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1. Introduction

This paper is a companion to another by the same authors [10], and aims to cast light on
issues that arise naturally from this earlier study. In the previous effort, numerical methods
were described, analyzed and implemented for the approximation of solutions to the periodic
initial-value problem for the so-called generalized Korteweg—de Vries (GKdV) equation

u,+ufu,+eu,, =0. (1.1)

Here p is a positive integer and u = u(x, t) is a real-valued function of the real variables x and
¢t which is periodic in its first argument with period 1, say. In most applications u represents
wave amplitude or some similar physical quantity, x represents distance in the principal
direction of propagation of the waves, and ¢ is proportional to elapsed time. In consequence,
we will often refer to the independent variables x and ¢ as the spatial and temporal variable,
respectively. It is our purpose here to extend the numerical methods put forward in [10] to
encompass approximations of solutions to the generalized Korteweg-de Vries—Burgers
(GKdVB) equation

u,+uu,—du,, +eu,,, =0, (1.2)
augmented with the initial condition

u(x, 0) =u’(x), (1.3)
where 1 is a given, periodic function with period 1, say.

Equation (1.2} is one of the simplest evolution equations that features nonlinearity, dissipa-
tion, and dispersion. The special case p =1 and & = 0 is the classical Korteweg—de Vries (KdV)
equation which arises in modeling many practical situations involving wave propagation in
nonlinear dispersive media (cf. Benjamin [5], Jeffrey and Kakutani [17], or Scott, Chu and
McLaughlin [24]). The Korteweg—de Vries—Burgers (KdVB) equation ((1.2) with p =1 and
8,6 > 0) is also frequently put forward when there is a need to take account of dissipative
effects in addition to nonlinearity and dispersion (cf. Bona, Pritchard and Scott [12], Grad and
Hu [16], and Johnson [18,19]. The value p =2 also arises in modeling interesting physical
phenomena. Larger values of p could arise in principle (see the discussion of Benjamin, Bona
and Mahony [6, Section 2]). More common is a quadratic or cubic nonlinearity combined with a
dispersive term that is weaker than the second derivative. One example is the well-known
Benjamin-Ono equation

u,+~uu,—eHu,=0
or the Benjamin—-Ono-Burgers equation
u,‘tuu,—eHu, —oéu, =0,

where H connotes the Hilbert transform. Indeed, all of the foregoing are special instances of a
broad class of models having the form

u,+f(u),—eLu,+8Mu=0, (1.4)

where L and M are Fourier multiplier operators defined by

Lu(¢)=a(£)d(€),  Mu(€) =B(£)D(¢),
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a and B are positive, even functions, and f:R — R is a smooth function. The general class of
evolution equations (1.4) has attracted attention lately (cf. Abdelouhab, Bona, Felland and Saut
[1], Biler [7], Bona, Souganidis and Strauss [13] and Dix [15] as a natural environment in which
to study the interaction between nonlinear, dispersive, and dissipative effects. It is of interest to
study (1.4) for a wide range of f, @, and B, and this is a project currently in view. However, if
one restricts attention to local equations where « and B are polynomials, then (1.2) presents
itself as an interesting sequence of model equations wherein the level of dispersion and
dissipation is fixed and the strength of the nonlinearity is varied according to the choice of the
integer p.

The initial-value problem for (1.1) with data as in (1.3) is known to be locally well-posed in
reasonable function classes (cf. Kato [21,22] or Schechter [23]). For p <4, the problem is
globally well-posed in that smooth solutions of (1.1) corresponding to specified initial data u®
exist for all (x, ¢t) € R X R, and, moreover, the mapping that associates u to u° is continuous in
certain precise senses. For p > 4, the same result holds, but only if the initial data «° is not too
large. (For p >4 and small data, we know in fact that the situation is purely dispersive in a
precise sense first delineated by Strauss [25].) However, for p > 4 and arbitary smooth data, it is
an open question whether or not the initial-value problem for (1.1) is globally well-posed.
Indeed, one of the tentative conclusions of our previous work [10] is that solutions of (1.1) for
p > 4 may form singularities in finite time, so that the initial-value problem appears not to be
globally well-posed for this range of p. There is other evidence to be recounted below that
gives credence to the same conclusion of lack of well-posedness.

Taking the evidence for lack of well-posedness at face value, one might subscribe to the view
that while nonlinearity overwhelms the smoothing effects of dispersion in (1.1) for p > 4, any
realistic modeling of physical phenomena will feature dissipation and this might effectively limit
the singularity formation observed in our earlier study. A natural context in which to seek
information concerning this latter prospect is the GKdVB equation (1.2) with both ¢ and &
positive. For the inital-value problem (1.2)-(1.3), local well-posedness is easily established in
the same way as for (1.1). .

The plan of the paper is as follows. In the next section, the numerical scheme is presented
and theory relating to the convergence of its solutions to solutions of the underlying partial
differential equations is outlined. A method for automatic spatial and temporal refinement is
then introduced. Section 3 makes use of a computer code implementing the numerical scheme
together with the automatic grid refinement to study the question raised in the last paragraph.
It transpires that sufficiently large values of & do indeed inhibit singularity formation.
Surprisingly, singularities appear still to form if & lies below a certain critical value. This aspect
is studied in some detail in the last section, and related theory is mentioned that partially
confirms the conclusions drawn from the numerical experiments. Other interesting aspects of
the confluence of nonlinearity, dispersion, and dissipation in the equation (1.2) are also
touched upon in Section 4.

2. Numerical approximations

After a word about notation, the numerical techniques used to generate fully-discrete
approximations to solutions of (1.1) and (1.2) are briefly described. The numerical methods



338 J.L. Bona et al. / Periodic solutions of the GKdVB equation

consist of a Galerkin finite-element method with smooth periodic splines for the spatial
discretization and implicit Runge-Kutta methods of Gauss—Legendre type for the temporal
discretization. These schemes are well-suited to approximate smooth solutions of nonlinear
partial differential equations due to their excellent stability properties and high rates of
convergence in both the spatial and temporal variable. An algorithm for adaptive grid
refinement in both space and time is also presented which enables accurate numerical
simulations of both (1.1) and (1.2) that indicate solutions form singularities in finite time. In the
sequel, attention will be given mainly to numerical solutions of (1.2), making reference to (1.1)
whenever it is appropriate.

The notation to be used is mostly standard. For positive real numbers g > 1, L, will denote
the collection of periodic functions of period 1 which are gth-power integrable on [0, 1]
endowed with the norm \

|f|q=[f01|f(x)|qu

The usual modification applies if g =« and the norm on L_ is denoted by |- |.. For
nonnegative integers s, H*® will denote the standard Hilbert space consisting of 1-periodic
functions which, along with their first s derivatives are in L,. The standard norm on H* is
denoted by |l || ,. In addition, the norm and inner product of L, appear quite frequently and
both will be written unadorned as || - || and (-, ), respectively.

Let r >3 be an integer and §, =S, be the space of 1-periodic smooth splines of order r
(polynomials of degree r — 1) defined on a uniform partition of [0, 1] with mesh length A =1/N
where N is a positive integer. It is well known that if v is a sufficiently smooth periodic
function with period 1, then there exists a y € §), such that for 1 <m <r,

m-—1
Y Kllo—xllj<ch™ vl m, (2.1)

j=0

1/q

where ¢ is a constant independent of &, v, and y. In addition to the above approximation
properties, the finite-dimensional spaces §, also possess the following inverse properties. There
exists a constant ¢, independent of h, such that for all y €S,

Il xllg<ch™®=2 x la, (2.2)
where 0 <a<B<r—1and '
Axla<eh™ 2 x . (2.3)

The Galerkin semidiscrete approximation of the solution u(x, t) of (1.2) is defined as a
differentiable map u,,:[0, T] — S, satisfying the relations

(uht+ull:uhx’ X) - (suhxx—-auhx’ Xx) =10, VXESII’ (24)
and
1, (0) = myu®, (2.5)

where 7,u° denotes a conveniently chosen element of S, (e.g. L,-projection, interpolant, etc.)
such that

Nmul —ulll <ch'. (2.6)
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One may then prove, along the lines of the analogous proof for the KdV equation in [4], that if
u(x, t) is sufficiently smooth over a given time interval [0, T], then u, exists, is unique, and
satisfies the error estimate

max |l u,(t) —u(-, t)|l <ch’, (2.7)
O<t<T

where ¢ is a constant independent of A. Furthermore, letting y =u, in (2.4), integrating by
parts and invoking periodicity to assure the boundary terms cancel, it is easy to see that

Ne ()Nl < |1y, (0)Il, ¢>0. (2.8)
Note that for equation (1.1), the inequality (2.8) is replaced by the strict equality
leupy() N = llu,(0)}l, ¢=>0. (2.9

Upon choosing a basis for S, and representing u, in terms of this basis, it is standard to view
(2.4) as an initial-value problem for a system of N ordinary differential equations. Defining
F:S5,—-S§, by

(F(v), x) = —(070,, X) + (0 — 80y, X2), (2.10)
allows this system of ordinary differential equations to be written in the compact form

uh,=F(uh), 0<t<T,

u,(0) = m,u®. (2:11)

To obtain the fully-discrete approximations, one may now choose from a variety of numerical
methods for solving initial-value problems for systems of ordinary differential equations. In the
nondissipative case (§ = 0) corresponding to (1.1), our previous work [10] focused on discretiz-
ing the system (2.11) in time via a class of implicit Runge—Kutta methods of Gauss—Legendre
type. These methods were selected because of their excellent stability properties and high rate
of convergence. In addition, they are conservative, a property that is necessary for the existence
of a discrete conservation law similar to (2.9). Although the evolution equation (1.2) is not
conservative, the dissipative aspect presents no obvious difficulties for the suggested, high-order
accurate numerical methods. )

In the light of the remarks in the last paragraph, a g-stage Gauss—Legendre method was
applied to the system (2.11). For integer J > 0, let t"=nk,n=0, 1,...,J, where the step size is
given by k = T/J. Approximations u} € S, to the true solution u(-, ¢") of (1.2) are defined by
letting u) =7,u’ and for n =0, 1,...,J -1,

q
uptl=ul +k Y b,F(upt), (2.12)
i=1

where the intermediate values u}”, i=1,..., g, are the solutions of the system of gN nonlinear
equations

q
wpi=ul+k Y, a,F(up'). - (213)
=1
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In the numerical experiments presented herein, we restricted ourselves to the two-stage
Gauss-Legendre method for which the constants a; ; and b; for 1<i,j<?2 are given by the
tableau

4y 4y 1/4 1/4-p

a, a,, 1/4+p 1/4

b, b, 172 1/2
where B=1/ V12. In this case, (2.13) is a nonlinear system of 2N equations that may be

decoupled and solved using a Newton-type iteration as described in [9,10]. The following result
is straightforward to demonstrate for any of the time-stepping schemes mentioned above.

?

Proposition 2.1. Forn=0, 1,...,J — 1, the equations (2.12) and (2.13) have solutions u}*' € §,
and uj' €8,,i=1,...,q. Furthermore,

lupll < lmulll forn=0,1,...,J. (2.14)

The above proposition demonstrates that the fully-discrete approximations are stable in L.
It may be proved using the same techniques as in [10, Propositions 3.1 and 3.2]. For equation
(1.1), (2.14) holds with equality, and this provides a fully-discrete analog of the second invariant
of the GKdV equation and of the semidiscrete result (2.9). The following theorem shows that
the optimal temporal rate of convergence 2q is achieved for a g-stage Gauss—Legendre
method. It may be demonstrated by generalizing the proof contained in [20] for the KdV
equation itself (p =1, § = 0).

Theorem 2.2. Assume that u®(x) is smooth enough to guarantee the existence and necessary
smoothness of the solution u(x, t) for 0<t<T. If k and h are sufficiently small, and if

up = 1,u° satisfies (2.6), then for n =0, 1,...,J, there exists a unique solution uy of (2.12) and
(2.13) such that
max |luj; —u(-, t")|l <c(k®*?+h") (2.15)
O<n<J

for some constant c independent of h and k.

Previous computational experiments with fixed # and k and p >4 in (1.1), produced
numerical approximations which were seen to grow until the L_-norm of the approximations
was large enough to cause substantial numerical difficulties. Indeed, combining the Fossrs,
inverse inequality in (2.3) and the stability result (2.14), it follows that for a uniform mesh

luplo <ch 2 llupll <ch *||wulll forn=0,1,...,J. (2.16)

In consequence, if one expects large values of a solution relative to its L,-norm, one will need
appropriately small values of h. In our preceding studies, solutions appeared to become
unboundedly large and the possibility of making approximations with small enough values of A
on a uniform grid became computationally intractable. Since a uniform grid is impractical if
one is to simulate solutions of (1.1) or (1.2) that grow substantially in L_, an algorithm with
automatic grid refinement was implemented so that one may approximate solutions that
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develop an arbitrarily large peak, and in fact form a singularity in L, at some point (x*, t*).
The adaptive mechanism in our code consists of three main parts:

(i) local refinement of the spatial grid,
(ii) local selection of a temporal step size k, and
(iii) spatial translations of the solution.

The spatial refinements consisted of adding new nodes, distributed evenly about the midpoint
x = 0.5, but in successively smaller, nested neighborhoods of the midpoint. This local refine-
ment is combined with (iii), which attempts to keep the peak of the numerical approximation
near the midpoint in the region of highest density of nodes, and away from a region of coarse
mesh. Part (iii) is accomplished by occasionally translating the solution and centering the peak
at x = 0.5.

The particular choice of spatial refinement (i) is based on a local L, — L, inverse property
on the region of smallest mesh. Let 2* represent the neighborhood of the midpoint x = 0.5
which is the region with the finest grid, with grid size A*. At each time step, compute

12
Z.,=lujl. and Zz=[f (uﬁ)zdx] .
n*

The grid is then refined, new nodes are added, and both £2* and ~* are cut in half if
ZVh*

o0

> TOL,.
2
Values of TOL, in the range [0.15, 0.20] were found to be very effective.
For (ii), the temporal step size is adjusted in an attempt to preserve the third invariant of the
GKdV equation. This invariant is the functional

L(v) = j:[v”” —L(p+1)(p +2)e(s,)] dx.

For exact solutions u(x, t) of (1.1), I(u(-, t)) = I,(u®) is independent of the value of ¢. Given

u}, a possible uj*! is computed using the current step size k. It is accepted if

lIsSuZH) _I3z(uZ)| <
[ 1), ] ax

where TOL, is a small parameter. If (2.17) is not satisfied, then k is cut in half and the process
is repeated until (2.17) is satisfied. Although I, is not an invariant of (1.2), it nevertheless
proved effective to use (2.17) as a criterion to control the step size for the dissipative equation.
In the results to be presented, we used 1076 < TOL, < 107°.

TOL,, (2.17)

3. Numerical simulations of blow-up

In this section, use is made of an implementation of the numerical scheme described in
Section 2 to study the issue raised in the Introduction of whether or not solutions of the
initial-value problem (1.2)-(1.3) generally exist for all time.
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It is known (see [2,22]) that solutions are global in time unless they blow up in the L_-norm
in finite time; that is, global existence is contradicted if and only if there is a ¢ * such that

lu(-, t)lo—>0 ast—t*. (3.1)

In our previous studies, [9,10], it was found that (3.1) apparently obtains for some solutions of
(1.1) when p > 4. Indeed, not only was singularity formation observed, but it appeared from the
numerical simulations that the blow-up took place via a similarity structure. This led us in our
previous work to compute the rates of blow-up for various norms in an effort to assess how
closely the singularity seemed to fit the conjectured similarity structure. The evidence in favor
of this hypothesis was substantial.

We now seek to determine whether or not the dissipative effects rendered by having 8 > 0
effectively staunch the formation of singularities. It appears from our results that singularity
formation may still occur even in the presence of damping. Examples of finite-time blow-up are
given for both the dispersive equation (1.1) and the dispersive—dissipative equation (1.2). Also,
for several different norms, rates at which the numerical solutions blow up are determined.
These rates are computed for two different types of initial profiles and agree quite well with
those that obtain for a possible similarity solution mentioned above that was inferred to be
present in the nondissipative case. Here, we shall only consider the case p =5; similar
numerical results hold as well for other values of p > 5 (see [9,10]; the borderline case p = 4
proved to be somewhat more challenging to understand in the aspect under discussion).

We begin by considering the numerical approximation of the exact, solitary-wave solutions

| u(x, t) =A sech”?[K(x ~ 3) - wt], (3.2)
where
K_\/ pA4° 2k
N 2e(p+)p+2)° T (pr)(p+2)’

and A is the amplitude of the wave. Although (3.2) is an exact solution of the pure initial-value
problem for (1.1) posed on the whole real line, if 4 /¢ is sufficiently large, then it is also an
approximate solution of the initial-boundary-value problem with periodic boundary conditions
on [0, 1] since the tails of the solitary wave decay exponentially (see [8] for a discussion of the
relation between the pure initial-value problem and the periodic initial-value problem).

It was proved in [13] that the solitary-wave solutions (3.1) of the pure initial-value problem
for (1.1) are stable to perturbations of the initial data if and only if p < 4. Stability here is
understood as orbital stability. As mentioned before, it is also known that the initial-value
problem for (1.1) is globally well-posed if p < 4, but for p > 4 the available theory only shows
well-posedness locally in time. These facts lead one to ask what happens to perturbations of an
unstable solitary wave as time increases? This turns out to be related to the question posed
earlier of whether or not (1.1) is globally well-posed if p > 4.

Our previous studies addressed the just-mentioned issues. The numerical experiments of
Bona et al. [10] using cubic splines for the spatial discretization and the two-stage Gauss—
Legendre method for the time-stepping in conjunction with the aforementioned adaptive
procedure for refining the discretization parameters, indicated that the instability of the solitary
wave manifests itself by transforming the solitary wave into a similarity solution that proceeds
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Table 1
Blow-up rates, perturbed solitary wave, p=5, A=2,e=5%10"% 8=0, A=1.01
) L, Ls Lg L, L, L,p Lep

5 0.5029(—1) 0.6683(—1) 0.7795(~1) 0.8590(—1) 0.1336 0.3008 0.4657
10 0.5047(—1) 0.6729(—1) 0.7853(—1) 0.8657(—1) 0.1348 0.3028 0.4731
15 0.4983(—-1) 0.6647(—1) 0.7759(-1) 0.8554(—1) 0.1334 0.2992 0.4618
20 0.4989(—-1) 0.6658(—1) 0.7773(-1) 0.8572(-1) 0.1338 0.2999 0.4690
25 0.5044(-1) 0.6728(—1) 0.7851(-1) 0.8654(—1) 0.1347 0.3029 0.4747
30 0.4974(-1) 0.6633(—1) 0.7741(-1) 0.8534(—1) 0.1329 0.2985 0.4685
35 0.5001(-1) 0.6672(—1) 0.7786(—1) 0.8583(—1) 0.1336 0.3004 0.4654

to blow-up in L, at some point (x*, t*) with t* < . For example, using as initial data the
slightly perturbed solitary wave

u®(x) = AA sech¥?[K(x - 3)] (3.3)

in place of (3.1), with p=5, 4 =2, =5%X10"% 6 =0, and A = 1.01, the adaptive strategy was
able to refine the grid 42 times and allowed the numerical solution to reach a peak of over
200,000 with the point of blow-up being given by x* = 0.61333 and ¢* = 0.022549 (see [10]).
Rates of blow-up of various L, -norms of the solution and of the L,- and L,-norm of its
derivative (denoted by L, and L, respectively) were also computed for this particular
solution. By a blow-up rate, we mean the positive numbers p such that

M(t)~(t*=1t)"" ast—t*,

where M(¢) is one of the just-mentioned norms. These rates were given in [10, Table 22] and
are reproduced here in Table 1. For each row of Table 1, the value of i indicates the point in
time at which the ith spatial refinement occurs; for details see [10]. These rates, along with
similar rates from many other numerical experiments using different values of p support the
conjecture that the solution blows up in the form

1 ( x¥—x
(f* _t)zﬁﬂd) (f* __I)if’?'

where ¢(¢) is a bounded function. For example, in Table 2 the rates at which the norms
appearing in Table 1 blow up are given. The computed blow-up rates of the numerical solution
in Table 1 agree quite well with the rates in Table 2 suggested by the conjectured solution-form
(3.3). Since the conjectured solution evinces a strong singularity in finite time, it is natural to
surmise that solutions of (1.1) will not exist for all ¢ > 0.

In light of the above, it seemed interesting to carry out the same numerical experiments that
had been effected previously for (1.1) on the initial-value problem for (1.2) with & > 0.

u(x, t)= ) + bounded term, (3.4)

‘Table 2
Blow-up rates of conjectured similarity solution (3.3), p=5

Norm L, Ly Lg L, L, L,p L.p
Rate 0.500(—1) 0.667(—1) 0.778(-1) 0.857(-1) 0.133 0.300 0.467
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Table 3
Blow-up rates, perturbed solitary wave, p=5, 4 =2, ¢ =5x10"% §=2X10"% A =101
i L, Lg Ly L, L, L,p L.p

5 0.5049(-1) 0.6700(—1) 0.7814(—-1) 0.8612(—1) 0.1341 0.3009 0.4639
10 0.4995(-1) 0.6655(—1) 0.7763(—1) 0.8555(—1) 0.1331 0.2994 0.4594
15 0.5000(—1) 0.6670(—1) 0.7787(-1) 0.8586(—1) 0.1339 0.3004 0.4660
20 0.4987(—1) 0.6645(—1) 0.7747(-1) 0.8533(~1) 0.1325 0.2988 0.4598
25 0.5012(—-1) 0.6688(—1) 0.7808(—1) 0.8609(—1) 0.1343 0.3012 0.4683
30 0.5012(-1) 0.6681(—1) 0.7793(-1) 0.8587(—1) 0.1334 0.3006 0.4720
35 0.5007(—-1) 0.6675(—1) 0.7786(—1) 0.8579(—-1) 0.1333 0.3003 0.4665

time= 0.0000D+00 time= 0.3831D-01
Umax= 0.2021D+01 Umax= 0.3423D4+01
3.07 4.0 —
1
2,0 — 2.75 —
3 1.0 — 3 1.5
0.0 — 0.25 —_'/\
—10 — | | : =19 T | T !
0.0 0.25 0.5 0.75 1.0 0.0 0.25 0.5 . 0.75 1.0
X ®
time= 0.3861D-01 time= 0.3862D-01
Umax= 0.5979D+01 Umax= 0.1371D+02
7.0 — 16.0 —
5.0 — 11.0
=] 3.0—: 3 7.0
1.0 —“/) 3.0 —
J 4 /J
= 1.0 = o ~ 1.0 == e T )
0.0 0.25 0.5 0.75 1.0 0.0 0.25 0.5 0.75 1.0
X X

Fig. 1(a). Numerical blow-up of a perturbed solitary-wave solution with p=5, A=2, ¢ =5X 1074 6= 2I><10'4,
A=1.01.
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time= 0.3862D-01
Umax= 0.2392D+02
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Fig. 1(b). Profile of the peak for the continuation of the integration of the perturbed solitary-wave solution with
p=5 A=2e=5x10"%6=2x10"% A =101

Repeating the run of Table 1 but with a small amount of dissipation added (p=5, A =2,
e=5%x10"% 86=2x%x10"% A=1.01), the peak of the numerical solution again increased
several orders of magnitude. The blow-up rates for this approximation are provided in Table 3
and are very similar to those in Table 1. Thus it seems solutions of (1.2) can blow up, provided
the dissipation is small enough. Although the dissipation did not appear to have any effect on
the blow-up rates, it is worth to remark that it did delay the blow-up, as the singular point was,
in this instance, x* = 0.65812 and ¢* = 0.038624. In the next section, it will be seen that with a
sufficiently large amount of dissipation there is no longer blow-up, and in fact the solution will
be seen to decay in this case.
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To give a better idea of the structure and behaviour of the solution as it forms a singularity,
the graph of the numerical solution for the dissipative problem is depicted at several different
times in Fig. 1. In Fig. 1(a), as the peak U, increases, the vertical axis is scaled in order that
the entire profile may be shown. This causes the solution to appear to be very small except at
the peak, which is always near x = 0.5 due to the translations that are part (iii) of our adaptive
numerical scheme. A more detailed look at the structure of the solution near the peak is
provided in Fig. 1(b), where both the horizontal and vertical axes are scaled. These plots are of
the solution on the region of finest mesh 2*, with both the solution and region 2* being
translated by — % so that the peak is located near zero. The plots in Fig. 1(b) strongly indicate
that the blow-up is of a self-similar type. We remark that our code was able to continue until
the grid had been refined 40 times so that the smallest mesh size was 2* = 10~ and the step
size had decreased to k = 1073,
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Fig. 2(a). Numerical simulation of blow-up from a Gaussian profile with p=5=121x10"%58=0.



J.L. Bona et al. / Periodic solutions of the GKdVB equation 347

time= 0.23420+00
Umax= 0.4422D+01

5.0—}
35—
3 2,0
0.5 ——‘/'\—/\
SIS i R DGy TRl
0.0 0.25 0.5 0.75 1.0
X
time= 0.2342D+00
Umax= 0.1765D+02
19.0 —
R
14,0 —|
> 9.0
4.0 —
=10 M [y, IRt
0.0 0.25 0.5 0.75 1.0

time= 0.2342D+00
Umax= 0.7690D+01

9.0 —
6.5 —
23 4.0
e
-1.0 B ™ ]
0.0 0.25 0.5 0.75 1.0
X
time= 0.23420+00
Umax= 0.40660+02
44.0—J
32.0 —
> 20.0 —
8.0 —
IR S —
-40 —T A (e R
0.0 0.25 0.5 0.75 1.0

X

Fig. 2(b). Continued numerical simulation of blow-up from a Gaussian profile with p =5, e =1.21X1074, 8 =0.

In another set of experiments, we used Gaussian profiles

uO(x) — 6—100(::—1/2)2

(3.5)

as our initial conditions. The outcome of a run with p =35, £ = 1.21 X 10~*, § = 0 is pictured in
Fig. 2. As is apparent upon inspection of the graphs of the numerical approximations of the
solution, a solitary wave separated rapidly from the bulk of the initial data. After emerging, the
solitary wave evinced the instability predicted by the aforementioned theory, and rapidly
formed a singularity. Adding dissipation to the problem with a Gaussian initial profile (the
parameters for the equation were p =5, e =2 X 1074, § = 10~*) led to very similar behaviour
of the numerical solution. The rates of blow-up for the case where 8 = 10~* with initial data as
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Table 4
Blow-up rates, Gaussian profile, p=15, e =2X 1074, § =10"*
i L4 L5 LG L7 Loo LZ,D Loo,D

5 0.4986(—1) 0.6653(—1) 0.7761(—1) 0.8551(-1) 0.1329 0.2990 0.4655
10 0.5013(-1) 0.6687(—1) 0.7803(—1) 0.8600(—1) 0.1340 0.3010 0.4722
15 0.5000(—1) 0.6667(—1) 0.7778(—-1) 0.8572(-1) 0.1333 0.3000 0.4676
20 0.5007(—1) 0.6678(—1) 0.7792(—-1) 0.8588(—1) 0.1337 0.3005 0.4697
25 0.4986(—1) 0.6647(—1) 0.7755(—1) 0.8547(-1) 0.1330 0.2992 0.4653
30 0.5008(—1) 0.6677(—1) 0.7788(—1) 0.8582(—1) 0.1335 0.3004 0.4702
35 0.5009(—1) 0.6678(—1) 0.7791(-1) 0.8587(-1) 0.1337 0.3005 0.4684

in (3.5) are given in Table 4. Once again, the rates for this particular experiment appear to be
very close to the blow-up rates for the conjectured similarity solution. This leads us to surmise
that if p > 4 and the initial data is large enough, then even in the presence of dissipation the
solution will be dominated by an emerging solitary wave which, upon establishing itself as a
spatially separate entity, becomes unstable and blows up in the manner indicated in (3.4).

4. Effect of dissipation on blow-up and decay

The aim of this section is to determine further the effect of dissipation on the solutions of
(1.2). It was observed in the last section that with relatively small amounts of dissipation,
solutions of the generalized Korteweg—de Vries—Burgers equation could blow up in a fashion
similar to that found for the GKdV equation. Here, we investigate the amount of dissipation
necessary so that (perturbed) solitary waves no longer blow up. In particular, it is shown
numerically that there exists a threshold value C, of the parameter C = §2/eA” that plays a
key role in determining whether there is blow-up or decay. (The ratio 6°/¢ has been studied
previously and in the case p = 1, this ratio may be thought of as a scaling parameter for (1.2).)
It is found that for values of C < C,, solutions blow up in finite time, while if C > C, solutions
are bounded and persist for all ¢+ > 0. The experiments on which we base this last assertion,
namely perturbed solitary waves with A = 1.01, are somewhat narrow, but we feel them to be
representative. The context of perturbed solitary waves was indicated in the last section to have
broader applicability than one might expect because of the distinguished role played by these
waveforms in the evolution of arbitrary initial data. It transpires that if a solution does not form
singularities, then it decays in a manner similar to that of 1-periodic solutions of the linear
equation u, — éu,, +eu,,, = 0.

Table 5

Determination of §, for A=2, p=5

£ 8, 8% O
0.10(-3) 0.10(-3) 0.11(-3) 0.105(—-3)
0.25(—3) 0.16(-3) 0.17(-3) 0.165(—3)
0.50(—3) 0.230(—-3) 0.235(-3) 0.2325(-3)

0.80(—3) 0.28(-3) 0.30(-3) 0.290(—3)
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Table 6
Critical values of 8, and 82 /¢, for A=2, p=5,6
€ p=5 p=6

84 8% /¢ 84 82 /¢
0.10(—3) 0.105(-3) 0.110(-3) 0.275(-3) 0.756(—3)
0.25(-3) 0.165(—3) 0.109(-3) 0.435(—3) 0.757(-3)
0.50(—3) 0.233(-3) 0.108(—3) 0.625(—3) 0.781(—3)
0.80(—3) 0.290(—3) 0.106(-3) 0.785(—3) 0.770(—3)

This set of experiments begins by specifying p and initial (perturbed) solitary-wave profiles
(3.2) with 4 =2 and A = 1.01. For each ¢, the dissipative parameter § is varied until two values
8% and 8% are selected by experimentation for which one has (i) if & <67, then there is
“definite” blow-up and (ii) if 8 > 8}, then there is “definite” decay. The quantity &, is then
defined to be the average of 87 and &%. The results of one set of experiments are presented
in Table 5.

The critical values of &, are contained in Table 6 wherein the values of the ratios 82 /¢ are
also shown. It js clear from this table that for fixed 4 and p, the critical value of 82 /e (that
determines if there is blow- -up or global existence and decay) is independent of &.

To get an 1dea of the dependence of 8, on A and p, the quantity ¢ was fixed at the value
€ =0.5 X 1073 and the amplitude 4 was varled This was done for p =5 and p = 6. For each
new value of A, the critical value of 8% /& must be computed for p = 5,6. The results of these
computations are shown along with the associated parameter C, = 8% /s A” in Table 7.

The numerical evidence in these tables leads to the following conjecture.

Conjecture. There is a critical value C, of the parameter C = 8%/ AP such that if C is greater
than C,, then the corresponding solution of (1.2) with the perturbed solitary wave (A =1.01) as
initial value will exist for all t. On the other hand, if C is less than C ., the solution will blow up in
finite time.

Of course the value of C, will depend on the initial profile. As one sees from Table 7, for
the initial condition (3.2) we have C, =0.34%x 1075 if p=5and C, =122X 107 if p=6.
While not reported in the tables, the value of C, corresponding to p = 7 has been determined
to be C, = 2.42 X 107>, thus showing a not unexpected nonlinear dependence of C, on p.

Table 7
Critical values of 82 /¢ and C, =82 /eA”, for e =5x107% p=5,6
A p=>5 p=6

8% /¢ C. 8% /¢ C.
1.5 0.026(—3) 0.348(-5) 0.140(—-3) 1.233(-35)
2.0 0.108(—3) 0.338(—5) 0.781(-3) 1.221(-5)
2.5 0.328(-3) 0.336(—5) 2.952(-3) 1.209(-5)

3.0 0.832(-3) 0.342(-5) 8.862(—3) 1.216(—-5)
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One can go further in interpreting the foregoing results. As discussed already, certain
general classes of initial conditions evolve into solitary waves and a dispersive tail, albeit slowly
modified by the damping term. One would expect that if the largest solitary wave that emerges
from the given initial data has an amplitude A, then for & large enough to guarantee that this
size solitary wave is damped sufficiently to produce global existence, there should be a global
solution corresponding to this data. Conversely, if § is such that the corresponding value of C
is below the critical value, then it is expected that such initial data will lead to blow up in finite
time. The last statement is probably not valid in such a simple form because other numerical
experiments show that the value of C, for a perturbed solitary wave depends on the direction
in function space of the perturbation as well as on the other parameters A4, ¢, and 6.

A more detailed study of the boundary between blow-up and decay will be presented in a
forthcoming work by the present authors [11]. In this work, we prove a theorem stating that if
the dissipation is sufficiently large compared to the initial condition u°, then the solution of
(1.2) will exist globally. Moreover, our theorem yields an estimate on the size of & that has
exactly the parameter dependence manifested in our definition of C,. An immediate conse-
quence of the dissipation being large enough to guarantee global existence is the following
decay result which is valid for any value of p.

Proposition 4.1. Assume the data of the problem (1.2) to be such that the solution is smooth and
exists for all t. Then

Hu(e) —u*ll <o [[u® — u* | (4.1)

where u* = fluo(x) dx.
0

Remark 4.2.

(1) Biler [7] has obtained detailed decay estimates for periodic solutions in the case p < 2.

(2) This proposition shows that as ¢t — +o global periodic solutions of (1.2) approach a
constant function which is determined by their initial value, at an exponential rate in the
L,-norm.

(3) This result is in marked contrast to the situation that obtains for global solutions of the
pure initial-value problem for (1.2). Solutions corresponding to Sobolev-class H*-initial
data are expected to decay to zero as t— +o. However, the rate of decay is only
algebraic in ¢ as witnessed by the results of Amick, Bona and Schonbek [3] where for
p =1 it was shown that

[ w¥(x,t)dx=0("1?),
and that this rate is sharp in general.

Proof of Proposition 4.1. Let v =u —u*. Then for all ¢t >0, v(-, t) has mean-value zero, is
1-periodic, and satisfies the equation

v, + (v+u*)v, —6v,, +ev,,, =0. (4.2)
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Since u* is constant, taking the inner product of (4.2) with v, integrating by parts and using
periodicity yields

d 2 2
(—ﬂHU" +28 v M7 =0. (4.3)

Because v is a 1-periodic function with mean value zero, it follows that [[v |l < Qm) ol
Formula (4.1) thus follows from applying this Poincaré inequality in (4.3). 0O

To illustrate the long-time decay of solutions in the periodic case, let u°(x) be the Gaussian
profile given by (3.4) and let §=10"3 £=2X10"* and p=>5. This is the same initial
condition used to generate the data in Table 4, except the dissipation has been increased by
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Fig. 3(a). Decay of Gaussian profile with p=5, e =2x207%, 6§ =107".



352 J.L. Bona et al. / Periodic solutions of the GKdVB equation

time= 0.2000D+02 time= 0.4000D+02
Umax= 0.3193D+00 Umax= 0.2402D+00
0.4 — 0.4 —
0.5 0.3 —
502 — 302
0.1 — 0.1 —
g0 T =] RS 0.0 ] - |
0.0 0.25 0.5 0.75 1.0 0.0 0.25 0.5 0.75 1.0
b3 X
time= 0.6000D+02 time= 0.8000D+02
Umax= 0.2057D+00 Umax=0.1901D+00
0.3 0.3 —
0.25 —| 0.25 —
3 02— 3 0.2

0.15 — 0.15 —

4

e J IR T == 051 A A A

0.0 0.25 0.5 0.75 1.0 0.0 0.25 0.5 0.75 1.0
x X

Fig. 3(b). Continued decay of Gaussian profile with p =35, e =2X10~%, § =103,

one order of magnitude. The corresponding solution is pictured in Fig. 3. Note that for this
initial condition, we have u* =0.1772 and that the solution does indeed decay toward this
value. Furthermore, computing various norms of the function v(x, t) = u(x, t) — u* for several
values of ¢ allows us to ascertain approximately the rates at which the norms decay. Letting
M(¢) stand for any norm of v(x, t), the rate of decay is given by x where

M(t)y~Ce™ ast—oow,

The numerical determination of these rates are reported in Table 8 at time increments of 10.
They are all observed to approach the value 4728 =0.3947842 X 10~!. This is the value
predicted in Proposition 4.1 for the convergence in the L,-norm. It is interesting that all the
rates approach the same value as ¢ becomes large. This is a numerical indication that the
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Table 8
Decay rates, Gaussian profile, p=5, e =2X1074, § =103
t L, L, Ls Lg L, L, Lyp Lep

10 0.4197(-1) 0.5131(-1) 0.5357(—1) 0.5508(—1) 0.5614(—1) 0.5708(—1) 0.5407(—1) 0.5719(—1)
20 0.3979(—1) 0.4020(—1) 0.4027(—1) 0.4028(—1) 0.4027(—1) 0.3192(—1) 0.4018(—1) 0.4510(—1)
30 0.3951(—1) 0.3961(—1) 0.3966(—1) 0.3971(—1) 0.3976(—1) 0.4457(—1) 0.3969(—1) 0.4098(—1)
40 0.3948(—1) 0.3949(—1) 0.3949(—1) 0.3949(—1) 0.3949(—1) 0.3826(—1) 0.3947(—-1) 0.3935(—1)
50 0.3948(—1) 0.3949(—1) 0.3949(—1) 0.3949(—1) 0.3949(—1) 0.4002(—1) 0.3948(—1) 0.3924(—1)
60  0.3948(—1) 0.3948(—1) 0.3948(—1) 0.3948(—1) 0.3948(—1) 0.3942(—1) 0.3948(—1) 0.3939(—1)
70 0.3948(—1) 0.3948(—1) 0.3948(—1) 0.3948(—1) 0.3948(—1) 0.3956(—1) 0.3948(—1) 0.3954(—1)
80 0.3948(—1) 0.3948(—1) 0.3948(—1) 0.3948(—1) 0.3948(—1) 0.3950(—1) 0.3948(—1) 0.3947(—1)
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Fig. 4(a). Breakup of solitary-wave solution with p=6, 4=2, e =5%X10"%, 6§ =5x 104,
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Fig. 4(b). Continuation of breakup of solitary-wave solution with p=6, 4 =2, e =5x10"% 6§ =5%x10"%

solutions- are approaching eigenfunctions of the operator —8D,, with periodic boundary
conditions, a fact proved by Biler [7] in the case p < 2. This issue will reccive more attention in
[11].

Our last example is pictured in Fig. 4. These graphs show the numerical approximation of
the solution of (1.2) corresponding to p = 6 with initial data an exact solitary wave of amplitude
2, but with substantial dissipation. In this case the dissipation is more than ample to prevent
instabilities of the solitary wave from growing. The immediate effect of the dissipation is to
form a highly oscillatory tail which, due to the periodicity, quickly interacts with the remnant of
the main pulse which has not appreciably moved. Continuing this run over a much longer time
horizon shows the various modes decaying with the high modes dying out first. Eventually the
solution becomes very similar to that in Fig. 3 and approaches a constant which, for this initial
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condition is u* = 0.7184 X 10~ . More details on the rates of decay and the shape and speed of
the travelling-wave solutions will be presented in [11].
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