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CHAPTER 1

Fully-Discrete Methods with Grid Refinement for the
Generalized Korteweg-de Vries Equation’

Jerry L. Bonat

Vassilios A. Dougalis*
Ohannes A. Karakashian}
William R. McKinney**

Abstract. A class of fully-discrete schemes for the numerical solution of the periodic
initial-value problem for the generalized Korteweg-de Vries equation are presented and
tested. These numerical approximations are generated by a Galerkin Finite Element pro-
cess for the spatial discretization and Implicit Runge-Kutta methods for the temporal
discretization. Such schemes possess excellent stability properties, as well as arbitrar-
ily high order rates of convergence in both the spatial and temporal variables. These
methods are used with adaptive grid refinement in the spatial and temporal meshes to
investigate the stability and instability of a class of travelling-wave solutions known as
solitary-waves. The numerical approximations give evidence that solutions of the GKdV
equation can develop singularities in finite time.

1. Introduction. In this paper, numerical methods used to generate fully-discrete
approximations for the generalized Korteweg-de Vries (GKdV) equation are presented.
The GKdV equation is a model used to describe the propagation of nonlinear, dispersive
waves and can be written in the form

(1.10) ue + uPug + €lzez = 0,

where p is a nonnegative integer and ¢ is a nonzero parameter. Here, the equation is
considered with periodic boundary conditions on the spatial interval z € [0,1} and for
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finite time intervals t € [0,t*], with initial data
(1.1b) u(z,0) = u’(2)

where u® is a given periodic function of period 1. The value of the solution u(z,1)
represents the amplitude of a periodic wave at a point z at time L. The special case
p=1 corresponds to the well-known Korteweg-de Vries (KdV) equation.

The global existence of solutions for (1.1), with arbitrary p and large, smooth initial
data uY, is still an open question. Kato [1] has shown that if p < 4, then the pure
{nitial-value problem for (1.1), wherein 19 is specified for all z and need not be periodic,
does indeed have solutions that exist for all ¢ > 0, provided «° is sufficiently smooth
and decays at infinity. A similar result holds for the periodic case (see for example
[2] in the case p = 1). To investigate numerically the question of global existence, we
shall use the family of solitary-wave solutions. A recent theory [3] has shown that these
special travelling-wave solutions are stable if and only if p < 4. However, the theory
leaves completely open the manifestation of instability. The numerical simulations given
herein indicate that the instability leads to the formation of singularities in finite time.

In Section 2, the numerical schemes used to produce fully-discrete approximations
to solutions of the periodic initial-value problem for the GKdV equation are presented.
These schemes are a combination of a Galerkin method and Implicit Runge-Kutta meth-
ods. In this paper, only a brief description of these methods is given. A more detailed
description of these schemes, including proofs of stability and convergence along with
an algorithm for their efficient implementation, may be found in [4]; for earlier work
and results, including a list of numerical techniques for the KdV equation, see [5] and
the references therein. An important consequence of the methods used here is that they
preserve the second invariant of the GKdV equation.

In Section 3, these numerical methods are used with uniform gpatial and temporal
meshes to simulate the solitary-wave for p = 5. With small initial data, the schemes are
very effective. However, for larger u°, it becomes very evident that these methods need
modification. This is done in Section 4 where we introduce schemes to refine both the
spatial and temporal grids. This adaptive grid algorithm is based on the third invariant
of the GKdV equation and a standard inverse property of the finite elements utilized in
our scheme. .

2. Numerical Approximations. After introducing some basic notation, the nu-
merical schemes used to generate the fully-discrete approximations are described. These
approximations are obtained by a Galerkin Finite Flement process for the spatial dis-
cretization and conservative Implicit Runge-Kutta (TRK) methods for the time-stepping.
These schemes possess excellent stability properties, as well as arbitrarily high order
rates of convergence in both the spatial and temporal variable. Thus, they represent an
efficient means for highly accurate aumerical simulations of solutions of (1.1).

For nonnegative integers m and real p, 1 < p < 00, let wm® = W™P(0,1) denote
the usual Sobolev spaces with norm ||+ [|lm,p consisting of functions whose first m deriva-
tives belong to LP, For p = 2, note that Wm™? is the Hilbert space H™ and replace
Il llm2 with ||« [lm. If in addition m = 0, we shall replace || -|lo with || - ||, and note that
HO — I? with the inner product (:,°).

9.1 Finite Element Spaces. Let 7 and N be integers with 3 < 1 < N and define

= 1/N. Let S} denote the space of 1-periodic smooth splines of order r (polynomials

of degree less than or equal to r — 1) defined on a uniform partition of [0,1],zi = th,i=
0,...,N.
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FULLY-DISCRETE METHODS FOR THE GKdV EQUATION

It is well-known that if v is a sufficiently smooth periodic function with period 1,
then there exists a x € S, such that fori1<m<r,

m-1

(2.1) Y illo = xllj € ch™lfollmsr s=2 Or 8=00
1=0

where c is a constant independent of &, v and x. In addition to the above approzimation
properties, the finite-dimensional spaces S}, also possess the following inverse properties.
There exists a constant ¢, independent of h, such that for all x € Sk

(22) lIxlls < cb~P~ixlla and  [ixllaeo < ch=(*+|ixl),

where0<a<pf<r—1L
The Galerkin semidiscrete approximation to the solution u(x,t) of (1.1) is defined
as a mapping v, : [0,1%] — S, satisfying the relations

1
(2.3) (onerX) = g oh -+ eonenX) = 00 VX € Sh
and
(24) vi(0) = mhe,

where 7,u® denotes any conveniently chosen element of S} (e.g- L?-projection, inter-
polant, etc.) such that

(2.5) frpu® — u°)| < ch”.

One may then show that if u(z,t) is sufficiently smooth, then vy exists uniquely and
satisfies the error estimate

— . T
(2.6) omax. lloa(®) - u( I < eh
where ¢ is a constant independent of h. (Sec (8] for a proofin the special case p = 1 which
may easily be extended to larger p). Furthermore, letting x = va in (2.3), integrating
by parts and using periodicity, it is easy to see that

(2.7) ol = lloa(@ll, ¢ 20

Upon choosing a basis for ST and representing v, in terms of this basis, (2.3) then
becomes a system of N nonlinear ordinary differential equations which is conservative

in L? by (2.7).

2.2 Implicit Runge-Kutla Methods. To obtain the fully-discrete approximations,
we shall discretize the system (2.3) in time by Implicit Runge-Kutta methods. (For
details and general remarks concerning Runge-Kutta methods, we refer to [7] and the
references therein). For positive integer ¢, a g-stage IRK method is given as a set of
constants arranged in tableau form

a1 ..- Qig Y

Gq1 .- Gqq Tq

by ... b
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Of particular interest is the family of Gauss-Legendre methods. These methods are
appropriate for several reasons. First, they are conservative, a property that is necessary
for the existence of a discrete conservation law similar to (2.7). They are algebraically
stable, a property that is much stronger than A-stability. Also, this family is optimal in
that for a given g, they are the unique Runge-Kutta method of order 2¢ in the context of
the approximation of solutions of systems of ordinary differential equations. The tableau
for the 2-stage Gauss-Legendre method is given by

L 1_ 1 1_ 1
r} 1" 2/3 27 3/8
1y 1 i 141
iT3/3 1 FIREEYV)
1 1
2 2 )
and the tableau for the 3-stage method is
5 80—24y/15  50—12/§ 1_ V15
36 360 360 27710
50+15v/15 2 50—15+/15 1
360 9 360 2
50412V/15 8042415 5 14 YIS
360 360 36 77T 10
3 5B 3
18 is 18

The fully-discrete approximations are now obtained by applying a g-stage Gauss-
Legendre method to the system (2.3). For integer J > 0, let t* = nk,n = 0,1,...,J,
where the step size is given by k = t*/J. With u(z,1) being the true solution of (1.1),
approximations uj € S} to u(:,1"), for n =0,1,. ..,J are defined by letting u) = mpu’,
and forn=0,1,...,J -1,

1 . .
l[uz:"]""'1 +e™ xX), Vxe€Sh,

q
(28) (L) = (k) +kY b heo
i=1

where the intermediate values “:'i’ i =1,...,q, are the solutions of the system of ¢
nonlinear equations

1 n -
[uZ"’]”'H +eupl x'), VXE€ Sr.

p+1

29)  (up',x) = () + kD ais

j=1
The equations (2.9) are solved by using a Newton iteration as described in [4].

9.9 Stability and Convergence. In this section we summarize results concerning the
fully-discrete approximations uj which can be found along with their proofs in [4]. In the
following, we shall assume that u®(z) is sufficiently smooth to guarantee the existence
and required smoothness of the solution u(z,t) for 0 £t < 17 in order that the error
estimates hold.

THEOREM 2.1. For n = 0,1,...,J — 1, the equations (2.8) and (2.9) have solutions
wit! € §7 and up" € 55, i= 1,000 Furthermore,

(2.10) furll = llxaul|| for n=0,...,J.

The above theorem demonstrates that the fully-discrete approximations are conser-
vative in L2, a discrete analog of the second invariant of the GKdV.
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FULLY-DISCRETE METHODS FOR THE Ghd} LQUALIVUA

THEOREM 2.2. Assume that as h — 0,
(i) ifp=1, then k = O(hT#™ &77) for g 2 2 or k = O(h¥) forg =1,
(i) ifp=2, then kh~% is sufficiently small forq>2ork = O(h?) for g =1,
(i) ifp> 3, then kh=1 is sufficiently small for all ¢ 2 1.
If h is sufficiently small, then for n = 0,1,...,J, there exists a unique solution uj of
(2.8) and (2.9) such that

(2.11) o2, flul = u(,t™I < (k¥ + A7), for ¢= 1,2,
(2.12) Jmax, flup = u(- " < (k2 + k), for ¢23

for some constant ¢ independent of h and k.

It is worth remark that the above result is sub-optimal if g > 3. However, in the case
of the KdV equation (p = 1), it has recently been shown (8] that the optimal temporal
rate of convergence 24 is achieved independent of the number of stages q.

3. Numerical Simulation of Solitary Waves. In this section, the numerical
schemes presented in Section 2 are tested. Specifically, we try 10 simulate the solitary-
wave solutions of the GKdV equation. These special, travelling-wave solutions are given
by

(3.1) u(z,t) = A sech®/P[B(z — zo — Ct)},

24P P [C
C = — B = - —_—
(p+1)(p+2) 2V e

and A represents the amplitude of the waves. Although (3.1) is an exact solution of
the pure initial-value problem for (1.1), if A is large and € is taken sufficiently small
then it should also be an approximate solution in the periodic case since the tails of the
solitary-wave decay exponentially.

For other numerical results regarding the order of these methods, their efficiency,
and the calculation of various errors, see [4] and [5).

The numerical experiments reported here and in the next section are the results of
a FORTRAN program written in double precision and run on both a SUN Sparcstation
1 and an Alliant FX/40 with identical results up to machine roundoff error.

In the following, we have used the 2-stage Gauss-Legendre method (g = 2) with
cubic splines (r = 4). We also have set p = 5 and Zo = 5 so that the wave is initially
centered at z = 1/2. According to the theory in [3], p = 5 is in the range where
golitary-waves are unstable.

In the first test, we took € = 1.10~4 and A = .8 as the amplitude. For spatial
and temporal mesh sizes the values h = 1/384 and k = 1 /100, respectively, were used.
The numerical solution was computed up to t = 18. In Figure 1 plots of the numerical
solution are given at t = 0,t =6,t=12, and ¢ = 18. It is evident from the graphs that
the mesh parameters used were sufficient to numerically approximate the travelling-wave
solution.

Next, the size of the initial data was increased to A = 2.0 for the amplitude. Also,
we took € = 5-1074. The step size was reduced to k = 1/5000 and the spatial mesh
remained at h = 1/384. Output of our code in this case are depicted in Figure 2. As
can be seen from the graphs, the instability of the solitary-wave required only a small

where
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time= 0.0000d+00 time= 0.60004+01
umax= 0.8000d+00 umax= 0.79943+00
umin= 0.2057d-02 umin= 0.36824-02

10
1.0
3

08

0.0 0.2 04 05 0.8 o o0 02 0.4 0.6 0.8 10

X X
time= 0.1200d+02 time= 0.1800d+02
umax= 0.8019d+00 umaox= 0.8058d+00
. umin= 0.3392d-02 ° urmin= 0.5095d-02
° 00 0.2 0.4 06 0.8 1.0 ° 0.0 0.2 0.4 0.6 0.8 1.0
x , X

Figure 1. Numerical simulation of a solitary-wave
solution with amplitude A = 0.8.

amount of time before it caused the numerical solution to begin to break down owing
to dispersive pollution of the solution.

4. Grid Refinement. As the results of the previous section indicate, the instability
of the solitary-wave solutions leads to substantial numerical errors when using fixed
grids. To overcome this difficulty, an algorithm with automatic grid refinement was
implemented so that one can approximate a solution u(z,t) of (1.1) that develops a
singularity in L at some point (z*,1*). The adaptive mechanism in our code consists
of three main parts:

(i) local refinement of the spatial grid,
(i) selection of a temporal step size k,
(iii) spatial translations of the solution.
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time= 0.00004+00 time= 0.4000c-0"
umax= 0.2001d+01 umax= 0.1979d+01
- umin= 0.2839d-11 - umin= —0.34130-02
N] o~
3 2 [\
24 2 |
i |
i \ 5 L
St &+ s 1o oo 02 o4 05 o8 10
X x
time= 0.8000d-01 time= 0.1000d+00
umax= 0.2531d+01 umax= 0.2449d+01
= umin= —0.5516d-01 A umin= —0.13154+00
3 2
d 2
° 0.0 0.2 0.4 a6 0.8 1.0 °

Figure 2. Numerical simulation of a solitary-wave
solution with amplitude A = 2.0.

Our spatial refinements will consist of adding new nodes, distributed evenly about
the midpoint z = .5, but in successively smaller neighborhoods of the midpoint. This
local refinement is combined with (iii), which takes advantage of the fact that the solution
is a travelling-wave, to keep the peak near the midpoint « = .5 in the region of highest
density of nodes, and away from a region of coarse mesh. This is accomplished by
occasionally translating the solution and centering the peak at z = .5. (In effect, we
translate the solution to conform to fixed grids rather than have a moving grid which
conforms to the solution.)

We next describe the automatic implementation of (i).

4.1 Spatial Grid Refinement. Let NSPLIT stand for the number of times nodes are
to be added and let " represent the neighborhood of the midpoint z = .5 which is
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the region with the finest grid, with grid size h". Each time nodes are added, NSPLIT
is increased by 1, and both Q* and h* are cut in half. As an example, with NSPLIT
— 1, we might have 2% = [0.4,0.6] and h* = 1/100. Then as NSPLIT increases to 2,
Q* = [0.45,0.55], h* = 1/200; when NSPLIT=3,Q2" = [0.475,0.525], " = 1/400, and
so on. The effect of the occasional spatial translations is to insure that the peak of the
solution remains in the region Q.

From the L® — L? inverse inequality in (2.2) and the discrete conservation law
(2.10), it follows that for a uniform mesh
(4.1) u2llo.o < k™2 llubll = ch=1 2 |jmpu®|| for n=0,..J.

Similarly, for a non-uniform grid the minimal grid size h* must become arbitrarily small
if the numerical solution is to develop an arbitrarily large peak. Our particular choice
of spatial refinement is based on a local L® — L2 inverse property on 7. Specifically,
we use the following test to determine if NSPLIT needs to be increased. At each step,
compute

1/2
Zo = [hllope and Z2= [ L () dz] :
We then increase NSPLIT by 1, add new nodes, and modify Q* and h* if
ZooVh*

(4.2) o

> TOL;.

Here TO L, must be chosen small enough in accordance with (4.1) to allow for new nodes
to be added. In our program, we have used TOLy = 0.2.
We next describe (ii), the selection of a temporal step size k.

4.2 Temporal Step Size Reduction. The temporal step size is adjusted in an attempt
to preserve the third invariant of the GKdV equation. This invariant is defined by

g €
hw = [ 17 - (ot Do+ ey gz,

For exact solutions u(z,t) of (1.1), Is(u(+1) = I3(u®), independent of the value of 2.

Given u?, a possible u™*1 is computed usin: the current step size k. It is acce ted
h h P g P P

if

\Is(up) = Ts(uh)]
o e

where TOL, is a small parameter. In the results to be presented, the value TOL; =
1.10~5 was used. If (4.3) is not satisfied, then k is cut in half and the process is repeated.
The denominator in (4.3) is a convenient normalization factor.

4.8 Numerical Solutions with Grid Refinement. The experiment discussed in Section
3 to simulate the solitary-wave solution with large initial data was repeated using (4.2)
and (4.3) for spatial and temporal grid refinement, respectively. These experiments
showed that the solution was unstable; such instabilities being arguably precipitated
by roundoff and truncation errors. To hasten the development of the instability, it was
found convenient to use as initial data

u®(z) = 1.014 sech*?[B(z — 0))
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time= 0.19754-01
umax= 0.2539d+01
umin= —0.2683d-01

time= 0.22513-2"
umax= 0.4587d4+01
umin= —0.3193d-0"

o; 2 |
\ 5
A I 3! |
A G A
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8
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time= 0.2254d-01 time= 0.2254d-01
umax= 0.8012d+01 umax= 0.18284+02
- umin= —0.3193d-01 N umin= —0.3153d-01
‘2'| 8‘|
=]
O- O_
= . ’,/L : , - : ’-) : ' .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 (‘) 2 04 0.6 0.8

with A = 2.0,p = 5,e=5-1
Gauss-Legendre method with cubic splines (g = 2,7 =
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Figure 3. Numerical simulation of a solitary-wave
solution with grid refinement, u-axis scaled.

peak of the solution. The plots given are a
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order to plot the entire solution. This has t
be zero almost everywhere except at the peak, which, due to t
r the midpoint z = 1/2. Indeed, more plots of this type would convey very

hs in Figure 3

0-4, and zo = 1/2. Again, use was made of the 2-stage
4). The initial mesh parameters
illustrate the growth in the

NSPLIT= 2,4,6,9. Note that as the peak

he peak as the peak continues to
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—0.5. In Figure 4 the solution is translated by

as the x-axis. The plots given
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time= 0.2254d-01 time= 0.2254d-01
umox= 0.2412d+02 umMmax= 0.5083d+03
& umin= 0.1153d+01 = umin= 0.2448d+02
° g
0 S
3, e
o‘. - kS : o
ﬂJ"’l”/ ‘.k ‘g--"_——-/ \
°-r T T T — 1 2 T T T T 1
-18.50 —-11.10 -3.70 3.70 11.10 18.50 =-9.0 -5.4 -1.8 1.8 5.4 8.0
X «10* X 0"
time= 0.2254d-01 time= 0.2254d-Q1
umax= 0.4639d+04 umox= 0.9803d+05
umin= 0.2233d+03 e umin= 0.4855d+04

0.0 lOOD.OZOO0.0.\OOD.OtOUO 05000.0
2.0

0.0

1 T T T T 1

v -17.50 -10.50 -3.50 3.50 10.50 17.50
=10 =14

| X «10

Figure 4. Numerical simulation of a solitary-wave
solution with grid refinement, both axes scaled.

are with NSPLIT= 10,21,29,40. By the final plot, the spatial and temporal mesh sizes
have decreased to approximately h = 10~ and k = 107 respectively. Our code is able
to follow the peak until it reaches approximately 200,000 while maintaining a smooth
profile everywhere including Q*. The graphs in Figure 4 suggest that instabilities of

solitary-waves can lead to blowup of solutions in L™ in finite time.
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