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ABSTRACT

The generalized Korteweg-de Vries equation with dissipation is solved
numerically by a highly accurate and stable scheme based on a Galerkin
(finite element) method in space and implicit Runge-Kutta time-stepping.
The scheme is coupled with adaptive grid refinement in the spatial and
temporal meshes and is used to investigate the blow—up instability of
solitary—wave solutions of the nondissipative equation as well as the ef-
fect of dissipation on the singularities.

1. INTRODUCTION

We shall consider a model equation that describes the propagation
of strongly nonlinear, dispersive waves in the presence of dissipation, the
so—called Generalized Korteweg—de Vries-Burgers equation given by

(1.1&) ut+UPUz +€u$zz—6u$x =0,

where p is a nonnegative integer, ¢ > 0 and § > 0 are given constants and
the unknown function (the amplitude of the wave) u = u(z,t),t >0, z €
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[0, 1] satisfies periodic boundary conditions at the end points of the spatial
interval [0, 1]. (1.1a) is supplemented by a 1-periodic initial condition

(1.15) u(z,0) = u’(z).

If 6 = 0, it is well-known that for p < 4 the initial-and periodic-value
problem (1.1) possesses a unique smooth solution for all ¢ > 0 provided
u? is smooth. If p > 4, a solution is guaranteed to exist only locally in
t. A recent theory! has shown that its special, travelling wave solutions
known as solitary—waves are unstable if p > 4. The numerical calculations
that will be summarized here and appear in detail in Bona et a/®>* indicate
that this instability leads to the formation of point blow—up singularities in
finite time. If now the dissipation parameter § is positive and sufficiently
large, smooth solutions exist for all ¢ > 0. If, however, 6 is suitable small,
then point blow—up singularities will occur again in finite time.

2. THE NUMERICAL SCHEME.

We shall describe one of the numerical methods considered in Bona et
al*** for the numerical solution of (1.1). Let h = 1/N, N positive integer,
and denote by S the space of 1-periodic smooth cubic splines defined on
the uniform partition of [0,1] given by z; = ik, ¢ = 0,1,...,N. The
Galerkin semidiscrete approximation vx(-,t) € Sy to the solution u(+,t) of
(1.1) is then the unique solution of the system of O.D.E.’s

Uh-t:F('Uh), t207
(1.2)
vr(0) = mpu?,

where (F'(vi),x) = ('“'Uivha: — €Vhzzz + OVhaz, x) for x € Si, (f,9) =
Jy fgdz, and mau® is any conveniently chosen element of Sk approximat-
ing u° (e.g. interpolant) so that ||u® — m;u®|| < ch? for some constant c
independent of h. (Here || - || denotes the L? norm on [0,1].)

The system (1.2) is further discretized in time by an implicit Runge-
Kutta method®. For example, one may choose the two-stage Gauss—
Legendre method defined by the constants ay; = Qg = %, Q1 = % - 2—\1/5,
a = 5+ ﬁ, Br =P =% If k> 0is the (constant) time-step and
t" =nk,n=0,1,2,...,J, where nJ =T > 0, these constants generate
fully discrete approximations u} € Sy to u(z,t") as follows:

(ud = mhpul

For n=0,1,2,...,J-1:
(1.3) S

upd =l 4k S i F(up) j=1,2,

| uh ™t =R+ kY B F(up).



It is shown in Bona et al®* that the solution u} of (1.3) exists uniquely
(if kh~! is sufficiently small) and satisfies the optimal-order in space and
time L%-error estimate

;2ax u(t™) = ufll < e (k* + A%,

for some constant ¢ = c¢(u,T) independent of k and h, provided u(z,t)
is sufficiently smooth for 0 < t < T. In practice, the nonlinear system
defining the intermediate stages u}'', 1 = 1,2, at each tine step is solved
by a suitable modification of Newton’s method in which the equations
decoumple. The efficiency (achieved accuracy vs computational cost) of
the resulting fully discrete scheme has been studied in detail in Bona et
al®3, where it is shown that it is indeed a fast and highly accurate method
for the integration of (1.1). We shall use an adeptive version of (1.3) to
integrate numerically solutions of (1.1) that appear to develop singularities
in finite time.

3. GRID REFINEMENT.

It is evident that it is not possible to approximate in a satisfactory way
solutions u(z,t) of (1.1) that blow up in L* as (z,t) tends to some point
(z*,t*), t* < oo, with a method that uses fixed h and k. To overcome this
difficulty an automatic grid refinement was implemented to supplement
the base scheme described in §2. The adaptive mechanism in our code
consists of three main parts:

(1) local refinement of the spatial grid,
(ii) selection of a temporal step size k,

(ii1) spatial translations of the solution.

In what follows we shall be interested in simulating the evolution of
solitary—wave initial profiles for (1.1). If § = 0, it is well-known that (1.1a)
possesses solitary wave solutions, which are travelling waves of the form

(3.1) u(z,t) = A sech?/? [B(z — zo — Ct)],

24P p /C
C= ; B=— =1
(p+1)p+2) 2 Ve

where A represents the amplitude of the waves. Although (3.1) is an exact
solution of the pure initial-value problem for (1.1a), if A is large and € is
taken sufficiently small, then it should also be an approximate solution in
the periodic case since the tails of the solitary wave decay exponentially.
We shall usually take zo = 1/2. These solutions are known!? to be

where




unstable if p > 4. To investigate the nature of this instability (and hasten
its onset) we use as initial data in (1.1b) the slightly pertubed solitary
wave profile

(3.2) u(z) = 1.01 A sech?/? [B(z — z0)] .

Early numerical experiments (cf. Bona et al?) with fixed grids and
small grid sizes revealed that an initial profile like (3.2) soon evolves into
a thin peak that proceeds to blow up in L*™ at some (z*,t*). Therefore,
the adaptive mechanism of the code is geared towards approximating well
solutions with a single peak that blows up at a point. Consequently, our
spatial refinement will consist of adding new nodes, distributed evenly
about the mid point 2 = .5, but in successively smaller neighborhoods of
the midpoint. This local refinement is combined with (iil), which takes
advantage of the fact that the solution is a travelling—wave, to keep the
peak near the midpoint z = .5 in the region of highest density of nodes,
and away from a region of coarse mesh. This accomplished by occasionally
translating the solution and centering the peak at z = .5. (In effect, we
translate the solution to conform to the grids we construct rather than
have a moving grid which conforms to the solution.)

Spatial Grid Refinement. Let NSPLIT stand for the number of times
nodes are to be added and let Q* represent the neighborhood of the mid-
point z = .5 which is the region with the finest grid, with grid size A*.
Each time nodes are added, NSPLIT is increased by 1, and both Q*
and h* are cut in half. As an example, with NSPLIT= 1, we might
have Q* = [0.4,0.6] and A* = 1/100. Then as NSPLIT increases to 2,
Q* = [0.45,0.55], h* = 1/200; when NSPLIT=3, Q* = [0.475,0.525],
h* =1/400, and so on. The effect of the occasional spatial translations is
to insure that the peak of the solution remains in the region Q*.

From the L — L? inverse inequality satisfied by elements of S} and

the discrete conservation law [[u}|| = ||msu®|| satisfied by (1.3) for § = 0,
we have
(3.3)  max[ul(z)| < ch™VH[ul| = ch~V*||mpul|| forn=0,...,J

Similarly, for a non-uniform grid the minimal grid size h* must become
arbitrary small if the numerical solution is to develop an arbitrary large
peak. Our particular choice of spatial refinement is based on a local L™
— L? inverse property on Q*. Specifically, we use the following test to
determine if NSPLIT needs to be increased. At each step, compute

1/2
lisoll= max lup(z)| and Z;= (/ (uf)? da:)

-



We then increase NSPLIT by 1, add new nodes, and modify Q* and A* if

LoV h*

(3.4) -

> TOL; .

Here TOL; must be chosen small enough in accordance with (3.3) to allow
for new nodes to be added. In our program, we have used values of TOL;4
equal to 0.1 or 0.2, typically. The same procedure is used if § > 0, since
the only change is then that ||u}|| < |[wau?].

Temporal Step Size Reduction. The temporal step size is adjusted in
an attempt to preserve the third invariant of the GKdV equation. This
invariant is defined by

L(v) = /01 [vp+2 _(p+1)(p+2) (vz)z]dm _

2

)

For exact solutions u(z,t) of (1.1) for § = 0, I3(u(-,t)) = I3(u?), indepen-
dent of the values of <.

Given u?, a possible u}t?

It is accepted if

is computed using the current step size k.

(s (uy ™) = Ta(up)|

3.5 e
&2) Jo l(ui™)z]?d

< TOL.,

where TOL; is a small parameter. In the results to be presented, a typical
value of TOL, is 107°. If (3.5) is not satisfied, then k is cut in half
and the process is repeated. The denominator in (3.5) is a convienient
normalization factor. Although I3 is not an invariant of the dissipative
equation (i.e. when 6§ > 0 in (1.la)), nevertheless, the criterion (3.5)
proved quite effective in cutting appropriately the temporal step for § > 0
as well.

4. INSTABILITY OF SOLITARY WAVES FOR 6§ = 0.

With the adaptive mechanism just described in place, we took (3.2)
as initial value with A =2,p =5, ¢ =5 x 107*, 2o = 1/2 and integrated
(1.1) numerically using h = 1/192 and k¥ = 1/1000 as initial mesh pa-
rameters. The graphs in Figure 1 illustrate the growth in the peak of the
solution. The plots are given at NSPLIT=2, 4, 6, 9. Note that as the peak
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Figure 1. Numerical simulation of a solitary-wave solution with grid
refinement, u—axis scaled.

(umaz in the plots) significantly increases, we are forced to rescale the
vertical axis in order to plot the entire solution. This experimenet shows
that the solitary-wave type initial condition evolves into a solution that
blows up in L* as (z,t) — (z*,t*) where z* = .61333, t* = 0.022549.

In order to examine the nature of the solution near the peak, as the
peak continues to grow, one needs to rescale the horizontal axis. Recall
that 2* is the region of the finest grids with center at z = .5 and define
Q% = Q* - 0.5. In Figure 2 the solution is translated by 0.5 so that
the peak is near 0 and then graphed using Q° as the r-axis. The plots
given are with NSPLIT=10, 21, 29, 40. By the final plot, the local spatial
and temporal mesh sizes have decreased to approximately » ~ 10~* and
k & 10732 respectively. Our code is able to follow the peak until it reaches
approximately a maximum of 500,000 while maintaining a smooth profile



everywhere including (2*. The graphs in Figure 2 suggest that instabilities
of solitary waves can lead to blow—up of solutions in L in finite time and

that the blow-up seems to be self-similar.

Indeed, one of the major
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Figure 2. Numerical simulation of a solitary-wave solution near

blow—up (both axes scaled).

points of Bona et al® is the accurate computation of blow-up rates of
various norms of the solution u(z,t). Such computations are consistent
with the conjecture advanced in that reference that the blow—up is of
similarity type, indeeed that, as (z,t) — (z*,t*)

(3.6)

u(e,t) ~ (¢ = 1)7F

where ¢ is a smooth, bounded function.

+ bounded terms ,



5. THE EFFECT OF DISSIPATION.

What happens to the solutions of (1.1) if § > 0, when we take as
initial data e.g. solitary—wave-type initial profiles of the form (3.2)? Our
computations and theory that appear in detail in Bona et al* show that
if § is sufficiently small, then the solution will blow up at a point (z*,¢*),
t* < oo, but the blow up will be delayed somewhat depending on é. For
example, if we take, A, p, € and z¢ as in the numerical experiment of
Figures 1-2 and add a dissipative term of § = 2 x 10™*, the solution blows
up at t* = 0.038624, z* = .65812 with practically the same blow-up rates
of the norms as in the nondissipative case. This leads us to believe that the
similarity solution (3.6) is still valid provided § is small enough. Moreover,
our computations* show that in the case of solitary-wave initial profiles

of the form (3.2) there exists a critical value ¢, of the parameter %, (ca

is a function only of p), below which blow—up occurs. If ;% stays above
¢« the solution will eventually decay. For example, Figure 3 shows the
initial oscillatory brealk-up and decay of a solitary—wave initial profile with
§ = 1073 (other parameters as in previous experiments). As t grows, it is
demonstrated in Bona et al* that the solution decays ezponentially (more
precisely, like exp[—(27)?6%] due to the periodic boundary conditions) to
the integral mean of u°(z) and that the asymptotic profile is a sinusoidal
wave which travels as it decays. Such qualitative features of very long time
decay in the presence of sufficiently large dissipation can be essentially
determined by the linearized form of the equation (1.1a). We refer the
reader to reference 4 for details. '
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Figure 3. Oscillatory break—up and decay of a solitary—wave initial
profile for sufficiently large dissipation.
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