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A general method is presented for the exact treatment of analytical problems that
have solutions representing solitary waves. The theoretical framework of the method
is developed in abstract first, providing a range of fixed-point theorems and other
useful resources. It is largely based on topological concepts, in particular the fixed-
point index for compact mappings, and uses a version of positive-operator theory
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ceferred to Fréchet spaces. Then three exemplary problems are treated in which
steadily propagating waves of permanent form are known to be represented. The first
covers a class of one-dimensional model equations that generalizes the classic
Korteweg—de Vries equation. The second concerns two-dimensional wave motions in
an incompressible but density-stratified heavy fluid. The third problem describes
solitary waves on water in a uniform canal. '

{. INTRODUCTION

The aim of this study is to establish a general technique for the exact treatment of nonlinear
problems that have solutions in the form of solitary waves. Such problems arise from a variety
of physical contexts, having correspondingly various mathematical formulations, and they
have practical importance as representations of observable wave phenomena. As evinced by
the proliferation of literature and of conferences related to the subject, interest in solitary waves

has grown enormously over the last three decades, having spread to many different branches
of applied sciences.

Except in the simplest examples, however, such as the well-known model equation of
| Korteweg and de Vries whose solitary-wave solutions are known explicitly, the analysis of
. solitary waves presents difficulties beyond those respective to periodic steady waves in the same
systems. The difficulties arise because any solitary wave has an unbounded domain of
definition. To a large extent for this reason, the earlier exact theory developed ad hoc for
particular physical applications was limited to waves of small amplitude (see, for example,
Friedrichs & Hyers 1954 Ter-Krikorov 1963; Benjamin 1966). Even some recent work lies in
the realm of small-amplitude theory (see, for example, Amick & Kirchgéssner 1989; Amick &
Turner 1989; Bona & Sachs 1089; Sachs 1990), but interest has also been attached to the
provision of global solitary-wave theories. The topological methods to be expounded presently
are free from restrictions on wave amplitudes and offer a wide range of prospective
applications. The methods, which rely on comparatively coarse topologies, circumvent the lack
of compactness that is typically associated with continuous operators acting in Banach spaces
of functions defined on unbounded domains. Our approach complements other modern
res

ources that have been applied successfully to problems comparable with those to be
sidered (e.g. variational techniques, bifurcation theory and methods of concentrated
: pactness, to which references will be made below).

We shall present our investigation in two stages. First, in §2, a theory is developed in abstract
ing nonlinear operator equations of the form u = Au posed in a Fréchet space X. The
deals particularly with equations having multiple solutions, which are conveniently
y means of a specification that the operator A takes a cone K < X into itself. The
ntly useful results are obtained by index-theoretic arguments. Then, in §§3, 4
ific applications of the general theory are presented, establishing the existence
{ solitary-wave solutions in physically relevant examples.

) concerns a wide class of one-dimensional model equations for wave

dispersive systems. These equations are only approximate, being
W g—de Vries equation in formal status, but the solitary-wave
ca prototype whose existence theory we outlined in earlier work

'.IIhe problem is recast as an integral equation
ok il
plx) = thx—'y) 7' (y) dy, (1.1)
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whose required solution ¢:R— R is, like the kernel £, a bounded, positive and even function
which decreases monotonically to zero as its argument approaches infinity. The kernel is
normalized so that the constant function taking the value 1 everywhere is a solution, as also is
the constant function zero, and (1.1), moreover, has periodic solutions with any period greater
than a certain number (Benjamin 1974, §5). The solitary-wave theory accordingly has to
exclude a large multiplicity of extraneous solutions. The results of our theory are closely allied
to those obtained recently by Weinstein (1987) using the method of concentrated compactness
developed by Lions (19344, b).

The second application (§4) concerns progressive waves of permanent form in density-
stratified heavy fluids. The hydrodynamic equations lead to a semi-linear elliptic problem
defined on the infinite strip § = R x [0, 1] (cf. Yih 1980, p. 104; Benjamin 1971, pp. 640-642).
A non-zero function @:S— [0, ) is sought satisfying

Ap+@f(y,p) =0 in Rx(0,1), } .

P(x,0) =0, @x1)=0, forall xeR, (1.2)
and vanishing in the limits x4 0o. Here f:[0, 1] x [0, c0) - [0, 00) is a function complying
with various conditions, and the boundary-value problem (1.2) has a second x-independent
solution as well as the zero solution. This problem too has a continuum of periodic solutions,
and after recasting it as an integral equation we treat it in much the same way as the first,
prototypal problem. Our results add to the already extensive literature in this area
(particularly Amick 1984), which is reviewed in §4.

Finally, in §5, we deal with an integral equation derived exactly from the nonlinear problem
for solitary water waves in a uniform horizontal canal. This is the original context in which
solitary waves arose, and the approximate analyses by Rayleigh, Boussinesq and Korteweg &
de Vries in the last century are the classics of our subject (cf. Benjamin (1974) Bona (19806)
and Newell (1985) for historical commentary). In the considered formulation as an integral
equation, the problem has no non-zero constant solution; and for this reason, notwithstanding
a seemingly more complicated integral operator 4, its treatment by the present means is
simpler than the preceding two examples. A global though non-constructive existence theory
is readily completed, complementing the treatment by quite different means that has been
given by Amick & Toland (19814, b).

As exemplified by these three problems, solitary waves are non-constant, non-periodic
functions whose support is unbounded, and the operator equations for them are invariant
under translations in the unbounded direction of their domain of definition S. These features
are responsible for the special difficulties of solitary-wave theory, notably because they tend to
exclude a theory based upon the use of various fixed-point theorems of Schauder-Tychonov
type, index theorems and other powerful resources applicable to compact operator equations
posed in Banach spaces. If, as may be quite reasonable otherwise, a solitary wave is attributed
to some Banach space ¥ of functions defined on S (e.g. C,(S) or L*(S)), being considered
accordingly as a fixed point of the operator 4 in ¥, the operator will generally not be compact
in the required sense (i.e. it will not transform bounded sets in ¥ into sets that are relatively
compact, having compact closures). In a check on the possibility of 4 being compact,
equicontinuity of the general image set may be confirmable, but the further necessary condition
that it be equi-small at infinity (see Yosida 1974, ch. 10) will turn out not to be fulfilled.

On the other hand, certain classes of functions on § considered as Fréchet spaces, so being
14-2
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endowed with a comparatively coarse topology, are freed from the latter condition for the
relative compactness of a subset. We adopt the Fréchet-space formulation of our general theory
for this crucial advantage, enabling us to specify a useful sense in which the relevant operators
are compact. Needless to say, this strategy has precedents: for instance, it was used by Weyl
(1942) and Hastings (1970) in applications to boundary-layer theory, by Bushell (1972) who
thereby brought the Fréchet-space version of Tychonov’s fixed-point theorem to bear on a
problem of rotating fluids, by Taylor (1967) and by Krasnosel’skii ¢t al. (1973).

Offsetting this advantage, special difficulties need to be overcome in working with a non-

notimable Fréchet space X. For the most part they are due to the inherent property of such
spaces that every open subset is unbounded (see §2 for a résumé of such basic facts about
Fréchet spaces). This fact severely restricts the class of operators 4 that map subsets of X
compactly into X, and so limits the availability of an index theory. In other words, with %,
denoting any metric ball of radius r in X, the useful condition that 4(4%,) be a relatively compact
subset of X for a suitable 7 > 0 excludes the operators typically presented in applications,
including those to be considered in §83-5.

The difficulty is obviated in our approach by appropriately narrowing the domain of 4,
specifically to some cone K < X in which the solitary-wave solution is recognized a priori to be
an element. Each of the cones K chosen in the applications is sufficiently narrow for its
intersection with any suitable ball 4. to be bounded, and it is consequently mapped by the
respective 4 into a relatively compact subset of X. This property enables us to adapt to the

Fréchet-space problem various parts of the theory of positive operators that has been developed
for Banach spaces by Krasnosel’skii (1964a) and others (see, for example, Amann 1976;
Deimling 1985, ch. 5). In particular, we establish versions of the fixed-point theorems for
nonlinear operators that ‘expand’ or ‘compress’ a cone (Krasnosel’skil 19644, ch. 4). The first
of these theorems, coupled with an argument in terms of topological index which discriminates
between the solitary-wave solution and the non-zero trivial solution, is applied in §§3 and 4 to
the problems (1.1) and (1.2). The second of the theorems serves in §5 to treat the problem of
solitary water waves.

It should be acknowledged that an alternative, indirect approach to existence theory for
solitary waves consists in first proving the existence of steady periodic waves with arbitrarily
large period, and then obtaining the solitary wave in the limit as the period tends to infinity.
This approach, which poses various technical difficulties of its own, has been used by us
3 p;r'ev'iously for particular problems (Bona et al. 1976; Bona et al. 1983), and it has been used
~ very effectively by Amick & Toland (19814, b) in their theory of the surface solitary wave.
d inctive feature of our method is that solitary waves are established without recourse to
nce theory for periodic waves. An incidental aspect of the theory covered in §2,
is an interesting connection in topological terms between steady periodic waves and
‘This sidelight on our analysis reveals in particular a simple criterion whereby

Lo Fréchet space. In its general description, a Fréchet space is a metrizable
ly-convex, linear topological space. Here linear spaces will always be



T —————

SOLITARY-WAVE SOLUTIONS 199

understood as vector spaces over the field of real numbers. Any Fréchet space X can be
described in the following specific terms (cf. Rudin 1973, ch. 1; Treves 1967, ch. 10). On X
a sequence {p,}> , of semi-norms can be defined which is increasing (i.e. p,.,(x) = p,(x) for
every x€ X and every n=1,2,3,...) and is such that the formula

dng) = Do BEZY oy ex, (2.1)

o =y
provides a metric generating a topology that coincides with the original topology on X. Such
a choice of metric occurs naturally for many of the specific Fréchet spaces having present
interest. Accordingly, it will henceforth be assumed that any Fréchet space in question is
equipped with a countable family of semi-norms as above, and the metric will be presumed to
have the form (2.1). This situation will be recalled by the following phrase: X is a Fréchet space
with generating family of semi-norms {p,}_,.
For any Fréchet space X with generating family of semi-norms {p,};.,, write

B, = {xe X:d(x,0) < r}} (2.2)

and Bl ={xeX:p(x) <7},

where j is any positive integer. Note that %, = X, in consequence of (2.1).

In general, a set B in a topological linear space X is said to be bounded if, for any
neighbourhood U of 0 in X, there is a A > 0 such that AB < U. In the case of a Fréchet space
with metric 4 as in (2.1), a set B in X is bounded if and only if corresponding to each positive
integer j there is an R > 0 such that B < #%. If r > 0, then 4, is usually not bounded. In fact,
if X is a Fréchet space that has any bounded open set, X is necessarily a Banach space
(Rudin 1973, ch. 1).

To complete our summary of needed theory, we first note how a Fréchet space can be
partially ordered by a cone and we introduce certain definitions of compactness for operators
that map a cone into itself. Standard elements of topological index theory are then reviewed
in §2.2 and several useful consequences are derived. The notion of r-domination is introduced
in §2.3, being used to relate the fixed points of sequences of operators (proposition 2.5) and so
illuminate the general connection between solitary-wave and periodic-wave solutions of
nonlinear problems. Finally, in §2.4, certain fixed-point theorems are proven that will be
applied in subsequent sections to the treatment of particular problems having solitary-wave
solutions.

2.1. Cones in Fréchet spaces

It will be of importance in the sequel to consider subsets K of X that are called cones. A closed

subset K of a linear space X is a cone if

(i) K+ K ={u+v:u,vek} c K,
(ii) AK ={Au:ueK} = K forall A=0, (2.3)
(iii) KN (—K) = {0}.

Note that (i) and (ii) imply K to be a convex subset of X. Any cone K in X defines a partial
ordering according to the prescription

x<y ifandonlyif y—xek.
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A cone K in a Fréchet space X is said to be normal if there is a family of semi-norms {p,};2;
generating the metric topology on X such that, if x,y € K with x <y, then

Py(x) < py(y)

! for all j > 1. Another useful class of cones are those we shall describe as p,-bounded. A cone K
h in X is designated p,-bounded if there is a sequence of positive numbers {a(n)};_; such that

bn(%) < aln) p,(x)

for all x in X and positive integers .

Let K be a cone in a Fréchet space X. A mapping 4 defined (at least) on K and with range
| in X is called a positive operator if A(K) = K. The class of operators on X that will be the
primary focus of attention presently are positive, continuous and compact in the following
sense. A positive operator 4 is K-compact if A(K N 4,) has compact closure, for each 7 in [0, 1).
Another useful notion of compactness is embodied in the following definition. For a given
__ j = 1, a positive operator 4 is p-compact if, for any positive R > 0, any sequence in A(K N Bh)
| has a subsequence that converges in the semi-norm ; to an element of K. A positive operator

| is said to be p-compact if it is p,-compact for all j = 1.

It will appear that K-compactness is a useful concept in the important task of defining a
topological index theory for an operator 4. Whereas p-compactness is easily established for the
operators arising in the applications to solitary-wave theory, in general p-compactness of an
operator 4 does not imply its K-compactness, although it is always the case that a K-compact
operator is p-compact. However, these notions are equivalent in the presence of one additional
assumption, as we now show.

Lemma 2.1. Let X be a Fréchet space with generating family of semi-norms {p,}_,. Let K be a cone in
X and A a p-compact positive operator on X. Suppose that, for eack r in [0,1), KN %, is a bounded set.
Then A is a K-compact.

Proof. Fix an rin [0,1). As the topology is metrizable, it suffices to show that the closure of
A(K N4, is sequentially compact. Let {x,}5., be a sequence from A(KN%,). As KN %, is
bounded, p;(K N 4,) is for each j a bounded set in [0, ©0); and because of this property and the
p-compactness of 4, a Cantor diagonalization process yields a subsequence {y,}i.; of {x,}5-, and
elements z, in K such that p,(y,—z;) >0 as k— oo, for each j. As the semi-norms {p]}j L are

increasing with j, it follows readily that p,(z,—z;) = 0 provided that i < j,/. Hence, if k </, one

has
dzpz) = Bot-LETZ) 5o g
( : k) j=1 1'}‘1{)1(21 A:) izk

-I ;|

O

2.2 The fixed-point index

tool, used both for further developments in the present section and
s the ﬁxed -point index for compact operators. A summary of the basic facts
‘.]_:}cory 1s given here, together with a few simple consequences. A detailed
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development of the fixed-point index for arbitrary absolute neighbourhood retracts, which we
use in the context of Fréchet spaces, is to be found in the work of Granas (1972).

Let X be a Fréchet space. The collection of all convex subsets of X is denoted by €, or €(X)
when X is not obvious from the context. A triple (C, 4, U) is called admissible if

(i) Ce%,

(i1) U < C is open in the relative topology on C,
(i) 4:C—C is continuous and A(U) is a subset of a compact set in €, and

(iv) A has no fixed point on 0U, the boundary of the open set U in the relative topology
on C.
The set of all admissible triples is denoted by &, or by &/(X) if X is not evident from the
context. Granas’s work cited previously implies7:hc existence of an integer-valued function ¢
defined on .of that satisfies the basic axioms of a/fixed-point index (cf. Dold 1965). We record
as follows those axioms that find direct use later,"/together with other elementary properties that
follow from Granas’s method of constructing the fixed-point index and from the classic
Leray-Schauder index theory (cf. Leray & Schauder 1934; Nagumo 1951).

I. (Localization) If (C, 4, U) € o/ and B:C— C satisfies (iii) above together with B(x) = A(x)
for all xe U (the closure of U in C), then

i(C, 4, U) = i(C, B, U).

I1. (Homotopy invariance) For C€¥ and a continuous mapping H:Cx[0,1]—C, let
A,(+) = H(+,1). If there is an open set U, and a compact subset G of C for which 4,(U) € G
and (C,4,,U)e s/ for all tin [0, 1], then

i(G, 4y, U) = i(G, 4;, U).

(Note that the set G must be chosen independently of t.) A mapping H:C x [0, 1] - C having
these properties will be called an admissible homotopy. The operators A, and 4, will be called
homotopic.

IT1. (Additivity) If (C,4,U)e s/ and U,,...,U, is a collection of mutually disjoint open
subsets of U such that A(x) # x for all x in U\Uj}., U}, then

i(C,4,U) =2iC,A4,U,).
J=1

IV. (Fixed-point property) If (C,A,U)e & and i(C,4,U) # 0, then A has at least one fixed
point in U.

V. (Commutativity) If C,,C,€¥€ and A:C,—~ C,, B:C,— C, are continuous maps for which
(C;,Bo4,U)e, then (C,,AoB, B} (U)) e« and

i(Cy,Bo A, U) = i(C,, Ao B, BM(U)).

V1. (Index of constant maps) If (C, A, U)e o where, for some ueC, A(x) = u for each xeC,
then
[0 if u¢U,

{C, A, U) =
( ) 1 if seU.

We record here two simple consequences of properties I-VI which will find use later in this
section. Proposition 2.2 was implied in Krasnosel’skii’s monograph (19644, p. 166), although
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it was neither stated explicitly nor proved there. Its demonstration in a Fréchet-space setting
was given first by Bona (1972), later by Fitzpatrick & Petryshyn (1976) and Krasnosel’skii &
Zabreiko (1984). Proposition 2.3 is a standard implication of index theory. Short proofs of both
results are included for convenience of the reader.

ProrosiTioN 2.2. Let X be a Fréchet space and let p be a continuous semi-norm on X. Let K be a cone
in X and A a positive and continuous operator on K. Let U be a relatively open subset of K such that p(U)
is bounded. Suppose (K, A, U) is admissible and there is a u€ K with p(u) > 0 such thal

x—Ax # au (2.4)
Jor all real numbers a 2 0 and x€0U. Then i(K, 4, U) = 0.
Proof. Consider the homotopy H:K x [0,1] - K given by
A,(x) = H(x, t) = A(x) + tau.

The constant a > 0 will be chosen presently. Because of (2.4) it is apparent that (K, 4,, U) is
admissible. Further, for any ¢ in [0, 1], we have 4,(U) € A(U)+ V, where V is the line segment
in X joining 0 and au. As both A(U) and V are compact, so also is their sum and thus H is an
admissible homotopy. The homotopy invariance of the fixed-point index therefore implies

i(K,4,U) = i(K, A+ au, U).

For large enough values of a4, however, it must be expected that A(x) +au¢ U, for all xe U.
Presuming the truth of this supposition, we can infer from property IV of the fixed-point index
that (K, A+ au, U) = 0. The proposition will thus be established when it is verified that
{4(U)+au} n U = I for some value of a > 0. To this end, note that by our assumption there
is a constant ¢ such that

plx) se

for all xe U, and by the triangle inequality applied to p
p(A(x) +au) = ap(u) —p(A(x)).

Because 4(U) is compact and p is continuous, there is a ¢ > 0 such that p(4(U)) < [0, ¢]. Thus,
for any xe U, we have HAG) +au) = ap(u) —c.
Hence A(U)+au and U are disjoint provided a > (¢+¢)/p(u). O

ProrosiTION 2.3. Let X be a Fréchet space and let (C, A, U) € o . Suppose there is an open set W in
X and a continuous map B:C— C satisfying the following properties:

(@) AW S W for 1A € 1;

(6) W (I-A) (QU) = &, where I denotes the identity mapping of C;

(¢) A(x)—B(x)e W for each xe U and B(U) is contained in a compact subset of C.

1t then follows that (C,B,U)e s/ and i(C, A, U) = i(C, B, U).

Proof. 'This result is an immediate consequence of property (II) once it is appreciated that

- H:Cx[0,1] > C given by Hix, ) = tA(x) + (1— 1) B(x)

s an admissible homotopy. For any t€[0,1] and x€ U, we have H(x,t)e Vi +T,, where

il TN =0 <A< Lved(U)), V,={Aw:0< A< 1, weB(O)};
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and because both V] and V¥, are compact, so is their sum. Finally, if (x,£/)€0U x [0,1] and
X = H(x, t), 1t fOllOWS that _A(x) — (t_].) (A(x)—‘B(x)) e W,

which contradicts our hypotheses. This contradiction shows at once that (C,B,U) e« and that
H is admissible on U. O

Proposition 2.2 means that, whenever A(dU) misses a ray emanating from the origin, the
index of 4 relative to U must be zero. Proposition 2.3 means that maps uniformly close to each
other on a set U necessarily have the same index there.

2.3. r-domination

The technical notion of r-domination is introduced here and its usefulness in relating fixed-
point indices is indicated. The notion plays a crucial role in our solution of the problems
considered in §§3 and 4.

The setting is, as before, a Fréchet space X. Suppose that D and C are convex subsets of X.
The set D is said to r-dominate C if there are continuous maps 7:D - C and s:C— D such that
ros = I, the identity mapping of C.

Lemma 2.4. Let C,C,€% and suppose that C, is r-dominated by Cy. Let (C\,B, V) be admissible
and A:Cy—C, a continuous map. Suppose that A and sBr are related by an admissible homotopy
H:C  x[0,1}>C, on the open set (V). Then (C,, A, Y (V)) is admissible and i(C,, B, V)=
i(Coy A, 7" H(V)).

Proof. Asrs = Ic,, we have
WCy, B, V) =i(Cy, 7B, V) = i(Cy, sBr, r}(V)),

because of the commutative property of the fixed-point index. As sBr is admissibly homotopic
to 4 on r"}(¥), by hypothesis, the homotopy invariance of the fixed-point index yields the
desired conclusion. O

A fixed point x, of an operator 4 defined on a set C is isolated if there is a relatively open
set Vin C containing x, with {xo} = P {xeCix = A(x)},
Let (C,4,U) €&/ and let x, be an isolated fixed point of 4 lying in U. The index of 4 at Xgs
written ¢(4, x,), is

i(4,xy) =1(C,4,V), (2.5)
where V < U is an open set containing x, but no other fixed point of 4. This concept is well
defined, as appears from the additive property of the fixed-point index.

The next result refers specifically to the solitary-wave theory that is the focus of interest here.
It will appear in §§3, 4 and 5 that the existence of solitary-wave solutions in various systems
may be shown to depend on whether a nonlinear operator has a fixed point in a cone of non-
negative functions in a suitable function space. The latter issue may be decided in the
affirmative by use of the techniques set out in this section. In carrying out this programme, an
interesting by-product emerges, which now will be explained.

Systems that support solitary waves appear always to possess solutions representing spatially
periodic wavetrains of permanent form. Such wavetrains were first noticed by Korteweg & de
Vries (1895) in their treatment of long water waves, and were named by them cnoidal waves.
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Our next proposition gives conditions under which the existence of a solitary-wave solution
implies existence of periodic permanent-wave solutions. Moreover, it will also follow that these
cnoidal-wave solutions converge to the solitary wave, whose existence was presumed, in the
limit of indefinitely large period. The convergence of periodic wavetrains of permanent form
to a solitary wave was also first observed by Korteweg & de Vries. Other examples of this
phenomenon have been demonstrated in Amick & Toland (1981 5), Beale (1977), Bona et al.
(1983) and Turner (1981). In the special context of the Korteweg—de Vries equation, it has
been shown that all solutions defined on the entire real line which are appropriately evanescent
at infinity, whether or not they are steadily propagating waves of permanent form, arise as
limits of periodic wavetrains (see Bona 19814).

Guided by the examples worked out in §§3, 4 and 5, we assume X to be a Fréchet space with
generating family of semi-norms {p,}72,. Let C and each C, in the sequence {C;}3, be closed
convex subsets of X, and suppose that C r-dominates C; for all ;. Denote by r,:C—C, and
5;:C;— C continuous maps such that rjos; = 1, the identity map on the set C,, for each
J=1,2,.... Let A and {B,}}2, be continuous operators, 4:C—>Cand B,:C,~C,forj=1,2,....
We set out the following conditions regarding these operators.

(Al) For any R < 1, d(Ax,s,B;7,x) -0 as j— o0, uniformly for x in C N %,.

(A2) For any R <1, A(CN %) is contained in a compact subset of C and, for each j,
B,(C; N %) is contained in a compact subset of C,.

(A3) Asj— o0, d(r;x,x) -0 uniformly for x in C.

(Note that (A1), (A2) and the triangle inequality imply that, for R < 1, 4 is uniformly
approximated by B;r, on the set CN 4,.)

We wish to answer the following question. Suppose that ¢ € C'is a fixed point of the operator
A. When is there a sequence {@,}}2, converging to ¢, with each @, a fixed point of B, for all j
sufficiently large?

ProrosiTiON 2.5. With notation and assumptions as just presented, suppose ¢ to be an isolated fixed
pont of A in C with non-zero index. Then there exists a sequence {@,}3., in X that converges to ¢ and is
such that ¢; = B, @, for all j sufficiently large.

Proof. As ¢ is an isolated fixed point of 4 in C, the definition (2.5) of its index i(4, @) is
recovered by every (relatively) open set V that contains ¢ and is itself contained in C 1 Z (@),
where € is some fixed positive number which is chosen to make d(0,¢) +e¢ < 1. Forn=1,2,...,
define V, = C, N By,(r, ¢) and consider the relatively open set U, = r,(¥,) in C. We note that
e U, for all n and, because U, is open and so disjoint from its relative boundary U, in C,
therefore ¢¢ U, for all n. If ve U, we have

d(v, $) < d(v,7,0) +d(r, 0,7, ) +d(r, 4, ¢),

where the second term on the right-hand side is less than % by the definition of V,, and
according to condition (A3) the first and third terms can be made as small as desired by taking
n large enough. Thus an integer N exists such that

U,=sCnAB(p) if n=N, (2.6)
and accordingly the assumption that i(4,9) # 0 implies that

i(C,A,U)#0 if nz N, (2.7)
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Take any yedU, and let x =r,yer,(0U,) < OV, in the present circumstances. It then
follows that
le=d(r,¢,x) <d(r,¢,¢)+d($,y) +d(y,x),

where the third term on the right-hand side is d(y, 7, y). According to condition (A3), this term
and the first can be made arbitrarily small, uniformly on C, by taking n large enough. Hence,
subject to a revision of the choice of N if required, it can be concluded that, for n = N,

d(¢,y) > % forall yedU,. (2.8)
Together (2.6) and (2.8) imply that, for n = N,
U, cn Eﬁe(a)\gie(¢) =7, say,

and the image A(Y) of this closed set is contained in a compact subset of C. Moreover, Y
contains no fixed point of 4, and so a number & > 0 exists such that d(y, dy) > 0 for all ye?.
It therefore follows that, for all n = N,

d(y,Ay) = & forall yedl,.

(Note that & depends on €, which has been prescribed, but in view of (2.6) and (2.8) d is
independent of n > N.) On the other hand, condition (A1) ensures that d(4x, s, B, 7, x) < 30 for
all € C N B, (with any R < 1) if n is large enough. Thus, subject to another possible revision
of the choice of N, we have that W = 2,,(0) satisfies the conditions of Proposition 2.3 applied
to a comparison between 4 and s, B, 7, on U, for eachn = N. According to Proposition 2.3 and
the commutative property V of the fixed-point index, it follows that, forn = N, N+1, ...,

i(C, 4,U,) = i(C, 5, By 1o, Uy) = i(C, 5, By 171 (Va)) = i(Coy By, Vo), (2.9)

whence (2.7) and property IV of the fixed-point index guarantee that, for this range of n, there
is a fixed point ¢, of s, B,7, in U,. Forn=N,N+1,..., let ¢, =r,9, so that B, ¢, = ¢,
because 7, 5, is the identity map on C,,.

(Note incidentally that the existence of the fixed point ¢, also follows from (2.7) and (2.9).
This fact provides another, possibly interesting sidelight on the connection between solitary-
wave and periodic-wave problems; but it adds nothing to the conclusion of our main
argument.)

To complete the proof, we proceed to show that the sequence {@,};_y converges to ¢ in
the metric d as n— co. First it is noted that because the yr, all lie in C'N %,(¢$), and because
d(¢$,0)+¢€ < 1, condition (Al) implies that

d( A, Yrn) = d( Ay 5, Bu7y ) >0 s n—>o00. (2.10)

But, by condition (A2), 4(C N #.(¢$)) is a subset of a compact set in C, and so either {{,}7_
or a subsequence is such that

d(Ayr,,v) >0 as n—>0 (2.11)

for some ve C. The properties (2.10) and (2.11) evidently imply that ¥, —~v as n— 00, whence
the continuity of A implies that Ay, - Av as n—> o and accordingly (2.11) shows that 4v = v.
As ¢ is known to be the only fixed point of 4 in CN (@), it follows that v = ¢. As any

subsequence of {y,}>_, may thus be inferred to possess a further subsequence converging to @,
it follows that the entire sequence {{,}i_, converges to ¢.




206 T.B.BENJAMIN, J.L.BONA AND D.K.BOSE

Finally, we consider
d(@, $u) < APy Ya) +d(Yrus b)) = d(B, ) +d(Yry, 1 ).

The first term on the right-hand side has just been shown to vanish in the limit as #-> 00, and
the second term also vanishes in this limit by virtue of condition (A3). Thus the proof is
complete. O

The useful implications of this proposition become immediately apparent in specific
examples of solitary waves, where the C, can be chosen as cones of positive periodic functions
with period proportional to n. As the foregoing proof indicates, fixed points ¢, corresponding
to periodic travelling waves of permanent form are generally guaranteed only if 7 is large
enough. This conclusion of the abstract arguments is to be expected, however, for previous
studies of particular systems have commonly shown that periodic waves with the same speed
as a solitary wave are possible only for large enough wavelengths (cf. Benjamin 1966, 1974,
§5). We shall not labour the implications of the present general result in the context of the
examples treated later; but the reader will readily appreciate how in every case a direct
existence theory for a solitary wave, based on our Fréchet-space methods, automatically
subsumes an account of periodic waves that necessarily converge to the solitary wave in the
limit as their wavelength is increased without bound.

2.4. Fixed-point theorems

In this subsection we shall extend, from their original Banach-space setting to a Fréchet-
space setting, certain theorems due to Krasnosel’skii (19644, ch. 4) concerning non-trivial fixed
points of positive operators. The extended versions of these theorems are exactly what is needed
to establish the existence of solitary waves in the various systems to be treated in subsequent
sections of this paper. Our proofs rely on the fixed-point index introduced above, following
closely the proofs in Bona (1972) and Fitzpatrick & Petryshyn (1976). The idea of using the
fixed-point index to prove these theorems, rather than Krasnosel’skii’s method based on ad hoc
constructions and the Schauder fixed-point theorem, appeared first in Benjamin (1971,
Appendix 1). A recent exposition of these results in a Banach-space setting is available in
Deimling (19835, ch. 5}, and an alternative approach to the generalization of Krasnosel’skii’s
theorems may be found in Isac (1984). The extra information obtained from the proofs by
means of index theory, namely that the fixed-point index of the operator in question is non-
zero relative to a certain conical segment, is crucial to our applications.

Two lemmas are stated and proved, from which the fixed-point theorems readily follow. To
cover the various applications in §3-5, each of these lemmas is presented with alternative
assumptions, the second assumption being weaker than the first. It is assumed throughout that
K is a cone in a Fréchet space with generating family of semi-norms {p,}?2, and the standard
metric 4 as in (2.1), and that 4: K — K is continuous and K-compact.

Lemma 2.6. Suppose that 0 < p <1 and that either
Ax—x¢ K forall xeKNoZ, (2.12)
or tAx # x  forall xeKn 0%, andall te[0,1]. (2.13)
Then, with .KP denoting K N 4, the triple (K, A, K,) is admissible and
i(K,4,K)) = 1.
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Proof. It suffices to assume condition (2.13) because condition (2.12) implies (2.13). Clearly
(K, 4, K,) is admissible as (2.13) ensures that A has no fixed point on the relative boundary of
K, Consider the mapping H(x,t) = tAx defined on K, and inquire whether it forms an
admissible homotopy on the set K,. As A is continuous and K-compact and p <1, the
compactness and continuity requirements for H are obviously satisfied. It remains to show that
H has no fixed point on the relative boundary K N 04,. If there were an x,€ KN 0%, and a
t,€[0,1] such that x, = H(xo, 1) = to A%y, it would contradict (2.13). Thus 4 is seen to be
homotopic to the constant map B such that Bx = 0 for all xe K on K. It hence follows by
properties IT and VI of the fixed-point index that i(K,4,K,)=1. O

LemMa 2.7. Suppose that 0 < p < 1 and that either

x—Ax¢ K if xeKN0%, (2.14)

“ there exists u* € K satisfying p,(u*) > O such that x— Ax # au* for all x€e K N 0%, and a 2 0.
(2.15)

4 . .

Then (K, A, K,) is admissible and i(K, 4,K) = 0.
Proof. Tt suffices to assume condition (2.15) because condition (2.14) implies (2.15). Then
the lemma is just a special instance of proposition 2.2. O

We can now present the needed version of the expanded-cone theorem (cf. Krasnosel’skii
19644, theorem 4.12).

TureoreM 2.8. Let K be a cone in a Fréchet space and let A:K — K be continuous and K-compact.
Suppose that either (2.12) or (2.13) holds for an r satisfying 0 < r < 1 and that either (2.14) or (2.15)
holds for an R satisfying r < R < 1. Then A has at least one fixed point in the set

KR ={xeK:r<d(x,0) <R},
and furthermore (K, A, K}) =—1.

Proof. By lemmas 2.6 and 2.7 we know that i(K, 4, K,) = 1 and i(K, 4, K) = 0. By property
111 of the fixed-point index, it follows that i(K, 4, K) = —1, and by property IV it follows that
A has a fixed point in KF. O

The following compressed-cone theorem (cf. Krasnosel’skii 19644, theorem 4.14) can be
proved in similar fashion.

TurorEM 2.9. Let K and A be as in theorem 2.8. Taking 0 <1 < R < 1, suppose that either (2.14)
or (2.15) holds respective to r, and that either (2.12) or (2.13) holds respective to R. Then A has at least

one fixed point in KE, and furthermore
i(K,4,KF) = +1. O

It is worth remarking that versions of both the compressed-cone and expanded-cone
theorems can be formulated in terms of the Fréchet derivative of the positive operator 4 at 0
and the asymptotic derivative of 4 at infinity. This type of theorem was formulated and used
in an earlier version of §4 (Bose 1974; see also Fitzpatrick & Petryshyn 1976). However, we
have found the present theory more easily applicable and so forego explication of these
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alternative versions of the cone theorems. A few remarks concerning these issues are included
in §6.

The use of degree theory in the following examples of solitary-wave problems automatically
provides implications concerning the continuous dependence of solutions on parameters. This
aspect can conveniently be summarized now in general terms, rather than being spelled out in
the context of each problem. Accordingly, letting / denote some given interval of the real line,
suppose {4,},.; to be a one-parameter family of operators that are positive on a cone K and
depend continuously on the real number y in the sense that d(4,x,4,x)—>0 as y—>A€l,
uniformly for x € K, with some r < 1. Suppose also that, for each y €/, the operator 4, satisfies
the hypotheses of one or other of the preceding fixed-point theorems. If U is an open set in K
that has no fixed point of 4, on its boundary, then the triple (K, 4,, U) is admissible in the sense
of §2.2. From the general properties of the fixed-point index, it follows that (K, 4,, U) is also
admissible when 7 is near A and that then

i(K, A, U) = i(K,4,,U).

This observation implies that, if x,€ K is a fixed point of 4, having a non-zero index, then
A, has a fixed point x€ K near x, provided 7y is near A. Furthermore, there is a neighbourhood
U of xy in K and an interval J < I containing A such that the set

I'={xeU:3yeJ with 4, x = x}

is connected. If the fixed points of 4, in K are locally unique, then the set I" forms a continuous
curve. To infer these properties, the additional information needed (e.g. the continuous
dependence of the positive operator 4 on a parameter of the respective formulation) is
immediately forthcoming in each of the examples that follow.

3. SOLITARY WAVES IN ONE-DIMENSIONAL NONLINEAR DISPERSIVE SYSTEMS

Our first application relates to a class of model equations for waves propagating
unidirectionally, while suffering nonlinear and dispersive effects. These equations have the
gencralform u,+u,+uu,+ Lu, = 0, (3.1)
in which the subscripts denote partial derivatives with respect to time ¢ and the scalar position
coordinate x, and L is a linear pseudo-differential operator with respect to x. This operator is
symmetric and translation-invariant, and it transforms any constant into the zero function on
R. Thus, using the notation #(s) = Fv(x) for Fourier transforms, we have

-~

(Lv) (s) = (s) (),
where the symbol y(s) of L is a real function satisfying y(—s) = y(s) for all s€ R and y(0) = 0.
The initial-value problem for (3.1) and the physical origins of such equations were discussed
by Benjamin et al. (1972), also by Benjamin (1974) and Bona (19804, b, 1981 a). Note that the
particular specification y(s) = 5%, and so L = —@Z2 in (3.1), recovers the regularized long-wave
equation mainly studied in the first-mentioned reference; and then replacement of 9, by -0,
in the final term on the left-hand side, which is permissible within any scheme of approximation
whereby (3.1) is obtained from physical examples, recovers the Korteweg—de Vries equation.

As mentioned in the introduction, the issue of existence of solitary-wave solutions of the
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model equation (3.1), or its more general analogue in which the nonlinearity appears in a form
other than quadratic, has been addressed before. Precursors of the present, positive-operator
technique were studied by Bona & Bose (1974) and Bona et al. (1976). A variational approach
was followed by Benjamin (1974) to show existence of periodic travelling waves, and solitary
waves were recovered from his theory in the limit as the period-length tends to infinity by Bona
(19814). Recently, Weinstein (1987) has used a variational approach and the method of
concentrated compactness to establish an existence theory for solitary-wave solutions of (3.1)
and of the Korteweg—de Vries-type version of (3.1) (cf. Bona 19804 and Albert et al. 1987 for
a description of the setting for Weinstein’s theory). It deserves remarking that there is no
general uniqueness theory so far for these special solitary waves. We should acknowledge,
however, that uniqueness has been proved by Amick & Toland (1990) in the special case of
the Benjamin—Ono equation (Benjamin 1967). The stability theory for solitary-wave solutions
of long-wave models is better developed than the uniqueness theory (cf. Benjamin 1972; Bona
1975 ; Scharf & Wreszinski 1981 ; Bennett ¢t al. 1983 ; Shatah & Strauss 1985; Weinstein 1986,
1987; Grillakis e al. 1987; Bona et al. 1987; Albert et al. 1987).

We proceed formally to derive an integral equation satisfied by a solitary-wave solution of
(3.1). Introduce u = 2(¢c—1) ¢(x—ct) and presume the wave speed ¢ to satisfy ¢ > 1. As 0, and
L correspond to multiplication of Fourier transforms by respective fixed symbols (functions of
s alone), these operators formally commute. Hence an integration and use of the condition
¢(x—ct) >0 as x— 00 leads at once to

p+clc—1)" L = ¢ (3.2)

Henceforth the dependence of the solution on ¢ can be left implicit, and we write ¢ = ¢(x) for
simplicity. Assuming that the operator I+¢(c—1)"' L can be inverted, we arrive at an integral
equation for ¢(x) expressed equivalently by

¢ = [I+c(c—1)" L] ¢* = Bg*
- | Homp s = a9, sy (3.3

The symbol of the linear operator denoted by B is evidently the even function

[1+c(c—1)" ()] = k(s) = Fh(x).

Our assumptions about the kernel k(x) and its Fourier transform /E(s) are as follows.

1. The function /G(s) is positive, even, monotone decreasing on (0, 00) (i.e. y(s) is monotone
increasing) and /E(s) = O(|s|™#) with # > 1 as |s] = 0. Thus IEGLI([R), from which it follows that
k= Z% is real-valued, even, and by the Riemann—Lebesgue lemma it is a bounded
continuous function vanishing as [x| - 00.

2. The kernel k(x) is positive on R and ke L'(R). This assumption and (1) imply that the
relation £ = %k holds pointwise, whence it follows that

f k(x)dx = 1. (3.4)

3. k(x) is monotone decreasing on (0, c0), having moreover the property that there is a
number A = 0 such that &(x) is strictly convex for x > A.

Considered as a condition on y(s), (1) is plainly satisfied over a wide class of possible
examples. Although necessary and sufficient conditions on y(s) to provide (2) and (3) are not
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known, these assumptions appear to be borne out in many examples and they are accordingly
adopted as useful hypotheses. Note that (3.4) implies both the constant functions ¢ =1 and
¢ = 0 to be solutions of (3.3).

Our aim on the basis of these assumptions is to establish a solitary-wave solution of (3.3),
namely a fixed point of the nonlinear operator A that is distinct from the two trivial solutions,
is positive, symmetric about zero, decreasing on [0, 00) and tending to zero as |x| > 0. We shall
then show that any such solution ¢ of (3.3) is infinitely smooth, and that consequently it defines
a travelling-wave solution u = 2(c—1) ¢(x—ct) of (3.1). Note that the wave speed ¢ > 1 has
been prescribed and incorporated into the definition of 4 and the normalization of the solution
¢, so that in principle a class of solitary waves with parameter ¢ is to be covered. As will be seen,
the problem presents considerable complexities, particularly as regards the need to discriminate
between the required solution and the non-zero trivial solution, and the difficulties to be
overcome are instructive in being typical of solitary-wave problems.

3.1. Choice of Fréchet space and cone

Let C(R) denote the class of continuous, real-valued functions defined on R. Being treated
as a Fréchet space, C(R) is assigned the topology of uniform convergence on bounded intervals
of R, and the generating family of semi-norms is taken to be

pw) = max |w(x)], j=1,2,.... (3.5)

—jl<x il

Here / is any fixed positive number. For the open ball of metric radius r < 1 centred on the zero
element of C(R), we write as in (2.2)
B. = B.(0) = {uecC(R):d(0,u) <7},
and for its boundary
0B, = 04.(0) = {uc C(R):d(0,u) = 1}.

where the metric d is given by the formula (2.1).
The cone to be used is
K = {ueC(R):u(—x) =u(x) =0 foreach x€R,
u(x) is non-increasing with x2= 0} (3.6)
Note that if ue K and d(0,u) = r < 1, then p;(u) = p;(u) = u(0) for all j, and consequently
r=u(0)/(1+u(0)), u(0)=r/(1—r). (3.7)
Thus K is p,-bounded. It is also evidently closed. We shall again use the convenient notation
K.=Kn%.

The second trivial solution of (3.3), ¢ = 1, is a fixed point of 4 in the cone K, and this fact
poses the main difficulties of the existence theory for the solitary-wave solution. But there is
apparently no useful direct way to escape the complication of an extraneous solution. For
instance, the set of positive even functions that are strictly monotone decreasing on (0, 00)
excludes the function ¢ = 1, but this set is not a closed cone and so is useless for present
purposes. It deserves emphasis that whereas the fixed-point theorems stated in §2.4 could have
been stated and proved without requiring the cone in question to be closed, our use of the
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theorems depends crucially on this requirement, which appears to be generally unavoidable
in applications. Specifically, K needs to be a closed cone so that the essential condition of
compactness can be verified for the operator 4, namely the condition that 4(K,) has compact
closure in K.
3.2. Properties of the operator A
To prepare for an application of theorem 2.8, the properties needing to be established are
covered by two lemmas as follows.

Lemma 3.1. The operator A introduced in (3.3) maps K into K. The mapping is continuous; and for
any r (0 <1< 1), A(K,) is a relatively compact subset of K.

Proof. To verify that A(K) = K, we take advantage of the evident fact that WeKifuek.
Thus it is only required to show that B(K) = K.

Because by assumption (2) the convolutiod kernel k€ L'(R) of the linear operator B is a
positive, even and bounded function, so too is Bv if v is any non-negative, even and bounded
function. Next, to show that Bv is a continuous on R if ve K, we note from the definition

Bute) = [ k=) () dy 38)
that, as 0 < »(y) < v(0) < oo for each yeR, therefore
Bo(s+£)~ Bo(e) < w(0) [ ky=m— k(9] ey
As ke L}(R) by assumption (2), it follows that

|Bu(x+h)—Bu(x)| -0 as k=0 (3.9)

uniformly on R, confirming Bv to be continuous. :
Also directly from (3.8), by obvious changes of the variable of integration, we find that

Bu(x) = Bu(x+h) = r {k(y—x—3h) —k(y+x+30)} {o(y—3h) —v(y +3h)} dy

whenever v as well as £ is an even function. If x > 0 and 4 > 0, the first factor in the integrand
is positive on [0, 00) by assumptions (2) and (3); and the second factor is non-negative on
[0, 00) if ve K and 4 > 0. This plainly confirms By to be non-increasing with x 2 0 ifve K, and
thus the demonstration that Bve K if ve K is complete.

We next show 4 to be continuous from K into K. In what follows, suppose j to be a given
positive integer, € to be a given, arbitrarily small positive number and {u,};_, to be a sequence
in K converging to u.

From the definition (3.3) of 4, we have

|Au, (x) — Au(x)| < J. k(x—y) lun(9) — () lua(y) +u(y)l dy

15 Vol. 331. A
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where C is a number such that

max |u,(y) tu(y)| < C foreach n=1,2,.., (3.11)

yeR, £ '
and A > 0 is a number that is yet disposable. A finite number C complying with (3.11) clearly
exists, because ¥ = {u}U{u,:n=1,2,...} is a compact and so bounded subset of K. For
instance, if ¥ < K, where 0 <p <1, then according to (3.7) we can take C = 2p/(1—p). With
regard to the second term on the right-hand side of (3.10), the assumptions (1)—(3) about the
kernel £ imply that a number A, = A,(€,/) exists with the property

max J. k(x—y)dy < iz (3.12)
—jt<a<it > A, 2C

Accordingly, take A = A, and let ¢ be the least integer satistying i > A, Because {u,}n.,
converges to u, we can choose N such that

pi(u,—u) <e/2C it n= N. (3.13)
The inequalities (3.10), (3.12) and (3.13) together imply that

p,(Au, — Au) = max |Au,(x) —Au(x)| < %ef k(x—y)dy+3e = e.
—Jl<a<il R

Because by hypothesis € is arbitrarily small, it follows from this result that p,(A4u, —A4u) -0 as

n— 00, confirming that 4:K — K is continuous.

Finally, regarding the relative compactness of 4(K,), we consider an infinite sequence {u, o,
from K, and need to verify that there is a subsequence of {4u,};.; converging in the metric d.
By virtue of (3.4) and (3.7), the sequence of functions {Au,}5_, has the uniform upper bound
[r/(1=7)]? on R, and the result (3.9) implies that these functions are equicontinuous.
Accordingly, the Arzela—Ascoli theorem and a Cantor diagonalization process completes the
proof. U

As required for the application of theorem 2.8, the next lemma confirms that 4 expands the
cone K.

Lemma 3.2, Let O <r<jand3<R<1. Then

(@) u# tAu for each ue K 0B, and t€ [0, 1], and, if R is sufficiently close to 1,

(6) u—Au # al for each ue K N 0By, and a > 0, where 1 denotes the constant function that takes the
value 1 for every x€R.

Proof. (a) Suppose to the contrary that an element u€X, d(0,u) =7, and a number
te [0, 1] exist such that u = tAu. It follows that

0 < u(0) = kam 2(y) dy < (0),

and therefore x(0) > 1. But according to (3.7) this contradicts the condition r < 3, and so the
proof of (a) is complete.
(b) Supposing the contrary, we have an element u€ K, d(0,u) = R, and an a > 0 such that

al + Au = u. Therefore 1 1 1 1
a+f Audx—-—f ude[f uzdx]. (3.14)
0 0 0
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But the facts that & is a positive and symmetric decreasing function and that u is even imply

J:Audx = fU{Rk(x—y) u*(y) dy]dx > ﬂU: (k(x—y) +k(x+7)] dy] u*(y)dy = aS?,  (3.15)

0

' 2 1
where ' =J k(z)dz and S* =f u*(y) dy.

0 0
The combination of (3.14) and (3.15) gives
aS?—S+a <

0,
showing that S<a! and a<iah (3.16)
Now, because u is positive, even and non-increasing on [0, 00), it is clear that

1

Au(x) = E

m=—co J —1

Hamy—2mly+om dy < | Re—yrtl)dy, @17

where £ is the positive periodic function with period 2 defined by

k(x)= 2 k(x—2m).
Because ke C,(R) N L'(R) and £ is even and non-increasing on [0, ), k is well defined as
an even, continuous and bounded function. Hence, writing

E_= max k(x) = X k(2m),

-1<£z<1 m=—00

we have from (3.17) and then the first of (3.16) that
Au(x) < 2k, 8% < 2k, a7
This result and the second of (3.16) imply that, for each x€R,
u(x) = a+ Au(x) < lat+ 2k, a7 = ¢, say.

On the other hand, the property (3.7) means here that «(0) = R/(1—R). If R>¢/(1+¢), a
contradiction is thus established, which completes the proof of (). O

3.3. Existence theorem

Since the conditions (2.13) and (2.15) of theorem 2.8 have been verified, it follows that 4
has a fixed point in the conical segment K = {ue K:r < d(0,u) < R}, and the index of 4 on K[
is — 1. Our analysis is far from complete, however, because the trivial fixed point ¢ = 1 lies in
KP (as d(0,1) = 1). We shall proceed to show that if there were only one fixed point in K7, then
its index would necessarily be zero, and thus a contradiction is demonstrated proving the
existence of a third, non-trivial fixed point of 4 in K. This part of the theory is the most difficult,
proceeding by a series of lemmas to the main theorem.

The core of the argument will consist in showing that, on a small metric ball centred at
1eK, the operator A is homotopic to an operator whose non-trivial fixed points represent
periodic waves, with a prescribed period that is sufficiently large. The index of 1, considered

15-2
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as a fixed point of the periodic-wave operator, is then shown to be zero. For the periodic-wave
problem to which reference has thus to be made, it is natural to consider the cone

K, = {ue C(R):u(—x) = u(x) > 0 Vx€R, u is 2l-periodic and non-increasing on [0, /]},

which like K is a closed normal cone in C(R). In the present application, the half-period / is
identified with the number / introduced in the definition (3.5) and (2.1) of the metric 4.
The operator r,: K — K, defined by
‘u(x) if 0<ix </,
(nu) (x) = .
Lu@mi—jd) it @m—1)I<|d < @m+1), m=12,..,
is easily seen to be continuous. In fact, 7, « is just the periodic extension of u that has period 2!
and equals  on [—/,[]. Using the terminology introduced in §2, we can assert that the cone
K r;-dominates K, because the operator s,: K, K defined by

(o) if O<ld <y,

GG =10 i s

is also continuous and plainly 7,05, is the same as the identity map on K.

In view of assumptions (1) and (2) about the kernel £ of the linear operator B, the defintion
(3.3) evidently covers an interpretation of B and 4 as operators on functions » € K, and other
functions ve C(R) that are even and periodic with period 2/. From (3.3) and its context,
alternative representations of B as an operator on functions in this class are seen to be

By(x) = f:o {k(x—y) +k(x+y)}o(y) dy = L ku(x,y) v(y) dy, (3.18)
where ky(x,y) = ;} {k(x—y—2ml) +k(x+y+2ml)}
= %{1+2 3 k(nm /1) cos (nmx/1) cos (nny/l)}. (3.19)

We now establish various facts that will be required relating to the periodic problem.

Lemma 3.3. The operator A constitutes a continuous mapping of K, into itself. If 0 <r < 1, then
A(K, N AB,) is a relatively compact subset of K,.

Proof. Based either on the original definition of B and A4 in (3.3) or on the alternative
representation (3.18) of B, confirmation that 4 is a continuous and compact mapping of X,
into itself follows straightforwardly on the same lines as the proof of lemma 3.1 where 4
was considered as a mapping of K. O

The next of the needed facts is obvious, being presented as a lemma because it is used
repeatedly in what follows.

LemMa 3.4, Let u be a continuous real-valued Junction that is non-increasing on [0, 1], not necessarily
being positive or differentiable. Then ;
J u(x) cos (mx/l) dx = 0. (3.20)

0

Moreover, equality holds in (3.20) only f u(x) = const. for 0 < x < L.
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Proof. The inequality follows immediately upon recognition that the integral is the same
as the integral of {u(x) —u({—=x)}cos (nx/!) from O to 3/, in which range cos (nx/l) = 0 and
u(x) = u(3l) =2 u(l—x). Unless u(x) = const. on [0,/], we have u(x)—u(l—x) >0 on a set of
positive measure in [0,3/) where cos (nx/{) > 0. O

Another needed result depends on the assumptions (1)~(3) about the kernel of the linear
operator B.

Lemma 3.5. If | is chosen sufficiently large and y > I, then

fj{k(y‘f'x—l)—k(y—x)—k(y+x)+k(y—x+l)}cos(n—lx)dx > 0.

Proof. Let o =o(x,y,l) denote the expression in curly brackets in the above integral.
Suppose in the first place that [ > 2A, where A is the number introduced in the definition of
property (3). Accordingly, consider

3 A ’
f o(x,y,1) COS(?)dx =f o(x,y,1) cos(E;)dx+f o(x,y,1) cos(n—lx)dx,
0 0 N

and note that, if A < x <3/, then
y—x+I>y+x>y—x>y+x—I>A (3.21)

Moreover, the first two and the last two of these four arguments of k£ appearing in the factor
o(x,y, ) of the integrand are equally spaced. Hence the positivity of £(x) and its strict convexity
for x > A implies that o(x,y,/) > 0 in the second integral, which is therefore positive.

Regarding the first integral, we must distinguish the two cases (i) y > /+A and (ii)
<y <I+A. In case (i) the inequalities (3.21) still all hold for 0 < x < A, and so the first
integral too is positive by the same reasoning as before. In case (ii), whatever the choice of
[ > 2A, we have that 0 < g+x—1 <20,
whence ! k(y+x—1) <k(2A) (3.22)
by the monotonicity of £; and we also have that

K(y—x+1) =20, k(y+x) <k(y—x) <k(I=A). (3.23)
Because ke L'(R), it is plain that [ can be chosen large enough to make:
k(l—A) < $k(27).

Hence, in view of (3.22) and (3.23), this revised choice of [ ensures that the first integral is
positive in case (ii) also, and thus the proof is complete. O

We are now in a position to prove the anticipated result concerning the index of the second
trivial solution.

Lemma 3.6. If 1 were the only fixed point of A in K with 0 <r <§ < R < 1, then the index of this
Sixed point would be zero, i.e. i(4,1) = 0.
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Proof. We consider the homotopy
H(u,t) = tAu+ (1—1t) 5, Ar,u
on Kn#(1)=r"[K,Nn%B()], (3.24)

where € is a sufficiently small positive number. In particular, € is chosen small enough for the
closure of the set (3.24) to lie in XF. Also, the number / is chosen large enough for the result
in lemma 3.5 to apply and for /E(n/l) > 3. Because H: K x [0, 1] - K is compact by virtue of the
compactness of 4 when considered as a mapping of K (lemma 3.1) and when considered as a
mapping of K; (lemma 3.3), it will follow that 4 is homotopic to s, 47, on the set (3.24) if there
is no element of

O[KNA(1)] ={ueK:d(1,u) = ¢} (3.25)
such that u=tAu+(1—1t) s, Aru (3.26)

for any choice of t€ [0, 1]. On the supposition that such an element exists satisfiying (3.26), we
infer at once that ¢ < 1 because 4 is presumed to have no fixed point in the set (3.24). The case
t = 0, implying s, Ar, to have a fixed point in O[K, N #,(1)], has yet to be excluded.

For 0 < x </, equation (3.26) reduces to

u(x) = (du) (x) + (1 =) (Ar,u) (x) = B[(r,u)*](x) =t (x), (3.27)
where Y(x) = (B{(ru)*—u*)(x) = Lk(x—y) {(nu)*(y) —u*(y)} dy

- f k(e + {490} (00—} by

Multiplying each of the terms in (3.27) by cos (nx//) and integrating from 0 to /, we obtain from
the first term on the right-hand side

f:cos@ r,u)?] (x) dx = :u2(x)B{cos(“—l")}dx
= k(%‘) f: u*(x) cos (’—‘lf) dw.

(These equalities are clarified by the representation (3.18) of B, with kernel expressed by
(3.19).) Hence (3.27) shows that

[ {25t =t cos () = [ 4 cos (%), (3.28)

Now, u(x) is non-increasing with « in [0, /], and consequently so is IG(K/Z) u*(x) —u(x) in the first
integrand if 2k(n/l) u(l) = 1, which condition is plainly satisfied if

2k(m /1) —1
1—1) = max |1 —u(x)] < Toplt L,
£{1=w) or?fle ui < 2k (m/1)
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it follows that £(rt/l) u*—u is a non-increasng function on [0,/] if a positive value of ¢ < § is
chosen to satisfy %/(1—2€) < {212(“/1)_1}/21;(1‘:/[)’
ie. e < (2k(r /1) — 1}/{8k(n/l) —2}. (3.29)

According to lemma 3.4, the integral on the left-hand side of (3.28) is then non-negative, being
moreover positive unless « = const. on [0, ].
In contrast, after substitution of the integral expressing (), the right-hand side of (3.28)

is seen to equal
tf 4 (0 (9) =220} by, (3.30)

where

&y) = ﬂ{k("—y)+k(x+y)}cos(—nl—x)dx

= —ﬁl{k(l—x—y) +h(l—x+y)—k(x—y)—k(x+y)} cos(?)dx

is negative according to lemma 3.5 for y > [. The factor in curly brackets in the integrand of
(3.30) is positive for almost all y > [ unless

u(y) = const. forall yeR,

and this exceptional case is impossible because (3.26) would then require the constant, say a,
to satisfy & = a?, which excludes the constant elements of the set (3.25) if 0 < e < §. If t > 0,
it follows that the right-hand side of (3.28) is negative, and a contradiction is thus established.
If t = 0, equation (3.28) is still contradictory according to lemma 3.4 unless u(x) = const.
for 0 < x <!, which case has already been excluded. These contradictions complete the
demonstration that 4 is homotopic to 5, 4Ar, on the set (3.24).

The fact that K r,-dominates K; hence implies that

i(K, 4,7 [K, n B(1)]) = i(K,, 4, K, 0 (1)), (3.31)

and accordingly we can complete the proof by showing the second index to be zero. Let

u* € K, be chosen such that it is strictly decreasing on (0,/). By lemma 2.7 the present aim

will be accomplished by verifying that for all u€ K; with d(1,u) = ¢ > 0 sufficiently small, and
. :

for all a = 0, the relation o Au = au* (3.32)

is impossible.
Supposing that there is such a solution of (3.32), we proceed as before in the treatment of
(3.27) and obtain from (3.32)

S A

the right-hand side of which is strictly positive by lemma 3.4 if > 0. In contradiction, the
same lemma shows the left-hand side to be non-positive if e satisfies (3.29), which condition
ensures that £(n/l) u*—u like « is a non-increasing function on (0,/). The case a =0 is also
contradictory according to lemma 3.4 for the reason explained with reference to (3.28) in the
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case ¢t = 0. These contradictions establish that (K, 4, K, n %,(1)) = 0. Hence in view of the
identity (3.24) and the proven equality (3.31), we have that

(K, 4,7 [K,n B(1)]) =4(4,1) =0,

and the proof of lemma 3.6 is complete. ]
The final result can now be given.

Tueorem 3.7. There exists a pe K® such that ¢ = A¢ and

lim ¢(x) = 0. (3.33)
|z|—>oo
Proof. Having been shown by lemmas 3.1 and 3.2 to be applicable, theorem 2.8 implies that
if the constant function 1 were the only fixed point of 4 in K? then i((4,1) = —1. But lemma
3.6 has established that i(4,1) = 0, and thus a fixed point ¢ is guaranteed that is not a
constant,
To confirm the property (3.33), we first note that the attribution ¢ €K ensures that
lim ¢(x) =,
|z|—00
where ¢ is a non-negative constant. The value of ¢ is now seen to be necessarily either 0 or 1.
thi
To this end, note that B2 (x-+n) — >0
for each x as n— oo and therefore, by the dominated-convergence theorem, we also have

0=lim | k(x){@*(x+n)—c*}dx = lim | k(x—n) ¢2(x) dx——czf k(x) dx

n—-cw J R n—-oo J R R

= lim @¢(n) —c® = c—¢?,
n-w

implying that ¢ = ¢* It remains to show that ¢ # 1.
Supposing ¢ = 1, we would have vy = $—1€eK, and from (3.3) the equation satisfied by v is
seen to be

o(x) = fwk<x~y> (20(5) + ()} dy. (3.34)

Now, (3.4) and the other properties of k£ plainly imply that there is a finite positive number m
such that

f k(x)dx > 2

—-m

dm

and accordingly f k(x—y)dx>% if —3m<y< 3m.
—4m

Because ve K (v # 0), it follows that

fm (Lk(x—y) v(y) dy)M?f;fZﬂk(x—y) o(y) dydx>2fm o(y) dy > i"my(y) ay.

—4m -3m

(The last inequality follows because the values of v(y) in [—4m, —3m] and [3m, 4m] do not
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exceed any in [—3m,3m].) This result is in contradiction of (3.34), because the equation
requires the last integral, without the factor 3% > 1, to be greater than twice the first integral.
Thus the proof of the existence theorem is complete. O

3.4. Regularity

It remains to show that a solitary-wave solution of the integral equation is in fact an infinitely
differentiable function, all of whose derivatives vanish in the limit |¥]— 0. The assumed
properties of the operator A, particularly those of the linear operator B in its composition, are
insufficient for any immediate conclusion about differentiability to be available from the basic
attribution ¢ € C(R) and the fact that ¢ = A¢. Resort has to be made instead to arguments in
terms of Sobolev spaces, and for this purpose the following result is pivotal.

Lemma 3.8. Let ¢(x) be any solution of (3.3) in K satisfying (3.33). Then peL?(R) for all
p= 1

Proof. We shall first show that x¢(x) is bounded on [0;0). As ¢ € K = C(R), this property
at once ensures that ¢eL?(R) for p > 1. Then, as ¢€L*(R) and consequently Bgp?e L'(R)
according to assumption (2) about the kernel k of the linear operator B, it-also follows that
peL'(R).

For any m > 0, we have

KW") == f:f{’“"“y>+k<x+y)}¢2<y> dy dx

- f () 6°(3) A, (3.35)

0

where

an(y) = f:{k<x—y>+k<x+y>}dx.

" Ttis evident from the properties (1) and (2) of £ that ,,(y) 11 as m—> 0, uniformly on compact
subsets of [0, ). As ¢€K and because of its asymptotic property (3.33), there is a finite
number g > 0 such that ¢(x) < §if x = u. Accordingly, taking m > 4 and rearranging (3.35),
we obtain

I, = f:{amw) $(y) — $(y)}dy

= fm{szs(y)—am(y) #(4)) dy— f en(y) $*(y) dg.

m

‘As 4 is fixed, the aforesaid property of a,,(y) implies that the first integral, denoted by I,,, is
bounded independently of m, in fact converging to its upper bound

e f:{wy)—m)}dy
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On the other hand, we have

o

f’amm #(y) dy < F*(m) f an(y) dy

= *(m) f . f:{k<x—y>+k<x+y>}dxdy < m*(m)

in view of (3.4), and therefore

L> f " (B(5) = tm(y) $(9)} dy—mes?(m).

But «,,(y) <1 for all m and y, and ¢(y) < 3 on [, ). Hence

> j " $(5) dy—mg(m) > dm— ) $(m) ~mt*(m) = mp(m) G (u/2m) — ()}, (3.3

For m large, the factor in brackets on the right-hand side of (3.36) is positive. A number m, can
be found such that this factor is bounded below by §, say, if m > m,. Thus it appears that

mp(m) < 4l, if m=m,,

and the needed bound is demonstrated. For the simple reasons explained at the start, the proof
of the lemma is thereby complete. O

As was noted implicitly in the first paragraph of the proof, the attribution ¢eL?(R)
established by lemma 3.8 substantiates the identity

[ #erax= | s

satisfied by the solitary-wave solution. It is noteworthy that this identity confirms a property
strongly suggested by earlier stages of the analysis, particularly the proof of lemma 3.6.
Namely, over some central interval (—x,,x,), say, ¢(x) has values above those of the second
trivial solution 1. The fact that the difference between the two non-zero solutions has both
positive and negative values exemplifies a general property demonstrated in abstract by
Krasnosel’skii (19644, §6.3.2.), which is attributable to multiple non-zero fixed points of any
‘convex’ nonlinear operator that maps a cone into itself [i.e. according to Krasnosel’skii’s
definition, an operator like the present 4, also the one to be considered in §4, that for some
positive number 9 = 9(u, t) satisfies ¢(1—9) Au— A(tu) €K for all ue K and t€ (0, 1)].
We can now present the main result concerning the regularity of o.

THEOREM 3.9. Any solitary-wave solution of (3.3) in K satisfying (3.33) has the attribution
e H*(R) (i.e. § is a function in C*(R), all of whose derivatives are like ¢ itself in L*(R), vanishing in
the limit |x| - 00). Moreover, ¢ and all its derivatives lie in the domain D(L) = {we L*(R): Lwe L*(R)}
of the operator L introduced in (3.1), so that the function u(x,t) = 2(c—1) p(x—ct) is a smooth,
travelling-wave solution of (3.1). ’

Proof. Lemma 3.8 establishes that ¢ € L*(R), which means that ¥ = ¢*e L*(R). Therefore
the Fourier transform  of ¥ is also in L2(R). By virtue of the assumption (1) about the kernel
of the linear operator B, it follows that

¢ =ByeD(L) = H*R) forany a<p.
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IL613 = 5z [ ) o pei s

y(9) i (s)
14¢(e— l)‘l y(s)

1

21 Jg

g c—1\% -
as< (2] s

: where || - ||, denotes the L#(R) norm; and D(L) < H*(R) for @ < f follows because assumption

, ;;:{1) implies that, for large values of |s|, y(s) = «|s]? with k a positive constant (cf. Adams 1973,
' §§5.23 and 7.57).)

. Extending the argument inductively confirms both that ¢ € H*(R) and that (3,)’ e D(L)

" for j=0,1,2,.... The statement concerning u = 2(¢c—1)¢@(x—ct) is hence verified by

'-application of I+¢(¢c—1)"'L to the equation ¢ = B¢*, which gives

[I+c(c—1)" L] ¢ = ¢2

4 Differentiating this identity and using the now plainly established fact that L9, ¢ = 0, Lg, we

v U+c(c—1) L] ¢ = 24,
: which shows that the specified function u satisfies (3.1) in the sense that each term of this
equation is attributable as an element of H*(R). O

~ Asimple corollary is that ¢ € W (R) (i.e. ¢ and all its derivatives are in L*(R)). It has been
shown in the proof of lemma 3.8 that ¢ € L'(R) follows immediately from ¢ e L*(R), and we

Lk & = 2B(d4"),

. the right-hand side of which is in L'(R), because ¢, ¢’ € L*(R) and B is a convolution with an
- L' kernel. For corresponding reasons, we have

¢" = 2B(p4"+¢”*) e L'(R),

and the argument can be continued indefinitely using the chain rule.

4. SOLITARY WAVES IN CONTINUOUSLY STRATIFIED FLUIDS

The next example arises from the analysis of steady wave motions in a heavy fluid that is
¢ inviscid, heterogeneous but incompressible and is confined between horizontal planes. The
~ problem to be treated has been studied previously by other methods, and explanations of its
. hydrodynamic origins may be found elsewhere. For example, a comprehensive approximate
theory describing periodic and solitary waves of small but finite amplitude in stably stratified
layers of fluid was given by Benjamin (1966), and a rigorous basis for the small-amplitude
theory was the objective of the paper by Ter-Krikorov (1963) using the contraction-mapping
principle. Further mathematical specifications, such that extend the theory for the modelling
of large-amplitude waves, were discussed by Benjamin (1971, §6) in his account of conjugate
flows independent of the horizontal coordinate. Reference may be made to these previous
papers for the physical meanings of the specifications adopted here.

Subsequent to the cited paper by Ter-Krikorov, which constituted the first precise attack on
the class of semilinear problems represented in part by (4.1) and (4.2) below, the mathematical
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theory of internal waves has been extended by several contributions free from restriction to
small amplitudes. The pioneering step in this direction was made by Turner (1981), and then
Bona ¢t al. (1983) developed a global theory for periodic and solitary waves in systems of the
type to be reconsidered here. Amick (1984) and Amick & Toland (1983) have presented an
exhaustive treatment of this problem. Most recently, Amick & Turner (1986, 1989) and Bona
& Sachs (1989) have studied the related problem of internal solitary waves in two-layer
systems.

Describing steady waves in an appropriate frame of reference, the normalized perturbation
¢(x,y) of a pseudo-stream-function satisfies the semilinear elliptic equation

Ap+¢f(y,4) =0 in Rx(0,1) (4.1)

and the boundary conditions 5(5,0) =0, B(x,1) =0, 4.2)
The wave velocity and the prescribed density structure for the fluid at rest enter the
specification of the function in fin (4.1), and it is determined that the trivial solution ¢ = 0 of
(4.1) and (4.2) corresponds to a supercritical state of flow, characterized by the property that
infinitesimal periodic waves cannot be superposed upon it (cf. condition (IV) below). Our
present aim is to establish a solitary-wave solution of (4.1) and (4.2), namely a non-trivial
solution ¢ with the properties (i) ¢(x,y) is non-negative on R x [0, 1], (i) ¢(x,y) is even in
x and non-increasing with |x|, and (iii) lim_,,, @(x,y) = 0. Note from (4.1) and (4.2) that if
¢(x,y) is a solution, so is ¢(x+a) for any real number a. Accordingly, the prescribed property
(i) includes a convenient normalization.

The function f is assumed to satisfy the following conditions, which were explained by
Benjamin (1971, §6) to specify a rational model for perturbations relative to a supercritical
base-flow and were exemplified explicitly in his account. Other examples providing explicit
forms of f were considered by Bona et al. (1983).

(I) The function f{(s,#):[0,1] x [0, 00)—>[0,00) is Holder continuous in both variables,
having moreover a continuous partial derivative with respect to the second variable ¢.

(II) For all (s,¢)e[0,1] x [0, c0), we have f+1(0f/0t) < 4m>.

(III) For each se[0,1], f(s,¢) is strictly monotonic increasing with ¢ > 0.

(IV) For the Sturm-Liouville problem

d*8/dy*+ A7 f(y,0) £ = 0,}
£(0) =¢&(1) =0,

whose characteristic values A are all real and positive (as is well known), the largest
characteristic value A, satisfies A, < 1.

(V) For each 5s€[0,1], f(s,) increases to a function Q(s) as t— 0. The function Q is
continuous from [0,1] to (0,0) and such that the largest characteristic value g, of the

Sturm—Liouville problem . ) 1
d*n/dy*+p7'Q(y) g = 0,1
. (4.4)
70) =q(1) =0

(4.3)

satisfies y; > 1.
It was proved by Benjamin (1971, §6) that these conditions guarantee the existence of a
non-trivial x-independent solution of (4.1) and (4.2), say ¢ = ®(y), which is positive on
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0 < y < 1 and in fact represents a subcritical uniform flow conjugate to the supercritical base-
flow. As in the previous example, allowance for this extraneous solution will be a central issue
of the solitary-wave theory. Conditions (II) and (ILI) were noted by Benjamin to imply,
moreover, that @ is unique in its category. As several steps in the present analysis will depend
on this finding, confirmation of it is included as follows. :

Suppose for the sake of contradiction that @, (y) and P,(y) are two distinct non-trivial
solutions of (4.1) and (4.2) that are both non-negative and independent of x. Then (4.1) and
(4.2) show that

fo B, By f (3, By) —ly, o)} dy = O,

whence the monotonicity of fimplies that @; — @, must have both positive and negative values
on (0,1). Thus & = @, — &, which vanishes at y = 0 and 1, must also vanish at an interior
point of the interval [0,1]. Further, & satisfies the ordinary differential equation

hy,+ 6k =0, (4.5)

1 1wy a
in which Oy) = ———————r { IR ,t)}dt.
) = G =Bs(0) Jon V0 0
Due to the continuity of 6 and to the condition (II) satisfied by £, there is a number € > 0 such
that 0(y) < 4n*—e¢ for 0 <y < 1. Applied to (4.5) and the equation

gyy+ (4ﬂ2—€)g - O:

the sturmian comparison theorem (Coddington & Levinson 1955, ch. 8) shows that any
solution to the latter equation must vanish at least twice in the interval [0, 1], which conclusion
is evidently contradicted by the solution g = sin (oy+1y,), where o = 4n®—e and |y,| > 0 is
sufficiently small (specifically 20y,+yj < €). We are left with the conclusion that @ is the
unique non-trivial x-independent solution of (4.1) and (4.2).

The following attribute of the boundary-value problem (4.1) and (4.2) is noteworthy
incidentally because it highlights the appropriateness of the cone to be chosen in §4.1 below.
In the case that the monotonicity of f according to condition (IIT) extends to negative values
of its second argument (again see Benjamin 1971, §6), it follows that any bounded solution of
the problem tending to zero as x —+ 00 is necessarily non-negative on § = R x [0, 1]. Although
not claimed as a proof, the following demonstration of this property is simple and plausible.
Suppose that ¢ is such a solution of (4.1) and (4.2) thatis twice continuously differentiable (see
below), satisfies ¢ < 0 on a subset 2 < § and vanishes on its boundary 9£2, which may be in
the interior of S or may include all or parts of the lines y = 0, y = 1 and the asymptotic limits
x—+ 00 in S. Equation (4.1) for ¢ is now juxtaposed with (4.3) for the first eigenfunction £,
which is well known to be single-signed on (0, 1) (see Coddington & Levinson 1955, p. 212). It
may thus be specified that §,(y) > 0 for 0 <y < 1. From the equations for ¢ and ¢, it follows
at once by Green’s theorem that

[ o6 { s 00 §))ardy = [ (6A8=gEu) dry
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Here the inequality is evident from the positivity of £, and the fact that, by the definition of
Q, 3¢ /0n cannot have negative values on 0. But we have 0 < A; < 1 by condition (IV) and
fly,0) > f(y,¢) if ¢ <O by the extension of condition (III). The first integral over £ is
therefore negative, and a contradiction is established. Note that, according to the same
argument, any solution of (4.1) and (4.2) that is periodic in x must also be non-negative. In
particular, the x-independent solution @ is thus confirmed to be so.

To proceed with our main task we recast the problem (4.1) and (4.2) as an integral equation,
using the Green function for —A defined by the boundary conditions (4.2). Thus we consider

¢ = B¢/ ($)] = Ap, say, (4.6)
where f(¢) is a shorthand for f(y, ¢(x,y)) and B denotes the symmetric linear operator given
by )
Bu(x,y) = f J k(x—%,y,7) u(%,7) didy

rJo :
2 exp (—nm|x—%|) sin (nRy) sin (n7y)

with k(x—i,y,4) = 2 ;

n=1 nm

The needed properties of B are well known (cf. Amick 1984; Amick & Toland 1989). The
kernel k is zero at y = 0,1 and § = 0,1 but is elsewhere positive and a strictly decreasing
function of |x—#]. Writing § = R x [0, 1], we have that, qua function of (x,y), k€ L?(S) for all
p =1 and (£,§) €S, and that B is continuous in the senses that it maps bounded elements of
C(S) into C*(S) and bounded elements of C*(S) into C**(S). (If£ = 0,1,2, ..., the space C*(S)
is the set of functions in C(R x (0, 1)) whose partial derivatives of order k£ and less have
continuous extensions to S. The space C**(S) with 0 <a <1 is the subspace of C*(S)
consisting of functions whose kth-order derivatives are Hélder continuous with exponent a.
These spaces have standard norms (cf. Gilbarg & Trudinger 1977).) Accordingly, a solution ¢
of (4.6) that is established in the space C(S) and is bounded can immediately be inferred to be
a twice continuously differentiable solution of (4.1) satisfying (4.2). For the condition (I) on
ftogether with the properties of B imply first that ¢ € C*(S) < C*(S), and then that ¢ € C**(S).

4.1. Choice of Fréchet space and cone

In this section the theory will be developed for the space C(S) of real continuous functions
defined on §, making it a Fréchet space by assigning it the toplogy of uniform convergence on

compacta. A suitable metric is again the one given by (2.1), where now the semi-norms p; are

defined b
s () = max lu(ny), j=1,2,....

—gtaxéjl
ES'ES |

As before we shall write 4.(v) for the open metric ball or radius r centred on a particular
element v, and also Z4,.(v) for its closure.

The cone that will be useful is suggested by the anticipated properties (i) and (ii) of solitary
waves. [t is

K={ueC(S):u(x,y) = u(—x,9) 2 0 and is non-increasing with |x| Vye [0, 1]}. (4.7)

Evidently this cone is closed and p,-bounded. Note that the definition of K does not include the
boundary conditions (4.2), which are, however, automatically satisfied by any fixed point of
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A in K. Note also that the x-independent solution & is a fixed point of 4 in K, for which
allowance will have to be made in the same way as for the second trivial solution of the problem
in §3. As before, we shall use the notation K, = K N %,(0).

4.2. Properties of the nonlinear operator

The properties of the operator 4 in (4.6) now needed are precise counterparts of those
established in §3.2 for the corresponding operator in the previous problem. They are presented
in three lemmas as follows, the first of which is so close to lemma 3.1 in substance that reference
to the earlier proof can be made for most details.

Limma 4.1. A maps K continuously into itself; and, for any p€ (0, 1), A(K,) is a relatively compact
subset of K.

Proof. Because conditions (1) and (III) imply that uf(x)€e K if ue K, the required property
A(K) = K will follow from B(K) < K. This property of B is demonstrable by an immediate
adaption of the arguments used in the proof of lemma 3. 1. For every y,7€(0,1), the kernel
k(x—%,y,4) > 0 is qua function of the variable z = x— # (i) a member of L'(R), (ii) even and
(iii) monotonic decreasing on [0, c0). Hence, as shown before, it is easily verified that Bue K
ifue k.

To show that 4 is a continuous self-mapping of K, the argument is virtually the same as
before, relying on the fact that continuity is implied by sequential continuity. Thus it suffices
to confirm that if any ue K and any sequence {u,};-, € K are such that p,(u,—u) >0 as n— 0
for eachj = 1,2, ..., then p,(Au, — Au) >0 as n— co for any given £. By virtue of condition (II)
we have that Ay, — Au| < 47°B (|, — ),
and hence the argument proceeds just as was exemplified before in the context of (3.11)—(3.13).

Finally, the relative compactness of 4(K,) is established by exactly the same argument that
covered the corresponding part of theorem 3.7 (cf. lemmas 3.1 and 3.3). O

LemMa 4.2. If r > 0 is sufficiently small, then
u# tAu foreach ueKnd4.(0) and te[0,1].

Proof. Suppose to the contrary that there is an element u of K with d(0,u) = r and a number
te [0, 1] such that u = tdu. For all (x,y) €S, we have u(x,y) < u(0,y) = uy(y), say. It therefore
follows according to conditions (I) and (III) that

1o(4) = ()0,3) > 4(10)0,9) = | Fos ) (910,05 (4.8)
where Fg) = [ Ko as = 5 3 SRR
=j§(1—y) if 0<§<y,
—y(i-g) if y<g <1}
is the Green function for —d?/dy? and zero end-conditions at y = 0, 1.

Consider now the eigensolution £,(y) of (4.3) corresponding to the first characteristic value,
which by condition (IV) can be written A; = 1—4 with 8 > 0. A standard argument regarding
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the first eigenfunction of any such Sturm-Liouville system shows that §,(y) >0on0 <y <1
(see Coddington & Levinson 1955, p. 212). We next observe that, because by condition (I) the
function fis continuous on [0, 1] x [0, o

), a number « > 0 certainly exists such that
S(s,8) < (1+430)f(s,0) for each se{0,1]

if 0 < t < k. Hence, in the case that p,(u) < k, (4.8) leads to
OSLfWﬁﬁAW%MNy<ﬂ+¥dk£ﬂ%@ﬂ%®f@ﬁﬁﬂﬁ%@ﬂ@@

=Muﬁ®Lﬂ%WQM%WM%

which is contradictory as A (1+30) = 1—36—38° < 1. Because p,(u) = p,(u) for each j if ue K,
we have that p,(x) < x if r =4d(0,u) < K/(l +«). Thus, for r < «/(14+«), a contradiction is
established, which completes the proof of the lemma. O

Although not needed in the proof, a minor extension of the argument shows that the
nonlinear operator 4 has, at the zero element of C(S), a Fréchet derivative 4'(0) with respect
to directions into the cone X (‘see Hamilton 1982 for a general discussion of Fréchet derivatives
in Fréchet spaces). This linear operator is specified by

A(0)v(x,y) = B[f(4,0)o(x,9)], for vek.

As was in effect recognized by the proof, £, € K is an eigenvector of 4’(0), corresponding to the
eigenvalue A;, and 4’(0) has no other eigenvector in K.
In the next lemma we shall refer to the comparable linear operator defined by

A’(OO) v(x,y) = B[Q(y) v<x)y)]>

which like 4 is a compact self-mapping of K. The operator A’(c0) is in fact the asymptotic
derivative of 4 with respect to the cone K (again sec Hamilton 1982), but this fact will not be
directly used here. Like the solution £, of (4.3), the first eigensolution of the Sturm-Liouville
problem (4.4) has the property %,(y) > 0 on 0 <y < 1. Thus %, is an eigenvector of 4’(c0) in
K, corresponding to the characteristic value that by condition (V) can be written p, = 14¢
with ¢ > 0. We shall use the function H = H(x,y) = h(x) ,(y) € K, where

[1—2(x)"+ (Bx)" if [ <p™ =0,
hix) =
lo it > 6,
and the number £ > 0 will be chosen presently. A calculation shows that
0 if |xf < b,
AH =§ —4f41—3(Bx)*} 1, (y) — " Qy) H(x,y)
Z—(4f+p'QH i |x < b,

and so it follows that H< B[4+ 41'Q) H].
Taking £ > 0 such that 84 < NN R——
g SN CEnITE= TR (49)
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which is evidently possible as Q is a positive continuous function, we have that
A'(c0)H=B(QH) = (1+4) H.

This result and the symmetry of B imply that, for any non-zero u€ K,

foH[A'(oo)u—u]dxdy)%f ' QHudxdy, (4.10)
RJO R

0

which is positive because any such « is positive on a subset of

support (H) = [—5,6] x [0, 1]
having non-zero measure.

The inequality (4.10) shows that 4’(c0) u—u cannot be identically zero on [—4, 4] x [0, 1]
for any non-zero u€ K. Moreover, because 4 is arbitrary other than being above the least value
for which # = 1/b satisfies (4.9), this conclusion can be extended to arbitrarily long subsections
of . Let / in the definition of the semi-norms p; be chosen not less than the least value of &
consistent with (4.9). Then (4.10) justifies the stronger statement that, respective to any
particular j, there is a number ¢ = ¢(j) > 0 such that

(A" (00) u—u) = cp,(u) for each ueKk. (4.11)

For proof, merely suppose (4.11) not to be true, so that a sequence {u,}r; < K, p;(u,) = 1 for

all n, can be found with the property that, as n— o0,
A (0)u,—u,—~0 on [—jl ] x[0,1]. (4.12)

As A’(00) is a compact mapping of K into itself, either {4"(c0)«,}*., or some subsequence
has a limit ve K, and for (4.12) to hold we must have p,(v) =1 and v—A4’(0)v =0 on
[—450 x [0,1]. But, with v in place of « and with b =i in the specification of H, (4.10)
plainly gives a contradiction. Thus (4.11) is proved.

We are now in a position to complete the final step in verifying the applicability of the theory
developed in §2.

Lemma 4.3. If R < 1 is sufficiently close to 1, then A is homotopic to A’(c0) on K N 0%B,(0) and there
ts no non-zero u€ K such that u— A’(0)ue K.

Proof. To prove the first part of the lemma, a contradiction is shown to follow from the
supposition that there is a u€ K N 0%,(0) and a te [0, 1] satisfying

u=tAu+(1—1t) A’(c0) u.
For any particular j, this equation implies that
£y(A'(0) u—u) = 1p,(4'(c0) u—Au) < py(A'(00) u— Au),

and hence (4.11) shows that
p;(A’(00) u—Au) = cpy(u). (4.13)

By virtue of condition (V), the quantity G(y,u) = Q(y)—f(y,4) is non-negative for all
y€[0,1], u = 0; it is non-increasing with «; and for any given € > 0 a number ¢ > 0 can be
chosen so that, if u > o,

G(y,u) <e foreach ye[0,1].

16 Vol. 331. A
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Writing ¢ for the maximum value of G(y,0) on [0, 1] and noting that, because u€ K,
u(x,y) < py(u) = p;(u) foreach (x,y)€S,j=1,
we can hence conclude that
0 < 4'(00) u—Au < {epy(u) + 903 B(1) = gy(1—y) {ep;(v) + g0}
and so p,(A’(00) u— Au) < Fep,(u) + g0} (4.14)

7

The inequalities (4.13) and (4.14) are contradictory if we choose € < 4¢ and then require
p,(w) = g0 /¢, which corresponds to R > go/(4c+¢o). Thus the first part of the lemma is
proved.

The second part of the lemma follows immediately from the inequality (4.10). If there were
a non-zero u€ K such that u— A4’(00) u€ K, the respective value of the integral on the left-hand
side of (4.10) would be non-positive, contrary to the demonstrated positivity of the right-hand
side. 0

4.3. Existence theorem

The preceding three lemmas establish that the theory developed in §2 is applicable to
equation (4.6). In particular, lemma 4.2 and lemma 2.6 together imply that i(K, 4, K,) =1
provided 7 > 0 is small enough. Further, the homotopy invariance of the fixed-point index
coupled with lemma 4.3 and lemma 2.7 imply that (K, 4, K) = 0 for R < 1 large enough. It
is thus guaranteed that the index of 4 is —1 on the conical segment K[, where r >0 and
R < 1 are numbers appropriate to the statements of lemmas 4.2 and 4.3, and that accordingly
A has a fixed point in K which would have index —1 if it were unique. To prove a solitary-
wave solution, however, we must exclude the x-independent solution @ from the provisions of
the fixed-point theorem. The analysis will proceed on the same lines as in §3.3, showing that
if @ were the only fixed point in K its index would necessarily be zero. Needless to say, the
arguments differ in detail from those in §3.3, but some abbreviation is possible by means of
reference to the previous account.

For ue K, let us use the convenient notation

F(u) = u(xy).f (9, u(x%9)),
F,(u) =f(% u(xa y)) +u(x5 y) [f;(% t)]t=u(z,y)'
Thus equation (4.6) may be rewritten ¢ = BF(¢). In particular, the x-independent, non-trivial

solution is defined uniquely by @(y) > 0 on (0,1) and & = BF(®) = BF(®), where B is the
linear operation on x-independent functions that was introduced in (4.8), having the kernel

k(y,§). According to conditions (I) and (III), F'(P) is a continuous, strictly positive function
on [0, 1]; and condition (III) also implies that

OF' (D) — F(D) = @*f'(P) >0 on (0,1). (4.15)
We shall need to consider the linear operator A’(®) defined by
B A(®)v(x,y) = BIF'(®) o(x,9)]. (4.16)

(This operator is in fact the Fréchet derivative of 4 at @ in K (cf. Hamilton 1982), but such
an attribution will not need to be used here.) It is easy to confirm (cf. Benjamin 1971, §5) that
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A’(D) has an x-independent eigenvector §;€ K that satisfies §;(y) > 0 on (0,1). Thus the
equation for § is ~
: : v & = BIF/(9) 4],

with eigenvalue v,. Multiplying this equation by F(®), integrating over [0, 1] and using the
symmetry of B, we obtain '

1

[ atn @) -oF @)y =, (4.17)
0

which in view of (4.15) shows that v, > 1. The first of the several results needed to prepare for

the existence theorem can now be given.

LemMA 4.4. If | is chosen sufficiently large, A'(D) has an eigenvector &, = cos (nx/1) &, (y), with
& (y) > 0 on (0,1), corresponding to which the eigenvalue satisfies vy = vy(l) > 1.

Proof. According to the definition (4.16) of A’(®), the function &,(y) is required to satisfy
Vo €—2 . EL[F/(QD) g_z],

where B, is a symmetric operator akin to B but with the kernel

l 2
{cosechﬂsmh (By)sinh [f(1—7)] if 0<y
cosech fsinh (ff) sinh [f(1—y)] if §<y

This kernel like £ is continuous and positive on (0, 1) x (0, 1). Hence standard positive-operator
methods, exactly as may be used to establish the eigenvector {; of 4’(®), show that ¢, exists
in the class of continuous non-negative functions defined on [0, 1], and the positivity of k, on
(0,1) x (0, 1) evidently ensures that £, > 0 on (0,1).

We note that £,4 £ uniformly on [0,1] x[0,1] as [0 (i.e. #—0), which implies that
v,({)y > v, as [»>o0. It is known from (4.17) that v, = 1+¢ with € > 0. A finite value /" of
[ can therefore be found such that v,({) > 1 +3¢ if [ > I'. The proof is thus complete. |

~ sin (fnmy) sin (fani) _1
kl( %Y ) 2 Z n +ﬂ2 (ﬁ—

<7,
31 (4.18)

The following two, simple results that will be needed are counterparts of lemmas 3.4 and 3.5.

Lemma 4.5. Let u(x,y) be a continuous function on [0, 1] X [0, 1] that is non-increasing in x but not

necessarily positive. Then - o
f f u(x,y) cos (—l—) dxdy = 0. (4.19)
0Jo

Equality holds in (4.19) only if u(x,y) = u(0,y) for all (x,y)€[0,]x [0, 1].
Proof. An obvious adaption of the proof of lemma 3.4. O

LEmMma 4.6. Let x> [1>0,0<y< 1,0 < g < 1. Then, if | is chosen sufficiently large,
¢ ‘nx " ) a ” “
cos |~ {k(x—7%,y,9) +k(x+4,y,7)}dE <O.
0
Proof. From the definition of £ below (4.6), this integral is found to equal

1 @ {E—mr(a‘. 1) L—nn(ul}}

—n—l ( —|-ﬁ

sin (nmy) sin (nnf) = w(x,y,9) —w(x+2Ly,7), say, (4.20)
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where, again, f = 1// and o(x,,9) ‘s a harmonic function of (x,y) on (I, 00) x [0,1] for each
value of 7€(0,1), and so accordingly is the integral that (4.20) represents. We note that
w(x,y,§) iszeroony =0andy = 1, tends to zero uniformly with respect to y€ (0,1) as x> 0,
and on x = [ equals —1k,(y,9) as given by (4.18), being thus negative there for ye (0,1). By
virtue of the maximum principle for harmonic functions, it follows that w is negative every-
where on [/, 0) x (0,1). In further consequence of w being harmonic on the stated domain,
because otherwise its asymptotic property as ¥ = would be contradicted, a finite value ”
of | must exist such that (2L,y,%) > (0,4, §) for all y,§€(0,1) if I = . Thus, if { = /", the
harmonic function (4.20) is negative for x = land y,7j€ (0,1). Referring the maximum principle
to the function (4.20) in this case, we conclude that it is negative on [/, 00) X (0, 1) if € (0, 1),
and thus the lemma is proven. 0

As in §3.3, passing reference to the respective periodic-wave problem is needed. We consider
the cone

K, = {ueC(S):u(—xy) = u(x,y) =0 V(x,y) €S, uis
2/-periodic in x and non-increasing with x on  [0,{] Vy€ [0, 11},

which like K is a closed cone in C(S). As before, the half-period /is identified with the number
given the same symbol in the definition of the metric d. Also, [ is understood to be large enough

to comply with lemmas 4.4-4.6. Again corresponding to steps in §3.3, continuous operators
r,: K— K, and s,:K,— K are defined by

(r,) (%, ) ={“<w> if 0<ld <t
w@mi—ld,y) i @m—1I<SW < @myL (m=12.),

v(x,y) if 0o <Y,
oly) i >

(5,9) (1,3) ={

for all ye[0,1]. Evidently 7,05, is the same as the identity map on K, and so the cone
K r-dominates K.
We shall use the following facts tied to the periodic problem.

Lemma 4.7. The operator A maps K, continuously into itself, and A(K, N #,(0)) with 0 <p < 1is
a relatively compact subset of K.

Proof. The continuity and compactness of A:K,~ K, are confirmable in the same way as in
the proof of lemma 4.1. U

It is noteworthy that this lemma, coupled with obvious corollaries of lemmas 4.2 and 4.3,
incidentally establishes the applicability of theorem 9.8 to the periodic-wave problem.
Moreover, in the proof of lemma 4.8 that follows next, the index of the x-independent fixed
point @ of 4 is shown in the first place to be zero respecting @ as a solution of this problem.
Thus, all the ingredients of an existence theory for periodic solutions of (4.6) are provided. The
available conclusion is that there is an x-dependent solution in every cone K, with [ > [,, where
I_is the value above which / complies with lemma 4.4 (i.e. vy(l,) = 1). No direct use needs to be
made of this result, but it accords perfectly with the more incisive, generalized view that

proposition 2.5 provides regarding the connection between the solitary-wave and periodic-
wave problems.
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The anticipated result that is the counterpart of lemma 3.6 can now be established.

Lemma 4.8. If @ = @(y) were the only fixed point of A in KT, where r > 0 and R < 1 are the numbers
specified in lemmas 4.2 and 4.3, the index of this fixed point would be zero, i.e. i(A, D) = 0.

| Proof. Considering the homotopy
H(u,t) = tAu+ (1 —1¢) 5, Ar,u
on Kn#(P) =r'[K,nB(D)], (4.21)

with € > 0 sufficiently small, we can retrace exactly the initial steps in the proof of lemma 3.6.
The mapping H plainly satisfies the continuity and compactness requirements for an admissible
homotopy, thanks to the continuity of 7, and s, and to the conclusions of lemmas 4.1 and 4.7.
Using lemma 4.7, we may therefore conclude that 4 is homotopic to 5, 47, on the set (4.21) if
there is no u€ K with d(®,u) = € and no t€[0, 1] such that

u=tAu+(1—1) s, Aryu.

The case t =1 is excluded by assumption, and so henceforth it is taken that ¢ < 1. For

0 < x </, this equation reduces to
BF(ryu)—u = ty, (4.22)

where

Y(x,y) = B{F(r,u)—F(u)}

1
= f k(E=x,9,9) +k(F+ 2,9, DHEF(r,u) (£, §) — F(u) (4, 9); d4 d7.

I>lJ0

Multiplying the left-hand side of (4.22) by F'(®) {,(y) cos (nx/[), integrating over [0, {] x [0, 1]

and using lemma 4.4, we obtain

f: Ll {v, F(u) —uF (@)} &, (y) cos (mx /) dx dy, (4.23)

in which vy > 1. As u€ K is non-increasing with x in [0,/], so also is v, F(u) —uF' (®P) if
vy F'(u) — F'(P) > 0;

and because F’(u) > 0 is a continuous function of , there is certainly a number ¢ > 0 such that
this condition is satisfied if

Hence, if €=d(®,u) <3/(1+c), (4.24)

the factor in curly brackets in the integrand of (4.23) is non-increasing with x, and so according
to lemma 4.5 the value of this integral is non-negative. Moreover, its value is positive unless
u(x,y) = u(0,y) for each (x,y)e[0,] x [0, 1].

On the other hand, the corresponding integral derived from the right-hand side of (4.22) is

! Lﬂ L T(#, §) {F(r,u) — F(u)} d#dy, (4.25)

17 Vol. 331. A
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e red = [ [ r@am (T ) (hx— £+ ki )} 4

must be negative according to lemma 4.6.

The only way in which these facts can be reconciled is that (i) u(x,y) = u(0,y) for all
(x,) €[0,] x [0, 1] and in addition (ii) either ¢ = 0 or u(x,y) = u(/,y) forallx > [and y € [0,1].
If t = 0, then u belonging to the set (4.21) satisfies « = 5, Ar,u, which with (i) implies that u is
x-independent. If the second alternative in (ii) holds, then again (i) implies u to be x-
independent. Thus, in either case, we must have u(x,y) = ¥ (y), say, a function of y alone. But
then we also have 5, Ar,u = Ay and so Y = Ay, which contradicts the uniqueness of @. It is
therefore established that 4 is homotopic to 5, Ar, on the set (4.21).

Proceeding just as in the proof of lemma 3.6, we note that, because K| is r,-dominated by K,
therefore

i(K, 4,7 K, 0 B(P)]) = i(Kp, 4, K, N F (D)) (4.26)

and so the proof can be completed by showing the latter index to be zero. Let any u*e K, be
chosen that is strictly decreasing with x in (0,/) for y€(0,1). The aim in view will be met by
showing that there is no u€ K, and no number a 2 0 such that

u—Au = au®*. (4.27)

Supposing the contrary, we may treat (4.27) in the same way as (4.22) to obtain the
equation

ff{vz u)—uF” (B)} &, (y )cos( )dxdy—— JJ ) urE( )cos(”—;‘)dxdy, (4.28)

the right-hand side of which is shown by lemma 4.5 to be non-positive, and strictly negative
ifa > 0. But the left-hand side of (4.27) has already been shown to be non-negative, and strictly
positive unless u(x,y) = u(0,y) for all (x,9)€[0,{] x[0,1]. The only consistent conclusion,
therefore, is that a = 0 and u obeys the latter restriction. Because u€ K, we then must have
u(x,y) = ¥ (y) as before and consequently ¥ = Ay, which again contradicts the uniqueness
of @. Tt is thus established that |

i(K;, 4, K, 0 B(P)) = 0.
In view of the identities (4.21) and (4.26), it follows that

(K, 4, [K,nB(P)]) =1(4,P) =0

and the proof of lemma 4.8 is complete. O

The existence theorem for a solitary-wave solution of (4.6) can now be presented.

THEOREM 4.9. There exists a pe K[ satisfying ¢ = Ap and

lim ¢(x,y) =0 foreach ye[0,1]. (4.29)
¢ = Ty \l->e0
Proof. If the x-independent function @(y) were the only fixed point of 4 in KF, then as
Ijemarked at the beginning of §4.3, (4, ®) = —1. But lemma 4.8 has established that
1(4, @) = 0. Therefore a fixed point ¢ is guaranteed that is dependent on «x.
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| Ficure 1. Illustration of model for surface solitary wave.

irrotational motion (i.e. ch¢ is the velocity potential and ¢hif is the stream-function), so that the
‘ canal bottom is the streamline ¥ = 0 and the free surface is the streamline ¥ = 1. The velocity
components in the fluid are (4,v) = ch(@,, P,) = ch(¥,, —¥,), and we write g = (P +0?)/
If the solitary wave of extreme form is excluded from consideration, it can be assumed
that ¢ > 0 and that z is an analytic function of w in the infinite strip R x [0,1]. (For recent
theory pertaining to the solitary wave of extreme form, see Amick e/ al. (1982), McLeod
(1987) and Amick & Fraenkel (1987).) Hence A 'dz/dw =€"/¢ is analytic, so is
I In (A'dz/dw) = In (1/¢) +i6, and accordingly

—(1/4) 9q/3¢ = 00/ (6.1)

Here 6 is the angle between the x-axis and the tangent to streamlines, so that tanf = v/u.
As 0(¢, ) is harmonic in the strip and (¢, 0) = 0, it follows from (5.1) that the function

6, = 6(¢,1) is given by 6, = — B(g"10q/08) ,—1» (5.2)
where B is the linear operator defined generally as follows:
if P,+PF,=0 in Rx(0,1),
P(¢,0) =0 and P(p,1)=f(¢) forall ¢eR, (6.3)
then (Bf) ($) = P($ 1).

Various relevant properties of B will be noted in §5.2 below, including its representation as
an integral operator and an appropriate specification of domain and codomain.
At the free surface ¥y = 1, we also have that

(3y/2¢)s = Im (dz/dw),_, = h(sin 6,/4s), (5.4)

and the dynamical boundary condition there is that

Lu® + )+ gy, = const. = 3¢+ gh,
whence ¢ dg,/d¢d = —gdy,/d¢. (6.5)
Combining. (5.2), (5.4) and (5.5), we obtain
: V i 0, = uB (sin6,/ ), (5.6)
in Wthh # = gh/c*. Further from (5.4) and (5.5), we can find ¢2 in terms of 6, by solving

dgl/d¢ = —3usind,. (6.7)
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As g1 as ¢ >+ 00, an integral with o0 or — o0 as one limit of integration can at once be
written down expressing ¢,; but when substituted in (5.6) this expression does not provide a
tractable equation for 6,. The preferable step is to integrate (5.7) from the wave crest, where
we can specify that ¢ = 0 and ¢,(0) = 4o, say, with 0 < ¢, < 1. It is also convenient to take
w = —8, as the dependent variable, so that w(¢) > 0 for ¢ > 0. Thus we obtain

b 1
29) = i+ 3u | sinu(g) dg’ = oo 3us | sinteg)at (5.8)
0 0
and hence from (5.6)

w(@) = B[y sin (@) / (1 +3y¢ f: sin w(tg) dt)], (5.9)

where v = u/qd = ghe/u}.

Our analysis will focus on the nonlinear integral equation (5.9), which will be written in
short as @ = BF, w. The equation resembles a version of the Nekrasov integral equation that has
often been used in the theory of periodic water waves, but its meaning is different, particularly
inasmuch as the component linear operator B has been defined to cover solitary waves. Note
that 7y is the only parameter of the equation. The problem has thus been uncoupled from
explicit dependence on the original parameter s, which characterizes the stream at infinity and
so is the more directly significant in physical respects. It is known that # < 1 for solitary waves,
but we shall have no need to use this property. In principle, when a solitary-wave solution of
(5.9) is found, the corresponding value of 4 can be found from (5.8) in the limit ¢ — co which
must give ¢, = 1.

A solitary wave corresponds to a non-trivial solution @ of (5.9) that is an odd function of 10}

vanishing in the limit ¢ - co. The facts that |E,(0)| < ylw| whenever © is non-zero and that
B(1) = 1 (see §5.2) imply (5.9) to have no such solution if v < 1. Accordingly, our aim is to
prove that (5.9) has a solitary-wave solution for every number y > 1.
Solutions will be established in a space of odd continuous real-valued functions of a real
variable, but their further regularity can readily be inferred from the integral equation. A
demonstration that each solution is an analytic function generating a good solution of the
hydrodynamic problem will be omitted, being essentially straightforward (cf. McLeod 1985).
We also pass over the interesting questions posed by the solitary wave of extreme form, which
is produced in the limit as y - 00. Equation (5.9) remains meaningful in this limit (because
y - oo cancels between the numerator and denominator of the integrand exhibited in (5.9)),
but any solution is then necessarily a discontinuous function of ¢.

5.2. Properties of B

For use later, the following properties of the linear operator B defined by (5.3) need to be
recognized. We continue to write ¢ for the (dimensionless) independent variable, although its
connotation as a velocity potential, is for the moment immaterial.

1. The symbol of B is the even function B:R—R* given by

B(s) = s tanh (s)

(cf. the first paragraph of §3). This fact is plain because, taking f = sin (s¢ +4) (s, A€R) in the
specification of the boundary-value problem (5.3), we get

P = s 'sech (5) sin (s¢ + A) sinh (s¢)
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and so Bf= P(¢,1) = 57" tanh (s) sin (sp+A).

Remark. The linearized form of (5.9) is @ = uBw, and evidently y = x4 according to a theory
of infinitesimal water waves. Hence the property 1 means that the (dimensional) wavenumber
a of simple-harmonic infinitesimal waves satisfies

1/u = ¢t/gh = tanh (ah)/ah <1,

which recovers the well known dispersion relation between speed ¢ and wavenumber a for such
waves.
2. B is equivalent to convolution with the inverse Fourier cosine transform of B(s), thus

5= [ Hp— )19 (5.10)
with k(¢) = LmIn{cotanh (3u|p])}. (5.11)
Note that J k() dgp = 1, (5.12)

which fact is obvious from B(0) = 1, and even more s0 from the property B(a) = a for all
constant functions a that is shown by the specification P = ay in (5.5).

3. As is well known, various classes of functions are transformed by B into smoother
functions. These properties are deducible by standard arguments from the integral
representation (5.10) of B, and also by Sobolev-space arguments referred to the symbol B. For
example, B is continuous from C,(R) into C; (R), which property bears on our treatment of the
integral equation (5.9).

4. Ttis incidentally noteworthy that, whereas B is most easily appraised as an operation on
functions well delimited over the whole of R (e.g. bounded continuous functions), B still has
meaning as an operation on other functions. For example, we have B¢ = ¢. This identity could
be confirmed by considering the (distributional) Fourier transform of ¢, multiplying it by B
and then finding the inverse transform; but the outcome is otherwise obvious from the original
definition (5.3) of B and the harmonic function P = ¢y Similarly, for || < §m, we have

B(e*) = (f7 tan B) .

Remark. Although hardly a proof, the following indication that g <1 (ie. ¢®> gh) for
solitary waves is simple and interesting. For a solitary wave, w(¢) ~ 0 as ¢ — 0, and, because
the kernel in (5.10) decreases exponentially with distance from the diagonal in Rx R, it can

be expected that lw—fl/lo|>0 as ¢,
where fsatisfies the linearized form of (5.9) relative to the stream at infinity. That is, f = uBf.

(A similar inference can, of course, be drawn about the limit ¢ —~—00.) It is easily seen that
the only non-zero solution of f = uBf with the property |10 as ¢—>o00 is

f=const.xe™® (f>0),

with = f/tan , which is less than 1 for all fe (0,3m). (For a similar but rigorous
demonstration of the property u < 1, reference should be made to McLeod (1985).)
5. Consider the set of odd continuous functions

H ={feC(R):f(—¢) = —f(#), [(8) > 0 and f(¢)/¢ is bounded V¢ > 0},

SR
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which evidently satisfies the axioms (2.3) of a cone. In view of the facts (i) that the kernel £(¢)
specified by (5.11) is a positive even function, strictly decreasing with |g| increasing, (ii) that
every element of A~ has bounds f(¢) < a¢ for ¢ > 0and f(¢) = ap forp <0 with a respective
positive constant a, and (iii) that B(ag) = a¢ as noted in (4), it is easily confirmable that
BA ) A

An important element in the subsequent theory is a subset of & that is a narrower cone in
the Fréchet space C(R). It is

K= {fed :f(s¢) > o (9) ¥¢ > 0 and s&[0, 1]} (5.13)

Thus K consists of odd continuous functions that are non-negative and concave with respect
to the origin on [0, 00). The final property discriminating K from " is equivalently that f @)/
is non-increasing on [0, 00) or, in the case of continuously differentiable member of K, that
f(¢) = ¢f ($) on [0,¢). To confirm that B(K) € K, it remains only to show that Bf has the
final property if f€ K. Among several proofs that have been noticed by us, the following is the
simplest.

Corresponding to any fe K, the harmonic function P defined by (5.3) is necessarily analytic
in the interior of the infinite strip, and is an odd function of ¢ for each Y€ [0, 1]. We consider
§{=P—¢P,. On Rx(0,1) this function satisfies the elliptic equation

€¢¢ + gw . 2¢—1§¢ =0,

to which the maximum principle applies, and we note that (¢, 1) = Bf—¢(Bf)’. According
to the attribution f€ K and to the definition of P, {, cannot be negative as i 1 1. We also have
that &(¢p,0) = O for each ¢ €R and that £(0,9) = 0 for each e [0,1]. Hence, referred to the
half-strip (0, c0) % (0, 1), the maximum principle guarantees that {(¢, 1) > 0 for all ¢ = 0, and
so the property in question is proved.

6. Recognizing the Fourier sine transform of 1/¢ to be 3nsgn (¢), multiplying it by the
symbol of B and finding the inverse transform, we conclude that

- ewolinllpR)] o

(cf. Ditkin & Prudnikov 1965, p. 281). This expression is an odd real function, which has a
saltus of T at the origin and is positive for ¢ > 0 (i.e. its value is it at 0* and —3m at 07). It
is moreover C® and monotonic decreasing for ¢ >0, vanishing in the limit ¢ - c0. These
properties may be readily confirmed after one notes that, for ¢ >0,

[B(1/9)] = Y (+3ig) +¥(3—g) —¥ (1+1i9) —p(1—}ig),

where (for the moment only, so with no risk of confusion) ¥ denotes the digamma function.

The latter expression more evidently than (5.14) is a real function, having negative values for
¢ > 0.
7. With parameter a > 0, a set of functions 7,€ K is defined by

_[sin (ng/a) if 0<I|pl<aq, 5.15
JURIN it 1g>0. o
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As indicated below, it can be shown that for any € > 0, however small, there exists a
corresponding positive number a, such that, for a = a,,
B(y,) > (1+€)7'q, if ¢>0. (5.16)
As 9, and consequently B(y,) are odd functions, the opposite inequality holds, of course, if
¢ < 0.
To prove this property, the most direct course is to evaluate the representation B(7,) =
F~Y(BFy,) by means of contour integration and Jordan’s lemma. It is thus fairly easy to

obain B(,) = tanh (v/a) 1,/ (1/a) + &,
in which £, is an odd function found explicitly as an infinite sum of exponential functions,
showing that §,€ 4" (in fact £,(¢) > 0 if ¢ > 0). The required property follows at once by
virtue of the fact that the continuous function s *tanhst 1 as 5| 0.
Needless to say, the special functions 7,, and B(1/¢) noted in 6, will be used in the analysis
that follows.
5.3. Existence theory

Introducing the continuous function M:R— R defined by

we modify equation (5.9) in the form
w = BE(Mw) =A,w, say. (5.17)

Any solution of (5.17) satisfying sup, g |w(4)| < g7 is a solution of the original equation, but
(5.17) offers certain advantages. In particular, proposition 2.5 can be brought to bear directly
upon it, illuminating the connection between the solitary-wave problem now to be solved and
the underlying periodic-wave problem.

Just as in §3.1, let X denote the Fréchet space based on C(R), with the standard metric
as defined by (3.5) and (2.1). As before, we postpone the choice of / > 0 fixing the intervals
[—jlyll,7=1,2,..., on which the semi-norms p, are defined. The aim in view is to verify that
theorem 2.9 is applicable to the operator 4, for each y > 1, proving (5.17) to have a non-trivial
solution in the cone K — X that has been defined by (5.13).

It needs to be confirmed that A, is a continuous positive operator, and is K-compact. First,
to show that 4 (K) < K, we note that if fe€ K, then obviously 4, f is an odd function and
Af =0 on [0,00). Moreover, as f is concave with respect to the origin, so evidently is the
function sin (M f): that is,

sin{M f(s¢)} = sin{M(sf (¢))} = ssin{Mf($)}
for each ¢ > 0 and s€[0, 1]. Hence

E{Mf(s¢)} = sysin {M f(¢)} /[1 +3ys¢ J : sin {M f(sth)} dt]

> sysin (/) | 1+379 | sin {Mf(tsé)}] = ELMf$)}

for each ¢ > 0 and s [0, 1]. Thus we have that F,M(K) < K, and it has already been shown
in 5 of §5.2 that B(K) < K.
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Now, for any ge K, it is plain that
1
f g(td)det = Lo(p) forall g = 0. (6.18)
0
Referring this inequality to functions sin(M f) € K appearing above, we conclude directly that,
for all fe K,
or all fe EMf($) <ip forall >0,
<% forallg <O.
It follows that, for all fe K,

o

A, f<3Q(p) forallg > 0,1
<

Q(p) forallg <0,]

where Q(4) = B(1/¢) is the function exhibited as (5.14). Because £(¢) is less than ir and
monotonic decreasing for ¢ > 0, this result shows that

sup |4, f(9)| < g7, (5.20)
hek

and so 4,(K) < KN %&,,4., because by definition p,(f) < p,(f) < .... Any solution of (5.17)
in K is therefore automatically a solution of the original equation (5.9) without the modification
entailing the operation M. The property (5.19) of 4, amply compensates for the fact that the
present cone K is not bounded in the strong sense applicable to the cones used in §§3 and 4
(although it is in fact p,-bounded in the weaker sense that p,(f) < jp,(f) for every fe K and
J=2,3,...). It may be noted also that the general estimate (5.20) grossly exceeds the maximum
slope of solitary waves, which Amick (1987) has proved to be less than 31.15°; but the estimate
is, of course, serviceable in an existence theory.

Verification that 4,: K— K is continuous and that 4, (K) is a relatively compact subset of K
can be established by virtually the same arguments as used in §3.2, and therefore the details
are omitted. The crucial facts are (a) that F,M:K— K is continuous, (b) that F, M(K) is
contained in the narrow subset of K delimited by (5.19), and (c) that due to the property of
B noted in 3 of §5.2, the B-image of this subset is equicontinuous.

The final step required to verify the applicability of theorem 2.9 is presented as follows.

(5.19)

VA
<Llro

Lemma 5.1. For every (finite) y > 1, the operator A, compresses the cone K.

Progf. 'T'wo conditions will be verified, being considered in the forms (2.12) and (2.14). First,
the estimate (5.20) plainly implies that

A, f—f¢K if fe KN By,

where R is any number such that 1 > R > nt/(3 +x). Thus the condition (2.12) is satisfied with
such a choice of R.
The other condition is a little more difficult to establish. Since y > 1, we can choose ¢ > 0

such that
v 2 1+2e. (5.21)

Next, referring to the definition of the first semi-norm p,, namely

pn(f) = max |f($)],

o<lgl<t
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we choose [ =a, where a > a, provides the property (5.16) in terms of 7, and €. As
S=ZsinMf= f—1f%for all f = 0, it is seen according to (5.21) and (5.22) that if, for any fe K,

3(1+e)yip, (f) +5vpi(f) <e, (5.23)
then E(Mf) = (1+€)f on [0,1], (5.24)

with strict inequality at all points where f(¢) > 0. As € and [ are already prescribed, there is
certainly a number § > 0 such that (5.23) and consequently (5.24) are satisfied if

n(f) <4 (5.25)

In this case and provided that p,(f) > 0, we have from (5.24) and the property (5.16) that,
for any feK,

f (=4, f) 7,dp < fo{f—<1+e> Bf}y,dg = fof{m—<1+e>B(m>} <0,

since B is a symmetric operator on odd continuous functions and 4,(¢) = 0 for ¢ > /. This result
implies that f—A, f¢ K for all fe K satisfying (5.25) and p,(f) > 0.

It remains only to confirm that these last two conditions are satisfied on K N 4, for some
choice of 7 > 0. As the seminorms p; are non-decreasing, we have d(0,f) = p,(f) /{1 +p,()},
and so (5.25) is satisfied by choosing r = §/(14+3J) > 0. On the other hand, as already noted
parenthetically, K is p,-bounded in the sense that p,( f) <jp,(f) for every fe K. Hence, for all
J€KN %, we have _ .

~d0.) < Z gl < (S2)0 ) = 200,
12 {14 ()} \T 2 '
which confirms the second condition. Thus, with r =4/(1+46), the condition (2.14) for
compression of the cone K is verified, namely

f—4,f¢K if feKnA,
and the proof of the lemma is complete. O

TuEOREM 5.2. For each (finite) y > 1, equation (5.9) has a respective solitary-wave solution w,, in the
cone K defined by (5.13). Each solution satisfies v, (¢) < §2(@) < 3 for all ¢ > 0, so that |w,(¢)| >0
as ¢ -+ oo.

Proof. It has been established that, for each vy, 4, is a continuous positive operator such that
A,(K) is contained in a compact subset of K, and lemma 5.1 has established that 4 , compresses
the cone K. Accordingly, theorem 2.9 guarantees that A, has a non-trivial ﬁxed point o,
in K. The a priori estimate (5.19) then shows that w, is also a solution of (5.9). Because
Q(¢) = B(1/¢) given by (5.14) decays to zero like 1/¢ as ¢ -+ 00, the estimate (5.19) also
verifies the final statements of the theorem. a

Various other properties of surface solitary waves may be deduced on the basis of the
foregoing theory, but we pass over the details. For example, o, (@) is positive on (0, 00),
negative on (—00,0). Applied to a solution the estimate (6.19) can easily be improved, for
instance by substituting it back into the general y-dependent bound for E ", M(K) based on
(5.18). Continuous dependence of w, on ¥ can be readily demonstrated at least as a generic
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property by index-theoretic arguments, but questions concerning uniqueness and the possibility
of bifurcation appear to be difficult.

6. CONCLUSION

The topological method of analysis expounded in §2 has been applied to three specific
solitary-wave problems whose variety demonstrates the general effectiveness of the method. A
prime fact deserving final re-emphasis is that because the support of solitary-wave solutions in
every example is unbounded, standard Banach-space methods are rendered useless for a direct
approach. But we should acknowledge the complexities presented in verifying the conditions
for applicability of the existence theorems made available in §2.

It is remarkable that the first problem, treated in §3, turns out to be particularly hard,
notwithstanding that the one-dimensional system in question may seem superficially an easy
case. This problem was in fact treated as the prototype during our studies, and finding how to
deal with it conclusively was their watershed. Its principal difficulties, arising from the presence
of two separate trivial solutions, were finally well appreciated to be inherent and not avoidable
by any elementary means. Also having two extraneous solutions, which represent perfectly
legitimate features of the physical model (i.e. a pair of conjugate flows), the problem treated
in §4 is comparable with but essentially no more difficult than the prototype. In contrast,
because of the neat reduction availed by conformal transformations, the classic water-wave
problem treated in § 5 avoids the complication of multiple extraneous solutions. Thus, although
this problem incidentally presents many interesting details, the gist of the existence theory is
comparatively simple.

For the sake of completeness we should point out that counterparts of theorems 2.8 and 2.9,
concerning nonlinear operators that expand or compress a Fréchet-space cone K, can be given
in terms of Fréchet derivatives with respect to the directions of K (cf. Krasnosel’skii 1964a,
theorems 4.11 and 4.16). Specifically, one needs to suppose that ‘K is normal and that the
continuous nonlinear operator 4: K— K has in this restricted sense a derivative 4’(0) at the
zero element of K and an asymptotic derivative 4’(c0) in K. If 4 is K-compact, then so will be
these two linear positive operators and they will have eigenvectors in K. Hence statements
about the respective eigenvalues in comparison with 1 can replace the conditions (2.12) and
(2.13) of theorem 2.8, or (2.15) and (2.16) of theorem 2.9. The essential ideas have been
demonstrated in §4, where 4’(0) and A’ (o0) were explicitly found as attributes of the particular
A under study, and where the verification of the conditions of theorem 2.8 covered virtually
the same ground as a proof of the alternative theorem. Because the further details that would
need to be spelled out in recalling a proper general definition of Fréchet derivatives of operators
in non-normable spaces are not needed for the applications, we have chosen not to include
proofs of these other theorems in abstract. We may note, however, that they follow by a
straightforward extension of the arguments used in §2.4 on exactly the same lines as in
Benjamin (1971, Appendix 1; cf. Fitzpatrick & Petryshyn 1976).

The abstract result stated as proposition 2.5, whose proof is more intricate, was also not
strictly needed for the applications. But it was included because of its very general and
informative bearing on the connection between periodic and solitary waves. Its relevance to
each of the solitary-wave existence theories has been explained at the end of §2.3.

Finally, it should be recognized that this compilation of exact solitary-wave theories is by no
means comprehensive. In the same general class many other solitary-wave problems can be
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listed differing in significant details from the present ones. For example, the theory of solitary
waves in a stratified heavy fluid of infinite total depth (Benjamin 1967) has yet to be given a
rigorous foundation.
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