A Model System for Strong Interaction Between Internal Solitary Waves

Jerry L. Bona^{1,2}, Gustavo Ponce^{1,5}, Jean-Claude Saut³ and Michael M. Tom1,4

¹ Department of Mathematics, The Pennsylvania State University, University Park, PA 16802,

² The Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA

³ Laboratoire d'Analyse Numérique, Université de Paris-Sud, Bâtiment 425, F-91405 Orsay Cedex, France

Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA Department of Mathematics, University of California, Santa Barbara, CA 93106, USA

Received January 4, 1991; in revised form May 6, 1991

Abstract. A mathematical theory is mounted for a complex system of equations derived by Gear and Grimshaw that models the strong interaction of two-dimensional, long, internal gravity waves propagating on neighboring pycnoclines in a stratified fluid. For the model in question, the Cauchy problem is of interest, and is shown to be globally well-posed in suitably strong function spaces. Our results make use of Kato's theory for abstract evolution equations together with somewhat delicate estimates obtained using techniques from harmonic analysis. In weak function classes, a local existence theory is developed. The system is shown to be susceptible to the dispersive blow-up phenomenon investigated recently by Bona and Saut for Korteweg-de Vries-type equations.

1. Introduction

This paper is concerned with the initial-value problem

er is concerned with the initial-value problem
$$\begin{cases} u_t + uu_x + u_{xxx} + a_3v_{xxx} + a_1vv_x + a_2(uv)_x = 0, \\ b_1v_t + rv_x + vv_x + v_{xxx} + b_2a_3u_{xxx} + b_2a_2uu_x + b_2a_1(uv)_x = 0, \\ u(x, 0) = u_0(x), \\ v(x, 0) = v_0(x), \end{cases}$$
(1.1)

where a_1, a_2, a_3, b_1, b_2 and r are real constants with b_1, b_2 positive, u = u(x, t), v = v(x, t) are real-valued functions of the two real variables x and t, and subscripts

289

Strong Interaction Between Internal Waves

adorning u and v connote partial differentiation. This somewhat complicated system has the structure of a pair of Korteweg-de Vries equations coupled through both dispersive and nonlinear effects. It was derived by Gear and Grimshaw (1984) as a model to describe the strong interaction of weakly nonlinear, long waves

variable and ϕ_k is an eigenfunction of some linear eigenvalue problem posed for $\eta = A(x,t)\phi_k(y)$, where x is the variable in the horizontal direction, y the vertical support two-dimensional wave motion in the horizontal direction. Frequently, medium represented by $\mathbb{R} \times [-h,0]$ in a standard Cartesian plane which can of a long spatial variable $e^{\alpha}x$ and a slow time variable perturbation $e^{\beta}t$ of the basic speed c_k associated to the mode ϕ_k , where α and β are positive constants that dispersion, η is represented in the form $\varepsilon A_k \phi_k$, where ε is a small, amplitude para-When the theory is extended to allow for the weak effects of nonlinearity and $x - c_k t$, where c_k is the eigenvalue associated to the eigenfunction ϕ_k , k = 1, 2, ...one of the lowest modes. In this sort of representation, $A = A_k$ is a function of $y \in [-h, 0]$, and with appropriate boundary conditions at y = -h and y = 0. leads to a representation of a significant dependent variable η , say, in the form the linearized theory for infinitesimal-amplitude wave motion in such a medium spatial and temporal scales appropriate to the wave motion. Usually A is a function meter and ϕ_k is as before. Such a form is based on substantial assumptions about the the particular vertical structure of the wave, though often interest is focussed on $k=1,2,\ldots$ Different motions are associated to different modes ϕ_k which define to be a good approximation to the underlying wave motion on a longer time scale satisfy a nonlinear partial differential equation and the combination $\epsilon A\phi_k$ is taken reflect the particular laws governing the motion. The function A is then seen to than provided by the corresponding solution of the linear equation. The model system (1.1) arises in the following general context. Consider a

An interesting possibility now presents itself, in which a motion may be initiated in the medium which corresponds to more than one of the vertical modes ϕ_k . Consider the case wherein there are two different modes ϕ_k and ϕ_m and the motions associated with each are localized in space. If the fundamental phase speeds c_k and c_m associated with these modes differ sufficiently, then basically the motions associated with each will pull apart rapidly enough that, to leading order in the parameter ϵ , A_k and A_m are determined independently of one another. However, if c_k and c_m differ by order ϵ^β , there is the prospect that the motions associated with ϕ_k and ϕ_m may remain in the spatial vicinity of each other long enough that the effect of interaction between them can accumulate to make a leading-order difference to each amplitude function A_k and A_m . In this case, A_k and A_m will satisfy a coupled system of partial differential equations. It is to this latter, interesting situation in the nonlinear regime that the present work is devoted.

Consider now the concrete situation of wave motion in a density-stratified fluid of constant total depth h which is far from any lateral boundary. Assuming the motion to be uniform in one of the unbounded directions, and neglecting dissipative effects, the two-dimensional Euler equations are taken to be the full equations of motion. If the undisturbed density variation is a function $\rho_0 = \rho_0(y)$ of the vertical coordinate alone, then we find that the generalities outlined above apply. In

particular, the linear eigenvalue problem for the vertical modes is

$$\begin{cases} c_k^2 \frac{\partial}{\partial y} \left(\rho_0 \frac{\partial \phi_k}{\partial y} \right) + \rho_0 N^2 \phi_k = 0 & \text{for } 0 > y > -h, \\ \phi_k = 0 & \text{on } y = -h, \\ \phi_k = y c_k^2 \frac{\partial \phi_k}{\partial y} & \text{on } y = 0, \end{cases}$$
(1.2)

nonlinear waves propagating on widely separated, neighboring pycnoclines. In particular, they found that solitary waves propagating on neighboring pycnoclines could interact strongly. The model with which they drew these conclusions consists either zero in case the upper boundary is fixed or is the Boussinesq parameter (a where $N^2(y)$ is the Brunt-Väisälä frequency (and so proportional to ρ_{0y}) and γ is each of the two pycnoclines is possible when the waves in question have nearly and determined that resonant transfer of energy between waves propagating on the undisturbed density variation ρ_0 consists of two, well separated pycnoclines. surface is free. Erkart (1961) examined the linearized problem in the case where non-dimensional measure of g^{-1} , where g is the gravity constant) if the upper assumptions leading to (1.1) include that h^2/L^2 is of the same order as the amplitude are not widely separated, Gear and Grimshaw (1984) have shown that the strong and Saut (1991b). In contrast, when the overall depth h of the fluid is shallow with of a pair of intermediate depth equation (cf. Kubota, Ko and Dobbs 1980) coupled Liu, Pereira and Ko (1982) showed that such energy transfer was possible between identical phase speeds. In the same configuration, Liu, Kubota and Ko (1980) and s, and this plus the presumption of one-way propagation leads inevitably to a which are coupled through both nonlinear and dispersive effects. Indeed, the mately governed by the pair of Korteweg-de Vries (K-dV) equations in (1.1) or resonant interaction between waves on neighboring pycnoclines is approxiregard to a typical wavelength L, so that, in particular, neighboring pycnoclines through a purely dispersive term. This system has recently been analyzed by Bona K-dV-type model.

If ϕ_n and ϕ_m are two distinct solutions of the eigenvalue problem (1.2) with phase speeds c_n and c_m differing by a quantity proportional to ϵ , i.e. $c_m = c_n - \epsilon \chi$, then Gear and Grimshaw found that the vertical displacement $\eta = \eta(\theta, y, \tau)$ of the fluid is given by

$$\eta = \varepsilon \{ A_n(\tau, \theta) \phi_n(y) + A_m(\tau, \theta) \phi_m(y) \} + O(\varepsilon^2),$$

where the wave amplitudes A_n and A_m satisfy the evolution equations

$$0 = 2 \frac{I_n}{c_n^2} \left(\frac{1}{c_n} \frac{\partial A_n}{\partial t} + \mu_n A_n \frac{\partial A_n}{\partial \theta} + \lambda_n \frac{\partial^3 A_n}{\partial \theta^3} \right) + 3 \nu_{nmm} A_m \frac{\partial A_m}{\partial \theta} + 3 \nu_{nnm} \frac{\partial}{\partial \theta} (A_n A_m) + \lambda_{nm} \frac{\partial^3 A_m}{\partial \theta^3},$$
(1.3a)

$$0 = 2 \frac{I_{m}}{c_{n}^{2}} \left(\frac{1}{c_{n}} \frac{\partial A_{m}}{\partial t} - \frac{\chi}{c_{n}} \frac{\partial A_{m}}{\partial \theta} + \mu_{m} A_{m} \frac{\partial A_{m}}{\partial \theta} + \lambda_{m} \frac{\partial^{3} A_{m}}{\partial \theta^{3}} \right) + 3 v_{nmm} A_{n} \frac{\partial A_{n}}{\partial \theta} + 3 v_{nmm} \frac{\partial}{\partial \theta} (A_{n} A_{m}) + \lambda_{nm} \frac{\partial^{3} A_{n}}{\partial \theta^{3}},$$
 (1.3b)

with

$$v_{skl} = \int_{h}^{0} \rho_0 \frac{\partial \phi_s}{\partial y} \frac{\partial \phi_k}{\partial y} \frac{\partial \phi_l}{\partial y} dy,$$

$$\lambda_{kl} = \int_{h}^{0} \rho_0 \phi_k \phi_l dy,$$

$$I_k \mu_k = \frac{3}{2} c_k^2 \int_{h}^{0} \rho_0 \left(\frac{\partial \phi_k}{\partial y}\right)^3 dy,$$

$$I_k \lambda_k = \frac{1}{2} c_k^2 \int_{h}^{0} \rho_0 \phi_k^2 dy.$$

and the orthogonality condition

$$\delta_{kl}I_k = c_k^2 \int_{-h}^0 \rho_0 \frac{\partial \phi_k}{\partial y} \frac{\partial \phi_l}{\partial y} \frac{\partial \phi_l}{\partial y} dy.$$

where δ_{kl} is the Kronecker delta. Note that $2l_k\mu_k=3c_k^2v_{kkt}$ and $2l_k\lambda_k=c_k^2\lambda_{kk}$. Now by letting

$$A_{n} = \frac{\chi \lambda_{m}^{\prime}}{r \lambda_{m} \mu_{n}} \mu, \quad A_{m} = \frac{\chi}{r \mu_{m}} \nu,$$

$$\theta = \left(\frac{r \lambda_{m}^{\prime}}{\chi}\right)^{1/2} \chi, \quad \tau = \left(\frac{r \lambda_{m}^{\prime}}{\chi}\right)^{3/2} \frac{t}{c_{n} \lambda_{n}},$$

the system (1.1) is recovered with the constants a_1, a_2, a_3, b_1, b_2 given by

$$\begin{split} a_1 &= \frac{3c_\pi^2 v_{nmm} \mu_n \lambda_m^2}{2I_n \mu_m \lambda_n^2}, \quad a_2 &= \frac{3c_\pi^2 v_{nmn} \lambda_m}{2I_n \mu_m \lambda_n}, \quad a_3 &= \frac{c_\pi^2 \mu_n \lambda_{nmn} \lambda_m}{2I_n \mu_m \lambda_n}, \\ b_1 &= \frac{\lambda_n}{\lambda_m}, \quad b_2 &= \frac{I_n \lambda_n^3 \mu_m^2}{I_m \lambda_m^3 \mu_n^2}. \end{split}$$

The constant r is a non-dimensional, disposable parameter which does not affect our analysis and which will henceforth be neglected. Notice that the parameters b_1 and b_2 are automatically positive since I_n and λ_n are strictly positive because the density is strictly positive and the ϕ_k are not constant in the presence of true stratification ($\rho_{0y} \neq 0$).

Gear (1985) showed that although these coupled equations possess an exact traveling-wave solution involving the characteristic sech-profile of the K-dV equation, they are in general not solvable by the inverse-scattering transform technique.

Strong Interaction Between Internal Waves

Our aim in this article is to study local and global well-posedness of the initial-value problem (1.1) in the classical Sobolev spaces $H^3(\mathbb{R}) \times H^4(\mathbb{R})$. The problem (1.1) is said to be locally well-posed in $H^4(\mathbb{R}) \times H^4(\mathbb{R})$ if it generates a continuous local flow in $H^4(\mathbb{R}) \times H^4(\mathbb{R})$ (i.e. if existence, uniqueness, persistence, and continuous dependence on the initial data hold). The problem is globally well-posed if the local flow can be continued indefinitely in the temporal variable, so defining a solution of (1.1) valid for all $t \ge 0$. Such a theory is basic to the analytical or numerical study of the system.

It will be demonstrated that (1.1) is locally well-posed in $H^s(\mathbb{R}) \times H^s(\mathbb{R})$ for any $s \ge 2$. As with other, dispersive wave equations, global well-posedness in any particular Sobolev space seems to depend on the available local theory and on the conservation laws or energy-type inequalities satisfied by the solutions. In general, solutions of (1.1) satisfy the following conservation laws:

$$\Phi_1(u) = \int_{-\infty}^{\infty} u dx, \quad \Phi_2(v) = \int_{-\infty}^{\infty} v dx, \quad \Phi_3(u, v) = \int_{-\infty}^{\infty} (b_2 u^2 + b_1 v^2) dx. \tag{1.4}$$

The time-invariance of the functionals ϕ_1 and ϕ_2 expresses the property that the mass of each mode separately is conserved during iteraction, while that of ϕ_3 is an expression of the conservation of energy for the system of two modes taken as a whole. In general, while total energy is conserved, it may nevertheless be passed between the two modes. As remarked by Liu, Kubota and Ko (1980) in a related problem, the functional ϕ_3 supports the tentative conclusion that a mode can increase its energy only by increasing its amplitude and decreasing its width, while the other mode must correspondingly decrease its energy by decreasing its amplitude and increasing its width. Solutions of (1.1) satisfy an additional conservation law which is revealed by the time-invariance of the functional

$$\Phi_4(u,v) = \int_{-\infty}^{\infty} \left(b_2 u_x^2 + v_x^2 + 2b_2 a_3 u_x v_x - b_2 \frac{u^3}{3} - b_2 a_2 u^2 v - b_2 a_1 u v^2 - \frac{v^3}{3} - r v^2 \right) dx.$$
(1.5)

The functional \emptyset_4 is a Hamiltonian for the system (1.1), and if $b_2a_3^2 < 1$, \emptyset_4 will be seen to provide an a priori estimate for the solution pair (u, v) in the space $H^1(\mathbb{R}) \times H^1(\mathbb{R})$. Furthermore, the linearization of (1.1) about the rest state can be reduced to two, linear K-dV equations by a process of diagonalization. Using this remark and the smoothing properties (in both the temporal and spatial variables) for the linear K-dV derived by Kato (1975, 1979, 1983) Kenig, Ponce and Vega (1989, 1991a, b), it will be shown that (1.1) is locally well-posed in $H^s(\mathbb{R}) \times H^s(\mathbb{R})$ for any $s \ge 1$ if $\sqrt{b_2}a_3 \ne \pm 1$. It will therefore follow from the a priori estimates provided by \emptyset_3 and \emptyset_4 that the system (1.1) is globally well-posed in $H^s(\mathbb{R}) \times H^s(\mathbb{R})$ for any $s \ge 1$ whenever $|a_3| < 1/\sqrt{b_3}$.

in $H^s(\mathbb{R}) \times H^s(\mathbb{R})$ for any $s \ge 1$ whenever $|a_3| < 1/\sqrt{b_2}$. It is worth contrasting the theory developed here for (1.1) with the early methods used to prove global well-posedness for the K-dV equation in the spaces $H^k(\mathbb{R})$ for $k \ge 2$ (see Bona and Smith 1975; Kato 1975; Saut and Temam 1976). These theories relied on an a priori bound in $H^2(\mathbb{R})$ provided by one of the infinite string of conservation laws with polynomial densities. For the system (1.1), we have only found the four conservation laws listed above, and these only provide a priori information in $H^1(\mathbb{R}) \times H^1(\mathbb{R})$. Hence, to establish global well-posedness, it is

central to our argument that (1.1) is locally well-posed in the relatively weak space $H^1(\mathbb{R}) \times H^1(\mathbb{R})$. In consequence of this requirement, we must call on the sort of theory developed recently in Kenig, Ponce and Vega (1991b) for the initial-value problem for the K-dV equation posed in the space $H^2(\mathbb{R})$ for smallish values of the problem for the K-dV equation for the space $H^2(\mathbb{R})$ for smallish values of the problem for the K-dV equation for the space $H^2(\mathbb{R})$ for small is values of the space $H^2(\mathbb{R})$ for the space $H^2(\mathbb{R})$ for small is values of the space $H^2(\mathbb{R})$ for small $H^2(\mathbb{R})$ for $H^2(\mathbb{R})$ fo

This paper is organized as follows. The general, local well-posodness result together with a sufficient condition for local solutions to be globally continuable are presented in Sect. 2, while a priori estimates in $H^1(\mathbb{R}) \times H^1(\mathbb{R})$ are derived in Sect. 3. Estimates concerning the linear propagator are contained in Sect. 4, and our main result for smooth solution is established in Sect. 5. In addition to the theory of strong solutions, we are also able to develop existence results in case the initial data lies only in $L^2(\mathbb{R}) \times L^2(\mathbb{R})$. This theory of weak solutions is coupled with a theory of existence in weighted Sobolev spaces to demonstrate a type of singularity formation termed dispersive blow up in Bona and Saut (1991a). These results, which appear in Sect. 6, are a result of the way dispersion appears in the model, with a negatively unbounded group and phase velocity.

Notation. The norm in $L^p(\mathbb{R})$, $1 \le p \le \infty$ will be denoted by $\|\cdot\|_p$. We shall use the abbreviations $J^s = (1 - \partial_x^2)^{s/2}$ and $D^s = (-\partial_x^2)^{s/2}$ to denote the Bessel and Riesz potentials of order -s, respectively. Define $L_p^p = J^{-s}L_p^p$, a Banach space whose norm will be denoted by $\|\cdot\|_{s,p} = \|J^s\|_p$. When p = 2, L_x^2 is the classical Sobolev space $H^s(\mathbb{R})$, and $H^\infty(\mathbb{R}) = \bigcap_{s \ge 0} H^s(\mathbb{R})$. Also define the commutator between two

operators A and B by [A, B] = AB - BA. Thus, $[J^s, f]g = J^s(fg) - fJ^sg$ in which f is regarded as a multiplication operator. The space $H^s_{loc}(\Omega)$, where Ω is an open set in \mathbb{R} and $s \ge 0$ connotes the class of measurable functions f defined on Ω such that for every $\phi \in C^\infty_0(\Omega)$, $\phi f \in H^s(\mathbb{R})$. If [0, T] is an interval and X is a Banach space with norm $\|\cdot\|_X$, then

$$L^{p}(0,T;X) = \left\{ u \colon [0,T] \to X \text{ such that } \int_{0}^{T} \|u\|_{X}^{p} < \infty \right\}.$$

The space C(0,T;X) comprises the class of all continuous functions mapping [0,T] into X. If [0,T] is compact, C(0,T;X) is a Banach space when equipped with the norm $\|\cdot\|_{L^{\infty}(0,T;X)}$.

2. General Local Theory

In this section, we shall present a theorem about the local well-posedness of the initial-value problem (1.1) and a continuation principle that ensures local solutions to be extendable to smooth solutions defined globally in time. The well-posedness theorem is obtained by a straightforward application of the abstract techniques of Kato (1975, 1983) for quasi-linear evolution equations and hence the proof is abbreviated. The continuation principle uses the local theory and energy-type estimates.

energy-type estimates. For simplicity of exposition, we shall restrict ourselves to integer-order Sobolev spaces. This is a restriction of convenience only. For any T>0 a finite number and s an arbitrary integer Sobolev index, let

$$X_s(T) = C(0, T; H^s(\mathbb{R})) \cap C^1(0, T; H^{s-3}(\mathbb{R})).$$

Theorem 2.1. Let $s \ge 2$ be an integer, and $(u_0, v_0) \in H^s(\mathbb{R}) \times H^s(\mathbb{R})$. Then there exists a $T = T(\|(u_0, v_0)\|_{s,2}) > 0$ and a unique solution $(u, v) \in X_s(T) \times X_s(T)$ of the system (1.1) corresponding to the initial data (u_0, v_0) . Moreover, the pair (u, v) depends continuously on (u_0, v_0) in the sense that the mapping $(u_0, v_0) \mapsto (u, v)$ is continuous from $H^s(\mathbb{R}) \times H^s(\mathbb{R})$ into the space $X_s(T) \times X_s(T)$.

As mentioned above, Theorem 2.1 is an easy consequence of the general results of Kato. The functional-analytic setting for Kato's theory consists of a pair of reflexive Banach spaces X and Y, where $Y \subset X$ with the injection continuous and dense. A central role in the theory is played by a Banach-space isomorphism S of Y onto X, and the norms on these two spaces are chosen in such a way that S is an isometry. The theory applies to the abstract, quasi-linear evolution equation

$$U_t + A(t, U)U = F(t, U),$$

for 0 < t, with

$$U(0) = U_0$$

where $U_0 \in Y$ is a given initial value. Kato's theory asserts that there exists a positive time $T = T(\|U_0\|_Y)$ such that (2.1) possesses a unique solution in $C(0,T;Y) \cap C^1(0,T;X)$ provided that certain conditions are satisfied. Moreover, the mapping that associates to U_0 the solution U is continuous from Y into $C(0,T;Y) \cap C^1(0,T;X)$.

To apply this theory to the situation of interest here in case $s \ge 3$, take $X = H^{s-3}(\mathbb{R}) \times H^{s-3}(\mathbb{R})$ and $Y = H^s(\mathbb{R}) \times H^s(\mathbb{R})$, let $S = (J^3, J^3)$, let A be the matrix operator

$$= A(W) = \begin{pmatrix} \partial_x^3 + y\partial_x + a_2z\partial_x & a_3\partial_x^3 + a_1z\partial_x + a_2y\partial_x \\ b_1a_3\partial_x^3 + b_2a_2y\partial_x + b_1a_1z\partial_x & b_1\partial_x^3 + b_1z\partial_x + b_2a_1y\partial_x \\ b_1 & b_1 \end{pmatrix}$$

vhere

$$W = \begin{pmatrix} y \\ z \end{pmatrix},$$

and let the operator F be zero. With this choice of A and F, and writing

$$U = \binom{u}{v},$$

(1.1) reduces to (2.1), if $U_0 = (u_0, v_0)$. To verify the hypotheses of Kato's theory, it is convenient to take the inner product of two elements (f, g) and (η, h) in $L^2(\mathbb{R}) \times L^2(\mathbb{R})$ to be

$$\langle (f,g),(\eta,h)\rangle = b_2 \int_{-\infty}^{\infty} f\eta + b_1 \int_{-\infty}^{\infty} gh.$$

Hence the norm of an element $(f,g) \in H'(\mathbb{R}) \times H'(\mathbb{R})$, where $r \ge 0$ will be given by

$$\|(f,g)\|_{r,2} = (b_2 \|f\|_{r,2}^2 + b_1 \|g\|_{r,2}^2)^{1/2},$$

295

straightforward to verify that the hypotheses of Kato's theory are satisfied. In case s < 3, one takes $X = L^2(\mathbb{R}) \times L^2(\mathbb{R})$, $Y = H^s(\mathbb{R}) \times H^s(\mathbb{R})$, and $S = (J^s, J^s)$. where as mentioned above, b_1 and b_2 are known to be positive. It is then

To apply the theory, one needs to use the trick observed by Kato (1979) in which new variables \tilde{u} and \tilde{v} are defined by conjugating u,v with e^{ir^2} , viz

$$\tilde{u} = e^{-i\hat{c}^3} u e^{i\hat{c}^3}.$$

The details follow exactly the lines laid down by Kato, and so they are passed

Lemma 2.2. If $(u,v) \in X_*(T) \times X_*(T)$ is a local solution of the initial value problem (1.1) corresponding to the initial data (u_0,v_0) as specified by Theorem 2.1, then for any k with $1 \le k \le s$,

$$\sup_{[0,T]} \|(u(\cdot,t),v(\cdot,t))\|_{k,2} \le \|(u_0,v_0)\|_{k,2} \exp\left(C\int_0^T (\|u_x(\cdot,t)\|_{\mathcal{I}} + \|v_x(\cdot,t)\|_{\mathcal{I}})d\tau\right). \tag{2.2}$$

then passing to the limit in which the regularization is allowed to degenerate to the identity operator. Consider the case k=1. Differentiate the first equation in (1.1) with respect to x, multiply by u_x and integrate the resulting expression over *Proof.* In light of the local well-posedness theory sketched above, the following formal calculations can be easily justified provided $k \le s$ by simply regularizing the initial data, making the calculations for the associated smooth solutions, and IR, thereby obtaining the equation

$$\frac{1}{2} \frac{d}{dt} \int_{-\infty}^{\infty} u_x^2 + a_3 \int_{-\infty}^{\infty} u_x v_{xxxx} = -\frac{1}{2} \int_{-\infty}^{\infty} u^2 u_{xxx} - \frac{a_1}{2} \int_{-\infty}^{\infty} v^2 u_{xxx} - a_2 \int_{-\infty}^{\infty} uv u_{xxx}. \quad (2.3)$$

Now, divide the second equation in (1.1) by b_2 and perform calculations similar to those leading to (2.3) to arrive at the relation

$$\frac{b_1}{2b_2} \frac{d}{dt} \int_{-\infty}^{\infty} v_x^2 + a_3 \int_{-\infty}^{\infty} v_x u_{xxxx} = -\frac{1}{2b_2} \int_{-\infty}^{\infty} v^2 v_{xxx} - a_1 \int_{-\infty}^{\infty} u^2 v_{$$

and (2.4) reads to the equation
$$\begin{vmatrix} d & x \\ 1 & d & x \\ 2 & dt & -w \end{vmatrix} (b_2 u_x^2 + b_1 v_x^2) = -\frac{b_2}{2} \int_{-\pi}^{\pi} u^2 u_{xxx} - \frac{a_1 b_2}{2} \int_{\pi}^{\pi} u^2 u_{xxx}$$

$$-a_2 b_2 \int_{-\pi}^{\pi} u v u_{xxx} - \frac{1}{2} \int_{\pi}^{\pi} v^2 v_{xxx}$$

$$-a_2 b_2 \int_{-\pi}^{\pi} u^2 v_{xxx} - a_1 b_2 \int_{\pi}^{\pi} u v v_{xxx}. \tag{2.5}$$

from which one obtains the inequalities

$$\frac{1}{2}\frac{d}{dt}\int_{-\tau}^{\infty}(h_2u_x^2+h_1v_x^2) = -\frac{h_2}{2}\int_{-\tau_x}^{\infty}u_x^3 - \frac{1}{2}\int_{-\tau_x}^{\tau}|v_x^3|$$

Strong Interaction Between Internal Waves

$$\begin{aligned} & -\frac{3a_{2}b_{2}}{2} \int\limits_{-\pi}^{\pi} u_{x}^{2} v_{x} - \frac{3a_{1}b_{2}}{2} \int\limits_{-\pi}^{\pi} v_{x}^{2} u_{x} \\ & \leq C(\|u_{x}\|_{\infty} + \|v_{x}\|_{\infty})(\|u_{x}\|_{2}^{2} + \|v_{x}\|_{2}^{2}) \\ & \leq C(\|u_{x}\|_{\infty} + \|v_{x}\|_{\infty})(b_{2}\|u_{x}\|_{2}^{2} + b_{1}\|v_{x}\|_{2}^{2}). \end{aligned}$$

Now consider the case $k \ge 2$. Apply ∂_x^k to both sides of the first equation in (1.1), multiply this expression by $\partial_x^k u$ and integrate the resulting expression over \mathbb{R} . One finds that

$$\frac{1}{2} \frac{d}{dt} \int_{-\pi}^{\pi} (\partial_x^k u)^2 + a_3 \int_{-\pi}^{\pi} \partial_x^k u \partial_x^k v_{xxx} = -\int_{-\pi}^{\pi} \partial_x^k u \partial_x^k (u u_x) \\
-a_1 \int_{-\pi}^{\pi} \partial_x^k u \partial_x^k (v v_x) - a_2 \int_{-\pi}^{\pi} \partial_x^k u \partial_x^k (u v)_x. \quad (2.7)$$

Next, divide the second equation in (1.1) by \boldsymbol{b}_2 and perform a similar set of operations to obtain

Adding (2.7) and (2.8), using Leibniz's rule and several integrations by parts together with Hölder's inequality, one obtains the estimates

$$\begin{aligned} \frac{d}{dt} (b_2 \| \partial_x^k u \|_2^2 + b_1 \| \partial_x^k v \|_2^2) &\leq C(\|u_x\|_{\infty} + \|v_x\|_{\infty}) (\| \partial_x^k u \|_2^2 + \| \partial_x^k v \|_2^2) \\ &\leq C(\|u_x\|_{\infty} + \|v_x\|_{\infty}) (b_2 \| \partial_x^k u \|_2^2 + b_1 \| \partial_x^k v \|_2^2). \end{aligned} \tag{2.9}$$

Gronwall's inequality applied to (2.6) and (2.9) yields the desired results.

assertion, we seem to need the commutator-estimates of Kato and Ponce (1988) and so this level of generality has been eschewed in favor of the simpler proof presented above. Remark 2.1. Actually Theorem 2.1 is valid for fractional exponents s > 3/2, while Lemma 2.2 is valid for fractional indices $s \ge 0$. However, to prove the latter

solution as in Theorem 2.1 emanating therefrom. Suppose there are finite constants K and T_1 such that for any $t \le T_1$ for which the solution exists on the interval [0,t]. Lemma 2.3. Let $(u_0, v_0) \in H^s(\mathbb{R}) \times H^s(\mathbb{R})$, where $s \ge 2$ and let (u, v) be the local

$$\int_{0}^{t} (\|u_{x}(\cdot,r)\|_{\infty} + \|v_{x}(\cdot,r)\|_{\infty}) dr \le K. \tag{2.10}$$

Then the local solution can be extended at least over the time interval $[0, T_1]$.

Proof. Let T_0 be the maximum temporal existence interval for the solution (u,v) and suppose $T_0 \le T_1$. Thus for any $T < T_0$, $(u,v) \in X_s(T) \times X_s(T)$, and so from (2.2)

and (2.10) it follows that for any such T, we have

$$\sup_{(0,T)} \|(u(t), v(t))\|_{s,2} \le \|(u_0, v_0)\|_{s,2} \exp(CK), \tag{2.11}$$

for any $s \ge 1$. Hence there is a uniform bound on (u, v) in $H^s(\mathbb{R}) \times H^s(\mathbb{R})$ on the time interval [0, T). This fact and the local existence theory contradict the definition of T_0 unless $T_0 > T_1$.

3. A Priori Estimates in $H^1(\mathbb{R}) \times H^1(\mathbb{R})$

The conservation laws Φ_1 , Φ_2 and Φ_3 were derived by Gear and Grimshaw (1984). The Hamiltonian functional Φ_4 in (1.5) appears to be new and hence its derivation

Multiply Eq. (2.3) by b_1b_2 to obtain

$$\frac{b_1 b_2}{2} \frac{d}{dt} \int_{-\pi}^{\infty} u_x^2 + b_1 b_2 a_3 \int_{-\pi}^{\pi} u_x v_{xxxx}$$

$$= -\frac{b_1 b_2}{2} \int_{-\infty}^{\infty} u^2 u_{xxx} - \frac{b_1 b_2 a_1}{2} \int_{-\infty}^{\infty} v^2 u_{xxx} - b_1 b_2 a_2 \int_{-\pi}^{\pi} u v u_{xxx}, \qquad (3.1)$$

Differentiating the first equation in (1.1) with respect to x, but this time multiplying by $b_1b_2a_3v_x$ and integrating over \mathbb{R} , we find that

$$a_3b_1b_2 \int_{-\infty}^{\infty} v_x u_{x1} + a_3b_1b_2 \int_{-\infty}^{\infty} v_x u_{xxxx}$$

$$= \frac{a_3b_1b_2}{2} \int_{-\infty}^{\infty} u^2 v_{xxx} - \frac{a_1a_3b_1b_2}{2} \int_{-\infty}^{\infty} v^2 v_{xxx} - a_2a_3b_1b_2 \int_{-8}^{\infty} uvv_{xxx}. \quad (3.2)$$
A similar operation applied to the second equation in (1.1) gives

$$a_{3}b_{1}b_{2} \int_{-\infty}^{\infty} u_{x}v_{xt} + a_{3}rb_{2} \int_{-\infty}^{\infty} v_{xx}u_{x} + a_{3}b_{2} \int_{-\infty}^{\infty} u_{x}v_{xxxx}$$

$$= -\frac{a_{3}b_{2}}{2} \int_{-\infty}^{\infty} v^{2}u_{xxx} - \frac{a_{2}a_{3}b_{2}^{2}}{2} \int_{-\infty}^{\infty} u^{2}u_{xxx} - a_{1}a_{3}b_{2}^{2} \int_{-\infty}^{\infty} uvu_{xxx}.$$
(3.3)
Adding (2.4), (3.1), (3.2) and (3.3), we find that

$$\frac{b_1}{2} \frac{d}{dt} \int_{-\infty}^{\infty} (b_2 u_x^2 + v_x^2 + 2a_3 b_2 u_x v_x)$$

$$= -\frac{b_1 b_2}{2} \int_{-\infty}^{\infty} u^2 (u_{xxx} + a_3 v_{xxx}) - \frac{a_1 b_1 b_2}{2} \int_{-\infty}^{\infty} v^2 (u_{xxx} + a_3 v_{xxx})$$

$$-a_2 b_1 b_2 \int_{-\infty}^{\infty} uv (u_{xxx} + a_3 v_{xxx}) - \frac{1}{2} \int_{-\infty}^{\infty} v^2 (v_{xxx} + a_3 b_2 u_{xxx})$$

$$-\frac{a_2 b_2}{2} \int_{-\infty}^{\infty} u^2 (v_{xxx} + a_3 b_2 u_{xxx}) - a_1 b_2 \int_{-\infty}^{\infty} uv (v_{xxx} + a_3 b_3 u_{xxx})$$

$$-ra_3 b_2 \int_{-\infty}^{\infty} vu_{xxx} + a_3 b_2 u_{xxx} - a_1 b_2 \int_{-\infty}^{\infty} uv (v_{xxx} + a_3 b_3 u_{xxx})$$
(3.4)

Finally, using the original Eqs. (1.1) in (3.4) gives

Strong Interaction Between Internal Waves

$$\frac{b_1}{2} \frac{d}{dt} \int_{-\infty}^{\infty} \left(b_2 u_x^2 + v_x^2 + 2a_3 b_2 u_x v_x - b_2 \frac{u^3}{3} - b_2 a_2 u^2 v - b_2 a_1 u v^2 - \frac{v^3}{3} - r v^2 \right) dx = 0.$$
(3.5)

which says that Φ_4 is time-invariant when evaluated on a solution pair (u, v) of (1.1).

Lemma 3.1. Let $(u,v) \in X_s(T) \times X_s(T)$ be the solution to (1.1) corresponding to the

initial data (u_0, v_0) in $H^s(\mathbb{R}) \times H^s(\mathbb{R})$, where $s \ge 2$.

(1) Then $\|(u(t), v(t))\|_2$ is bounded independently of t, with a bound depending

(2) If $|a_3| < 1/\sqrt{b_2}$, then $\|(u(t), v(t))\|_{1,2}$ is bounded independently of t, with a bound depending only on $\|(u_0, v_0)\|_{1,2}$. only on $\|(u_0, v_0)\|_2$.

Proof. Part (1) follows easily from the time invariance of the functional

$$\Phi_3 = b_2 \| u(t) \|_2^2 + b_1 \| v(t) \|_2^2 = b_2 \| u_0 \|_2^2 + b_1 \| v_0 \|_2^2.$$

For (2), use is made of the functional Φ_4 defined in (1.5). Using the time-invariance of Φ_4 together with straightforward estimates leads to the inequality

$$\begin{aligned} b_2 \|u_x\|_2^2 + \|v_x\|_2^2 & \leq C(\|u_0\|_{1,2}, \|v_0\|_{1,2}) + C_1(\|u_0\|_2, \|v_0\|_2)(\|u\|_2 + \|v\|_x) \\ & + 2b_2 \|a_3\| \|u_x\|_2 \|v_x\|_2. \end{aligned}$$

Using the elementary bound $\|f\|_{\infty} \le \|f\|_{2}^{1/2} \|f_{x}\|_{2}^{1/2}$, one finds that for $\varepsilon < 1$,

$$\begin{split} b_2 \, \|u_x\|_2^2 + \|v_x\|_2^2 & \leq C + C_1(\|u_x\|_2^{1/2} + \|v_x\|_2^{1/2}) + 2b_2 \|a_3\| \|u_x\|_2 \|v_x\|_2 \\ & \leq C + C_1(\|u_x\|_2^{1/2} + \|v_x\|_2^{1/2}) + 2\sqrt{b_2(1-\varepsilon)} \sqrt{\frac{b_2}{1-\varepsilon}} \|a_3\| \|u_x\|_2 \|v_x\|_2 \\ & \leq C + C_1(\|u_x\|_2^{1/2} + \|v_x\|_2^{1/2}) \\ & + \left(b_2(1-\varepsilon)\|u_x\|_2^2 + \frac{b_2a_3^2}{1-\varepsilon}\|v_x\|_2^2\right). \end{split}$$

The last inequality follows from an application of Young's inequality. It therefore transpires that

$$b_2\varepsilon\|u_x\|_2^2 + \left(1 - \frac{b_2a_3^2}{1-\varepsilon}\right)\|v_x\|_2^2 \leq C + C_1\bigg(\|u_x\|_2^{1/2} + \|v_x\|_2^{1/2}\bigg).$$

Hence, another application of Young's inequality yields the desired result provided $1-b_2a_3^2>0$. Note that if $1-b_2a_3^2>0$, then for small, positive ε we have that $1-\frac{b_2a_3^2}{1-\varepsilon}>0$.

Remark 3.1. The a priori estimates provided in this section would allows us to conclude that the local solutions of (1.1) in $H^1(\mathbb{R}) \times H^1(\mathbb{R})$ (the existence of which will be shown in Sect. 5) can be globally continued for all $t \ge 0$ provided $|a_3| < 1$

4. Linear Estimates

In this section, the aforementioned estimates established by Kenig, Ponce and Vega for solutions of the linear KdV equation are extended to solutions of the linear system

$$\begin{cases} u_t + u_{xxx} + a_3 v_{xxx} = 0, \\ v_t + \frac{1}{b_1} v_{xxx} + \frac{a_3 b_2}{b_1} u_{xxx} = 0, \end{cases}$$

where it is assumed that

$$x_{\pm} = \frac{1}{2} \left(1 + \frac{1}{b_1} \pm \sqrt{\left(1 - \frac{1}{b_1} \right)^2 + 4 \frac{b_2 a_3^2}{b_1}} \right) \neq 0.$$

 $\alpha_{\pm} = \frac{1}{2} \left(1 + \frac{1}{b_1} \pm \sqrt{\left(1 - \frac{1}{b_1} \right)^2 + 4 \frac{b_2 a_2^2}{b_1}} \right) \neq 0.$ Without loss of generality we can suppose that $a_3 \neq 0$, for otherwise the result follows from the previous theory of Kenig et al. For α_{\pm} to be nonzero, it is sufficient to assume that $\sqrt{b_2 a_3} \neq \pm 1$, an assumption weaker than that imposed in Sect. 3 (the latter condition is equivalent to assuming α_{\pm} to be positive). Now let

$$= \sqrt{\left(1 - \frac{1}{b_1}\right)^2 + 4\frac{b_2 a_3^2}{b_1}}.$$

 $\ddot{\lambda} = \sqrt{\left(1 - \frac{1}{b_1}\right)^2 + 4\frac{b_2 a_3^2}{b_4}},$ and note that by assumption $\grave{\lambda}$ is positive. Introduce the new dependent variables w_1 and w_2 defined as

$$w_{1} = \frac{1}{2} \left(1 - \frac{1 - b_{1}}{\lambda b_{1}} \right) u + \frac{a_{3}}{\lambda} v,$$

$$w_{2} = \frac{1}{2} \left(1 + \frac{1 - b_{2}}{\lambda b_{2}} \right) u - \frac{a_{3}}{\lambda} v.$$

In these variables the system (4.1) can be written in the equivalent, diagonal form

$$\begin{cases} w_{1t} + \alpha_+ w_{1xxx} = 0, \\ w_{2t} + \alpha_- w_{2xxx} = 0. \end{cases}$$
 (4.2)

Since α_+ and α_- are non-zero, the decoupled, non-degenerate system (4.2) is easily analyzed using the existing theory, and this analysis leads to the desired

results for the linear system (4.1).

First, we recall the sharp version of Kato's local smoothing theory for solutions of the K-dV equation (Kenig et al. 1991a, Theorem 4.1).

Theorem 4.1. Let (w_1, w_2) be a solution pair of the system (4.2) corresponding to the initial data $(w_{10}, w_{20}) \in L^2(\mathbb{R}) \times L^2(\mathbb{R})$. Then there are constants c_1 and c_2 such that for any $x \in \mathbb{R}$,

$$\left(\int_{-\infty}^{\infty} |\partial_x w_j(x,t)|^2 dt\right)^{1/2} \equiv c_j \|w_{0j}\|, \tag{4.3}$$

Next the reader is reminded of the following estimate related to the boundedness

Strong Interaction Between Internal Waves

Theorem 4.2. For j = 1, 2 and w_j as above, we have that

$$\left(\int_{-\infty}^{\infty} \sup_{[-T,T]} |w_j(x,t)|^2 dx\right)^{1/2} \le c_j (1+T)^{\rho} ||w_{0j}||_{s,2}$$
(4.4)

for any ρ and s which are both larger than 3/4. 🔳

Vega (1987) (see also Kenig and Ruiz 1983) showed that this estimate is sharp in the sense that (4.4) does not always hold for s < 3/4. By interpolation between the estimates (4.3) and (4.4), one obtains immediately the following result which will be used in the next section.

Corollary 4.3. For j = 1, 2 and w_j as above, we have that

$$\left(\int_{-\infty}^{\infty} \int_{-T}^{T} |\partial_x w_j(x,t)|^4 dt dx\right)^{1/4} \le c_j (1+T)^{\gamma} \|w_{0j}\|_{l,2} \tag{4}$$

for any $\gamma > 3/8$ and l > 7/8.

Theorem 4.4. For w_1 and w_2 as in Theorem 4.1 and for any $(\theta, \beta) \in [0, 1] \times [0, \frac{1}{2}]$, in

$$\left(\int_{-\infty}^{\infty} \|D^{\theta\beta/2} w_j(\cdot, t)\|_{\rho}^q dt\right)^{1/q} \le c_j \|w_{0j}\|_2, \tag{4.6}$$

for
$$j = 1, 2$$
, where $(q, p) = (6/\theta(\beta + 1), 2/(1 - \theta))$.

Returning to the original problem (4.1), and introducing the notation

 $W(t)(u_0, v_0)(x) = (u, v)(x, t)$

$$= \left(w_1 + w_2, \frac{1}{2a_3} \left(\frac{1}{b_1} - 1 + \lambda\right) w_1 - \frac{1}{2a_3} \left(1 - \frac{1}{b_1} + \lambda\right) w_2\right) (x, t) \quad (4.7)$$

it is easy to see that u and v satisfy estimates analogous to those presented above for w_1 and w_2 . This remark leads directly to the final result of this section.

Theorem 4.5. The solution of the initial-value problem (4.1) corresponding to initial data (u_0, v_0), namely

$$V(t)(u_0, v_0)(x) = (u, v)(x, t)$$

$$\sup_{\mathbf{x}} \left(\int_{-\infty}^{\infty} |\partial_{\mathbf{x}} W(t)(u_0, v_0)(\mathbf{x})|^2 dt \right)^{1/2} \le C \|(u_0, v_0)\|_2, \tag{4.8}$$

actisfies the following estimates:

$$W(t)(u_0, v_0)(x) = (u, v)(x, t),$$
satisfies the following estimates:

$$\sup_{x} \left(\int_{-\infty}^{\infty} |\partial_x W(t)(u_0, v_0)(x)|^2 dt \right)^{1/2} \leq C \|(u_0, v_0)\|_2,$$

$$\left(\int_{-\infty}^{\infty} \sup_{t=T, T, t} |W(t)(u_0, v_0)(x)|^2 dx \right)^{1/2} \leq C(1 + T)^p \|(u_0, v_0)\|_{x, 2},$$

$$\left(\int_{-\infty}^{\infty} \int_{t=T}^{T} |\partial_x W(t)(u_0, v_0)(x)|^4 dt dx \right)^{1/4} \leq C(1 + T)^r \|(u_0, v_0)\|_{t, 2},$$

$$(4.8)$$

$$\int_{-\infty}^{\infty} \int_{-T}^{T} |\partial_x W(t)(u_0, v_0)(x)|^4 dt dx \bigg)^{1/4} \le C(1+T)^{\gamma} \|(u_0, v_0)\|_{1,2}, \tag{4.10}$$

301

$$\int_{-\infty}^{\infty} \|D^{\theta\beta/2}W(t)(u_0, v_0)(x)\|_{\rho}^{q} dt \bigg)^{1/q} \le C \|(u_0, v_0)\|_{2},$$

where $\rho > 3/4$, s > 3/4, $\gamma > 3/8$, l > 7/8 and $(\theta, \beta) \in [0, 1] \times [0, 1/2]$ with $(q, p) = (6/\theta(\beta+1), 2/(1-\theta))$.

5. Global Well-Posedness in $H^s(\mathbb{R}) \times H^s(\mathbb{R}), s \ge 1$

of the initial-value problem for the system In this section, the results obtained in Sect. 2 concerning the local well-posedness

$$\begin{cases} u_t + uu_x + u_{xxx} + a_3 v_{xxx} + a_1 vv_x + a_2 (uv)_x = 0, \\ b_1 v_t + vv_x + v_{xxx} + b_2 a_3 u_{xxx} + b_2 a_2 uu_x + b_2 a_1 (uv)_x = 0 \end{cases}$$
(5.1)

will be improved. Temporarily, the system (5.1) will be abbreviated as

$$\begin{cases} u_t + u_{xxx} + a_3 v_{xxx} + f_1(u, u_x, v, v_x) = 0, \\ v_t + \frac{1}{b_1} v_{xxx} + \frac{b_2 a_3}{b_1} u_{xxx} + f_2(u, u_x, v, v_x) = 0, \end{cases}$$
 (5.2)

with $(u, v)(x, 0) = (u_0, v_0)(x)$.

Fixing $(u_0,v_0)\in H^1(\mathbb{R})\times H^1(\mathbb{R})$, consider the initial-value problem for the system (5.2) with initial data $(u_0^\epsilon,v_0^\epsilon)=(\rho_\epsilon*u_0,\rho_\epsilon*v_0)\in H^\infty(\mathbb{R})\times H^\infty(\mathbb{R})$, where $\rho(\cdot) \in \mathcal{S}(\mathbb{R}), \ \rho \ge 0, \ \int_{-\infty}^{\infty} \rho(x) dx = 1 \text{ and } \rho_{\varepsilon}(\cdot) = \varepsilon^{-1} \rho \left(\frac{\cdot}{\varepsilon}\right).$ Notice that we do not ask

We denote by (u',v')(x,t) the corresponding solution of this problem, defined on the time interval $[0,T_c]$ (with the possibility that $T_c \to 0$ as $\varepsilon \to 0$) provided by Theorem 2.1. The first goal is to obtain an a priori estimate for the interval [0,T] of existence of the solution (u'(t),v'(t)) of (5.2) showing that T is independent of ε whenever $(u_0,v_0)\in H^1(\mathbb{R})\times H^1(\mathbb{R})$. for the moments of $\rho(\cdot)$ to vanish as in Bona and Smith (1975).

to that given by Kenig et al. (1991b) we shall prove the following result. Based on the properties put forth in Sect. 4, and following an argument similar

Proposition 5.1. With the above notation, there exists $T^* = T^*(\|(u_0, v_0)\|_{1,2}) > 0$ and $M = M(\|u_0, v_0)\|_{1,2}) > 0$ such that for all $\varepsilon > 0$, the solution $(u^{\varepsilon}, v^{\varepsilon})(\cdot, t)$ can be extended to the time interval $[0, T^*]$ where it satisfies the following:

$$(u^{\epsilon}, v^{\epsilon}) \in C(0, T^*; H^{\infty}(\mathbb{R}) \times H^{\infty}(\mathbb{R})), \tag{5.3}$$

$$\sup_{[0,T^*]} \left\{ \|u^*(t)\|_{1,2} + \|v^t\|_{1,2} \right\} \le M, \tag{5.4}$$

$$\left(\int_{0}^{T^{*}} (\|\partial_{x}u^{\varepsilon}(t)\|_{\infty}^{6} + \|\partial_{x}v^{\varepsilon}(t)\|_{\infty}^{6})dt\right)^{1/6} \leq M,\tag{5.5}$$

$$\left(\int_{-\infty}^{\infty} \int_{0}^{r} \left(|u_{x}|^{4} + |v_{x}|^{4} \right) dt dx \right)^{1/4} \leq M, \tag{5.6}$$

Strong Interaction Between Internal Waves

 $\sup_{x} \left(\int_{0} \left(\left| \partial_{x}^{2} u(x, t) \right|^{2} + \left| \partial_{x}^{2} v(x, t) \right|^{2} \right) dt \right)^{1/2} \leq M_{*}$ (5.7)

$$\left(\int_{-\infty}^{\infty} \left(\sup_{[0,T^*]} |u(x,t)|^2 + \sup_{[0,T^*]} |v(x,t)|^2\right) dx\right)^{1/2} \le M. \tag{5.8}$$

Remark 5.1. The results of this proposition still hold if one only assumes that $(u_0, v_0) \in H^s(\mathbb{R}) \times H^s(\mathbb{R})$ with s > 3/4 (with s and s+1 replacing 1 and 2 in (5.4) and (5.7) respectively). However, for simplicity of the exposition, consideration is given to the case s=1 for which one only encounters derivatives of integer

Proof. Using Duhamel's formula, the solution $(u^{\epsilon}, v^{\epsilon})$ can be written in the form

$$(u^{\epsilon}, v^{\epsilon})(\cdot, t) = W(t)(u_0, v_0) + \int_0^t W(t - \tau)(f_1, f_2)(\cdot, \tau)d\tau, \tag{5.8}$$

where $W(\cdot)$ and (f_1, f_2) were defined in (4.7) and (5.2) respectively. Since $W(t)(u_0, v_0)$ denotes the solutions of the linear system (4.1), it is easy to

$$\|W(t)(u_0^t, v_0^t)\|_2 \le C \|(v_0^t, v_0^t)\|_2,$$
 (5.9)

where C depends only on b_1 and b_2 . Combining (5.9) with Hölder and Sobolev inequalities, and Fubini's theorem

$$\sup_{\{0,T\}} \|(u,v)(t)\|_{1,2} \leq C \|(u_0^*,v_0^*)\|_{1,2} + C \int_0^T \|(f_1,f_2)(t)\|_2 dt + C \int_0^T \|(f_{1x},f_{2x})(t)\|_2 dt$$

$$\leq C \|(u_0,v_0)\|_{1,2} + C \int_0^T (\|uu_x\|_2 + \|vu_x\|_2 + \|uu_x\|_2 + \|vu_x\|_2 + \|vv_x\|_2) dt$$

$$+ CT^{1/2} \left(\int_0^T \int_0^\infty (\|uu_{xx}\|^2 + |u_x\|^4 + |vu_{xx}|^2 + |u_xv_x|^2) dx dt \right)$$

$$\leq C \|(u_0,v_0)\|_{1,2} + CT \left(\sup_{\{0,T\}} \|(u,v)(t)\|_{1,2} \right)^2$$

$$+ |u_xv_x|^2 + |uv_{xx}|^2 + |v_x|^4 + |vv_{xx}|^2 \right) dt dx$$

$$\leq C \|(u_0,v_0)\|_{1,2} + CT^{1/2} \left(\sup_{\{0,T\}} \|(u,v)(t)\|_{1,2} \right)^{1/2}$$

$$\leq C \|(u_0,v_0)\|_{1,2} + CT^{1/2} \left(\sup_{\{0,T\}} \|(u,v)(t)\|_{1,2} \right)^2$$

Strong Interaction Between Internal Waves

$$+CT^{1/2} \left\{ \left(\int_{-\infty}^{\infty} \left(\sup_{[0,T]} |u|^2 + \sup_{[0,T]} |v|^2 \right) dx \right)^{1/2} \times \left(\sup_{x} \int_{0}^{T} (|u_{xx}|^2 + |v_{xx}|^2) dt \right)^{1/2} + \left(\int_{-\infty}^{\infty} \int_{0}^{T} (|u_{x}|^4 + |v_{x}|^4) dt dx \right)^{1/2} \right\} \equiv D.$$
 (5.10)

where here and subsequently the subscript ε has been suppressed. Next using the estimates (4.11) with $(\theta, \beta) = (1, 0)$, it follows from (5.10) that for any $T \le T_{\varepsilon}$,

$$\left(\int_{0}^{T} \|\partial_{x}u^{r}(t)\|_{\infty}^{6} + \|\partial_{x}v^{s}(t)\|_{\infty}^{6} dt\right)^{1/6} \leq C \|(u_{0}^{t}, v_{0}^{t})\|_{1,2} + C \int_{0}^{T} \|(f_{1x}, f_{2x})(t)\|_{2} dt \leq D.$$
(5.11)

The same argument and the estimates (4.8)-(4.10) show that for $T < T_r \le 1$,

$$\sup_{x} \left(\int_{0}^{T} (|u_{xx}|^{2} + |v_{xx}|^{2}) dt \right)^{1/2} \le D,$$

$$\left(\int_{-\infty}^{\infty} \left(\sup_{[0,T]} |u|^{2} + \sup_{[0,T]} |v|^{2} \right) dx \right)^{1/2} \le D,$$
(5.12)

$$\left(\int_{-\infty}^{\infty} \left(\sup_{[0,T]} |u|^2 + \sup_{[0,T]} |v|^2\right) dx\right)^{1/2} \le D,\tag{5.13}$$

Introducing the notation

and

$$\left(\int_{-\infty}^{\infty} \int_{0}^{T} (|u_x|^4 + |v_x|^4) dt dx\right)^{1/4} \le D. \tag{5.14}$$
 otation

 $X(T) = \max \left\{ \sup_{\{0,T\}} \|(u,v)(t)\|_{1,2}; \sup_{x} \left(\int_{0}^{T} (|u_{xx}|^{2} + |v_{xx}|^{2}) dt \right)^{1/2} \right\}$ $\left(\int_{-\infty}^{\infty} \left(\sup_{\{0,T\}} |u|^{2} + \sup_{\{0,T\}} |v|^{2} \right) dx \right)^{1/2} \cdot \left(\int_{-\infty}^{\infty} \int_{0}^{T} (|u_{x}|^{4} + |v_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{-\infty}^{\infty} \int_{0}^{T} (|u_{x}|^{4} + |v_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{-\infty}^{\infty} \int_{0}^{T} (|u_{x}|^{4} + |v_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{-\infty}^{\infty} \int_{0}^{T} (|u_{x}|^{4} + |v_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{\infty} \int_{0}^{T} (|u_{x}|^{4} + |v_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{T} \int_{0}^{T} (|u_{x}|^{4} + |v_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{T} \int_{0}^{T} (|u_{x}|^{4} + |v_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{T} \int_{0}^{T} (|u_{x}|^{4} + |v_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{T} \int_{0}^{T} (|u_{x}|^{4} + |v_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{T} \int_{0}^{T} (|u_{x}|^{4} + |v_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{T} \int_{0}^{T} (|u_{x}|^{4} + |v_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{T} \int_{0}^{T} (|u_{x}|^{4} + |v_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{T} \int_{0}^{T} (|u_{x}|^{4} + |v_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{T} \int_{0}^{T} (|u_{x}|^{4} + |u_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{T} (|u_{x}|^{4} + |u_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{T} (|u_{x}|^{4} + |u_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{T} (|u_{x}|^{4} + |u_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{T} (|u_{x}|^{4} + |u_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{T} (|u_{x}|^{4} + |u_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{T} (|u_{x}|^{4} + |u_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{T} (|u_{x}|^{4} + |u_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{T} (|u_{x}|^{4} + |u_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{T} (|u_{x}|^{4} + |u_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{T} (|u_{x}|^{4} + |u_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{T} (|u_{x}|^{4} + |u_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{T} (|u_{x}|^{4} + |u_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{T} (|u_{x}|^{4} + |u_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{T} (|u_{x}|^{4} + |u_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{T} (|u_{x}|^{4} + |u_{x}|^{4}) dx dt \right)^{1/4} \cdot \left(\int_{0}^{T} (|u_{x}|^{4} + |u_{x}|^{4})$

$$\left(\int_{-\infty}^{T} \left(\sup_{[0,T]} |u|^{2} + \sup_{[0,T]} |v|^{2}\right) dx\right) \quad ; \left(\int_{-\infty}^{T} \left(\|u_{x}(t)\|_{\infty}^{6} + \|v_{x}(t)\|_{\infty}^{6}\right) dt\right)^{1/6}\right)$$

$$(5.15)$$

(note that X(T) is a non-decreasing function of T as long as the solution (u^c, v^t) remains in the space defined in (5.3)), it is inferred from (5.10)–(5.14) that

$$X(T) \le C \|(u_0, v_0)\|_{1,2} + CT^{1/2} (X(T))^2$$
 (5.16)

with $T \le T_c \le 1$. Now define $T^* = \min\{1; T_0\}$, where T_0 is given by the identity

$$X(T_0) = 2C \|(u_0, v_0)\|_{1,2} = M. \tag{5.17}$$

Thus, from (5.16), it is found that

$$T_0 \ge (2C^2 \| (u_0, v_0) \|_{1.2})^{-2}.$$
 (5.18)

Notice that both estimates (5.17) and (5.18) do not depend on the value of e.

If $T_{\epsilon} < T^*$, we obtain (5.17) with T_{ϵ} replacing T_0 . Combining this with the energy estimate (2.5), the definition of $X(\cdot)$ and Hölder's inequality yields a bound which allows one to reapply the local existence theorem (see Theorem 2.1 and Lemma 2.3) to extend the solution to the time interval $[0, T^*]$ where it satisfies

tends to zero. However, this point will not be considered here as our goal is to establish global well-posedness (i.e. $T^* = +\infty$ for any $(u_0, v_0) \in H^1(\mathbb{R}) \times H^1(\mathbb{R})$).

Next, we shall prove that the net $\{(u^\epsilon,v^\epsilon)\}\in C(0,T;H^\tau(\mathbb{R})\times H^\tau(\mathbb{R}))$ converges in $C(0,T;H^1(\mathbb{R})\times H^1(\mathbb{R}))$ for some $T< T^*$.

$$\begin{aligned} &z_{1t}+z_{1xxx}+a_3z_{2xxx}+u_x^cz_1-u^cz_{1x}+a_1(v_x^cz_2-v^cz_{2x})+a_2(v^cz_1-u^cz_2)_x=0,\\ &b_1z_{2t}+z_{2xxx}+b_2a_3z_{1xxx}+v_x^cz_2-v^cz_{2x}+b_2a_2(u_x^cz_1-u^cz_{1x})+b_2a_1(v^cz_1-u^cz_2)_x=0. \end{aligned}$$

with initial data $(z_{10}, z_{20}) = (u_0^c - u_0^c, v_0^c - v_0^c)$. As in the previous proof, define Y(T) in analogy with X(T) in (5.15), where (z_1, z_2) replaces (u, v). Following the same argument exposed in (5.8)–(5.14), it is

$$|T| \le C \|(z_{10}, z_{20})\|_{1,2} + CT^{1/2}MY(T), \tag{5.19}$$

where the constant M was defined in (5.17). Hence, fixing $T \le T^*$ such that

$$CT^{1/2}M=\tfrac{1}{2},$$

it is concluded that

$$Y(T) = o(1)$$

advertised earlier. Combining Proposition 5.1 and 5.2 leads to the local well-posedness result when $\varepsilon > \varepsilon' > 0$ tend to zero. This completes the proof.

Theorem 5.3. The following points are valid concerning the initial-value problem for

unique strong solution (u,v) of the system (5.1) with (u_0,v_0) as initial data such that (i) For any $(u_0, v_0) \in H^1(\mathbb{R}) \times H^1(\mathbb{R})$, there exists $T = T(\|(u_0, v_0)\|_{1,2}) > 0$ and a

$$(u, v) \in C(0, T; H^{1}(\mathbb{R}) \times H^{1}(\mathbb{R})),$$
 (5.20)

$$(u_x, v_x) \in L^6(0, T; L^\infty(\mathbb{R}) \times L^\kappa(\mathbb{R})), \tag{5.21}$$

and

$$\sup_{x} \left(\int_{0}^{T} (|\partial_{x}^{2} u(x, t)|^{2} + |\partial_{x}^{2} v(x, t)|^{2}) dt \right)^{1/2} < \infty.$$
 (5.22)

A small modification in the proof allows the removal of the condition $T^* \le 1$ and thereby proves that $T^* = T^*(\|u_0, v_0\|_{1,2})$ tends to infinity as $\|(u_0, v_0)\|_{1,2}$

Proposition 5.2. For some $T < T^*$, the family $\{(u',v')\}_{r>0}$ converges on the interval [0,T] in the norms appearing on the left-hand sides of (5.4) (5.8) to a strong solution $(u,v)\in C$ $(0,T;H^1(\mathbb{R})\times H^1(\mathbb{R}))$ of the system (5.1).

Proof. The argument is similar to that given in the proof of the previous proposition, so, a sketch will suffice. For $\varepsilon > \varepsilon' > 0$, define $(z_1, z_2) = (u^\varepsilon - u^\varepsilon, v^\varepsilon - v^\varepsilon)$

$$\begin{aligned} z_{1i} + z_{1xxx} + a_{3}z_{2xxx} + u_{x}^{x}z_{1} - u^{c}z_{1x} + a_{1}(v_{x}^{c}z_{2} - v^{c}z_{2x}) + a_{2}(v^{c}z_{1} - u^{c}z_{2})_{x} = 0, \\ z_{2i} + z_{2xxx} + b_{2}a_{3}z_{1xxx} + v_{x}^{x}z_{2} - v^{c}z_{2x} + b_{2}a_{2}(u_{x}^{c}z_{1} - u^{c}z_{1x}) + b_{2}a_{1}(v^{c}z_{1} - u^{c}z_{2})_{x} = 0. \end{aligned}$$

discovered that for $T < T^*$,

$$Y(T) \le C \|(z_{10}, z_{20})\|_{1,2} + CT^{1/2}MY(T), \tag{5.1}$$

Strong Interaction Between Internal Waves

 $(u,v) \in L^2(0,T; H^2_{loc}(\mathbb{R}) \times H^2_{loc}(\mathbb{R})).$ (5.2)

Proof. The proofs of the parts (ii)—(iii) are similar to that provided in detail for part (i), and therefore they will be omitted here. Uniqueness is immediate since

$$\begin{split} \int\limits_{0}^{T} \left(\| u_{x}(t) \|_{\infty} + \| v_{x}(t) \|_{\infty} \right) dt & \leq T^{5/6} \left(\int\limits_{0}^{T} \left(\| u_{x}(t) \|_{\infty} + \| v_{x}(t) \|_{\infty} \right)^{6} dt \right)^{1/6} \\ & \leq c T^{5/6} \left(\int\limits_{0}^{T} \left(\| u_{x}(t) \|_{\infty}^{6} + \| v_{x}(t) \|_{\infty}^{6} \right) dt \right)^{1/6} \\ & \leq c T^{5/6} X(T). \quad \blacksquare \end{split}$$

Theorem 5.4. (Global Well-Posedness). If $|a_3| < 1/\sqrt{b_2}$, then the results in Theorem 5.3 are true with T arbitrarily large.

Proof. Theorem 5.4 follows by combining Theorem 5.3 with Lemma 3.1.

Remark 5.2. (1) The linear estimates in Sect. 4 depend on the fact that the eigenvalues $\{\alpha_{\pm}\}$ of the coefficient matrix of the dispersive terms in (4.1) are both nonzero. If either of these eigenvalues is zero, then the corresponding equation in (4.2) is hyperbolic and hence no smoothing effect can be derived from it. As a consequence, we would not have the local well-posedness result (Theorem 5.3).

consequence, we would not have the local well-posedness result (Theorem 5.3). (2) It should be noted that as long as b_1 is positive and finite (regardless of its magnitude), the existence of global solutions in $H^1(\mathbb{R}) \times H^1(\mathbb{R})$ is assured provided the condition $|a_3| < 1/\sqrt{b_2}$ is satisfied. Indeed this condition is satisfied by the examples given by Gear and Grimshaw (1984) wherein (i) $a_3 = 0.139389$, $b_1 = 2.267029$, $b_2 = 21.513946$ and (ii) $a_3 = 0.5$, $b_1 = b_2 = 2$. For (i) $1/\sqrt{b_2} = 0.2155956$ and for (ii) $1/\sqrt{b_2} = 0.7071068$.

6. Local Well-Posedness in L^2 and Dispersive Blow-up

In this section use is made of Kato's original local smoothing ideas to obtain existence of solutions to the initial-value problem for (5.1) corresponding to data which lies only in $L^2(\mathbb{R}) \times L^2(\mathbb{R})$. This result in turn will be used in the analysis of a certain type of singularity formation termed dispersive blow-up by Bona and Saut (1991a).

Let $(u_0, v_0) \in L^2(\mathbb{R}) \times L^2(\mathbb{R})$ be a given pair of initial data for (5.1) and suppose that $(u_{0,n}, v_{0,n}) \in H^3(\mathbb{R}) \times H^3(\mathbb{R})$ are smoother data which converge to (u_0, v_0) in $L^2(\mathbb{R}) \times L^2(\mathbb{R})$ as n tends to infinity. Presuming that $|a_3| < 1/\sqrt{b_2}$. Theorem 5.4 assures that the system (5.1) has a unique solution pair $(u_n, v_n) \in C(0, \infty; H^3(\mathbb{R})) \times C(0, \infty; H^3(\mathbb{R}))$ corresponding to the initial data $(u_{0,n}, v_{0,n})$.

Dropping the subscript n, and writing (u, v) for (u_n, v_n) , we proceed to derive bounds on (u_n, v_n) . Let p be a C^{∞} real-valued function which is bounded on \mathbb{R} along with its first lew derivatives, and which is such that $p_x > 0$ for all $x \in \mathbb{R}$.

adulty with its trew derivatives, and which is such that
$$p_x > 0$$
 for all $x \in \mathbb{R}$. Multiply the first equation in (5.1) by $b_2 p_u$ and the second equation in (5.1) by p_0 and integrate the results with respect to x over \mathbb{R} . After several, justifiable integrations by parts, there appears the relation
$$\frac{b_2}{2} \frac{d}{dt} \int_{-\infty}^{\infty} pu^2 dx + \frac{b_1}{2} \frac{d}{dt} \int_{-\infty}^{\infty} pv^2 + \frac{3b_2}{2} \int_{-\infty}^{\infty} p_x u_x^2 dx + \frac{3}{2} \int_{-\infty}^{\infty} p_x v_x^2 dx$$

$$= \frac{b_2}{2} \int_{-\infty}^{\infty} p_{xxx} u^2 dx + \frac{1}{2} \int_{-\infty}^{\infty} p_{zxx} v^2 dx - 3b_2 a_3 \int_{-\infty}^{\infty} p_x u_x v_x dx$$

$$+ b_2 a_3 \int_{-\infty}^{\infty} p_{xxx} uv dx + b_2 a_1 \int_{-\infty}^{\infty} p_x uv^2 dx + b_2 a_2 \int_{-\infty}^{\infty} p_x u^2 v dx$$

$$+ \frac{1}{3} \int_{-\infty}^{\infty} p_x v^3 dx + \frac{b_2}{3} \int_{-\infty}^{\infty} p_x u^3 dx. \tag{6.1}$$

If Eq. (6.1) is integrated in time over the interval [0,T] and use is made of the invariance of the functional Φ_3 , and thus the boundedness of $||u(\cdot,t)||_2$ and $||v(\cdot,t)||_2$ independently of $t \ge 0$ and $n = 1, 2, \ldots$, and the properties of p, then one obtains that

$$\frac{3}{2} \int_{0-\infty}^{\infty} \left(b_{2} p_{x} u_{x}^{2} + p_{x} v_{x}^{2} \right) dx dt \\
= \int_{0-\infty}^{\infty} \left(b_{1} p_{x} u_{x}^{2} + p_{x} v_{x}^{2} \right) dx dt \\
= \int_{0-\infty}^{\infty} \left(b_{1} p_{x} u_{x}^{2} + p_{x} v_{x}^{2} \right) dx dt \\
+ b_{2} |a_{2}| \int_{0-\infty}^{T} \left(b_{1} v_{x} u_{x}^{2} v_{x} dx \right) dt + \frac{b_{2}}{3} \int_{0-\infty}^{T} \left(b_{1} v_{x} v_{x} dx \right) dt + \frac{1}{3} \int_{0-\infty}^{T} \left(b_{1} v_{x} v_{x}^{2} dx \right) dt \\
+ b_{2} |a_{2}| \int_{0-\infty}^{T} \left(b_{1} v_{x} u_{x}^{2} v_{x} dx \right) dt + \frac{b_{2}}{3} \int_{0-\infty}^{T} \left(b_{1} v_{x}^{2} v_{x}^{2} dx \right) dt + \frac{1}{3} \int_{0-\infty}^{T} \left(b_{1} v_{x}^{2} v_{x}^{2} dx \right) dt. \quad (6.2)$$

Using again the elementary inequality $||f||_{\infty} \le ||f||_2^{1/2} ||f'||_2^{1/2}$, the terms that are cubic in u, v in (6.2) may be estimated as follows:

$$\left| \int_{-\infty}^{\infty} p_{x} u^{3} dx \right| \leq (\|p_{x} u\|_{2}^{1/2} \|p_{xx} u\|_{2}^{1/2} + \|p_{x} u\|_{2}^{1/2} \|p_{x} u_{x}\|_{2}^{1/2}) \|u\|_{2}^{2},$$

$$\left| \int_{-\infty}^{\infty} p_{x} v^{3} dx \right| \leq (\|p_{x} v\|_{2}^{1/2} \|p_{xx} v\|_{2}^{1/2} + \|p_{x} v\|_{2}^{1/2} \|p_{x} v_{x}\|_{2}^{1/2}) \|v\|_{2}^{2},$$

$$\left| \int_{-\infty}^{\infty} p_{x} u v^{2} dx \right| \leq (\|p_{x} u\|_{2}^{1/2} \|p_{xx} u\|_{2}^{1/2} + \|p_{x} u\|_{2}^{1/2} \|p_{x} u_{x}\|_{2}^{1/2}) \|v\|_{2}^{2},$$

$$\left| \int_{-\infty}^{\infty} p_{x} u^{2} v dx \right| \leq (\|p_{x} v\|_{2}^{1/2} \|p_{xx} v\|_{2}^{1/2} + \|p_{x} v\|_{2}^{1/2} \|p_{x} v_{x}\|_{2}^{1/2}) \|u\|_{2}^{2},$$

$$\left| \int_{-\infty}^{\infty} p_{x} u^{2} v dx \right| \leq (\|p_{x} v\|_{2}^{1/2} \|p_{xx} v\|_{2}^{1/2} + \|p_{x} v\|_{2}^{1/2} \|p_{x} v\|_{2}^{1/2}) \|u\|_{2}^{2}.$$

$$(6.3)$$

If it is now assumed that $b_2a_3^2<1$, then (6.2), (6.3), the invariance of ϕ_3 and Young's inequality imply that

$$\int_{0}^{\infty} \int_{-\infty}^{\infty} p_x(u_x^2 + v_x^2) dx dt \le C(T, p, \|u_0\|_2, \|v_0\|_2), \tag{6.4}$$

and therefore, by an appropriate choice of the increasing function p, that

$$\int_{0}^{\infty} \int_{-R}^{R} (u_x^2 + v_x^2) dx dt \le C(T, R, \|u_0\|_2, \|v_0\|)$$
(6.5)

invariance of Φ_3 that the sequences for all finite, positive values of T and R. It is thus concluded from (6.5) and the

$$\{u_n\}_{n=1}^{\infty}$$
 and $\{v_n\}_{n=1}^{\infty}$ are bounded in $L^{\infty}(0, T; L^2(\mathbb{R})) \cap L^2(0, T; H^1(-R, R)),$ (6.6)

independently of
$$n$$
, for finite values of R and T . Using Eqs. (5.1) satisfied by (u_n, v_n) , it is then straightforward to conclude that for each T , $R > 0$, the sequences $\{\partial_i u_n\}_{n=1}^{\infty}$ and $\{\partial_i p_n\}_{n=1}^{\infty}$ are bounded in $L^2(0, T; H^{-2}(-R, R))$. (6.7)

Theorem 6.1. Assume that $|a_3| < 1/\sqrt{b_2}$ and let $(u_0, v_0) \in L^2(\mathbb{R}) \times L^2(\mathbb{R})$. Then the system (5.1) has a solution (u, v) corresponding to the initial data (u_0, v_0) such that

to pass to the limit in (5.1) as n tends to infinity, so obtaining the following existence

independently of n. It is then standard to use the Aubin-Lions compactness result

$$u,v\!\in\!L^\infty(0,\infty;L^2(\mathbb{R}))\cap L^2(0,T;H^1(-R,R))$$

for each T, R > 0. Any such solution has the property that

$$u_i, v_i \in L^2(0, T; H_{loc}^{-2}(\mathbb{R})),$$

and hence

$$u, v \in C(0, T; H^{-1/2}_{loc}(\mathbb{R})) \cap C_{w}(0, T; H^{1}_{loc}(\mathbb{R})).$$

The initial values are taken on at least in the sense of the latter space

relative to H^k can be carried out along the same lines. Indeed, the theorem stated developed in the L^2 -context, though the reader will readily appreciate how a theory generalized Kortweg-de Vries equation. For simplicity, the theory is only obtain for the Gear Grimshaw system (5.1) in much the same way as for the below encompasses this generalization. Attention is now given to the so-called dispersive blow-up properties which

in $H^k(\mathbb{R}) \cap C^k_k(\mathbb{R}) \cap C^\infty(\mathbb{R})$ and a corresponding solution pair (u,v) of (5,1) such that $u,v \in L^\infty(0,T;H^k(\mathbb{R})) \cap L^2(0,T;H^{k+1}_{loc}(\mathbb{R})), \ \partial_x^k u, \partial_x^k v \ are both continuous functions of <math>(x,t)$ in the domain $\mathbb{R} \times (0,T) \setminus \{(x^*,t^*)\}$, and **Theorem 6.2.** Assume that $|a_3| < 1/\sqrt{b_2}$ and let a non-negative integer k and real numbers T > 0, $x^* \in \mathbb{R}$ and $0 < t^* < T$ be given. Then there exists initial data u_0, v_0

$$\lim_{t \to r^*} |\partial_x^k u(x, t)| = \lim_{t \to r^*} |\partial_x^k v(x, t)| = +\infty.$$

$$(6.8)$$

Remark 6.3. By $C_k^*(\mathbb{R})$ we mean the C^k -functions defined on \mathbb{R} whose derivatives up to order k are uniformly bounded on \mathbb{R} . In case $k \ge 1$ above, the solution pair (u,v) is unique and u,v actually lie in $C(0,T;H^k(\mathbb{R}))$, as stated already in Theorem 5.3.

Proof. As mentioned above, the proof is sketched here only for the case k = 0The line of argument follows very closely that appearing in Bona and Saut (1991a).

The first step in the proof is to obtain an existence result for solutions of (5.1) in weighted spaces. Consider the special class of weights $w = w_n$ which are

Strong Interaction Between Internal Waves

non-decreasing C^* functions depending on the positive parameter σ such that

$$w(x) = w_{\sigma}(x) = \begin{cases} 1 & \text{for } x < 0, \text{ and} \\ (1 + x^2)^{\sigma} & \text{for } x > 1. \end{cases}$$
 (6.5)

denoted $L^2(\mathbb{R}, w)$. are square integrable with respect to the measure $w^2(x)dx$. If k=0, this space is The class $H^k(\mathbb{R}, w)$ is the class of $H^k(\mathbb{R})$ -function whose derivatives up to order k

 $u, v \in L^{\infty}(0, T; L^{2}(\mathbb{R}, w)).$ to (5.1) corresponding to (u_0, v_0) as in Theorem 6.1 such that for any T > 0, one has **Proposition 6.4.** Assume that $|a_3| < 1/\sqrt{b_2}$ and suppose that the initial data (u_0, v_0) for the system (5.1) lies in $L^2(\mathbb{R}, w) \times L^2(\mathbb{R}, w)$. Then there exists a solution pair (u, v)

 $L^\infty(0,T;L^2(\mathbb{R},w))\times L^\infty(0,T;L^2(\mathbb{R},w)).$ taken as n tends to infinity, the resulting weak solution may be inferred to lie in associated solution (u_n, v_n) , n = 1, 2, ..., in $L^2(\mathbb{R}, w)$ in order that, when the limit is to u_0, v_0 in $L^2(\mathbb{R}, w)$. It is then only required to derive a priori bounds on the initial data which is smooth (e.g. $u_{0,n}$, $v_{0,n} \in C_0^{\infty}(\mathbb{R})$, n = 1, 2, ...) and which converges Proof. The argument is made as in the proof of Theorem 6.1 by working with

slightly complicated system of equations To this just mentioned end, define A = uw and B = vw so that A, B satisfy the

$$A_{1} + A_{xxx} + a_{3}B_{xxx} + (A + a_{3}B) \left(6 \frac{w_{x}w_{xx}}{w^{2}} - 6 \frac{w_{x}^{3}}{w^{3}} - \frac{w_{xxx}}{w} \right)$$

$$+ (A_{x} + a_{3}B_{x}) \left(6 \frac{w_{x}^{2}}{w^{2}} - 3 \frac{w_{xx}}{w} \right) - 3 \frac{w_{x}}{w} (A_{xx} + a_{3}B_{xx}) + a_{1} \left(\frac{1}{w} BB_{x} - \frac{w_{x}}{w^{2}} B^{2} \right)$$

$$+ a_{2} \left(\frac{1}{a} (AB)_{x} - 2 \frac{w_{x}}{2} AB \right) + \frac{1}{a} AA_{x} - \frac{w_{x}}{w^{2}} A^{2} = 0,$$

$$b_{1}B_{1} + b_{2}a_{3}A_{xxx} + B_{xxx} + (b_{2}a_{3}A + B) \left(6 \frac{w_{x}w_{xx}}{w^{2}} - 6 \frac{w_{x}^{3}}{w^{2}} - \frac{w_{xxx}}{w} \right)$$

$$+ (b_{2}a_{3}A_{x} + B_{x}) \left(6 \frac{w_{x}^{2}}{w^{2}} - 3 \frac{w_{xx}}{w} \right) - 3 \frac{w_{x}}{w} (b_{2}a_{3}A_{xx} + B_{xx})$$

$$+ \frac{1}{a}BB_{x} - \frac{w_{x}}{w^{2}} B^{2} + \frac{b_{2}a_{2}}{w} AA_{x} - b_{2}a_{2} \frac{w_{x}}{w^{2}} A^{2}$$

$$+ b_{2}a_{1} \left(\frac{1}{a} (AB)_{x} - 2 \frac{w_{x}}{w^{2}} AB \right) = 0.$$

$$(6.10)$$

All the coefficients appearing in (6.10) are smooth and bounded, because of the properties of w, and hence this system admits a local existence theory along the lines enunciated in Sect. 2. Since for each integer n, the initial data $A(x,0) = w(x)u_{0,n}(x)$ and $B(x,0) = w(x)v_{0,n}(x)$ lies in $H^{\infty}(\mathbb{R})$, it will follow that the initial-value problems for (6.10) possess unique solutions $(A, B) = (A_n, B_n)$, such that

assured of solutions of the system (6.10) having more than enough regularity and decay at infinity to justify the quest for energy-type estimates upon which we now $A, B \in C(0, T; H^k(\mathbb{R}))$ for some T > 0 and any k. By uniqueness for the initial-value problem for (S.1), it follows that $A_n = wu_n$ and $B_n = wv_n$. In any case, we are thus

Multiply the first Eq. (6.8) by b_2A and the second by B, integrate the results over \mathbb{R} , and integrate by parts to reach the relation

$$\frac{1}{2}b_2\frac{d}{dt} \|A\|_2^2 + \frac{1}{2}b_1\frac{d}{dt} \|B\|_2^2 + 3b_2 \int_{-\infty}^{\infty} \frac{w}{w} A_x^2 dx + 3 \int_{-\infty}^{\infty} \frac{w}{B}_x^2 dx
= 6b_2a_3 \int_{-\infty}^{\infty} \frac{w}{w} A_x B_x dx + 3b_2a_3 \int_{-\infty}^{\infty} \left(\frac{w}{w}\right)_{xx} AB dx + \int_{-\infty}^{\infty} \theta_1 A^2 dx
+ \int_{-\infty}^{\infty} \theta_2 B^2 dx + \int_{-\infty}^{\infty} \theta_3 AB dx + \frac{2b_2}{3} \int_{-\infty}^{\infty} \frac{w}{w^2} A^3 dx + \frac{2}{3} \int_{-\infty}^{\infty} \frac{w}{w^2} B^3 dx
- a_1b_2 \int_{-\infty}^{\infty} \frac{1}{w} [ABB_x + (AB)_x B] dx - a_2b_2 \int_{-\infty}^{\infty} \frac{1}{w} [(AB)_x A + AA_x B] dx
+ 3a_1b_2 \int_{-\infty}^{\infty} \frac{w}{w^2} AB^2 dx + 3a_2b_2 \int_{-\infty}^{\infty} \frac{w}{w^2} A^2 B dx, \tag{6.1}$$

where, due to the properties of w, θ_1 , θ_2 and θ_3 are smooth functions which are bounded, along with all their derivatives. First notice that

$$\left| 6b_2 a_3 \int_{-\infty}^{\infty} \frac{w_x}{w} A_x B_x dx \right| < |a_3| \sqrt{b_2} \left(\int_{-\infty}^{\infty} \frac{w_x}{w} (b_2 A_x^2 + B_x^2) dx \right). \tag{6.12}$$

Further integration by parts shows that

$$-a_1b_2 \int_{-\infty}^{\infty} \int_{W}^{1} (ABB_x + B(AB)_x)dx = -a_1b_2 \int_{-\infty}^{\infty} \int_{W^2}^{W_x} AB^2dx$$

and similarly

$$-a_1b_2\int_{-\infty}^{\infty}\int_{W}^{1}-(A(AB)_x+AA_xB)dx = -a_2b_2\int_{-\infty}^{\infty}\int_{W}^{2}A^2Bdx.$$

Estimating straightforwardly in (6.11) thus leads to the inequality

$$\frac{1}{2} \frac{d}{dt} (b_2 \|A\|_2^2 + b_1 \|B\|_2^2) + 3 \int_{-\infty}^{\infty} \frac{w_x}{w} (b_2 A_x^2 + B_x^2) dx$$

$$\leq c_1 \|A\|_2^2 + c_2 \|B\|_2^2 + 6a_2 b_3 \left| \int_{-\infty}^{\infty} \frac{w_x}{w} A_x B_x dx \right|$$

$$+ \frac{2}{3} \left| \int_{-\infty}^{\infty} \frac{w_x}{w} (b_2 A^3 + B^3) dx \right| + 2b_2 \left| \int_{-\infty}^{\infty} \frac{w_x}{w^2} (a_1 A B^2 + a_2 A^2 B) dx \right| = (6.13)$$

case p = 1), one readily derives that the last two terms on the right-hand side of Proceeding exactly as in the proof of Theorem 3.1 in Bona and Saut (1991a, the

(6.13) are majorized by an expression of the form

Strong Interaction Between Internal Waves

$$C(\eta)(\|A\|_2^2 + \|B\|_2^2) + \eta \int_{-\tau}^{W_x} (h_2 A_x^2 + B_x^2) dx.$$

(6.12) and (6.13), using the hypothesis that $|a_3| < 1/\sqrt{b_2}$, and choosing η small enough, it is adduced that there is a $\delta > 0$ such that where $\eta > 0$ is arbitrary and $C(\eta)$ depends inversely upon η . Combining this with

$$\frac{1}{2}\frac{d}{dt}(b_2 \|A\|_2^2 + b_1 \|B\|_2^2) + \delta \int_{-\infty}^{\infty} \frac{w_x}{w}(b_2 A_x^2 + B_x^2) dx \le C_3(\|A\|_2^2 + \|B\|_2^2),$$

and this in turn leads to a priori bounds on A and B in the space $L^{\infty}(0,T;L^{2}(\mathbb{R}))\cap L^{2}(0,T;H^{1}_{loc}(\mathbb{R}))$. In fact, the Gronwall lemma yields bounds on A and B in $L^{\infty}(0,T;L^{2}(\mathbb{R}))$ and then, by integrating the last inequality over the temporal interval [0,T] and using the fact that $A(\cdot,T)$ and $B(\cdot,T)$ are bounded in $L^{2}(\mathbb{R})$, it is concluded that

$$\int_{0-\infty}^{\infty} \frac{W_x}{w} (b_2 A_x^2 + B_x^2) dx dt$$

is bounded, and that the bound only depends upon T, the weight function w, and the L^2 -norm of the initial data A_0 and B_0 . Since $b_2 > 0$, it thus follows that for any finite value of K > 1,

$$\int\limits_{0}^{TK} \int\limits_{1}^{K} (A_x^2 + B_x^2) dx dt$$

concluded. In particular, it is seen that for any T > 0, there is a constant $C = C(T, R, \sigma, ||A_0||_2, ||B_0||_2)$ depending only on T, R, the value of σ in the definition of w, and the L^2 -norm of the initial data for A and B such that is bounded with a bound that again only depends upon T, the weight function w and the L^2 -norm of the initial data. By considering spatial translates of the weight function, the desired bounds on A, B in $L^2(0, T; H^1_{loc}(\mathbb{R}))$ are then easily

$$\|A(\cdot,t)\|_{2} + \|B(\cdot,t)\|_{2} + \int_{0}^{t} \int_{-R}^{R} (A_{x}^{2}(x,t) + B_{x}^{2}(x,t)) dx dt \le C$$
 (6.19)

for $0 \le t \le T$. Thus in the situation at hand, wherein $(A,B) = (A_n,B_n)$, but where the initial data $(A_{0,n},B_{0,n})$ remains uniformly bounded in $L^2(\mathbb{R}) \times L^2(\mathbb{R})$, the entire sequence $\{(A_n,B_n)\}_{n=1}^{\infty}$ is concluded to be bounded in $L^{\infty}(0,T;L^2(\mathbb{R})) \cap$ $L^{2}(0, T; H^{1}_{loc}(\mathbb{R})).$

guaranteed by Kato's theory is in fact global in time. However, since $\{(A_{0,n},B_{0,n})\}_{n=1}^{\infty}$ does not remain bounded in $H^{j}(\mathbb{R})$ for $j \ge 1$, nothing can be concluded about boundedness of the sequence of solutions $\{(A_n, B_n)\}_{n=1}^{\infty}$ in such Sobolev spaces. Of course, these cases come especially to the fore when the k in the statement of the theorem is larger than zero 1991a, Theorem 3.1). These bounds may be used to conclude that the local solution Energy-type estimates may be derived in the same way in $L^{\infty}(0, T; H^{J}(\mathbb{R}))$, = 1, 2,..., since the initial data $A_{0,m}$, $B_{0,m}$ lies in $H^{\infty}(\mathbb{R})$ (cf. again Bona and Saut

In all events, the bound in (6,14) allows one to pass to the limit as n tends to infinity and so establish the veracity of the proposition.

With Proposition 6.3 in hand, attention is refocussed on the proof of Theorem 6.2. Consider the potential blow-up point (x^*, t^*) . By a translation of the spatial variable, we may take it that $x^* = 0$ without loss of generality.

The idea is to choose initial data (u_0, v_0) which is such that when the linearized initial-value problem is solved, the solution forms the desired singularity at the point $(0, t^*)$. Then using Duhamel's principle, the solution of the full system is written as the solution of the linearized problem plus an integral term involving the linear solution-semigroup and the nonlinear terms. The first term in the last-mentioned sums forms a singularity at $(0, t^*)$, whilst the second will be shown to be well-behaved, thus leading to the desired conclusion.

First consider the decoupled system (4.2) where, since $|a_3| < 1/\sqrt{b_2}$, the eigenvalues α_{\pm} introduced in Sect. 4 are positive. According to the theory developed in Bona and Saut (1991a), if $w_i(\cdot, 0)$ is chosen as

$$w_i(x,0) = \frac{Ai(-\beta_i x)}{(1+x^2)^m},$$
(6.15)

for i=1,2, where $\frac{3}{16} < m \le \frac{1}{4}$, then the solution of (4.2), namely

$$\begin{split} w_1(x,t) &= \frac{1}{(\alpha_+ t)^{1/3}} \int\limits_{-\infty}^{\infty} Ai \left(\frac{x-y}{(\alpha_+ t)^{1/2}} \right) Ai (-\beta_1 y) (1+y^2)^{-m} dy, \\ w_2(x,t) &= \frac{1}{(\alpha_- t)^{1/3}} \int\limits_{-\infty}^{\infty} Ai \left(\frac{x-y}{(\alpha_- t)^{1/2}} \right) Ai (-\beta_2 y) (1+y^2)^{-m} dy. \end{split}$$

has the following properties. First the initial data is such that $w_i(\cdot,0) \in L^2(\mathbb{R}) \cap C_b(\mathbb{R}) \cap C^\infty(\mathbb{R})$ for i=1,2. Secondly, the solutions w_i are in $C_b(0,\infty;L^2(\mathbb{R}))$ and are continuous everywhere in the upper-half plane except that the points $(0,t_i)$, i=1,2, where $t_1=1/\beta_1\alpha_+$ and $t_2=1/\beta_2\alpha_-$. Thus, it behooves us to choose $\beta_1/t^*\alpha_+$ and $\beta_2=1/t^*\alpha_-$ so that both w_1 and w_2 loose continuity and blow up at the same point $(0,t^*)$ in space-time. It follows that if (u_0,v_0) is constructed from $(w_1(\cdot,0),w_2(\cdot,0))$ and (\tilde{u},\tilde{v}) from (w_1,w_2) via the transformation in (4.7), then

$$u_0, v_0 \in L^2(\mathbb{R}; \mathbb{W}_n) \cap C_b(\mathbb{R}) \cap C^\infty(\mathbb{R})$$

for any $\sigma < m - \frac{1}{8}$, and \bar{u} and \bar{v} both have the blow-up property in (6.8) for k = 0 at the point (0.1*). As $m > \frac{1}{6}$, it follows that $u_0, v_0 \in L^2(\mathbb{R}; w_{\sigma})$ for values of $\sigma > \frac{1}{16}$, and so according to Proposition 6.4, the solution pair (u, v) of (5.1) corresponding to the initial data (u_0, v_0) lies in $L^{\infty}(0, T; L^2(\mathbb{R}, w_{\sigma})) \times L^{\infty}(0, T; L^2(\mathbb{R}, w_{\sigma}))$ for such values of σ . Appeal is again made to Duhamel's principle to write (u, v) in the form expressed in (5.8), namely

$$(u,v)(t) = (\bar{u},\bar{v})(t) + \int_{0}^{t} W(t-\tau)(f_{1},f_{2})(\tau)d\tau, \tag{6.16}$$

where (\tilde{u}, \tilde{v}) is our current notation for $W(t)(u_0, v_0)$ and recall that W is the linear semi-group generated by ignoring the nonlinear terms in (5.1).

Attention now focuses upon the second term on the right-hand side of (6.16). Each component of this integral is a sum of two terms that have the general form

$$\int_{0-\infty}^{\infty} \frac{1}{\left[a(t-s)\right]^{1/3}} Ai \left(\frac{x-y}{\left[a(t-s)\right]^{1/3}}\right) \partial_{y} P(u,v) dy ds$$

where Ai is the Airy function again, a is a positive constant and P is a polynomial in a and b each of whose terms is exactly quadratic. After an integration by parts in the variable b, we are presented with integrals of the form

$$\int_{0}^{t} \frac{1}{[a(t-s)]^{2/3}} \int_{-\infty}^{\infty} At' \left(\frac{x-y}{[a(t-s)]^{1/3}} \right) P(u,v) dy ds.$$

Because the functions u and v both lie in $L^{\infty}(0, T; L^2(\mathbb{R}; w_{\sigma}))$ for $\sigma = \frac{1}{16}$ at least, it follows that the inner integral above is majorized by

$$C \left\| \frac{Ai' \left(\frac{x - y}{[a(t - s)]^{1/5}} \right)}{(1 + y^2)^{1/6}} \right\|_{L^{\infty}(\partial y)} (\|u\|_{L^{\infty}(0, T; L^{2}(\mathbb{R}; w))}^{2} + \|v\|_{L^{\infty}(0, T; L^{2}(\mathbb{R}; w))}^{2}).$$

This quantity is easily determined to be a locally bounded function of (x, t) in the domain $\mathbb{R} \times \mathbb{R}^+$. Hence after performing the temporal integration, we are left with a continuous function of (x, t) just as in the proof of Theorem 3.1 in Bona and Saut (1991a).

This latter deduction combined with the already established properties of (\bar{u}, \bar{v}) completes the proof of the theorem in the case k=0. The proof for k>0 follows very similar lines and so is omitted.

Remark 6.5. The results contained in this paper are easily seen to hold in a somewhat more general context, as already hinted in the last proof. In particular, the global existence of smooth solutions, global existence in H^1 , existence in L^2 , and dispersive blow up are all valid for a class of gradient system of the following form:

$$u_{t} + au_{xxx} + bv_{xxx} + \frac{\partial}{\partial x} \left[\frac{\partial}{\partial u} I(u, v) \right] = 0,$$

$$v_{t} + cu_{xxx} + dv_{xxx} + \frac{\partial}{\partial x} \left[\frac{\partial}{\partial v} I(u, v) \right] = 0,$$

where the functional I is given by

$$I(u,v) = \int_{-\infty}^{\infty} P(u,v)dx$$

References

- 1. Alkylas, T. R., Benney, D. J.: Direct resonance in nonlinear wave systems, Stud. Appl. Math 63, 209-226 (1980)
- 63, 209-226 (1980)
 Alkylas, T. R., Benney, D. J.: The evolution of waves near direct-resonance conditions, Stud. Appl. Math. 67, 107-123 (1982)
 Benjamin, T. B.: Internal waves of finite amplitude and permanent form, J. Fluid Mech. 25,
- Benjamin, T. B.: Internal waves of permanent form in fluids of great depth, J. Fluid Mech. 29, 539-592 (1967)
- Bona, J. L. Sachs, R.: Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation. Commun. Math. Phys. 118, 15–29 (1988) Bona, J. L., Saut, J.-C.: Dispersive blow-up for the generalized Korleweg-de Vries equation.
- To appear in J. Diff'l Equations (1991a)

 Bona, J. L., Saut, J.-C.: The general intermediate long wave equation and related systems
- In preparation (1991b) Smith, R.: The initial value problem for the Korteweg-de Vries equation. Phil
- Trans. R. Soc. Lond. A278, 555-604 (1975)
- Erkart, C. Internal waves in the ocean. Phys. Fluid 4, 791-799 (1961)
 Fornberg, R. B., Whitham, G. B.: A numerical and theoretical study of certain nonlinear wave phenomena. Phil. Trans. R. Soc. Lond. A289, 373-494 (1978)
- Gear, J. A.: Strong interactions between solitary waves belonging to different wave modes. Stud. Appl. Math. 72, 95-124 (1985)
- Gear, J. A., Grimshaw, R.: Weak and strong interactions between internal solitary waves. Stud. Appl. Math. 70, 235-258 (1984)
 Ginibre, J., Tsutsumi, Y.: Uniqueness for the generalized Korteweg-de Vries equation. SIAM J. Math. Anal. 20, 1388-1425 (1989)
- Ŧ Grimshaw, R.: Evolution equations for long, nonlinear internal waves in stratified shear flows. Stud. Appl. Math. 65, 159-188 (1981)
- Kato, T.: Quasilinear equations of evolution with applications to partial differential equations, Lect. Notes in Math. 448, pp. 27-50. Berlin, Heidelberg, New York: Springer 1975 76
- Kato, T.: On the Korteweg-de Vries equation. Manuscripta Math. 28, 89-99 (1979) Kato, T.: On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Adv. Math. Supplementary Studies in Applied Math. Vol. 8, pp. 93-128 (1983) Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier Stokes equations.
- 00 Pure Applied Math. 41, 891-907 (1988)

 E. Ponce, G., Vega, L.: On the (generalized) Korteweg-de Vries equation, Duke
- 20. Kenig, C. E., Ponce, G., Vega, L. Oscillatory integrals and regularity of dispersive equations Kenig, C. E., Ponce, G., Veg Math. J. 59, 585-610 (1989)
- 21. Indiana U. Math. J. 40, 33-69 (1991a)
- 22. Kenig, C. E., Ponce, G., Vega, L.: Well-posedness of the initial value problem for the Korteweg-de Vries equation. J. Am. Math. Soc. 4, 323-347 (1991b)

 Kenig, C. E., Ruiz, A.: A strong type (2, 2) estimate for the maximal function associated to the Schrödinger equation. Trans. Am. Math. Soc. 280, 239–246 (1983)

 Kubota, T., Ko, D. R. S., Dobbs, L. D.: Weakly-nonlinear, long internal waves in stratified fluids of finite depth. AIAA J. Hydronautics 12, 157–165 (1980)
- 23
- 24 Lions, J.-L.: Quelques methodes de résolution des problèmes aux limites non linéaires. Paris
- 25. L., Magenes, E.: Problèmes aux limites non homogènes et applications, Vol., I., Paris
- 26. Liu, A. K., Kubota, T., Ko, D. R. S.: Resonant transfer of energy between nonlinear waves in neighboring pycnoclines. Stud. Appl. Math. 63, 25-45 (1980)

Liu, A. K., Pereira, N. R., Ko, D. R. S.: Weakly interacting internal solitary waves in neighboring pycnoclines. J. Fluid Mech. 122, 187-194 (1982)
 Saut, J.-C.: Sur quelques généralisations de l'équation de Korteweg-de Vries. J. Math. Pures

Strong Interaction Between Internal Waves

- Appl. 58, 21-61 (1975)
- 29. Saut, J.-C., Temam, R.: Remarks on the Korteweg-de Vries equation, Israel J. Math. 24
- Stein, E. M.: Oscillatory integrals in Fourier Analysis. Beijing lectures in Harmonic Analysis. pp. 307–355. Princeton NJ: Princeton University Press 1986
 Strichartz, R. S.: Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44, 705-714 (1977)
- Vega. L.: El multiplicador de Schrödinger: La funcion maximal y los operadores de restriction
- Doctoral Thesis Universidad Autonoma, Madrid, Spain 1987

Communicated by S.-T. Yau