=0, (2.1)

where u=u(x,t), teR,, x €R, the dispersion
operator L is defined by

Lu($) =p(£) a(¢), (22)

and the symbol p(¢) characterizes the linearized
dispersion relation of the model equation (2.1). In
this paper, interest will be focused on the Cauchy

problem for equations of type (2.1) in which the
dispersion relation p has one of the following
special forms:

p(¢)=2m|¢| (Benjamin-Ono equation), (2.3)
pa(£) = 2ntcoth (2n88) — 5 (8> 0)
(intermediate long-wave equation), (2.4)
p.(§) =2n(/E2+1 -1) (Smith equation).
(2.5)

The Benjamin—-Ono and the intermediate long-
wave equation can be writien in the alternative
forms

u,+uu, +H(u,)=0
(Benjamin—Ono equation), (2.6)

where H denotes the Hilbert transform defined by
the principle-value integral

1 o u(y
Hu(x) = ;Pvf_wx—_% dy,

and

u,+uu, + %—ux + T(u,)=0
(intermediate long-wave equation), (2.7)

where T is defined by the principle-value convolu-
tion

Tu(x)=— 21—8PVf_°ooo coth(w(—);gy—)) u(y)dy,

respectively. The positive parameter § character-
izes the depth of the lighter fluid layer in a two-
fluid system in which the light fluid rests upon a
heavier fluid (cf. ref. [7]).

It is obvious that the operator L defined by
(2.2) commutes with differentiation, and that, if
the dispersion relation p(§) is real-valued, as will
always be the case here, then L is self-adjoint on
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its domain in L2?(R). Under these circumstances
(2.1) admits the classical invariants

I_l(u):fcc udx, M_,(u)=1,

-

Io(u)zf00 Sutdx, My(u)=u,

— <

Ii(u)= —fic[_%ua —uL(u)]dx,
M (u)=—u*+2L(u).

Here M, (u) is the gradient of the corresponding
functional I,(u), i= —1,0,1. Recall that if J is a
smooth functional defined on a suitable subspace
of L*(R), its gradient G is characterized by

(G(u),0) = = (u+ e0)], 0

where the inner product is that of L*(R). By
definition,

() = (u, M(w)),

for i= —1,0,1. Moreover, provided u is suffi-
ciently smooth and decays to zero at infinity along
with the first few of its partial derivatives, it is
obvious from the self-adjointness of L that

(uu,— Lu , M, (u))=0,

1

for i= —1,0,1. Hence it follows that if u is a
suitably restricted solution of (2.1), then

d
ali(u) = ().

If L possesses further properties, one can ex-
hibit other nontrivial invariants of eq. (2.1). For
instance, if L satisfies

L(u)L(v,)+ L(u,) L(v)
~AL(u L(v)+0v.L(u))
=afu F(v)+v,F(u)]
+ B[uG(v) + 0G(u )] + yW(uw),, (2.8)

where «, A, B and vy are constants and F, G, W

are self-adjoint operators that commute with L
and differentiation, then it is easily seen that

L(uy=["

— 00

(- oL (a)

3
C2(1+2))

X [auF(u) —2BuG(u) + yuW(u)]

+%L(u)2) dx

and

M,(u) = u® = 3[ul(u) + L(u?)]
3
BTN

+3L%(u)

[aF(u) =2BG (u) +yW(u)]

satisfy the relations

S L= ()} My () dx =0

and

0 d
f w“zMz(u) dx = a-le(u)
for every suitable function u. Here, the notation
L%u stands for L(Lu). Relation (2.8) appears to
be central to establishing the existence of infinitely
many invariants for eq. (2.1), at least for the
equations in view here.

For later purposes, it is worth recalling the
definition of the Poisson bracket of two function-
als F, and F,, namely

o

grad Fy(u) 9, grad F,(u)dx.
(2.9)

[F15F2]=/

Using the notation, eq. (2.1) may be written in the

Hamiltonian form
u, =41, 1], (2.10)

where I(u) = u.
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3. Invariants for the Benjamin—Ono equation

The Benjamin-Ono equation possesses in-
finitely many integral invariants of the sort dis-
cussed in section 2 (cf. refs. [26, 27]). Reproduced
below are the first six invariants, along with their
gradients, in the form given by Case [26]. The
general form of these invariants is also presented,
and some simple properties deduced therefrom
which will be useful for the study of the Cauchy
problem associated to the Benjamin-Ono equa-
tion.

3.1. The first six invariants

I_l(u)=f°0 udx, ]0(u)=%foo udx,

— o0 -

Ii(u)=~ /_°°°°

Yo + uH(u,)] dx,
L(u)= f_oo [%u4+ SutH(u,)+ 2uf] dx,

()= [ (=4 = [0 (w) + B ()]
- [ZuH(ux)2 + 6uu§] + 4uH(uxxx)} dx,

I(u)= f_oow{%uf’ + [3u'H(u,) + $uH (uu,,)]
+%[5u2u§+qu(ux)2+2uH(ux)H(uux)]
—10[w?H(u,) + 2uu H(u,)| + 8u§x} dx,

M_(u)=1, Mo(u) = u,

M(u)=—u>-2H(u,),

M,(u) =u®+3[uH(u,) + H(uu,)] — 4u

My(u) = —u*

XX

_ 4[u2H( u,) +uH(uu, ) + H(uzux)]
—[2H(u,)* + 4H(uH (u,)) ]

+ (6u§ + 12uun) + 8H (u

.XXX)’

M, (u)=u®+5[w’H(u,) + u2H(uu,)
+uH(u2uX) + H(u3ux)]
+ [~ 25uu? — 25uu,, + Sub (u,)?
+5H(uH(u,)), + 5H(u,) H(uu,)
+5H(uH (uu))  + 5uH(uH(ux))x]
+ [~ 40H (u,u,,) = 20(u, H(u,)) ,
—20uH(u,,,) - 20H (uu,,, )] +16u

AXXX "
3.2. The general form of an invariant of the
Benjamin—Ono equation

It is easily seen from the induction formulas of
Case [26] that the known hierarchy of polynomial
invariants of the Benjamin—-Ono equation can be

written in the form I, (u), n=0,1,..., with
. n_ 1 n+2
I,,(u)=f_ (=1)"—5u"*2dx
n—1 e
+ 2 f Pn+2—m.m(u)dx
me=]" "0

: © Q"
+t(n)c"f_quA"(u)dx, (3.1)

where ¢, is a positive constant and

A,(u)=u if n is even,
=H(u) if n is odd,
i(n) =(-1)" ifn=2p,

=(-1)""" ifn=2p+1.

The polynomial P, ,(u) denotes the sum of all
terms which are homogeneous of degree j in u
and which involve exactly k derivatives in x. With
this notation, the gradient of I (u) has the form

M, (u)=(-1)"u"*?
n—1
+ Z Qn+1—m,m(u)
m=1
2i iA
+ l(n)cnax" n(u)’

where @, () consists of terms homogeneous in
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u of degree j which have exactly k x-derivatives in
total.

3.3. Some properties of the invariants I,(u),n =0

3.3.1. The I,(u) are in involution when u is a
solution of the Benjamin-Ono equation (see ref.
[28]). That is, in the notation introduced in section
2 (see (2.9)).

[Iu’ ]m] =0,

for all n and m. Using the classical properties of
the Hilbert transform [29, 30]

(H1) /m uH(v)dx = —f_wwH(u)udx,

—oC

(H2) ficH(u)H(u)dx=fw wo dx,

— o

(H3) H[uH(v)+vH(u)] =H(u)H(v)-u,

all of which hold for arbitrary functions u,v €
L*(R), it is easy to prove the following result.

Proposition 3.3.1. Let u=u(x,t) be a C*®-func-

tion all of whose partial derivatives lie in L,(R).
Then it follows that

/jo [uu‘\.+ H(u,, ]M,,(u)dx=0,

s d
[ M (w)dx= g1, (),
for n=0,1,...,4. Hence if u is a smooth solution

of the Benjamin-Ono equation, f,(u) is indepen-
dent of ¢, for n=0,...,4.

Remark. In fact, proposition 3.3.1 holds for all
n=20,1,..., but we shall only need the first few
invariants in our analysis, and for these the proof
of the proposition is just a calculation involving
the formulae in section 3.1 in conjunction with

(H1)—(H3).

3.3.2. The invariance of I,(u) leads to bounds
on the H"/*(R) norm of u. By the Parseval iden-
tity, the term i(n)c, [®., u[d"4,(u)/9x"]dx in
I,(u) is equivalent to the |ju||% ,, for smooth func-
tions u. Therefore, one is tempted to write

In(u) = c”u”:ZI/Z + Rn(u)’

where ¢ is a positive constant. The remainder term
R, (u) may be bounded advantageously, as the
following result shows.

Lemma 3.3.2. For all > 0, there exists a con-
stant ¢ = c(7n) > 0 such that

IR, ()| < mllull; o+ c(n)llull§ ™"

for all u € H"/X(R).

Proof. From (3.1) it follows that

N
R,,(u)=(—1) '/l mu +2dx

n—1 0
i Z f Pn+2~m.m(u)dx-

m=1_ T

Consider the first integral in the above expression
for R,(u) and use the embedding H"/#*2"(R) C
L"*%(R) and an interpolation inequality to obtain
that

o
l/ u" +2 dx

42 2
= ”l’l”'l““"*l < C“u”::;(4+2n)

< cljull, ollullg™ (3.2)

Then, for any n > 0, Young’s inequality therefore
implies the existence of a constant ¢ = c¢(n) such
that

- +2
f u" e dx
— 00

We turn now to consideration of the other n — 1
summands making up R, (u). The terms compris-

ing P,,5 . .(#) are homogeneous of degree

< mllull} o+ cCa)lluliz™>. (3.3)
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n+2—m in u and involve m x-derivatives. More-
over, the Hilbert transform H is a bounded opera-
tor from L?(R) into L?(R), for any p>1 and
from H*(R) into H*(R), for all s (cf. ref. [31]).
Performing several integrations by parts, we can
therefore bound P, ,,_,. ,.(u) above by estimat-
ing terms of the type

o [nF2-m
/ ( Il u(a‘,))dx,

— o0 i=1

where
u(a,)=8;"u, o € {0,...,N(m)},
N(m)=1im if m is even,
=1(m+1) if misodd,
and
n+2—m

SF et

i=1

Provided m <n—1, an application of Hélder’s
inequality shows that

n+2 m
‘/ u(ai,)d.x
n+2—m n+2-m
< TT Nuglloni<e [T el
i=1 i=
n+2—m

<c TT Nully e

i=1

where the y, will be chosen preseniiy so that
5i=(%,—2)/2v, v,>2,and /72"™1/y,= 1. The
constant ¢ arises from the embedding of H*(R)
into LY(R), which has been utilized for 1 <<
n+2-~m. Define A\, =s,+a;,=4%-1/y,+a, By
the definition of «; it is easily seen that one can
choose v, such that A,<n/2, for i= 1,2,...,
n+2—m. Since A, =(—6)n/2, with 8=

(n—=2X,)/n, a standard interpolation inequality
thus yields

I

— o0

n+2—m
( n u(a))dx

i=1

n+2—-m

A 1-2x
<c ]_I laell 3 " llulls ™/

= cllullZAHE N g 2 e/

= cllully )3/ Ml g,

Since 1<m<n—1, we have 1+ m/n<2, and
therefore by Young’s inequality, for any 5> 0
there is a ¢ = ¢(n) such that

=) n+2-m
f_ ( ]j u(a))dx

for m=1,2,...,n—1. The last inequality com-
bined with (3.3) suffice to establish lemma 3.3.2. O

< mllully 2+ c(n)llull*>",

Lemma 3.3.3. In the above notation, there is a
¢ > 0 such that

[ (=0 k0, M, () dx = il + R, ().

Moreover, for every n > 0, there exists a constant
¢ = c¢(n) > 0 such that

IR, ;(u)| <llul? oy, + c(n)|[ufl2* 2042,

Proof. The proof is similar to the proof of lemma
3.3.2 since Iin‘J.(u) is a sum of homogeneous
terms of degree n+2—m in u, with m+2
x-derivatives (m <n—1). We are therefore re-
duced to estimating terms of the form

f n+2 m, m+2](u)dx’

and for this we can apply the reasoning in the
proof of lemma 3.3.2 once it is noted that
Pn+2—m,m+2j - P(n+2j)+2—(m+2j)‘m+2j‘ The reSU.ll
then follows immediately. D
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4. Invariants for the intermediate long-wave
equation

Write the intermediate long-wave equation in
the form

u,+ uu, + %ux+ T(u,)=0, (4.1)
where

Tu(x)= - flgPVf_oowcoth(ﬂ(—);;—ﬂ) u(y)dx.
(42)

This equation possesses an infinite sequence of
invariants which are in involution (cf. refs. [19],
[28] or [32]) the first few of which are written
below along with their gradients.

1—1(“)=f udx, M_,(u)=1,

[e<]
— o0

Io(u)=foo 1utdx, My(u)=u,

— o0

I(u)= - foo (%u3 —uT(u,)+ %uz) dx,

-

M (u)=—u*-2T(u,) - %u,

I, (u) =f°0

— 00

(%u“+ 30T (u) + dul +3[T(w).]*
+l[;u3+ $uT(u,)] + ibﬂ)dx
gLzt T AT 82 ’
My(u) = u + 3[uT(u,) + T(uu,)] — uy,

3 3
+.3T*(u,,) + g[%uz + 3T(u, )] + Foie
The counterparts of lemmas 3.3.2 and 3.3.3 for the
Benjamin-Ono equation are valid in the present
context. To see this straightforwardly, it suffices to
note the following elementary resulit.

Lemma 4.1. For every § > 0 and for all £ €R,

1
- % + 2m|¢| < 2nécoth (2m8¢) < 5 + 2m|§].

Proof. This is easily adduced from the classical
series expansion

) S
224 n?n?’

n=1

N =

coth(z) =

which is valid for z€C, z#inn for any inte-
ger n. O

It follows from lemma 4.1 that the operators
H9? and T2+ (1/8)0, differ by a pseudo-dif-
ferential operator of order 0, which is bounded in
all the Sobolev spaces H*(R). Therefore, one can
write

= |l
[n(”) =C||“||3;/2+d Z EZH”“(Zn—k)/z
k=1
"1
+Sn(u) + kz F‘Sn-k(u)’ (43)
=1

where d is a constant and for every n > 0, there is
a ¢ = c(n) such that the remainder S, ., satisfies

|Su— () < llull?, o + ()l 52775,
(4.4)

for k=0,1,..., n. The proof of (4.4) is similar to
the proof of lemma 3.3.2.

On the other hand, the multipliers M,(u) have
the property that

fio(—l)ju(zj)M,,(u) dx

n
1
= 2 2
_C”u||n/2+j+d Z k||u||(nf/{)/2+j
k=1 &

N n 1 -
+Sn.j(u)+ Z EESn—k.j(u)’ (45)
k=1

where for every 1> 0 there is a ¢ =c(n) >0 for
which the S,_, ;(u) satisfy

|‘§n—k,j(u)| < n“u”%n—k)/2+j
+e(m)llullg k2. (4.6)

The proof of (4.6) is similar to that of lemma
3.33.
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5. The Cauchy problem for the Benjamin—Ono
equation

5.1. Review of known results on the Cauchy problem
for nonlocal, nonlinear dispersive equations

The initial-value problems under study in the
present paper are particular cases of initial-value
problems for general, nonlocal, nonlinear, disper-
sive equations of the type

u,+f(u),— Lu =0,
u(x,0) =uy(x),

forxeR, t>0,
forxeR, (5.1)

which were studied in ref. [12] under the assump-
tion that f(u) is a polynomial in u of degree d
and L is defined by

Lu(§) =p(£) a(4),

where p satisfies

pELP.(R), p=>0a.e., preal, (5.2)
and

there exist constants A, u,0 <A <p, R, ¢, ¢, >0,
such that ¢ |£|* < p(¢) <c,|é|* forae. |¢] = R.
(5.3)

In this situation, the following theorem of global
existence of relatively weak solutions of (5.1) was
established in ref. [12].

Theorem 5.1.1. Suppose that d <2\ + 1. Let u,
€ D(L'?*)={ve LXR): LY%< L*R)). Then
there exists a solution u of (5.1) with initial value
uo which lies in the space L*(R ., D(L/?)).

Moreover, under very weak assumptions on the
symbol p of L, one can easily obtain the follow-
ing result on local existence of smooth solutions
(see again ref. [12]).

Theorem 5.1.2. Let s€R, s> 3 and u,€ H°(R).

Then there exists T, = T,(||luoll,) > 0, such
that (5.1) possesses a unique solution u €
L*, T;'H*(R)) for all T < T,. Moreover
T (Jlupll,) depends only on l4gll3,/2 44 fOr m small
enough.

We shall now complete the preceding results for
the Benjamin-Omno, the intermediate-long-wave,
and the Smith equations, and prove in particular
the existence of global smooth solutions. In this
section, we deal with the Benjamin-Ono equation.

5.2. Global solutions for the Benjamin—Ono
equation in the spaces H'(R) and H*/*(R)

Theorem 5.2.1. Let uy€ H"/*R), for n=2 or
n= 3. There exists a solution u of (2.6) such that
u€ LR ,; H"/*(R)).

Proof. The strategy is to use the parabolic regular-
ization (as in refs. {11, 12])

up+ utuy+ H(ug, ) + e(ul,,, +uf) =0,

u*(x,0) = u,,, (5.4)

where u,, € H*(R) =N, ., H*(R) is such that
Uy, = Uy in H"/2(R). For &> 0 fixed, the classical
theory of parabolic equations shows that (5.4)
possesses a unique solution u® in the class
C*(R ,; H*(R)).

Using lemmas 3.3.2 and 3.3.3 we shall obtain
a priori estimates on u® which will lead to the
required solution u of (2.6) by a standard limiting
procedure. First take the scalar product of eq.
(5.4) with M, (u*). On account of proposition 3.3.1,
it follows that
d £ = € E [
arla () +e [ [+ u) M, (w)] dx =0,

(5.5)

Next integrate (5.5) over the temporal interval
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[0, ¢]. The case n =0 yields
Hius(e, )13
o 2
+ e/(; fhw[uf(x, sy +ut (x, s)z] dxds
= Hlluodi3. (5.6)
It follows that for any ¢ >0,
(Al LR, L2RY) S [legell 0

I
e [[llu(e )13 ds < flug i3 (5.7)
0

For n > 0, integrate (5.5) over the temporal inter-
val [0, T']. Using lemmas 3.3.2 and 3.3.3, it follows
that for any T > 0, there is a positive constant c
such that
||ue(‘, T)”z,/z
T
+ee [ [lule, O paa +we, DI ] d
< c(llwodll? 2 + uodl3**")
T
+ee [ [us(e, )37 H+0
0

+lluc(a, 1) (122" dr. (5.8)

Because of the bounds already available in (5.7) it
is easy to show that

T
efo [11u*Ce, ) I3F27+9 + ue(a, 1)[13+2"] dr
< (”us 2(n-+4) +”ue”2n )
< 2= 2wy LR, ; L*(R))
T
><ef l[us(e, 1) )12 dr
0
2i 5 2 1
Sllu0£||0(n+ )+“u05”0("+ )’

and so (5.8) gives

T
(e, T2 + ce fo (e, )12 2., A1

2 1 2
< (1ol 25+ (gD + g 12 2 )

(5.9)

Thus it transpires that

u® is bounded, independently of e,

in L*(R,; H"/*(R)), (5.10)

and

Ve u* is bounded, independently of &,
in L3R ,; H"***(R)).

One can now easily pass to the limit by extracting
a subsequence, still denoted u*, such that

(5.11)
(5.12)

u'—>uin L2(R,; H'/?(R)) weak*,

ut—>u, in L2(R,; H"Y(R)) weakly.
Using classical compactness arguments, one de-
duces from (5.11) and (5.12) that the limiting
function u is indeed a solution of (2.6). 0O

5.3. Global existence of smooth solutions for the
Cauchy problem associated with the Benjamin—Ono
equation

This section is devoted to existence results for
solutions of the Benjamin-Ono equation in classes
where uniqueness holds.

Theorem 5.3.1. Let uy€ H°(R), s> 3. Corre-
sponding to the initial data wu,, there exists a
unique solution u of (2.6) such that

ue CKR ,; H"*(R))
forall ke N with s — 2k > —1.

Moreover, for every fixed T> 0, let A, be the
mapping which associates to u, the solution u on
the interval [0, T']. Then %, is continuous from
H*(R) into C*(0, T; H*~**(R)), for the same range
of k.

Corollary 5.3.2. Let u,€ H*®(R). Then corre-
sponding to initial data u,, there exists a unique
solution u of (2.6) satisfying u € C*(R ,; H*(R)).
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Proof of theorem 5.3.1. The proof of theorem 5.3.1
consists of several steps; namely

(i) proving existence of solutions in C,(R;
H'R)) (C, (R ,; H'(R)) is the space of con-
tinuous functions from R, with values in the
space H*(R) when the latter space is equipped
with its weak topology);

(i1) showing the strong continuity of these solu-
tions with respect to the temporal variable,
and

(iii) establishing the continuous dependence of the
solution on the initial data.

The uniqueness assertion in theorem 5.3.1 fol-
lows by a straightforward energy estimate and
Gronwall’s lemma, since in the considered classes
one has u, € L®(R X R) (cf. ref. [12]).

(i) Existence of solutions in C, (R ,; H*(R))

Theorem 5.3.3. Let uy € H*(R), where s > 2. Then
for any T > 0, there exists a unique solution u of
(2.6) such that u € C,(0, T, H*(R)).

Proof of theorem 5.3.3. Again we consider the

parabolic regularization (5.4) with initial data u,,

in H*(R) such that

ug, = uy in H*(R) as ¢} 0. (5.13)

Lemma 5.3.4. For any T> 0 there exists a con-

stant ¢ = c(7,||ugll3,,) such that

e\l g0, 75 oY) < C(T’”“oena/z)”“oe”w (5.14)

‘/5—””5” 20, T, H' ARy S C(T»““oe”a/z) toell -
(5.15)

Proof of lemma 5.3.4. The techniques of Saut and
Temam [13] are used. Define the derivation opera-
tor D° by

00

Dou(x)= [ |1 a(g)e?mtdt.

(5.16)

Apply the operator D* to the regularized equation
(5.4) and take the L?(R) scalar product of the
result with D*u. Using the fact that H is skew-
adjoint, we obtain

d
P ulg+ (D*(uug), D°uf)
+e(ID*us I3+ | D°us3) = 0. (5.17)

To estimate the second term in (5.17), write

(D*(utut), D*uf) = (D*(uul) — u*D*ut, DSut)

+(uD*ut, D*u*) (5.18)
and apply the Holder inequality to obtain
(D (uu) — wDus, Dou)|
<|ID*(uug) — uD*ullo || D°ull,. (5.19)

To estimate the right-hand side of (5.19), we shall
use the following commutation lemma, the proof
of which may be found in ref. [13].

Lemma 5.3.5. Let s>y+1>3 and let u,v€E
H*(R). Then there is a constant ¢ = c(y, s) such
that

|| D*(uv) ~ uDl|

< c(v, ) (lull, ol + Nl allolle -1 ).
Moreover, c(y,s)=c'(s)/ ﬁ

Since s > 2 there is an m > 0 such that s> 2 + .

Apply lemma 5.3.5. with u=u®, v=ut, and y=
1 + 7 to obtain that

¢
I1D*(uug) — uDugli < ﬁlluell3/2+n”u5”.\"

(5.20)
On the other hand,

(utD*ut, D*u*) = — $(u:D*u®, D*uf),
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and since (cf. ref. [12], lemma 6), for all n > 0,
c

ﬁ”u”%’%n*

one derives the inequality

llull = <

ey s, 5,,E ¢ g €2
[(uDug, D*ut)| < —=|lull3 /gl D°ul3
=

(5.21)
which ho. "= for all n> 0.
Formulas ° 18), (5.20) and (5.21) give
5 £,,€ S4,E C E| E
|(D*(utug), Dour)| < Tzl 1%
(5.22)

and this holds for any 5> 0 such that 3 + 5 <s.
Since H*/?*"R) =[H*(R), H>*(R)],, with =1
—21/(25s —3)=1-2yn, we have the interpola-
tion inequality

(5.23)

2 1-2
Nulls/p4m < cllullsNully 5,

where ¢ is a constant independent of n. On the
other hand, it was established in the proof of
theorem 5.2.1 that

Il LR, HYY(R) = caa(”“o:”yz) . (5 -24)

Combining (5.6), (5.17), (5.22), (5.23) and (5.24)
yields

1d 1
7 qp el + el < qo(ﬁnufnf“”)

(5.25)

for all >0 such that 3/2+7 <s, where ¢ =

[Caa(||u05||3/2)]1_27"-
Integrating (5.25) over the temporal interval

[0, ¢] leads to

t
uuf(-,r)||3+2ef0||uﬁ(-,T)uiudmy(r), (5.26)

where y is the solution of the differential equation

y'<z>=<p#y(t>“”, 2(0) = ugl>. (5.27)

on its maximal interval of existence [0, T(n)). Here,
the constant y is 1/(25 — 3). Eq. (5.27) is easily
integrated and one finds that

y(1) = (el 72" = v opt) ™",

whence

(5.28)

T(1) = ——|lug ;2" = + o0 asq— 0.
Yoy

For any fixed T> 0, we can choose 7> 0 so
small that T < 1T(n). Then it follows that for
0<t<T,

y(1) < e(Tilluglls 12) lluglllZ,

and lemma 5.3.4 is proved. a

Lemma 5.3.4 implies that u* (respectively, Ve u°)
belongs to a bounded subset of L*(0, T; H(R))
(respectively, L2(0, T; H***(R)). By a standard
limiting argument, it is inferred that a subse-
quence of u® converges in L®(0, T; H'(R)) weak*
to a solution u of (2.6) such that for all T > 0,
u€ L®0, T, H(R)). Moreover, using (2.6), it is
apparent that for all T >0, u, € L*(0,T;
H*"%(R)), and by classical results of Lions and
Strauss (see ref. [24]) we arrive at the desired
conclusion, namely that for all positive T, ue
C.(0, T; H (R)).

Note that the conclusion just deduced implies
that if uy,€ H®, then the unique solution u of
(2.6) corresponding to the initial data u, lies in
C*(R ,; H*(R)).

(ii) Strong continuity

Here it will be proved that the solution u ob-
tained in (i) lies in CXR ,; H*~2*(R)) for k€N
such that s — 2k > —~ 1. We shall follow the tech-
nique used by Bona and Smith [14] in the context
of the KdV equation, whereby for a particular
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sequence { ug, }.- o of regularizations of the initial
data u,, the corresponding sequence of solutions
{u®},., 1s shown to be Cauchy in the space
CX0,T; H*"**(R)) for all T>0 and all kN
such that s — 2k > —1.

In fact, the same regularizing sequence used in
ref. [14] suffices for our purposes. Let ¢ = C®(R)
be such that

(1)0<ep(¢) <1, forteR,

(2)e(0) =1,
(3) fg—k\p(o) =0, forkeN,

where ¢(¢) =1- ¢(£), and
(4) @(£) tends exponentially to 0 as |£| — oo.
Then, for £ € R, define
f1o,(§) = @ (/%) 1o(). (5.29)

The following proposition was proved in ref.
[14].

Proposition 5.3.6. Let s> 0 and u, € H*(R). Then

Uy, € H°(R) and |jug—ugll,—0 aselO.

(5.30)
For any r > 0,
Ntoellssr < ce™7 gl (5.31)
lluo — ugell, -, < ce”Cllugll,, (5.32)
and
llug — uqell, < cllulls- (5.33)

Moreover, if uj — u, in H*(R) as n — + co, then

llug, — ugll, » 0 uniformly in n, as e > 0.
(5.34)

The constants occurring in (5.31), (5.32), and (5.33)
depend only on r and the choice of ¢, and are
independent of e, provided & is restricted to a
bounded subset of R .

We are now ready to prove our central approxi-
mation lemma as regards solutions of the Ben-
jamin-Ono equation.

Lemma 5.3.7. Let T > 0 and u, € H®, where s > 3,
be given. For 0 <a <¢, let u, and u, denote the
solution of (2.6) corresponding to the initial data
Uy, and u,, respectively. There exists a constant
c=¢(T,]|luy,|l,) such that for e sufficiently small,

sup ”ua(" [) - uE(” t)“s
O0<t<T

<ce'® + c(||u0 = Ul T llug — an”s)’ (5-35)
where

Vs

y(s)= A1) (5.36)

and » is any nonnegative number such that » <
s—3/2.

Proof of lemma 5.3.7. Set u=u*, v=u® and w=
u — v, so that w satisfies the initial-value problem

WI+H(wxx) - —(HW— %wz)x’

W(o, 0) =Uy

(5.37)

.~ gy (5.38)

Of course u and v both obey the inequality (5.14).
We first claim that for 0 < a < ¢,

sup {|w (e, )llo < (T, lluoll, ) /.
0<t<T

(5.39)

To prove (5.39), take the L*(R) scalar product of
(5.37) with w to obtain, after suitable integrations
by parts,

1d ll oo

—Z‘EHWH%=—-2— N uxwzdx. (540)
Because of (5.14),

[ wwrdx| < e(Tluglliwli3: (5.41)
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Integrating (5.40), over the temporal interval [0, ¢],
and using (5.41) leads to the inequality

lIw(e, )15 <1lw(e,0)113

+ e(T,||uons)f0'nw(o, 5)I2ds,
(5.42)

and Gronwall’s lemma immediately implies that

[lw(e, )15 < [w(e, 0)Ig e (5.43)

On the other hand, by the triangle inequality,

|w(e,0) llo = llttg, — uoallo

<lug — tgllo + llug = Ugall o>
so that

lIw(e,0)llo < c(lluoll, ) (e + a*/°) (5.44)

by (5.32). Since « < ¢, we reach the inequality

Iw(e, t)||I2 < ce?PeT (5.45)
for 0 < ¢ < T, which completes the proof of (5.39).
Note that the constant ¢ in (5.39) does not depend
on ¢ for ¢ sufficiently small (e.g. £ <1).

The proof of lemma 5.3.7 continues by estab-
lishing estimates like (5.39) for higher Sobolev
norms. To this end, apply the operator D* to
(5.37) and take the L?(R) scalar product with D*w
to obtain
d 2
F1D°wlio= —(D*(uw),, D*w)

1
3 dr

+(D*(ww,), D*w). (5.46)
Since w = u — v, we may write
| = (D*(uw,), D*w) + (D*(ww,), D) |

= [(D*(vw,), D*w)|.

As s> 3, lemma 5.3.5 may be applied, with y=
s—1 and taken in conjunction with (5.14) and

(5.31) to yield the inequality

[(D*(vw,), D*w) | < c|lvll Iw]|?

< C||UHL°°(0,T; H-“(R))lelf

< e(T; lugll )IwllZ- (5.47)

It remains to estimate the term (D*(u,w), D°w).
For this purpose, lemma 5.3.5 is reformulated as
follows.

Lemma 5.3.8. For any real numbers s, v,, v, such
that s> 3, s—1>y,>4, i=1,2, there exists a
constant ¢ = c(s, ¥y, ¥,) > 0 such that

1D (u)llo < e([lll; 1olly, + Nelly, 1 Holl—1)

+||uD%||, (5.48)

for all u, v € H*(R).

Choosing vy, and y, in the range stipulated in
lemma 5.3.8, formula (5.48) gives immediately the
bound

|(D*(w,w), D'w)|
< e (lallyaallwly, + llly, 2l 15—y ) w1,

Hju D wllo fIwlls (5.49)

on the remaining term. Because s > 3, it transpires
that

1w DWllg <l 1= [l
< cllull, Iwll, < (T luoll, ) Iwll,-
(5.50)

It remains to estimate |lu|,,, [[w]l,, and
Null,,+2lWll,—y for 3<y,<s—1. First consider
the combination [ju||,,, [|wll,, where } <y <s—1.
Because of (5.14) and (5.31),

lluo, ) llsar < llul 1200, T; H**{(R))

< clltgellsr < c(Tillugll,)e'7°.
(5.51)
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By interpolation, we may bound |w]|, in terms of
[jwll, and ||wl|, as follows:

wll, < cllwll Y™ lIwlfe™*. (5.52)
From (5.52), (5.51), and (5.39) it follows that

lullsalwly Wity < e (T5luoll,) ol wily ™7,

(5.53)

where B, = #(s —y—1). Using Young’s inequal-
ity, it is adduced that

3 (5= 2
lull o allwll, 1wl < e (T flugll ) 627710+ w2,

(5.54)

Write y=5—1-—», so that 0 <» <s —3/2. Then

2s vs
s—yﬁo— 3(v+1) =Xo (5.55)
say, and so (5.54) leads to
lell sl Wil ]l < ce™ + [[wii?. (5.56)

Consider now the other combination appear-
ing on the right-hand side of (5.49), namely
llully42llwll,—,, where 3 <y <s— 1. First, we have

(o, )]y 2 S Hutll =0, 7 v+2qme)
= c“u05”y+2

< o(Tsljugll, ) e =2707%, (5.57)

Using successively a standard interpolation in-
equality and (5.39) gives the inequality
lIwlly—y < cllwlly ™ wlly”

< ¢(Tsfull, ) e/ Cliwll; =1, (5.58)

and combining this with (5.57) and Young’s in-
equality yields

lullyaltwlls— 1 1wl

< o Tsljugll, ) el =+ 173 4w 2.

Writing v as in (5.55), we obtain

lellys2llwlls— 1wl < e(Ts uoll,) €77 +Iwll2.
(5.59)

Finally, from (5.59), (5.56), (5.49), (5.47), and
(5.46), we conclude that

1d
3 AIDWIE < clwl)? + o+ e7?),
where A, =ws/3(v+1)=2v(s) (see (5.36)) and
0<v<s—3/2. Gronwall’'s lemma then leads to
the inequality

Iw ()12 < e(Tsllugll,) [ + liw(e,0)112].  (5.60)

This concludes the proof of lemma 5.3.7. O

It is now easy to deduce that {u*}, . is Cauchy
in C(0, T, H*(R)). This is obviously equivalent to
showing that

for any n > 0, there exists g, > 0 such that
forall e and e with0<a<e<eg,

Nu® = uco, 7 memy < M- (5.61)
But (5.61) is a direct consequence of (5.30) and the
conclusion of lemma 5.3.7.

On the other hand, to show that {u®} ., is a
Cauchy sequence in C*(0, T; H*~**(R)), for k €
N* with s —2k > —1, it suffices to show that
{9kut},, o is Cauchy in C(0,T; H* *(R)). To
this purpose, notice that
w,= —(uw) ,+ww,— H(w,,)

XX

and hence that

Wil 2 < e (ull—y Wiy + IIwli2_y + lIwll,).
(5.62)

The fact that {uf}.., 1s Cauchy in C(0, T,
H*"%(R)) is now a direct consequence of (5.62),
(5.14) and lemma 5.3.7.



376 L. Abdelouhab et al./ Nonlocal models for nonlinear, dispersive waves

By iterating this procedure, one shows that
{8ku*},., is a Cauchy sequence in C(0, T;
H* (R)) for k€N such that s-2k> —1, so
concluding part (ii) of the proof of theorem 5.3.1.

(iii) Continuous dependence with respect to the
initial data.

We begin by proving the assertion that %, is
continuous from H*(R) into C(0, T, H’(R)) if
s > 3. This amounts to proving that

if {u§},cn i asequence in H*(R) such that
uj = uy in H*(R), then

sup ||9[,(u6’) - m/(uo)”.s_’o asn— oo.

O0<r<T

(5.63)
With an obvious notation, the triangle inequality
assures that

w"l A+ " — ufl

(5.64)

oy — ully < flu” —

Letting a tend to O in the estimate derived in
lemma 5.3.7 gives, for s > 3,

sup [|lu— ufll; < ce” + cllug = ug,ll,,  (5.65)

0<t<T

where y(s) is defined in (5.36) and the constants
are independent of e sufficiently small. Therefore,
as €0,

sup |lu~uf; =0,
0<r<T
sup |[u" — u"|, = 0, (5.66)

O<t=<T

and the last convergence is uniform in »n because
of proposition 5.3.6. Hence, for an arbitrary w > 0,
there exists an e, >0 such that for all ¢ with
0 < e < gy, one has

sup |[uf— ul|, < jw,
O<r<T

sup [lu" —u"l, < o, (5.67)

0<:<T

for all n. In order to prove (5.63) it is therefore
sufficient to show that for any fixed ¢ with 0 <e <
g, the following holds:

ne

sup ||lu (5.68)

0<t<T

—uf|,—= 0, asn— co.

Set w = u"t — u*, so that w satisfies the initial-value
problem

w+ H(w, )= —(u"w),+ww,_, (5.69)

w(e,0) = ull — u,,. (5.70)

As before, for s > 0,

1d

5 P wls= —(D°(u"w),, D°w)
+(D(ww,), D*w). (5.71)

The terms on the right-hand side of (5.71) are
estimated in a fashion that is by now quite famil-
iar (see the proof of lemma 5.3.7), namely

[(D*(u"w) ., D*w)| < c([wl|? + eo),
[(D*(ww,), D'w)| < cljwl|?,

where the constant ¢ = (T, ||ug,ll,, ||4o.ll,). Inte-
grate (5.71) with respect to ¢ and use Gronwall’s
lemma and the last bounds to get

sup [jw(s, 1)[I7 < c'llw(s,0)]7 e, (5.72)

O<r<T

where ¢’ depends upon the fixed value of ¢ Since
ffw(e, 0)||, < cljuf — ugyl], > 0 as n — + o0, we ob-
tain (5.68). Thus there exists N, = Ny(e) > 0 such
that for any n = N,

sup lu" — uf, < to. (5.73)

O<i<T

The assertion (5.63) is a consequence of (5.64),
(5.67), (5.73).

Now, from eq. (5.69), it is adduced, for s> 2,
that

wle~2 < c(llallymy Iwll? +Iwli?),
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which shows that |(u" — %%, — 0 uniformly on
[0, T], as n — oo, and this proves our assertion for
k = 1. By iteration we obtain the assertion for any
k€N, such that s — 2k > —1.

The proof of theorem 5.3.1 is now complete. O

So far we have not established that the solution
4 obtained in theorem 5.3.1 is uniformly bounded
for t€R,. Such a result is the next order of
business, and will be obtained in the spaces H'(R)
for the special cases where s=n/2 with n an
integer larger than 3.

Theorem 5.3.9. Let uy, € H"*R), ne N\
{0,1,2,3}. Then the corresponding solution u of
the Benjamin—Ono equation (2.6) with initial data
u, satisfies u € CER ., H"/*"*(R)), k€N, n/2
—~ 2k > —1.(Here C§(R ,; X) stands for the space
of functions u: [0, co] = X whose r-derivatives up
to order k& exist and are continuous and bounded
with values in X).

Proof. Let {ug,}.»o be a sequence in H*(R) such
that uy, = u, in H"/*(R) and consider the associ-
ated sequence of regularized problems

ut+utut+ H(ut ) =0, (5.74)

ut(e,0) = uy,. (5.75)
It results from corollary 5.3.2 that there exists a
unique solution u® of (5.74)-(5.75) satisfying u® €
C*(R ,; H*(R)). To obtain estimates in the norm
L*(R ,; H"/X(R)) that are independent of &, we
shall make use of the invariants of the
Benjamin-Ono equation. By proposition 3.3.1,

d

EZI"(”E) =0. (5.76)
This relation and lemma 3.3.2 gives
()02 < e (o3 +luadr ) (577)

and it therefore transpires that

Nl o, o2y =< C(”“os“f’}zl + ”qu"“n/Z)’

which proves that u € L*(R ,; H"/*(R)). By using
eq. (2.6) one easily proves recursively that in fact
ue CKR ,; H"/2-2KR)Y), for k €N with n/2 -
2k = —1. O

Remark. Uniform bounds in L®(R ,; H*(R)) for
arbitrary s = 2 can probably be obtained for solu-
tions emanating from initial data in H°(R) by
using the nonlinear interpolation techniques of
Bona and Scott [15].

6. The Cauchy problem for the intermediate
long-wave equation

Since the invariants of the intermediate long-
wave equation (4.1) have properties similar to
those of the Benjamin—-Ono equation (cf. section
4), one obtains for the Cauchy problem exactly
the same results. That is, the corresponding analog
of theorem 5.2.1, theorem 5.3.1, corollary 5.3.2,
theorem 5.3.3, and theorem 5.3.9 are still valid for
eq. (4.1). The proofs parallel in detail those given
for the Benjamin-Ono equation, and conse-
quently are omitted. Here is a precise statement of
the results to which allusion was just made.

Theorem 6.1. Let uy,€ H*(R) be given initial data
for the intermediate long-wave equation (4.1). If
uy, € H"/*(R), for n =2 or n= 3, then there exists
a solution u of (4.1) with initial value u, such that
ue L°[R ,; H"*R), If u,c HR) for s> 3,
then there exists a unique solution u of (4.1) with
initial data wu, such that, for each T>0, u€&
Ck, T, H*~?*(R)) for all k such that s —2k>
— 3. Moreover, the mapping that associates to ug
the unique solution u of (4.1) with initial value
u, is continuous from H*(R) into C*(0,T;
H*~2%(R)), for all T>0 and all k such that
s—2k> — 3. 1f s=n/2, where n is an integer
larger than 3, then u € CK(R ,; H*~**(R)) for all
k such that s — 2k > — 2.
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7. The Cauchy problem for the Smith equation

In this section, attention is given to the Cauchy
problem for Smith’s equation

utuu,—L(u,)=0, u(e,0)=u, (7.1)

where

Lu(¢) =p,(¢) a(¢),

p () =22 +1 -1). (7.2)

Since only three invariants are known for Smith’s
equation, the initial-value problem cannot be
treated in the same way that proved to be effective
for the Benjamin-Ono equation and the interme-
diate long-wave equation. Instead Smith’s equa-
tion will be viewed as a perturbation of the Ben-
jamin-Ono equation. Specifically, write (7.1) as

u,+uu,+ H(u, )+ K(u,)=0, (7.3)

where K is defined by

Ku(£) = g,(§) a(¢), (7.4)
with
g,(¢) =2m|¢] — p,(£). (7.5)

Obviously, |¢,(£)| is bounded since it behaves
as 2n+m/|&| as [£] - 4+ co, and thus K is a
pseudo-differential operator of order 0 and is
therefore a bounded operator on all the Sobolev
spaces H'(R).

Our principal result is the counterpoint of theo-
rem 5.2.1.

Theorem 7.1. Let T >0 and u, € H"?*R),
where n =2 or n = 3. Then there exists a solution
u of (7.1) such that for any T>0, ue L®0, T,
H"2(R)).

Proof. Consider as before the parabolic regular-
ization

uf +utut+ H(us, )+ K(ut)
+uf) =0, (7.6)

u(x,0) = ug,, (7.7)

+e(ut

XXXX

where uy, € H*(R), uy, — 4 in H"/4(R).

It is sufficient to prove that u* remains in a
bounded subset of L*(0, T, H"/*(R)), indepen-
dently of ¢, as ¢ = 0. This will be the aim of the
subsequent lemmas, which distinguish the case
n =2 from the case n = 3.

Lemma 7.2. (n=2). There exists ¢ >0 which is
independent of & such that

N4l o0, 7 Ry < €5 (7.8)
‘/E_HVE”LZ(O, T HY(®) = C. (7.9)
Lemma 7.3. (n=3). There exists ¢ >0 which is
independent of e such that

(7.10)

N4z 0, 7y 372y < €5

\/e_”uE“LZ(O,T; B2 Ry S C. (7.11)

Proof of lemma 7.2. Take the L*(R) scalar prod-
uct of (7.6) with

My(u?) = (u%) + 3[wH(us) + H(uut)] - 4ut,

to come to the relation

d 3 *© £ £
alz(“é)+e/ (ui'xxx-l_u )M2(u)dx

— o0

o
= - [ K(ut) My(ut) dx. (7.12)
— 00
From lemma 3.3.2 and lemma 3.3.3 it suffices to
estimate the right-hand side of (7.12). This will be
accomplished in the following lemma.
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Lemma 7.4. For any 7 in the range (0, ),

_<_C( “u£“2+2n)-
v

Proof of lemma 7.4. There are four terms to esti-
mate. First of all, [®_ K(ut)uZ, dx =0 since the
symbol ¢,(£) is real and so X is self-adjoint. Also,
we see that

|f_°°w1<(u;) M, (u) dx

{ [ K () x| < (o 1l
(7.13)

But |u®| x0T gir2my 1S bounded independently
of £ by the result of theorem 5.1.1, and so there-
fore is ||u®|| jw(o. 7. 12wy (here T>0 is arbitrary).
Since K is a bounded operator on L*(R), we
obtain

< cfjut)l?. (1.14)

. [ K (e) as

Let us now estimate [u®H(uZ)K(u;)dx. The
Holder inequality yields

[ () K(a) s

<lul =l H () o 1K (1) 1o

< cl|u) = Nuihg

(7.15)

since H and K are bounded operators on L(R).
But for any 1> 0 and u € H/**"(R),

7

lull = < Jn = ull 72"l (7.16)

where the inequality

2
Nul| (= < V7 Nl /244

valid for 0 < 7 < } has been employed again. Since
{u*},.o is bounded in L*(0,T; HY?(R)) inde-

pendently of &, we have successively

|f (u)K () H(ut)dx| < Tllu*n““
(7.17)
and so
f_°° H(utus) K(us) dx
< cfjufl = lugllg < ‘/— —=lluiF (7.18)
Thus the proof of lemma 7.4 is achieved. O

Finally, (7.12) and lemmas 3.3.2, 3.3.3, and 7.4
lead to the inequality

()13 + e [ ()13 ds
h [az(||“oe||1)]2
ol 1 e 242y wo(s)12 | ds
+Cf0(75‘||“ ()IFF2"+Jus(s)llf | ds,
(7.19)

which is valid at least for 0 <n < 3. Hence, it
follows that

||u'€(t)n%+efo’nue(s)||§dssy(r), (7.20)

where y is the solution of the differential equation

y'(1) =C(71—n—y(t)”"+y(t)),

(7.21)

2(0) = ¢ = [ay(luo )],

on its maximal interval of existence [0, T()]. Eq.
(7.21) can be integrated and one finds

o= ||

—1/7
c;’l+_\/}7n_)e_,.m‘_ﬁ:| :
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and therefore that

T(n)= 1( log 1+c*"\/—)

so that lim, _,7T(n)= +o0. Then, for any fixed
T> 0, there exists ¢ > 0 such that (7.8) and (7.9)
hold, which proves lemma 7.2. O

Proof of lemma 7.3. Taking the scalar product of
(7.6) with M4(u*) (cf. section 3.1) gives

oc
13
Ef (u.\'/\'X,\' +
o

d
513(145)-*- B

= —f_»xK u

By lemma 3.3.3, it suffices to estimate the right-
hand side of (7.22).

u )M, (uf)dx

M,(u®)dx. (7.22)

Lemma 7.5. There exists ¢ > 0, independent of ¢,
such that

’ ut) M,dx

= C““6”3/2 (7.23)

Proof of lemma 7.5. Let u stand temporarily for
u®. Using the formula for M, given in section 3.1,

we compute as follows:

/_oo K(u,) My(u)dx = —/iou
+ /x [—4u?H(u,) K(u,) - 4H(uu,) K(u,)

) K(u_x)] dx

+f VK (u,)

B H () ()

—4H(uH (u,)) K(u,)

“K(u,)dx

—4uH (uu

+6ulK (u,) + 12uu”K(uX)] d

+8f Leo) K(uy)dx. (7.24)

The terms homogeneous of degree 5 and 4 in « on
the right-hand side of (7.24) are easily bounded
above, using in particular (7.8), by c||u|3,, where
¢ is a suitably large constant.

Consider now the terms that are homogeneous
of degree 3. First, by using the embedding of
HY4R) into LAR), the bound implicit in (7.8),
and the fact that K has order 0, it is deduced that

7 ) ox

2
Sl Ze K () llo < ellu gl el

< cllugllge < cllullda < cliull3». (7.25)
As H is also of order 0, a similar calculation suffices
to bound the two integrals [*®_(Hu,)’Ku, dx
and [® H(u,Hu,) Ku dx.

By Parseval’s identity,

fw uu, Ku dx

- oG

_ f°° i (&)uKu (¢)de

sef” 1+ 1) 1a(e)]

X(1+ 1¢])"*|uku (¢)] dg

< cllully polluKu |y - (7.26)
To estimate the term |uKu,|| ,,, use is made of the
following lemma due to Grisvard [33].

Lemma 7.6. Let a,b,c€R be such that a >,
bz¢, a+b20, and a+b—c>n/2. Then the
correspondence (f, g) — fg is a continuous bilin-
ear form from H*R") X H*(R") into H(R").

The lemma is applied with a =1, b=1/2, and
c¢=1/2 to obtain that

/w uu, Ku dx

- o

2 2
< cflull3 llully < cllulls /s

(7.27)

again using (7.8). The term [©°_ H(uHu, ) Ku dx
is handled in the same way.
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To finish the proof of lemma 7.4, notice finally
that

/ H(u,,)Ku,dx=0,

since H is skew-adjoint and K is self-adjoint. O

Lemma 7.3 results immediately from lemma 7.5,
lemmas 3.3.2, 3.3.3 and (7.22).
The proof of theorem 7.1 is now complete. O

We now state a result analogous to theorem
5.3.1.

Theorem 7.7. Let uy,<€ HS(R) where s> 3. Then
there exists a unique solution # of (7.1) such that
ue CKR ,; H~*(R)), for all k€N such that
s~ 2k = —1. Moreover, for any T > 0, the map-
ping %, ug— u is continuous from H*(R) into
C*(0, T; H°~2¥(R)), for the same values of k.

Proof. The proof 1s nearly identical to that of
theorem 5.3.1. In fact the term K(u,) in (7.1) does
not give any problem since the symbol of K is real
and of order 0, so that

fw D*(K(u,))D*udx =0,

for any s >0, and K is a bounded operator on
every space H*(R), for s € R. 0O

Corollary 7.8. Let u, € H®(R). Then there exists
a unique solution of (7.1) such that u €
Co(R ; H?(R)).

8. The Korteweg—de Vries and Benjamin—-Ono
equations as limits of the intermediate
long-wave equation

In this section attention is given to two poten-
tially singular limits of the intermediate long-wave
equation, namely those in which the positive pa-

rameter § tends to zero or infinity. Recall that §
characterizes the relative depths of two homoge-
neous fluid layers, the deviation of the interface
between which is governed approximately by the
intermediate long-wave equation. If we write the
equation in the form

ul + ubul+ —é—uf+ T(u8,)=0 (8.1)
as in (2.7), to emphasize the dependence of u = u°
on 0, then there is a wealth of formal results (see
refs. [7, 19, 20, 34, 35]) pointing to the conclusions
that (8.1) reduces to the Korteweg—-de Vries equa-
tion as 8 — 0 and to the Benjamin—Ono equation
as 6 = co. Our aim here is to establish a rigorous
theory of these convergences. Previous writing
along these lines dealt with the convergence of
special, travelling-wave solutions (the solitary
waves) or else examined the formal convergence of
the associated inverse-scattering transforms (see
refs. [7, 19, 35-40]). In particular, even the formal
analysis regarding the limit § — 0 is misleading as
is pointed out later in this section.

8.1. The Benjamin—Ono limit

We deal first with the Lhmit 8§ — oo. For the
purposes at hand, write eq. (8.1) as a perturbation
of the Benjamin-Ono equation in the following
way:

uf+u8ui+H(uﬁX)+K8(ui)=0, (8.2)

where K is defined by

Kou(£) = g5(8) 2(8), (8.3)
and
g5(¢) = 2m|¢| —Zﬂﬁcoth(2ﬂ££)+%. (8.4)

By lemma 4.1, for all { €R,

0<g,(8) < 3. (85)
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which proves that K has order 0 and acts as a
bounded operator on all the Sobolev spaces H*(R).

Theorem 8.1.1. Let u,€ H*(R), s > 3, and let u°
be the solution of (8.1) with initial data u,. Then,
for any T >0, u®—>u as 8 — oo in
Ck0, T, H~**(R)) for all k€N for which s —
2k > 0, where u is the solution of the
Benjamin-Ono equation corresponding to the ini-

tial data u,,.

Proof. To begin with, notice that there exists a
constant C, independent of § > 1 such that

Wu <C

L0, T H ~ 2@ y)

for all integers k such that s — 2k > 0 and for any
T>0. This result is easily inferred from (8.2)
because the operator Ky is bounded on every
space H*(R), independently of 6 > 1, and com-
mutes with the operator D*, Indeed, it suffices to
follow the proof of lemma 5.3.4 using the above-
mentioned facts to conclude first that for any
T>0, there is a constant ¢ = c(T,|[ugll5,,) such
that «° is bounded in C(0, T; H*(R)), by c|luoll,
independently of §>1. Then a straightforward
inductive argument as given near (5.62) shows that
the kth temporal derivative is bounded in
C(0, T; H*7**(R)) for all k such that s — 2k > 0.

O

Lemma 8.1.2. For any s > 3 and T > 0, the one-
parameter family {u®},,, is Cauchy in
C(0, T; H'(R)) as 6 = + oo0.

To prepare for the proof of lemma 8.1.2, we
introduce the following notation. For « > 0 and
>0, let u™ be the solution of the regularized
equation

U™+ ey + H(u) — K (u*) =0,
u(x,0) = uy,(x), (8.6)

where u,, is the regularization of wu, given by

(5.29). For v,8 >0, set u=u, v=u’, w=u—v
and note that w then satisfies the initial-value
problem

wr+ H(wxx) w KS(WX)
=—uWw-ow — (Ka—Ky)ux,

w(x,0) =0. (8.7)

It will be temporarily convenient to use the nota-
tion Ty ,(u) = Ky(u) — K (u).

Lemma 8.1.3. There exists C= C(T;||uyll,) >0,
which is independent of vy,8>1 and e<(0,1]
such that

Proof of lemma 8.1.3. We first take the scalar
product in L?*(R) of (8.7) with w and use the
usual estimates to obtain the inequality

sup [|w(s, 1)|2< C

O0<i<T

09[»—!

Lafer] e

3 Slwle I
< [ Moy (o, )l = + 1y (o, )] 1o + 1] fiw (e, ) 12
+§HT8\'y(u,\1)(.7t)“0' (8.9)

It follows easily from its definition that

L) .

Since the family {u®};,, is bounded in
L®(0, T; H*(R)), s > 3, there exists a constant M
such that

17, ()13 <4 5 +

. ., , {1, 1V
Fiivlo<Miliwlio+ {5+ 5 (8.10)
and by Gronwall’s lemma we get
sup 1w (s, )15
O0<r<T
1, 1§ p= B 1 62
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Next, apply D* to the first equation in (8.7) and
take the scalar product with D*w to come to the
inequality

1d .

5 312 wlE < 1(D*(vw,), D'w)|
+|(D*(u,w), D*w)|

+

(D(T; (), D*w)]. (8.12)

Using lemma 5.3.5 in a familiar fashion, and (8.8),
we may conclude that

|(D*(vw,), D*w)| < Ciiwlls, (8.13)

where C is independent of t €[0, 7] and of § > 1.
By using in addition an analogue of (5.14), (5.31),
and an interpolation inequality, one deduces

|(D*(uw), D*w)]
< Cllullseallwll- Wl + el o w11
< Ce™V||wlly? wl|3 1 + Cliwii?

< Ce™/|w|3+ Cllw]2. (8.14)

It remains only to majorize suitably the last term
in (8.12); the following estimate suffices:

|(DS(T6‘7(uX)),DJw)|
<|\D°T;  (u ol D°wlig
< |5, () |12 + SIw)i2

<2l+—1—2 2+ Hw)
<2{ 5+ ) lullssr + 2lwll;

1

2

<c(5+ 3] e Al i (815)
Finally (8.10) through (8.15) yields
d 2 2 sl 1 ’

The inequality (8.8) is now a direct consequence of
(8.16) and Gronwall’s lemma. O

Notice that lemma 8.1.3 implies that for all y
and &8 such that 1 <6 < v, there exists a constant
C = C(T,|luyll,) not dependent on & and y such
that, for any ¢ € (0,1],

sup ||u**(e, 1) — u™(e, 1)}

O0<t<T
E—:/B
< S (T3 wll,). (817
Proof of lemma 8.1.2. First, write
flu® — )], < (lu® = u®
+ e = w), + =, (8.18)

The techniques developed in section 5 (see lemma
5.3.7) for the Benjamin-Ono equation, when ap-
plied to the intermediate long-wave equation im-
ply that there exist constants C = C(T,||u,l|,) and
A =A(s) > 0 such that for all ¢ € (0,1]

sup [|u®(e, 1) — u®(e, 1),
O0<t<T

< (X0 +{lug, = ugll, ) C(Ts llugll,),  (8.19)
sup [[u?(e, 1) = u¥(s, 1),
O<r<T
< (2O +|lug, — ugll,) C(T3 luoll,)-  (8.20)

Then, taking (8.17) into account, it is seen that
there exists a new constant C = C(T;||ugll,) which
again does not depend on ¢ € (0,1} and on y and
8 with 1 <8 <, such that

”us(" l) - uy(., I)HJ‘
Moy E2°
< (604 5 =l | (T bl ).

(8.21)

Now it is propitious to choose & =8§77/%, so that
e™*/8/5 =812 and (8.21) thus yields
(e, 1) = u(a, 1),

< C(Tsllugll, ) (872 + 87172

+lugs-os = toll, ), (8.22)
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holding for all 1 <8<y, so establishing lemma
8.1.2. a

Using (8.7) it is now a simple inductive argu-
ment to show that in fact {3/u®};., is a Cauchy
family in the space C(0, T; H*~2/(R)) for all T > 0,
and all j such that s—2;>0. Consequently, if
s —2k >0, there exists ue CX0, T; H =2 (R))
such that uz;—u in CX0, T, H*"?*(R)) as 6 —
+ o0, and since

2
1K ()1 < 5100
8

it is readily seen that u is actually the solution of
the Benjamin—Ono equation corresponding to the
initial data u,.

Corollary 8.1.4. If uy€ H®(R), then for any
T>0, ug—>uin C*0, T, H*(R)) as 8§ > + 0.

8.2. The Korteweg—de Vries limir

Our goal in this subsection is to compare solu-
tions of the intermediate long-wave equation with
those of the Korteweg-de Vries equation in the
limit as 6 tends to zero. To this end it is necessary
to rescale the intermediate long-wave equation by
letting

3
ﬂ(x,t)=§—u(x,§t) (8.23)
so that i satisfies the equation
R
fl, + i, — 5 Qpil,, =0, (8.24)

where the symbol p; of ; is given as in (2.4) by

1
p8(§)=2¢récoth(2'\15§)—§. (8.25)
The factor of 3 appearing in (8.23) is for later
convenience; the tilde adorning u will be dropped
henceforth. While the rescaling (8.23) is harmless
for fixed, positive values of 8, it has a very sub-

stantial effect in the limit as 8 tends to zero.
However, 1t is only the solutions of (8.24) that
tend to those of the Korteweg—de Vries equation
as 6 — 0. The analysis made in ref. [39] is mislead-
ing since a & appears in the purported limit
equation. This is corrected in ref. [40], where an
artificial form of the intermediate long-wave equa-
tion 1s introduced for consideration that obscures
the difference between the scaling that leads to the
Benjamin—Ono equation as in subsection 8.1 and
that leads to the Korteweg—de Vries equation in
the present subsection.

We begin with the following lemma about the
symbol p;, in formula (8.25).

Lemma 8.2.1. Forall £€R and § > 0,

1

2mécoth (2m8¢) = 5+ $m28¢% + 1E2n (8, 8),

(8.26)

where h(§,8) is a bounded function which is
0(8%) as & |0, uniformly for £ in any bounded set
in R. Moreover, there is a constant C which is
independent of £ such that |#(8, £)| < Cé, for all
(eR.

Proof. For any { € R and 8 > 0, it is classical that

2mé coth (27 8¢)

1

1 o0
= — . 8¢2 S
8 8% 1 n’+ 48>

n=1

018

1 =1 1 I
=x+8%| Y =+ ¥ | —m— =
) é [ngl ”2 n=1(”.{ + 487" nz)}

1 ad 32632
=+ Aqn2E2y _ g2 T
57T ¢ ¢ El n?(n?+ 46%¢7)

The result now follows immediately. a

It is concluded from lemma 8.2.1 that

h(€.8)
S ]

2 pa(8) = dnigr g2 (8.27)
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where 4 is as in (8.26), and so h(£,8)/8 is
bounded, uniformly for €€ R and 6> 0, and
h(&,8)/8 =0(8%) as 80, uniformly for ¢ in any
bounded subset of R.

In our theory comparing the Korteweg—de Vries
equation and the intermediate long-wave equa-
tion, an important role is played by the §-indepen-
dent bounds obtained in the next proposition.

Lemma 8.2.2. Let u,€ H*(R) where s > 2. Then
the solution u = u® of (8.24) satisfies the relations
||“8||L°°(0,T; way<C, (8.28)

where T is any finite value and the constant
C = C(T,||uy|l,) is independent of & € (0,1], say.

Remarks. Some of the steps in the proof of this
lemma are quite similar to those already delin-
eated in section 4. The difference is that here the
concern is with é-independent bounds of solutions
of the equation rather than e-independent bounds
on approximate solutions of the equation.

The complete proof of lemma 8.2.2 involves the
use of the sixth polynomial invariant for the inter-
mediate long-wave equation. The derivation of
this invariant is somewhat long and tedious,
though it follows straightforwardly, in principle,
from the recursion relaxation developed in
Kodama, Satsuma and Ablowitz [39]. We content
ourselves here with a simple description of the
form of the sixth invariant, and a consequent
inequality.

Proof. Because of the continuous dependence re-
sult expressed in theorem 7.7, for any fixed, posi-
tive value of 8, the solution u® of the initial-value
problem for eq. (8.24) is the limit in C(0, T; H*(R))
of solutions u? of the initial-value problem

v+vu—§Qu=O, 8.29
4 x ) 8Yx

v(x,0) =ug(x), (8.30)

where u,, € H*(R) and u,, — u, in H*(R). More-

over, by corollary 7.8, 9fu’ € H*(R) for all k > 0.
Since, for any fixed, positive value of 8, u® — u®
as €l0 in C(0,T; H*(R)), it suffices to obtain
bounds on u® which are independent of small
values of ¢ and 4.

To simplify the notation, let u connote u’ in
what follows. We proceed in several steps.

(i) Take the L,(R) inner product of a solution u
of (8.29)—(8.30) with eq. (8.29) to obtain that

llu (e, t)1lo = luollo < Cllugllo (8.31)

which holds for all 1> 0, for all § >0 and for
e € (0, 1], say.

(i) Take the L,(R) inner product of —u?+
(6/8)L u with (8.29) to obtain

%f_w ulsudx

- f_”w

luddx + /_w (%uosﬁauos—%uae)dx.
(8.32)

(iii) Use the next invariant of the intermediate
long-wave equation to deduce that

12(“("1’))=12(“05)> (8.33)

where I, is given in section 4 (up to a trivial
change in the scaling). Using (8.31) and (8.32) in
(8.33), we ascertain that

Jy(u(e, 1)) =J,(tg,), (8.34)

where, for any function w € H(R),
o [ §? é
Jz(w)=f_ (§6—w4—§(w2538w)

+iw2 4 3(Qw)’ -~ %(Wﬁsw))dx.
(8.35)

To obtain an H'(R) bound on u which is inde-
pendent of £ and 8, it therefore suffices to bound
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the quantity

2/ u?Qpu)dx + 28/ (uﬁau)

+ Jz(uOE) (8.36)

by a quantity that just depends upon ||uy|,. By
using (8.32), bounding (8.36) is seen to be equiva-
lent to bounding

2f uQBu

3 ©
+ gf_oou3dx+ ﬁf_m(“oega"os) dx

1

-3 ud dx + Jy(ug,).

(8.37)
Recall from (8.4) and (8.5) that py(¢) =2m|¢| +
qs(£) where gg(¢) lies always in the interval
[0,2/8]. Hence Holder and interpolation inequali-
ties combined with (8.31) yield

}%fw (u?Qqu)dx

8 5
= j“gs“”o ||“||L(R) < Cj”Es“”o““Hf/‘t
< cllull?2 [ullg”? < cllully”* < mllullf + c(n),
(8.38)

where 7 >0 is arbitrary and c(n) depends only
upon the choice of 7. Similar arguments lead to

‘f uldx

<|Jull} SRS C||u|l1/5

< ollu)li” Ilull5/2 < mllullf +c(n).

(8.39)
Applying (8.39) at ¢ =0 gives
[ wdean] < o= cuat) (3.40)
-0
The term

1 o0
3 Uy, Lug )dx
'8 ‘/‘——oo( O0e™ 8 Oe)

is equal to

5/ n@ 1 Or o

by Parseval’s theorem, and hence (8.27) shows this
expression to be bounded by a constant depen-
dent only on

h(£,8)‘
5

sup sup
0<d<l (R

and on ||ugl|;. It remains to estimate J,(u,,). Us-
ing an interpolation inequality and (8.27) one sees
immediately that

7 (8%t + H(u0)2] dx < = ey (lluglh)
(8.41)

and that

© 1 1 8 2 2
/_ guogsvsuoe‘*'j”osﬁa”oe‘*‘(ga“oe) dx

< ¢y = ¢, ([lolly)s (8.42)
where both ¢; and ¢, are independent of 8 € (0,1].
Putting together the pieces (8.31) and (8.35)—(8.42)
with n chosen sufficiently small, gives

12 (e, )1y < € = c(Ifuglh), (8.43)
which holds good for all ¢ 8 € (0,1]. Taking the
limit as £ 0 gives (8.28) for s = 1.

(iv) The sixth polynomial invariant I, for the
intermediate long-wave equation is analogous to
the fourth invariant I, above; it consists of the
term [ u2 dx plus a host of other terms, all of
which can be bounded exactly as in part (iii)
above by constants that depend upon x|, but
which are independent of ¢, 8 € (0,1]. Because of
this, (8.28) is seen to hold with 5= 2.

(v) For s = 2 any real number, apply D to the
intermediate long-wave equation, and take the
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L,(R) scalar product of the results with D*u itself,
where as before u=ul. After a little manipula-
tion, this procedure leads to

(8.44)

d
37 10°ullg + (D (uu, ), D*u) = 0.

r| =

The quantity |(D*(uu,), D°u)| is majorized by
c|lu||?, where ¢ = c(||u||,) depends only upon the
H?(R) norm of u. An application of Gronwall’s
lemma leads to the conclusion

(8.45)

fug (e, )1l < ¢ = c(lluoll,)

where ¢ does not depend upon ¢, § € (0,1]. Taking
the limit as e | O gives (8.28) for arbitrary s > 2.
The proof of the lemma is now complete. O

Returning now to the regularized problem
(8.29)—(8.30), suppose that u, € H*(R) where s > 2
and let u,, be the specific regularization of u, as
defined in section 5. As above, let u® denote the
solution of (8.29)-(8.30) with initial data u,, and
let u, denote the solution of the initial-value prob-
lem for the Korteweg—de Vries equation

Ug.(x).

u+uu, +u, =0, u(x,0)= (8.46)

Lemma 8.2.3. Let £ > 0 be fixed. Then for every
s=>2,and T >0,

||“f —Ullco. 7 rmy 0 (8-47)

as 6 |0,

Proof. For 0 <y <38, set u=uY, v=u’, and w=
u — v. Then w satisfies the equation

W+ w, .+ Hgw, =

4

——(Hs—Hy)ux—uxw— oW,

(8.48)
with w(x,0) =0, where the symbol h; of Hy is
3¢2
hs(§) = —5-h(£,8) (8.49)

and h(¢,8) is defined in lemma 8.2.1. A similar
formula applies to the symbol k. of H, where y
replaces § throughout. It is convenient to let
Sy, =Hs— H,.

To derive (8.47), proceed inductively starting
with s=0. Multiply (8.48) by w and integrate
over R. After integration by parts, one reaches the

relation

y w1
< [”U (‘:t)“Lm(R)+“u (o, 17 m(lnz)]
X”w(.’t)llo

+ %”SS,y(ux)(.’ t)”(z)‘

Because of (8.49),

(8.50)

1185, (115

<C]_ ( I(E 5) 4 (f Y) Iu( )lzdg

Using lemma 8.2.2 and Lebesgue’s dominated
convergence theorem, one readily obtains that

1155, (347 ) llo < c.(8), (8.51)

where, for fixed ¢>0, ¢(6)—>0 as 610.
Gronwall’s lemma applied to (8.50) gives

llw(e, f)HC(o,T; H®R) S C,(8)

where again C(8) — 0 as § | 0 in light of (8.51).
Using the commutation lemma 5.3.5, overesti-
mates of the form

(8.52)

w(e o, 7 mmy < ce(8) (8.53)
may be derived for values of s> 2, where again
c,(8) = 0 as 8 | 0. The details of the derivation of
(8.53) follow lines that are by now familiar, and so
they are left to the reader.

Inequality (8.53) implies {u°};. o to be Cauchy
in C(0, T; H*(R)) for any T> 0 and s > 2. Hence
(ul)s,, converges to some function v, €
C(0, T; H(R)). Another application of lemma
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8.2.1 shows v, to be a solution to the initial-value
problem (8.46), and thus it follows by uniqueness
that v,=u, and so u®—>u, as 8§10 in C(0,T;
H’(R)) for any T> 0 and s = 0, as required. The
proof of lemma 8.2.3 is complete. O

The last lemma and our previously developed
theory for the intermediate long-wave equation
put us in range of proving our final result of this
section, namely convergence of the solutions of
the intermediate long-wave equation as scaled in
(8.24), to an associated solution of the Korteweg—
deVries equation as 8 — 0. As before, fix u, €
H*(R), s =2, and let u,, be the smooth approxi-
mations to u, defined in lemma 5.3.7. Let u*
denote the solution of the Korteweg—de Vries
equation (8.46) with initial data u,, and let u
denote the solution with the initial data u,. The
theory developed in ref. [14] implies that for any
s>22and T>0, u,—» uin C(0, T; H(R)) as e - 0.
Let u® denote the solution of the intermediate
long-wave equation (8.24) with initial data u,, and
u® denote the solution with initial data u,. It is
also known from the theory developed in section 5
as applied to the intermediate long-wave equation
in section 6 that u®—u® in C(0,T; H'R)) as
e = 0. Moreover, in light of the &-independent
bounds expressed in lemma 8.2.2 that apply to
solutions of the intermediate long-wave equation
scaled as in (8.24), one easily discerns by tracing
through the proofs that u’— u® uniformly for
8 €(0,1], say.

Here is the final result regarding convergence of
intermediate long-wave solutions to those of the
Korteweg—de Vries equation.

Theorem 8.2.4. Let uy€ H'(R) with 5> 2 and let
u® denote the solution of (8.29) with initial data
uy. Then for any 7> 0, u® -y in C(0, T; H*(R))
as & | 0 where u is the solution of the Korteweg—
de Vries equation (8.46) with initial data u,,.

Proof. As described above, introduce the families
of functions {u®} and {u,}. Then, by the triangle

inequality,

lju® (o, 1) — (e, 1),
<|lu®(e. )= ul(e, )|,

+llug (o, 1) = u (o, 1)l + fu(o, 1) = ule, 1),

Let v > 0 be given. Choose &> 0 such that

sup [|[u(e, ) — u(, 1)),
O0<t<T

Hllu (o, 1) —ule, t)|l,] <»

for all § € (0,1]. Such a choice is possible because
of the uniform convergence of u? to u® as ¢0.
With e > 0 now fixed, then by lemma 8.2.3,

1ir;1881p||u8(-> 1) —ule, ’)HC(O,T; Y (RY)
1

. ) —
< v+ limsup|lu, — Uollcw. ey = V-
510

As v > 0 was arbitrary, it is concluded that 4% —
as § [ 0in C(0, T; H*(R)), as desired. |

9. Benjamin—Ono and intermediate long-wave
equation. The periodic case

In this section we turn to consideration of the
initial-value problem for the Benjamin—Ono and
the intermediate long-wave equations with spatial
periodicity imposed. Since the results and methods
are very close to those used in the study of the
Cauchy problem on the line, we shall just empha-
size the differences in the definition of the
pseudo-differential operators involved in the model
equation.

9.1. The Benjamin—Ono equation

For the situation wherein the wave motion is
supposed to have imposed upon it some spatial
periodicity, say with period 2 L, the Benjamin--Ono
equation for internal waves takes the form

u,+uu, + u, =0, (9.1)
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where u=u(x,t) is a 2L-periodic function of x
and © is defined by the Hilbert kernel as

§f(x) =~ zl—LPVf_LLcot(i);z—y))f(y)dy-
(9.2)

The associated initial-value problem is simply to
pose (9.1) subject to the initial condition u(x,0) =
uy(x) where u, is a given 2L-periodic function
that satisfies appropriate smoothness conditions to
be specified momentarily.

The operator § has properties similar to prop-
erties (H1)—(H3) of the Hilbert transform H pre-
sented in section 3.3. In particular, the following
identities hold for f and g in L>(—L, L):

[ feax=[" o(1) 9(g)dx, (9.3)
[ re(a)dx=- [ () gdx. (9.4)
S(fo(g)+9(Ne)=2(1)8(g)—fzg. (93)
@(f)(X)=ikZzsgn(k)fke“‘”/L, (9.6)

where f, is the kth Fourier coefficient of f defined
by the formula

1 /L —ikmx/L

=55 x)e " dx=c :
fe=p [ S (1)

A brief indication of the proof of (9.6) is per-
haps warranted. It relies on the following lemma
in Tricomi’s book [30]:

Lemma 9.1. For k=1,2,...,
cos (k@) = —1—PVf1T cot[$(x — 8)] sin(kx)dx
2,” . 2 5
(9.7

and

sin (k6) = —;—ﬂPVf;cot [4(x — 8)] cos (kx)dx.
(9.8)

Because § is defined as a convolution, we know
that

a($(f) = —Ck(COt(%))fk'

Since the cotangent is an odd function,

ck(cot(%)) = - ﬁf_icot(%)sin(k%x)dx

s

= _ﬁf“ cot(4r)sin(kr)dr

-1 ifk=1,2,...,
+i ifk=-1,—-2,...

(in the last equality (9.7) has been applied with
6 = 0). Thus for all £ in Z*,

ce(&(f)) =isgn (k) fi,

and (9.6) follows.

All the computations of section 3 remain valid
for eq. (9.1) if one replaces all integrations over R
by integrations over (— L, L) and the zero bound-
ary conditions at infinity by periodic conditions.
We therefore obtain results analogous to those in
section 4 for the periodic initial-value problem for
(9.1) in the following function-analytic’ setting,
where to simplify the exposition, the period is
taken to be equal to one.

For real s, denote by H*(C) the Sobolev space
of order s on the unit circle C. For 5 >0, H*(C)
can be characterized as being the space of periodic
real functions

M(X) — Z uke2'nikx

kelZ
of period 1 such that

1/2

llul|5=( Y 14k u ] <o,

ke



390 L. Abdelouhab et al. / Nonlocal models for nonlinear, dispersive waves

With this definition, the results of section 4 hold
exactly as stated upon replacing all appearances of
H'(R) by H°(C), where the operator D° that
intervenes in the previous analysis is now defined
by

Dxu(x) — E ukaIJCZ-nikx
kezZ

for u e H(C).

9.2. The intermediate long-wave equation

In the periodic case, the intermediate long-wave
equation takes the form (see ref. [41])

u,+uu + %ux+i(uxx)=0, (9.9)

where ¥ is defined by

T(f)x)y=i ¥ coth(%)fke“‘“ﬂ, (9.10)

keZ*

and f is any sufficiently smooth 2 L-periodic func-
tion.

As in the case of the Benjamin-Ono equation,
all the results of sections 4, 5, and 8 are valid for
the periodic intermediate long-wave equation.
Here is a precise statement of the results in view
for both the Benjamin-Ono equation and the
intermediate long-wave equation.

Theorem 9.1. Let uy € H*(C) be given initial data
for the periodic Benjamin-Ono equation (9.1) (re-
spectively, for the periodic intermediate-depth
equation (9.9)). If s =1 or s = %, then there exists
a solution u of (9.1) (respectively, of (9.9)) with
initial value u, such that u e LR ,; H(C)). If
s> 3, then there exists a unique solution  of (9.1)
(respectively, (9.9)) with initial data u, such that,
for each T>0, ue CK0, T; H*~2*(C)) for all k
for which s —2k > — 3. Moreover, the mapping
that associates to u, the unique solution u of (9.1

(respectively (9.9)) with initial value u, is continu-
ous from H*(C) to C*0, T, H*=2k(C)), for all
I'>0andall k for which y —2k> - 3. If s=n/2
where n is an integer larger than 3, then ue
CRR . H2MO) for k with 5 — 2k > — 2,

10. Conclusion

It has been shown that several nonlocal model
equations for nonlinear, dispersive waves which
are of current interest are classically well posed.
These include the Benjamin-Ono equation and
the intermediate depth equation for internal waves
in stratified fluid, and Smith’s equation for conti-
nental shelf waves. The limiting behavior as the
relative depth of the layers approaches 0 and oo of
suitably scaled versions of the intermediate long-
wave equation is that of the Korteweg—de Vries
equation and the Benjamin—Ono equation, respec-
tively.

It should be acknowledged that the semi-group
techniques of Kato [42) could also be used in the
present context, at least for the theories regarding
smooth solutions (s > 2). Indeed, this was carried
out in ref. [23].

The general ideas that have come to the fore
herein are applicable to a considerably broader
range of problems. For one, certain interesting
systems of nonmlocal, nonlinear dispersive wave
equations such as those described in ref. [21] are
amenable to the sort of treatment given here to
single equations, though the details are naturally
somewhat more complicated. A separate account
of some of this material especially related to inter-
nal-wave propagation is being prepared for publi-
cation. Within the realm of single equations, the
results on local existence, global existence of weak
solutions, and continuity of strong solutions with
respect to perturbation in the initial data and
perturbations of the model all have counterparts
for a broad class of equations of the form (5.1).

In addition to providing a secure underpinning
for general analytical and numerical investigations
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of model equations of the form (5.1), the present
theory is needed as a tool in the stability theory
for solitary-wave solutions of these equations (see
ref. [43] and the references contained therein).
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