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A class of fully discrete schemes for the numerical simulation of solutions of the
periodic initial-value problem for a class of generalized Korteweg—de Vries equa-
tions is analysed, implemented and tested. These schemes may have arbitrarily
high order in both the spatial and the temporal variable, but at the same time
they feature weak theoretical stability limitations. The spatial discretization is
effected using smooth splines of quadratic or higher degree, while the temporal
discretization is a multi-stage, implicit, Runge-Kutta method. A proof is pre-
sented showing convergence of the numerical approximations to the true solution
of the initial-value problem in the limit of vanishing spatial and temporal dis-
cretization. In addition, a careful analysis of the efficiency of particular versions
of our schemes is given. The information thus gleaned is used in the investiga-
tion of the instability of the solitary-wave solutions of a certain class of these
equations.

t Dedicated to Garrett Birkhoff on the occasion of his 83rd birthday.
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108 J. L. Bona and others

1. Introduction

Considered herein are fully discrete, numerical approximation schemes for solu-
tions of the generalized Korteweg—de Vries equation (GKdV equation henceforth)
that possess high accuracy and high-order convergence rates in both the spatial
and the temporal variables. This work is a continuation of the developments
presented in an earlier paper (Bona et al. 1986). The particular contribution
contained in the present paper concerns schemes with arbitrarily high rates of
convergence. As will be made clear below, such schemes are of very considerable
use in investigating the consequences of the balance between nonlinearity and dis-
persion that is the hallmark of the GKdV equations, and in making comparisons
between experimental data and numerical simulations. The focus of our interest,
the GKdV equation, may be written in the form

Ut + upu:l: + Uppr = 07 (11&)

where u = u(z,t) is-a function of the two real variables z and ¢ which correspond
to space and time, respectively, and p is a non-negative integer. This equation
will be considered on the spatial interval z € [0, 1] for ¢ € [0, t*], with initial data

u(z,0) = uo(x) (1.1b)

specified for 0 < = < 1 and with u, belonging to a suitable class of periodic
functions having period 1. Classical solutions whose spatial variation maintains
the initially imposed periodicity will be considered and numerical approximations
thereto will be proposed and investigated. The special case p = 1 corresponds to
the Korteweg—de Vries equation itself (KdV equation, Korteweg & de Vries 1895),
p = 2 to the modified Korteweg—de Vries equation (MKdV equation, Miura 1968),
and p = 0 is a linear, dispersive equation whose exact solution may be found by
Fourier analysis.

The particular equations exhibited in (1.1a) are part of a more general class
which has arisen in recent years as approximate models for the unidirectional
propagation of plane waves in a variety of nonlinear, dispersive media (cf. Ben-
jamin et al. 1972; Saut 1975; Bona 1980, 1981a). For the KdV and the MKdV
equations, and for certain other members of the general class to which allusion
was just made, the inverse scattering transform (1ST) provides a method of rep-
resenting solutions from which detailed information may be extracted. However,
in general, the IST does not apply and so numerical simulations come to the fore
as an investigative tool. Even in cases where an IST exists, it is sometimes more
convenient to use direct simulation of the partial differential equation in determin-
ing properties of solutions. An example of this arises when comparisons between
experimentally obtained data and a model equation are desired. While such com-
parisons can be effected in a telling way using IST techniques (cf. Zabusky &
Galvin 1971; Hammack 1973; Hammack & Segur 1974) there are a number of
complications connected with dissipation and the imposition of boundary condi-
tions that are obviated by more direct methods (e.g. Bona et al. 1981). In the
situation that comes about when comparing laboratory data with numerical sim-
ulations, experience obtained in the last-cited reference shows clearly the efficacy
of a scheme that is of higher order in the temporal variable. Also, in general inves-
tigations of the outcome of competition between nonlinearity and dispersion, one
aspect of which is reported in §5 of the present paper, some delicate properties
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Numerical schemes for the generalized KdV equation 109

such as decay rates, formation of singularities, and instabilities associated with
the initial-value problem require a very reliable and highly accurate numerical
scheme such as those provided here.

The paper is organized in the following way. In § 2, after explaining notation and
various other preliminaries, the numerical schemes are described in detail. The
spatial discretizations are effected using smooth splines of quadratic or higher
degree and the temporal discretizations are conservative, multi-stage, implicit
Runge-Kutta methods. In fact, the schemes are written for (1.1) posed in the
slightly more general form

Uy + Ny + UPU, + EUgzy = 0, (1.2a)
where n and ¢ are fixed constants, p is as before, and the same initial condition
u(z,0) = up(x) (1.2b)

is imposed. Of course (1.2) is completely equivalent to (1.1) by way of the simple
change of variables, U(z,t) = u(B(z — nt), Bt) with 8 = ¢7/2, but it is conve-
nient both theoretically and practically to have the extra flexibility inherent in
formulation (1.2). The proof of convergence of the numerical approximations to
the solution of (1.2) in the case of uniform spatial meshlength and temporal step
is presented in §3. We obtain the optimal-order rate of convergence as far as
the spatial discretization is concerned, and the optimal rates for the temporal
discretization for the one- and two-stage time stepping procedures. For three-
and higher-stage time stepping methods, the proven rate of convergence for the
temporal discretization is sub-optimal. (For the special case p = 1 of the KdV
equation, it has been shown recently by Karakashian & McKinney 1990 that the
optimal temporal rate is achieved for such schemes with arbitrary number of
stages.)

The implementation of the scheme and the outcome of detailed convergence
studies are presented in §4 for a two-stage time-stepping procedure and several
different choices of the degree of the splines used in the spatial representation of
the approximation. Although not reported here, a careful study of the relative
and absolute efficiency of our schemes was also made, allowing us to compare the
present scheme with other methods for the integration of KdV-type equations.
Where direct comparisons are available, the present scheme appears to be superior
to competing methods in terms of accuracy achieved for work expended.

Finally, in §5, the fruits of our labor are used in an investigative mode in
attempting to understand the stability and instablity of solitary-wave solutions
of (1.2a). A recent theory by Bona et al. (1987) has shown these special, travelling-
wave solutions of (1.2a) to be stable if and only if p < 4. However, the theory
leaves completely open the manifestation of instability. The experiments reported
in §5 were carried out with a version of the algorithm described in §§2-4 that
also performs adaptive grid refinement in space and time. They indicate that
instability leads to the formation of singularities in the solution.

The last section recounts briefly the earlier accomplishments and then con-
centrates on formulating a specific conjecture suggested by the numerical experi-
ments in § 5 that the singularity formation is of a similarity type. Further analysis
of the numerical resuits is made in support of this proposition.
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110 J. L. Bona and others
2. The numerical methods

After explaining notation and reviewing certain preliminaries about splines
and Runge-Kutta methods, the numerical algorithms that will hold attention
thenceforth are displayed.

For the most part, the notation employed will be that which is currently stan-
dard in the numerical analysis of partial differential equations. Each of the func-
tion classes that intervenes in our analysis is a Banach space comprised of real-
valued functions defined on R which are periodic of periodic 1. For easy reference,
they are recorded here, along with the abbreviation used for their norms.

L, for 1 < ¢q < oo is the collection of periodic functions of period 1 which are
gth-power integrable over [0,1], endowed with the norm

o= [ 15@pas]

The usual modification applies if ¢ = 0o, and the norm on L, is denoted | - |o.

W7 for s > 0 and 1 < g < oo is the Sobolev space of 1-periodic functions which,
along with their first s derivatives, belong to L, . The usual norm on this space
is written || - ||5,, (cf. Adams 1975).

H?® for s > 0 coincides with Wy and the norm is abbreviated as simply || - ||,.
These spaces are Hilbert spaces, but this structure will not be used except in the
case s = 0. These spaces are also defined for fractional or negative values of s (cf.
again Adams 1975), but such cases play no essential role in what follows.

L, has two abbreviations according to the above scheme. Its norm appears so
frequently that it will be written unadorned as || - ||. The inner product in L, also
appears frequently and is likewise written unadorned as (-, -).

C(0,T; X) 1is the space of continuous mappings v : [0,7] — X where X is any
Banach space. Its norm is maxog<r |[u(t)]] x.

C*(0,T; X) is the space of X-valued functions defined on [0,T] that are k-times
continuously differentiable.

Before embarking upon a detailed description of the approximation techniques,
it is worthwhile recalling the state of the analytical theory pertaining to the
initial-value problem (1.2). Many authors have written about (1.2) or its near
relatives. Perhaps the best results set in the L,-based Sobolev spaces are those of
Kato (1983) whose paper also contains a rather complete bibliography, and the
recent work of Bourgain (1993, 1994). While Kato’s results are couched in terms
of the pure initial-value problem on the whole real line, with initial data having
various smoothness and decay properties at infinity, many aspects of his theory
go over to the periodic initial-value problems considered here (cf. Bona & Smith
(1975) for remarks on the periodic problem for the case p = 1). The proofs for
the periodic problem are sensibly the same as those already exposed in detail by
Kato (1983), and so we content ourselves with a statement of the theorem which
will find use here.

Theorem 2.1. Let uo € H® where s > 2 and let p be a non-negative integer.
Then there exists a positive time t* = t*(||uo||s) and a unique function u €
C(0,t*; H*) which also lies in C*(0,t*; H*=%*) for s — 3k > —2, solving (1.2).
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Numerical schemes for the generalized KdV equation 111

The solution v depends continuously upon wu, in the sense that the mapping
associating to ug the unique solution u, whose existence was just asserted, is
continuous from H*® to
ﬂ CA:(O’ t*; Hs—Bk).
s—3k>2-2
If p < 4, t* may be specified to be any positive number, whereas if p > 4,t* may
be specified arbitrarily only if ug is sufficiently small.

Remarks. Tt is an open question whether or not (1.2) has global smooth so-
lutions for large, smooth initial data if p > 4. Numerical evidence presented in
Bona et al. (1986) and in §5 of the present script indicate that smooth solutions
form singularities in finite time.

Bourgain’s results, mentioned earlier, allow one to consider the cases p = 1,2
in weaker spaces, but this aspect is not important for the present developments.

Turning now to the description of the numerical scheme, suppose r to be an
integer larger than 2 and let S, = S} connote the space of 1-periodic smooth
splines of order r (degree r — 1) on [0,1] with uniform mesh length h = 1/N,
where N is a positive integer. The finite-dimensional spaces S), have the following
approximation properties. If v is a smooth, 1-periodic function, then there exists
a x € S}, such that for any s with 1 <s <,

s—1
ZhJH'U - XH]',(V < Ch'sHvHs,ou (21)

=0

for & = 2,00, where c is a constant independent of x, v and h. In addition,
the spaces S), possess the following inverse properties. There exists a constant c,
independent of h, such that for all x € S}, and for any o, f with0 < a <8< r—1,

xlle < e xllar  [xllaoo < ™2 x]. (2.2)

Although it will not figure in the final analysis, the following semi-discretization
is useful in motivating the design of the fully discrete schemes to be considered
presently. As is customary, the semi-discretization corresponding to the initial-
value problem (1.2) is a differentiable map vy, : [0,t*] — S}, satisfying the relation

(Uht + (% pvhw T n (U X) =€ (Uhm.r’ Xr) (23)
for all x € S, , and for which
’Uh(O) = Hh’u‘07 (24)

where IT,u, denotes any of a number of approximations of uy by an element of
Sy, (e.g. an interpolant, Ly-projection, quasi-interpolant, etc.) such that

| T, wy — uol| < ch” (2.5)

for some constant ¢ which is independent of h. Let P : L, — S, denote the
orthogonal projection of the Hilbert space L, onto the finite-dimensional subspace
Sy. Define F' : S, — S}, by requiring that

(F(v),x) = — (v"vr + N2y X) + €(Vizs Xa) (2.6)
for all y € S,. With this notation, the semi-discretization is a map v, :[0,¢"] — Sp,
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satisfying

vpe = Fvy) for 0 <t <t*, v,(0) = Myu,. (2.7)
A proof that v, converges in L, to u as h | 0 may be constructed along the lines
developed in Baker et al. (1983) for the special case p = 1, at least over any time

interval [0,¢*] for which u exists and is sufficiently smooth. In fact, for smooth
enough initial data, one shows that

max o, — ul| < ch’,
(018 Eg B

where the constant c is independent of A.

Upon choosing a basis for S, and representing v, in terms of this basis, it is
evident that (2.7) may be viewed as a system of ordinary differential equations.
As such, one may contemplate using any appropriate method for initial-value
problems for systems of ordinary differential equations to approximate its solution
('

- We shall-discretize (2.7) in the temporal variable by way of a class of implicit
Runge-Kutta methods. General remarks concerning Runge-Kutta-type methods
along with a considerable bibliography may be found in the books by Dekker &
Verwer (1984) and by Butcher (1987). For ¢ a positive integer, a ¢-stage implicit
Runge-Kutta (IRK) method is defined by a tableau

Alr

:TJ'I. )
where A = (a,;) is a ¢x ¢ matrix and b = (b;), 7 = (7;) are g-vectors. Of particular
interest will be the g-stage Gauss—Legendre family, a class of IRK methods of
collocation type defined as follows. For a fixed ¢ > 1, let 7;, 1 < ¢ < g, be the
zeros of the (shifted) Legendre polynomials (d/dz)? (z(1 — ))¢ of degree ¢ on
[0,1] (cf. Dekker & Verwer 1984, p. 85). The 7, are distinct and lie in (0,1), while
the weights b; are defined so that the quadrature rule

[ orrar = 3 bia(r) 29)

j=1

is exact for all polynomials g of degree at most ¢ — 1. The b; are thus determined
as the solution of the Vandermonde system of equations

1
ij(Tj)Z:H—l, for 0<l<qg-1 (2.9)

J=n

It is well known that the b;, which coincide with the weights of the Gauss-
Legendre quadrature rules on [0,1], are positive and that instead of (2.9) one
actually obtains the superaccuracy conditions
q

1
. bj(Tj)e e f—{—_l, for 0 < £ < 2q — 1. (210)

j=1

The a;; are now defined so that the quadrature rules

[ el = Saggl, (2.11)

J0 i=1
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Numerical schemes for the generalized KdV equation 113

for 1 < ¢ < g, are exact for polynomials g of degree at most ¢ — 1. Thus the a;;
are obtained as solutions of the system of equations

Z: ai;{r;)" = (€+1)7 (m)"™, (2.12)

for 0 <2< qg—1,1<i<q. Itisnot hard to see that A is invertible.

For ¢ = 1 the construction just outlined yields the midpoint method with a;; =
%, T = %, b, = 1 while for ¢ = 2 there results the two-stage Gauss—Legendre
method corresponding to the table:

1 1 1 1 1
1 iT5B | 2T %A
1 1 1 1 1
it 1 PR
3 5 (2.13)

One recognizes that the method represented by the tableau (2.13) is closely al-
lied with the (2,2) Padé approximate. Indeed, in the context of homogeneous,
constant-coeflicient, linear systems of ordinary differential equations, the g-stage
Gauss-Legendre method corresponds exactly to the gth diagonal Padé approxi-
mation r,(z) to e*. As a consequence, the g-stage Gauss-Legendre methods are
A-stable, have orders of accuracy 2q, and are conservative (|r,(iz)| = 1 for all real
x) when used on such systems of ordinary differential equations. In the context
of suitable classes of nonlinear systems of ordinary differential equations, these
methods are algebraically stable, conservative, and also of order 2¢ (see Butcher
1975; Crouzeix 1979; Burrage & Butcher 1979). In the next section, some of the
special properties of the Gauss—Legendre methods will enter in an important way
in the proof of convergence for our fully discrete schemes, and consequently they
will be explained in more detail there.

The fully discrete schemes we have in mind simply amount to using the Gauss—
Legendre methods on the system of ordinary differential equations that arise from
the Galerkin semi-discretization (2.7). More precisely, fix r, g, and the tableau for
the g-stage Gauss—Legendre method. Corresponding to the initial data u, let u
be the solution of (1.2) defined at least for 0 < t < t*. Let t, = nk, n=0,1,...,J,
where t* = Jk. We seek U™ € S}, for 0 < n < J which approximates u™ = u(-, t,)
such that

U° = Iyuy, (2.14)
where II, is as previously described near (2.4). The approximation U™ is con-

structed from U™ by way of the intermediaries U™ in S}, 1 < 7 < ¢, which are
the solutions of the ¢ x g system of nonlinear equations

q
U™ =U"+kY_ ayF(U™), (2.15a)

j=1

for 1 <1 < ¢, using the formula

q
Urtt =U"+k> bF(U™). (2.15b)

j=1

Phil. Trans. R. Soc. Lond. A (1995)



114 J. L. Bona and others

Since A is invertible, solving for the F(U™’) using the formulas (2.15a) and
inserting the result in (2.15b) gives

q
UMt =U"+Y bi(A7Y),; (U™ U™, (2.15¢)
j=1

which is the formula actually used in practice for the computation of U"+1,

In §§3-4 we study, theoretically and experimentally, various issues related to
the convergence, stability and efficient implementation of the schemes defined
by (2.14)-(2.15a,b). In §5 we shall use one of them (namely the 2-stage Gauss—
Legendre method coupled with cubic splines) as the basis for constructing a
variable-mesh algorithm that performs adaptive grid refinement in both the spa-
tial and temporal variables.

3. Stability and convergence of the base scheme

In this section we study the stability and convergence of what will be called
the base scheme, defined by (2.14)—(2.15a,b). We begin by introducing notation
and recounting some preliminary results that will be used in the analysis.

Consider the map Q : S, x S, — S}, defined for v,w € S;, as

@QE.w)x) =

Since v,w € S, C H!, it follows that v»w € H'. Therefore, integration by parts
applied to (3.1) shows that (Q(v,w), x) = —((v*w)., x)/(p+1) for x € S, which
is to say that

(vPw,x') for all x € Sy. (3.1)

1
- _Pl(vPw),], 3.2
Qvu) = ~— 5 Pl(7w)] (32)
where P is the Ljy-projection onto S} as before. Let © : S, — S, be the linear

operator defined for v € S}, by

(@’U, X) = G(Um,, XI) - W(Um, X) (3'3)
for all x € Sy, and note that if r > 4 we may write that Ov = —Plevg,.. + nv,]
for v € §;,. Finally, define F': S, x S, — S, by

F(v,w) = Q(v,w) + Bv (3.4)

for v,w € S;,. Abusing notation mildly, we shall also denote by @ and F the maps
from S}, into S} induced by @, F', respectively, when they act on the diagonal of
Sy, x Sy. Accordingly, for v € S, define Q(v), F(v) € S, as

Qv) = Q(v,v) = P(—vv,), (3.5)
F(v) = F(v,v) = Q(v) + Ov. (3.6)
The definition of F'(v) in (3.6) is consistent with the definition of F introduced

in (2.6).
The following identities and estimates concerning these mappings will find use
presently. By periodicity, it follows that
(Q(v),v) =0 and (F(v),v)=0 (3.7)
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for any v € S,. Also, by (3.5), one may write
Qv +w) = Q(v) + Q(w) + R(v,w), (3.8)

O (Jé <p}_1> v”+1_jwj>} . (3.9)

As a consequence of (3.6) and (3.8) it follows that, for v, w € S,

where, for v,w € S},

R(v,w) = R(w,v) = ~?P

Fv+w) = F(v) + F(w) + R(v,w). (3.10)
From (3.5) one deduces that for v € S},
QI < [[vPv|l < |vlE[lvzll, (3.11)

while (3.9) implies that there is a constant C, depending only on p, such that for
all v,w € Sy,

. ‘
|R(v, w)ll < Cp D (lofe vl lwly + [0f2 7 w2 flwel]) (3.12)

7=1
and | (R(v,w),w)| < C’p max |”||1OOZ/ |w)’+dz. (3.13)

Following the line of argument laid out by Baker et al. (1983) and by Dougalis &
Karakashian (1985), approximations to u(z,t) in S, will frequently be compared

to a convenient auxiliary function in S, namely the quasi-interpolant u;, of u
defined for (z,t) € [0,1] x [0,t*] by

un(z,t) = Y u(jh,t)®;(2),
=1

where {®; }, is a suitable basis of S, (cf. Baker et al. 1983). It is straightforward
to verify that there exist constants C; independent of h such that

s |10} () (O, <O, for i=0,1,2,0, 5=0,1, (314)
and that Jax | Diup(t)]1.00 < Ciy for i=0,1,2,... . (3.15)

(In (3.14), (3.15) and the sequel, the notation ¢, ¢;, C, etc. will be used to
denote positive constants that are independent of the discretization parameters,
but which may depend upon the solution in question of (1.2).

As with similar formulas of Baker et al. (1983) and Dougalis & Karakashian
(1985), it may be proved that u, satisfies the equations

(uht =l= upuha: + Nupg, X) —€ (uha:m X/) = (lp(t)a X) (316)
for all x € S, and 0 < t < t*, where the truncation error 9(t) satisfies
max [|Djp(t)]| < ek’ i=0,1,2,... (3.17)
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Differentiating (3.16) shows that for all x € S, and 0 < t < t*,
(DZ (uht + uzuhz + nuha‘) ;X) — € (D:uh;l:;rv X,)

= (D [ + (vl — u")una], X) , fori=0,1,2,... . (3.18)
It is also straightforward to see using (3.14) and (3.15) that there exist constants
¢i,p such that || D} [(u} — uP) une || < ¢iph", @ = 0,1,2,... . Hence, we conclude

from (3.17), (3.18) and the triangle inequality that
Diupy = DiF(uy) + EP (1), i=0,1,2,..., 0<t<t, (3.19)
where E” : [0,4*] — S, satisfies
Jmax IES @) < esh”, i=0,1,2,... . (3.20)

Now we come to some preliminary results and properties of the g-stage Gauss—
Legendre methods that will be needed in what follows. Note first that the order
relations (2.10) and (2.12) may be written, as

bT Te = T 0<0<2g~1, (3.21)
1
ATl = H—IT”le, 0<€<q—1, (3.22)

respectively, where T' = diag(7,...,7,) € R?*? and e = (1,1,...,1)T € R?. A
simple recursive argument using (3.22) leads to
Ale=Te/j!, for 0<j<aq. (3.23)

Use will also be made of the following additional order condition for the Gauss—
Legendre methods (known as condition (D); cf. Dekker & Verwer 1984; Butcher
1987), namely that

VITCA =b™(I - TN /(L+1), £=0,1,..., ¢—1. (3.24)

It is well known (see Dekker & Verwer 1984; Butcher 1987) that the Gauss—
Legendre methods are algebraically stable, which means that the associated con-
stants a,; and b; satisfy

b; >0, 1 <i < q, and the ¢ x ¢ matrix (m;;), where (3.25)
mi; = byay; + bya;; — bib;, 1 < 4,7 < gq, is positive semi-definite. '
in fact, these methods are conservative, which means that they actually satisfy

In the proof of existence of our fully discrete approximations, and in several
‘diagonalization’ arguments in the sequel, we shall use the following additional
property of the Gauss-Legendre methods (cf. Dekker & Verwer 1984, p. 157):

For each ¢ > 1, there exists a diagonal ¢ X ¢ matrix D with positive

} (3.27)

We now embark upon showing the existence and stability of solutions of the fully

diagonal elements such that DAD™! is positive definite on RY.
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discrete scheme (2.15). For the existence result, we will refer to the following
well-known variant of Brouwer’s fixed point theorem.

Lemma 3.1. Let H be a real, finite-dimensional Hilbert space with inner
product (-, ")y and norm ||-|| . Let g : H — H be continuous and suppose there
exists o > 0 such that (g(z),z)g > 0 for all z such that ||z||g = a. Then, there
exists z* in H such that ||z*||g < @ and g(z*) = 0.

In fact, use will actually be made of the following corollary of lemma 3.1.

Lemma 3.2. Let {S, (-, )} be a real, finite-dimensional Hilbert space and let
f: S — S be a continuous map such that

(f(p),) <0, forallpeS. (3.28)
For positive integers g, consider the product space H = Sq, equipped with the
inner product (®,V)g = >7_,(pi, ¥;), where & = (¢;), ¥ = (¢;) € H, and let

| 1lg = ()} be the associated norm. Let F : H — H denote the diagonal
map deﬁned for & = (p;) € H by

(F(®)), = flps), forl<i<y, (3.29)

and let A be an invertible qx q real matrix for which (3.27) holds. Given W € H
and k > 0, consider the map G : H — H defined for & € H by

G(®) = & — W — kAF(D). (3.30)

Then there exists * € H such that G($*) = 0. Moreover, there exists a positive
constant ¢ that depends only on A, D and q, such that if ® € H is any solution

PO =0 then @1 < llW (3.31)
Proof. From (3.30) it follows that for # € H and D as in (3.27),
(D*A'G(8), ), = (D*A™'®, ), — (D*A'W, &), —k (D*F (&), 8),, . (3.32)
By (3.28) and (3.29), if D = diag(d;) and & = (¢;), then it transpires that

(D*F(& Z d2(f <O0. (3.33)

Of course we may write (D*A~1®, &) as (A~'D®, D)y where A = DAD".
In view of (3.27) and the last remark, it is apparent that there are constants
¢/, ¢; > 0 depending only on D and A such that for any ¢ € H,

(D*A7 0, 9), > || DO} > e 8. (3.34)

Finally, it is clear that for some positive constant c;, depending only on D, A
and ¢, and any ¢ € H,

|[(D*AT'W, 8}, | < cal|W]|al| - (3.35)
Combining (3.32)—(3.35) yields the inequality
(D?A7'G(9), 9) > arl @Il — 2l Bl Wl = call @l (12| — CzllWHH(/gl?zé)
which holds for any & € H. '
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It is concluded that if o = 1 + ¢,||W ||y /c1 and & € H is such that || Py = «,
then (D*A~'G(®), ®), > 0. Lemma 3.1 implies that there exists a ¢* € H such
that D*A 'G(®*) = 0 which in turn means that G($*) = 0.

Finally, if & is a solution of G(®) = 0, then (3.32)—(3.35) yield (3.31) with
¢ = ¢y/c;. The lemma is thus established. (&)

Lemma 3.2 will now be used to guarantee the existence of a solution of the
nonlinear system (2.15a).

Proposition 3.1. Given U™ € S),, there are elements U™',1 < i < q, and
U™t in S, satisfying (2.15a) and (2.15b), respectively.

Proof. The system (2.15a) may be written in the form
U =U"e+kAFU™), (3.37)

where Y = (U™,...,U™)T € H=(8,)%, e=(1,...,1)T €R%, and F: H —
H is defined by (F(U™)); = F(U™"), 1 < i < g, with F defined in (2.6). For fixed

h the continuity of F’ follows from the inverse assumptions (2.3). In view of (3.7),
the existence in S, of U™, for 1 < i < ¢, follows from lemma 3.2 if we identify

{S’ <'7 >} with {Sha ('7 )}

The proof of the lemma is thus concluded. |

As a consequence of (3.25), the proposed numerical method (2.15a,b) is stable.
Indeed, as we now demonstrate, it is also conservative in L.

Proposition 3.2. Let {U"}, 0 < n < J, be a solution of (2.14), (2.15a,b).
Then for 0 < n < J,
1o = 1°|. (3.38)

Proof. Suppose that (3.38) holds for 0 < n < J — 1. Then (2.15b) implies that

q q
[T = U™ + 26 b (U™, FU™)) + &2 Y bibs (F(U™), F(U™))
i=1 i,j=1
In the first sum on the right-hand side, replace U™ in the ith summand by its
expression in terms of the {U™/}I_, from (2.15a) and then use (3.7) and (3.26)
to deduce the formulas
q

[T = U2 = B2 D (Bias; + ey — biby) (F(U™), F(U™)) = |U™]?,

i,j=1
from which the desired conclusion (3.38) follows. (L]

Hence the g-stage Gauss-Legendre schemes conserve the discrete analog of the
second invariant I, . lu(:,8)]|? of (1.2). (Of course, the discrete analog of the
first invariant I, = f; u(z,t)dz is easily seen to be conserved since

1 1
/ ra = / Udz
0 0

follows from the fact that [, F(v)dz = 0 for v in Sj.)
Perhaps the most important step in proving convergence of solutions of the
fully discrete scheme (2.14), (2.15a,b) to the solution of (1.2) is to establish the
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consistency of the scheme. To this end, we shall presently show that the local error
in L, engendered by our scheme is O (k(k?*% + h")) as k, h — 0, provided ¢q > 2.
(For ¢ = 1, we can show the local error to be O (k(k* + h")), and this result may
be obtained at considerably less technical expense than the higher-order cases
¢ > 2. In consequence, attention will be fixed upon the high-order cases q > 2
in the sequel.) It follows from the local error estimate mentioned above and the
stability of the method that
anax U7 = u(-, )] = O(K™2 4 )

as k, h — 0. Thus the proof yields the classical, optimal temporal rate of conver-
gence v = 2q of the Gauss—Legendre methods if ¢ = 2, but yields a non-optimal
rate for ¢ > 3. For the special case p = 1 of the KdV equation, two of us have
demonstrated that the optimal temporal order 2¢q is obtained for this scheme
for any ¢ (Karakashian & McKinney 1990). The techniques in the last-quoted
reference differ in detail from those presented here. Indeed, for p > 1, a sub-
stantial portion of the effort entailed in obtaining the local error estimates goes
in to avoiding stringent mesh restrictions (i.e. restrictions on the ratio of k to a
suitable power of h) that arise if a straightforward analysis is pursued.

In carrying out the consistency proof for our schemes, several auxiliary func-
tions in S}, are introduced and studied. For 0 < n < J—1, define V™*for 1 <i < ¢
and V™! in S, by the formulas

q
Vi =g + kY e F(V™), 1<i<y, (3.39)
j=1
q .
vt = u’,ﬁ il kz bjF(V”’]), (3.40)

j=1

where uy,(t) is the quasi-interpolant of u(-,t) and wu,(t") is denoted uj;. Applying
the argument used in the proof of proposition 3.1 shows that the V™ and V"+!
exist in S,. Moreover, from (3.31) and the fact that

q
Vi =g+ Y0 bi(AT) (VM - ), (3.41)

ij=1

which follows from (3.39), (3.40), and (3.15), one may confirm the a priori esti-
mate

q
[T n+1
nax (Z e EY % H) <e (3.42)

In proposition 3.3 below it will be shown that ||V —upt!|| = O (k(k7T + h7)).
To prove this for large p without requiring a stringent mesh condition on k and
h, it is useful to establish that the V" are also uniformly bounded in L.,. To
this end, let

M = max <CU, max

(x.t)€[{0,1]x [0,t%]

u(z, t)\) ,
where u is the solution of (1.2) and Cj is the constant occurring in (3.15). Define
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the function f: R — R by
(=2A0)PTY if oz < —2A,

f(z) = zP ! if —2M <z <2M,
@MP* i > 20,

as a Lipschitz continuous, bounded extension of the mapping z zP*! from
[—2M,2M] to R. Now define the maps Q, F' : S, — S, by the relations

Q). x) = (Fw),x)/(p+1) forall x € S,
F(v) = Qv) + O,

for v € Sy, where © is as in (3.3). In addition, define the map F : (S),)? — (S3)?
by (F(V))i = F(v;) 1<i<q, for V= (vy,...,v,)T € ().

Lemma 3.3. For each n with 0 < n < .J — 1, there exists a

V= (. Tm)T e (S0

(3.43)

satisfying V = ule + kAF(V), (3.44)

where e = (1,...,1)T € R9. Moreover, there exists a constant ¢* > 0 such that if
kh~! < c*, then

max [|up (t™) — V| < e(k® + kR7). (3.45)

Proof. We follow the notation of lemma 3.2 and proposition 3.1, letting H
stand for (S5,)? and || - || denote the (L;)%-norm on H. Define G : H— H by

G(®) = & — uj'e — kAF(D)
for # € H. It follows that if & € H and D is as in (3.27), then

(D*AT'G(9), D)r = (D*A™'®, B)y — (D’ A~ (upe), ®)n —k(sz(é),é()?)H%)
From (3.43), (3.3) and periodicity, it follows that (D?*F(®), ®)g = 0. Combining
this relation with (3.46) and arguing as in the proofs of lemma 3.2 and propo-
sition 3.1, we establish the existence of a solution ¢ of G(®) = 0, that is, of a
V= (V™. ., V)T € (5,)7 satisfying (3.44).

Let n™* € Sy, 1 <7 < g, be defined by

q
wp (™) = up + kY ayF (up (™)) + 9™, for 1<i<q. (3.47)
j=1
It follows from the definition of M that max, ; |u;L (t™ i)|oo < M. Hence in (3. 47)
is seen that F (uy,(#™ 1)) = F (up(t™7)), for 1 € j < ¢, in view of (3.43), (3.5) an
(3.6). Therefore, becanse 31 iy = 7; (see (3.23)), Taylor’s theorem and (3. 5)
(3.19) and (3.20) may be used in (3.47) to obtain that
max ||[n™*|| < c(k* + kR"). (3.48)

n,i
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If (3.47) is rewritten in the form
Ur = uie + kAF(UL) + M, (3.49)

where  UP = (un(t™), oo un(), M= (P
then one obtains from (3.49) and (3.44) that

AT'D(Y —UP) = kD(F(V) — FU)) — DA™YH®,

where AZDADzl as before. Taking the inner product in H of this identity with
the element D(V — U}*) gives

(A7'D(Y ~uy), DYV —U))u
= k(D (F(V) = FW)) , DV = Ui)) i — (DA™, DV = Up)) .

Combining this with (3.43), (3.48), and the facts that A is positive definite and
f is Lipschitz leads to the estimate

q q
STV — wt ) < e ST = un (T = un ()l
i=1 i=1

q
te(k? + kh) Y IV = (t)]]. (3.50)

i=1

Using the H' — L, inverse assumption (2.2) and taking kh~' to be sufficiently
small, the inequality (3.50) implies that

q o~ . .
DIV —un ()] < e(k? + khT),

i=1

from which (3.45) follows.
Thus, if kh™! is sufficiently small, we may combine (3.45) and (2.2) to conclude
that

|‘7n,i _uh(tn,i)loo < Ch——l/Z(kQ +k:h7‘) < ch3/2‘
In particular, because of (3.15), for h sufficiently small it follows that

max [V, < 21, (3.51)

7,1

an important consequence of which is that Y = (V™i,..., V)T actually satisfies
the equation ¥V = ule + kAF (V). Therefore, if kh™! is sufficiently small, we may
take it that

Vi = 17”"'5, for0<ngJ—1,1<i<g, (3.52)
and hence that the a priori L..-estimate (3.51) holds for V™* as well. [ ]

To prove the main consistency estimate for V"*! we seem to require some ad-
ditional technical results. In what follows, multi-index notation will frequently be
employed. Let £;, 1 < ¢ < p+ 1, be non-negative integers and reserve the symbols
A and |A| for the multi-index (¢y,...,¢,.1) and the scalar zf-';i £;, respectively.
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For functions v;, 1 < ¢ < p+ 1, in S}, and also for any sufficiently smooth,
1-periodic function, extend the definition (3.2) by letting

1

Q(Ul, e ,’Up+1) = —mp[(vlvg e ’Up+1)m]. (353)

It will also be convenient to extend the mapping © to act on 1-periodic functions
v which are smooth enough, as in (3.3) or, equivalently, as

Ov = —P(€vyye + nuy).

Lemma 3.4. Let ES'" = E(t"), i = 0,1,2,..., be as in (3.19), and let
o € Sy, 1 <i<q, 0< ¥ < q+ 1, be defined recursively by

for{=0,...,q, 1 <i<q. (3.54)

Then, denoting by o, the vector (ayy,...,a.0)* € (S,)?, we may write
a,=T'eDiu} /e, £=0,1,...,q, (3.55)
g1 = AT%D{™u} /q!. (3.56)

Now defineay, £ =0,1,..., ¢g+1, by (3.55) and (3.56) withu" = u(-,t") replacing
uy,, and suppose that o, » € (S,)? is defined by

q
Qigpz =D aij{ > QGje - Weyy,) + Q&j,qﬂ}, (3.57)
i=1

(Al=g+1

for 1 <1 < q. It follows that

Pyt A g+
s = Gy P (1) +4 (G - i)
x{-P [(Df“u"(u”)p)m] +6 (Dfur) ). (3.58)

Proof. The formulas (3.55) and (3.56) follow by an induction argument using
(3.22), (3.6) and (3.19).
To prove (3.58), simply note that by the definition of the a;, for £ < ¢ + 1,

Z &jgl e &jep+l = (p + 1)&j‘q+1(u”)” + Z ajgl . &jgp+1

[Al=g+1 Aligg
[Al=g+1
(r+1) [ T
= | 2 @ ) (D) ()
- m=1
it (¢ +1)! ,
+—2 7 Z It ]Dflu"...Dt"“u”
(g+1)! aizq bl byt
|A|—g+1
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1 +1 +1, n n
= 0 1) |3 3 asrh — ] (D) ry
Ti:;! 1
4 T q+1 u” p+1 ,
from which (3.58) follows if we define ; 42 by (3.57) and use the equation ob-
tained by differentiating (1.2a) ¢ + 1 times with respect to ¢. l
Corollary 3.1. With the notation above, we have that
1
brA  ap = EDfuﬁ, £=1,...,q+1, (3.59)
and By, = PP (DfF*ur), ifg>2. (3.60)
(g +2)!

Proof. Using (3.22) and (3.21), we have by (3.55) that,
bTA la, =bTA T D}/l =bTA AT te Diu} /(£ — 1)!
~ Dtuy/e!,
for £=1,...,q, and by (3.56),
bYA a,,, = b T%e DIl /q! = DIl /(g + 1)L
In view of (3.58) and (3.21), it suffices to show that
AT9 Ta+
(e
q! (g +1)!

for ¢ > 2 in order that (3.60) be accounted valid. Using (3. 24) for £ =0 and
(3.21), one concludes that bTAT% = bT(1 — T)T% = (¢ +1)"' — (¢ +2)!
(g+1)"*(qg+2)" since ¢ > 2. Hence by (3.21) again, it follows that

o [ AT? T+l 1 1
b — — Je= — =0.
q! (¢+1)! (g+2)! (¢g+2)!
The corollary is thus established. |

Attention is now given to the proof of the main consistency result for the
schemes under discussion.

Proposition 3.3. Let V™! V" be defined by (3.39)—(3.40), where 1 < i < q.
Let k be sufficiently small if p = 1, kh™'/? be sufficiently small if p = 2 and kh™*
be sufficiently small if p > 3. Then

Jmax [V -y < ck(RP+ A7), ifg=1, (3.61)
n+1 _  n+tl q+2 r D
5 8% % up | < k(KT + A7), ifqg>2. (3.62)

Proof. The proof of (3.61) when g = 1 follows from a straightforward modifi-
cation of the proof for the cases ¢ > 2 and is therefore omitted. Let ¢ > 2 and
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0<n < J—1. Define e™® € Sy, for 1 < i < g by the equations

q+2

V= "klay +e™, for 1 <i<g. (3.63)
£=0

Substituting this expression in (3.39) and performing some straightforward cal-
culations using the definitions of F, () and © leads to

g+2 '
S Koy + e
=0
q g+1 y+2 .
— uZ—%—kZaU Zkl Z Q (ajgl, — ,ajgp+1) +I] + & (Z k‘lajl +en,1>}
j=1 =0 |A|=t =0
for 1 <i < ¢, where for j =1,...,q,
(g+2)(p+1)
Ij = —(p—{—l)glP i), Z ]{}ZHZ (Oéjo,...,aj,,ﬁ_z)
i=q+2

) e )] om

and II; is a polynomial of degree p 4+ 1 in ¢ + 3 independent variables. It follows
from (3.54) and (3.57) that for 1 < < g,

q
et =k Z Qg5 {k;q+1 Z (Q(ajgl, N ,aﬂﬁl) — Q(a]’gl, .. B &jgp+1)) + Ij
Jj=1 |A|=g+1

q =

A .
+kTO(g1 — Fyqe1) + RO 040 — Y g:} EP™ + @e"”} . (3.65)

=0

The Ly-norm of the e™* is now estimated from the expression (3.65). To this end,
a diagonalization argument as in the proofs of lemmas 3.2 and 3.3 is used. Let
again A”! = DA™'D™!, where D = diag(d,,...,d,). Viewing (3.65) as a vector
equation in (S,)? and multiplying both sides by the ¢x ¢ matrix DA~! gives the
equation

q
Y (A ydse™ = kdi(r; + I + B; + 7 + ©e™), (3.66)
j=1
for 1 <4 < g, where the r;, G;,v; € Sy are defined by
T = k‘1+1 Z (Q (aml, e ,aigp_H) — Q (a{wl, N ,&MPH)) R

[Al=g+1
Bi = k™10 (g1 — Gigrr) + k2O 1,
q £t
K1) om
Vi == Z T!Eo :

=0
Taking the Lo-inner product of the ith equation in (3.66) with d;e™(z) and
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summing with respect to ¢ from 1 to g leads to the equation

q

ST (A1) (die™, dje™)

4,J=1

q
kz [(ro, d2e™) + (I;, dZe™*) + (Bi, dZe™) + (i, d2e™")] . (3.67)
i=1

Since A~! is positive definite, it is easily deduced that there is a constant ¢ > 0
such that

g

q
ST (A (die™ dge™) > ey [le™ . (3.68)
i=1

ij=1
But for periodic ¢ in W, it is always the case that
(8m ((p(en’i)m) ’en.i) — (1 + m)—l (me (en,i)m+1) .
Hence one obtains from (3.64) the inequality
l(Ii7 d?en’i”

(g+2)(p+1)
<e+D70 Y K ([Heaios - -y digaa)],  die™)]
l=q+2
P~ (p+1 - 2
1~ — k i ,d. n,i\p+2—m
o+ 17 3 (1) o ‘(([Z a”} > 6 )
(g+2)(p+1) .
<ck®™? Y0 [[(Melewo, - - - @ige)), | [l€™]
{=g+2
5 " | P—1 P12
Z (Z ko 1g> |e”’1|0O He"““ , (3.69)
m=1 =) 1,00

which is valid for 1 < 7 < ¢. Applying the Cauchy-Schwarz inequality in (L;)? and
then the arithmetic-geometric mean inequality to the right-hand side of (3.67),
one obtains from (3.68) and (3.69) that

Z lle™*||? < ck*at?) Z Y e iy, — Gae o+ gy, |2

1=1 |A|=q+1
q (g+2)(p+1)

+ek®OI" N | (He(ioy - - 5 @ig2)), I

i=1 {=q+2
q p it .
ck Z Z (Z kZQig>
i=1 m=1 1,00

=i)
q q
+ck?at?) Z 1O(aig41 — &i,q+1)||2 + ck*@*d Z ”@ai,q+2”2
i=1

i=1

™5™ le™|?

q
+ek? ) lnll®. (3.70)
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To suitably bound the various terms on the right-hand side of (3.70), note that
for £; < q + 1, the quantity (o, - e, , — Gig, * - a“p+1)z can be expressed as
a sum of terms of the form f(ai, — Gir)zg and f(oue — @ir)g where f and g are
polynomial expressions in g, jpq, & and &y, for £ < g+ 1, which are bounded
in W1 by virtue of (3.55), (3.56) and (3.15). In view of the case j = 1 in (3.14),
one therefore obtains the estimate

| [ty -+ Qiyyy — Qg+ + Qg ] || < ch771 (3.71)

For a sufficiently smooth, periodic function v, the approximation and inverse
properties (2.1) and (2.2) appertaining to the spaces S, imply that |Pvl|1,c <
¢||v]|1,00 for some constant ¢ which is independent of v and h. Also, for sufficiently
smooth, periodic v, it is straightforward to show that the inequality ||©(Pv)|| <
c||v||s holds, where ¢ is a constant that is independent of v and h. From these
observations, and using (3.58), one obtains, on the one hand that [|a; 442100 < ¢,
from which

(g:+2)(p+1) q 9+2 m
Z ” (Hg(aio, ey ai’q+2))m ||2 + Z (L keaig) Lc (372)
f=q+2 m=1 £=l) 1,00

follows for 1 < i € ¢, and on the other that
Bt gi2ll < € (3.73)
for 1 <4 < ¢. Note that for 1 < i < g, (3.56), (3.19), (1.2a) yield the relations

e (ai,q+1 - &i,q+1)

_ (A Tq?)? q+l/ n n
= —q! -0 (Dt (up —u ))
A Te i a n = - = -
= —( g ) {Df:ﬁl (uht - Q(Uh))) - E(()q+1) = B [Dfﬂ (uf + (u )”um)]}
A Tve); )
= 8T (b prup — ) + PDE (@) i, ~ (o) ] — B}

Furthermore, since
IDF [(uR)? upe — (™) ] |
<IDE [((u)? = (™)) up] |+ (DI ((w™)P (g — ul)) || < eh™,
as is easily seen using (3.14) and (3.15), it follows using (3.14) and (3.20) that
10 (g1 — Gsg1) || < ch™! (3.74)

for 1 < % < gq. Now observe that by applying (3.63), the definition of the a;,
0 < £ < ¢+ 2, and (3.42), it is inferred that max,; ||e™|| < c. Hence, it is
concluded by (2.2) that for m =1,...,p,

'en,ilggm < ch—(p—m)/2||en,i”p—m < Ch—(p—l)/Z'

Thus it transpires that for 1 <m < p,

max |e™* [F-™ < & ifp=1, (3.75a)
i ch='?  ifp=2.

Phil, Trans. R. Soc. Lond. A (1995)



Numerical schemes for the generalized KdV equation 127

Suppose now that p > 3 and that kh~! is sufficiently small as assumed in lemma
3.3. Then, by (3.52), (3.51), (3.63) and the fact that the {oy}, 1 <7< ¢, 0<
¢ < q + 2 are uniformly bounded in L., (see (3.72)), it follows that

max |e™ | < . (3.75b)

7,1

Using (3.20), (3.70)—(3.74), (3.75a) for p = 1 or 2 and (3.75b) if p > 3, it is deduced
under the hypotheses on k and h stated in the proposition for the various values
of p that

q
maxz le™||? < ck? {k2(q+1)hz(rﬁ1) + 2D h%}
1=1

< Ck2 {k2(q+2) + h27‘} :
which yields max |le™|| < ck (k7 + R7) . (3.76)

Finally, since (3.41), (3.63), (3.59), and (3.60) with e” = (e™',...,e™?)T imply
that
q+2
Vit = + Z ETA oy +bT A e
=1
g+2 ¢ G0
k: J'll'-lj L
— _Dl n
U+ Z; a7t o)

we conclude by (3.14), (3.76) that (3.62) holds. [ ]

We are now in position to prove the main result of this section, which is the
following convergence theorem.

DI [Py — ] + T A e,

Theorem 3.1. Suppose that, as h — 0,

ifp=1,k=0 (hR¥*9*2) for g > 2 or k = O (h*/*) for ¢ =1,

if p=2, kh=/? is sufficiently small for ¢ > 2 or k = O(h**) for ¢ =1,

if p > 3, kh! is sufficiently small for all ¢ > 1.
Then for h sufficiently small, there exists a unique solution U™ of (2.14)—(2.15a,b)
such that

max U™ - u™|| < (k> +h") for ¢=1, (3.77)
max ||[U™ — u|| < (k"2 +h") for q> 2. (3.78)

O<n<J

Remark. We will refer to the hypotheses (i), (ii) and (iii) collectively as the
mesh conditions or mesh hypotheses.

Proof. The proof of (3.77) is a straightforward modification of that used to
establish (3.78), and so it will be omitted. Suppose ¢ > 2 and that V™, V"t
are defined by (3.39) and (3.40) for 1 < i < g. Set (" = U™ — u}, and make the
induction hypothesis that for some 0 < n < J -1

1€l < e (K2 + hT) (3.79)
where ¢ > 1 is some constant to be specified below which is independent of k, h,
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and n (o will depend only on the solution and data of (1.2) and the constants
pertaining to the numerical method). Obviously, (3.79) holds for n = 0 in view
of (2.14) provided o > ¢, for some appropriate constant c,. Make the definition
emt = U™ — V™, As a first step in the proof, it is shown that

[l I < edliS™ ), (3.80)

for 1 < i < g, where ¢, depends only on the solution of (1.2), the constants of the
Gauss—-Legendre method, and the constants occurring in the approximation and
inverse properties of Sj,. In particular ¢; does not depend on k, h, n or o. First
consider the case where p = 1 or 2. Note that (3.31), (3.38), (2. 5) and (3.42) yield

le™ I < MU+ V< ellT®] + V™)) < (3.81)
for 1 <4 < ¢. Subtracting (3.39) from (2.15a) and using (3.10) leads to

m =t +kZau €™ + R(V™, ™)) (3.82)

for 1 < i < ¢q. Using (3.63), (3.76), (2.2) and the fact that |la; |10 < ¢ for
1<i<¢0<£<qg+2 0<n<J—1, asshown in the course of the proof of
proposition 3.3, it is concluded using the mesh hypotheses that

max |[V™||1,00 < ¢+ ch ™2 (k93 + k") < c. (3.83)

It follows by (3.13), (2.2), (3.83) and (3.81) that for 1 < j < g,
| (R(V™, emd), ) CZ/ |9 1dz < ch~ 3D |jend |2,

Since p = 1 or 2, we obtain by (3.82), the above equation, a diagonalization
argument similar to the one already used in previous proofs, and our mesh hy-
potheses that (3.80) holds. Tracing through the various constants arising in the
proof confirms the claim made about the nature of c;.

Attention is now turned to the case where p > 3. Here, use will be made of the
mapping F introduced in lemma 3.3. Let U™ = (U™!,..., U™N)T € (S,,)7 satisfy
the equations

U =Ure+k A F(U). (3.84)
Such a Y™ exists by virtue of the argument made in the beginning of the proof of
lemma 3.3. Recall now, e.g. from (3.52), that ¥V = (V™! ..., V™97 satisfies the
equation
V=ulet+kAFDV). (3.85)
Forming the difference of (3.85) and (3.84), we obtain

Ur—v=_Cetk A(FU") - FV))

Hence, a diagonalization argument as in the second half of the proof of lemma
3.3 with computations analogous to those leading to (3.50) yields the inequality

P i N i - T X T n,i
NI =V < el ST =V ek 3 ([T =V (T =Vl

i=1 =1 i=1
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It is concluded from this result and (2.2) that, under the imposed mesh condition
wherein kh ! is taken to be sufficiently small,

1T = Vi < ell¢n (3.86)
for 1 < 7 < q. Hence, the induction hypothesis (3.79) coupled with (2.2) yield
U™ — V™o < coe”™h™Y? (K92 4+ h7) < min(1, 1 M), (3.87)

where M was defined before lemma 3.3 and the last inequality is valid due to

the mesh hypotheses. (After choosing o, take k972h~1/2 small enough to achieve

coe’ h=1/2 (k92 + h") < min(1, $M).) Now, by (3.87) and (3.51)-(3.52), we have
‘ﬁn,i|oo < |Vn,1|00 s |ﬁ'n,1 o Vn,lloo S 2]\/_/[

for all n,¢. Thus, the vector ~Z:l”}sattisﬁes (3.84) with F replaced by F. Hence, we
may as well take U™* to be U™" and then (3.80) follows from (3.86). Tracing the

constants appearing in this argument reveals again that ¢; depends as advertised

after (3.80).
Now let et! = U™t! — V**! The second step in the proof is to show the
stability estimate

"M < (14 e2k)IC™], (3.88)

where ¢, is a positive constant that only depends on the same quantities as does
¢;. From the equations that the €™* and ¢"! satisfy, namely, for 1 <7 < g,

="+ kz ai; (F(U™) = F(V™)),

j=1

and
C"—i—kZb (U™ — F(Vv™)),

one obtains from the algebraic stablhty of the Gauss—Legendre methods (much
as in the proof of proposition 3.2) and formula (3.10) that

e+t = ||<"||2+2kzb MR - FV)

= HCTIHZ + ka bi (R(Vn’i, 6n,i), en,i) ) (389)
Consider again the case wherein p = 1 or 2. Using the induction hypotheses, (2.2)
and (3.80), it is determined that
|€n,iloo < ch—l/QHCnH g co_eatnh—l/Q(kq+2 n hr) < 1

for 1 < i < q, provided we arrange as before that coe? h~/2(k9t2 + h7) < 1
which is again possible because of the mesh conditions. Then, using (3.83) with
(3.89) and (3.13) gives

q
le™ 4P < IS + ek D le™|?
i=1
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from which (3.88) follows in view of (3.80). If p > 3, use (3.87) and the remark
that U™ can be identified with U™ to conclude that ||e™] < 1 for all 4. In
addition, by (3.51), (3.45), (3.15), and (2.2) we obtain that

V™00 < llun(E™ o + [lun(t™) = V|00 < e+ ch™2(* + kh7) < ¢
because of the mesh conditions. It is concluded therefore, by (3.89), (3.13), (3.80)
as before, that (3.88) holds again. Finally, (3.88), (3.62) and (3.79) yield

CHH = U™ — | < U = Ve Y
< (L+ k) IS + esk (k™ + A7)
(14 cyk)oe (k92 + A7) + csk(k?T2 + A7)
(1+ (g + c3)k) ae” (k7% + A7), (3.90)

since ¢ > 1, where c3 denotes the constant ¢ in (3.62). Choose o = max(1, ¢g, c3+
c3). Then (1 + (cy + c3)k) < e* and (3.90) shows that

IC™ | < et (k42 4 AT,

i.e. that (3.79) holds for n + 1. The inductive step is complete and (3.78) follows
from (3.79) and (3.14).

For n in the range [0, J — 1], let {U™*} and {W™*} be two solutions of (2.15a)
corresponding to the same U", and let Y™¢ = U™ — W™*, Suppose p = 1 or 2.
Since

<
<

a

Z YIL] +R(Un] Yn]))
the familiar diagonalization argument yields
q q
DoIY™INE <k | (ROU™,Y™),Y™) . (3.91)

Because of the mesh hypotheses, if follows by (2.2), (3.80), (3.79), (3.83) that
0™ fl0 < NU™ = V|1 oo + V™ 1,00 < ch™ (kT2 + BT) +e < e
for all n, j. In addition, (3.31) and (3.38) imply that
[ < W™ + [IU™]| < ellU™] < e
for all n,j. In the usual manner, then, (3.91) yields
q q
DNY™2 < ek b DYy,
j=1 j=1
which in turn implies that Y™/ = 0 (since p = 1 or 2) under our mesh conditions.
Uniqueness of U™** follows. If p > 3, let Y™ = {U™'}, W" = {W™*} and as-
sume that max, ; |U™"|w, max, ; |[W™" . < 2M. Then both U™, W™ satisfy the
equations V = U"e + kAF (V). In consequence, we have
U —W" = kA (FU™) — FOv™)).
from which, by the familiar diagonalization argument and inverse assumptions,
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one deduces that
4"~ Wl < ek U =W,

whence U™ = W" because of the mesh conditions. Therefore, solutions U™ =
{U™} of (2.15a) are unique if kh~' is sufficiently small and |U™|,, < 2M. But
the latter inequality holds for the accurate solutions U™ of the first part of the
proof since |U™ |y < [U™ = V™| + [V < ch /2 (K972 4 h7) + 20 < 2M
by (3.80), (3.79), (3.51), and (3.52).

The proof of the theorem is now complete. [ |

4. Computational considerations

From now on, attention will be restricted to the full discretization (2.15a,c¢) by
means of the two-stage Gauss—Legendre method with constants a,;, b;, 75, 1 < ¢ <
J < 2, given by the tableau (2.13). In the present section, consideration is given
to implementing this method and to reporting on various aspects of it’s accuracy.
In particular, a summary is made of the outcome of numerical experiments that
were performed on the periodic initial-value problem (1.2a,b) using the time-
stepping procedure detailed above together with splines of order r = 3,4 and 6 to
represent the spatial structure of solutions. All the calculations were run in VS
Fortran on the IBM 3090 at the University of Tennessee, Knoxville, using a code
that implements in double precision the scheme described in § 2 and the first part
of this section. These computations are used to ascertain the accuracy, stability
and computational efficiency of the proposed numerical schemes. Recourse will
frequently be made to comparisons of the computer-generated approximations
with exact solutions of the partial differential equations. The results of this section
may be used to compare the efficiency of the schemes put forth here with that of
other numerical methods. It transpires that the schemes examined are the best
currently available in terms of accuracy achieved for effort expended, and for the
exploratory studies to be reported in §5.

At each time step we solve the nonlinear system represented by (2.15a) using
Newton’s method as follows. Given n > 0, let U)"" € S, i = 1,2 be an accurate
enough (see below) initial guess for U™, the solution of (2.15a). Then the iterates
of Newton’s method for (2.15a) (called the outer iterates for reasons that will
become clear presently) U™, j = 1,2,...(U;"" approximates U™") satisfy the
2 x 2 block linear system in S;, x .S},

T+hand(UPY) ket @) (] _[00] , fan en ][Qp)
kanJ(UM) I+ kawJ(U?) ||USY | U” P QU
(4.1)
for j = 0,1,..., where, for a given ¢ € S, the linear mapping J(p) : S, — S}, is
defined by

Aoy Aoo

Jp)p = —(p+ 1)Q(p, ¥) — O, (4.2)
and the mappings Q(-,-), Q(-) and © were introduced in (3.1), (3.5) and (3.3),
respectively. Upon choosing a basis for 5),, it becomes apparent that (4.1) repre-
sents a 2N x 2N linear system for the unknown coefficients of the new Newton
iterates U}, i = 1,2, for each j. The following device was used to uncouple the
two operator equations in (4.1). Evaluating all four entries of the matrix on the
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left-hand side of (4.1) at a point U* € S, defined by
Ut = HO + U5, (43)

(which makes the operators in the entries of this matrix independent of j and
allows them to commute with each other), we may then write (4.1) equivalently as

I+ kay, J(U*) ka2 J (U*) 0tk
kag J(U*) T+ kaynJ(U") | UK

vt a1 Q12 Q(U:'1>
B |:Un] £ le A22 } [Q(U?2) }

g o o | SO - IR 0 Uiy
N 0 UDEICHSRE Ly

for 7 > 0, a form that immediately suggests an iterative scheme for approximating

U;'l'“',, i = 1,2. This scheme generates inner iterates denoted by I.T.;"!“;l'é for given
n,t,jand £ =0,1,2,... (U]} approximates U}"",) that are found recursively from
the equations
I+kanJ(U*)  kapJ(U*) umyet [t (4.4)
kazlj(U*) I+ kang(U*) “.:r_‘.—'.ll,f+l _ .}:_ﬁ.l .

for £ > 0, where

2 2
P = U —kp Y amQUP™) + kD ai (JU*) = J(UP™) UL

m=1 m=1

The linear system (4.4) can be solved efficiently as follows: since ajza,; < 0, it
is possible, upon scaling the matrix on the left-hand side of (4.4) by a diagonal
similarity transformation, to write it as

T4 3RIO7) kI3 ] U ] [k
kJ(U*)/4v/3 T+ 1kJ(UY) g | T )

&l 1+1

(4.5)

where u = 2 — /3. The system (4.5) is equivalent to the single, complex N x IV
system

(I+kBJ(U*))Z=R, (4.6)

where 8 = { +1/4+/3, and where Z and R are complex-valued functions with real
and imaginary parts in S, which depend upon n,# and j and are given by

o n,1,4+1 . n.2,0+1 I W - n,2,¢
Z=U " +ip ULy, R=riy toprgy. (4.7)

The complexification (4.6) of (4.5) may be regarded as the analog in the nonlinear
case of the idea used in the context of homogeneous, linear, time-independent-
coefficient parabolic partial differential equations discretized in time by the (2,2)
Padé scheme, in Baker et al. (1977) and Fairweather (1978).

In practice, only a finite number of outer and inner iterates are computed at
each time step. Specifically, for ¢ = 1,2, n > 0, we compute approximations to
the outer iterates U;“ for j =1,..., Jou, for some small positive integer J,,;. For
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each j, 0 < j < Jous — 1, U]} is approximated by the last inner iterate U;"jfl‘J“’“ of
the sequence of inner iterates U;u‘_’l"ﬂ, 0 < ¢ < Jy,, that satisfy linear systems of the
form (4.6); consideration of initiating values is provided below. In practice, it was
observed that taking J,.,, = 1, Jin,n = 2 was sufficient to conserve the accuracy
and stability properties of our schemes in almost all cases that arose, provided
suitable starting values were used. The relevant numerical experiments will be
described in the next section.

Given U™, the required starting values Uy for the outer (Newton) iteration

were computed by extrapolation from previous values as

U(v)hz = Oéoy,L'U”' -+ al,iU’“l + Ofg,iU”_z + Oég’iUn_S, (48)
for i = 1,2, where the coefficients a;; are such that Uy is the value at t = t™* of
the Lagrange interpolating polynomial of degree at most 3 in ¢ that interpolates
to the data U™/ at the four points t" 77, 0 < 7 < 3. (If 0 < n < 2, we use
the same linear combination, putting U7 = UV if j < 0, and compensate for the
reduced accuracy by increasing the number of iterations to J,u; = Jiun = 3. Here,
the function U° is taken to be the L,-projection of ug onto Sy).

The complete algorithm for computing one step of the method, that is, deter-
mining U™+ given U™, is then as follows.

(i) Compute US™, i = 1,2, by (4.8).

(i) Set U* = L(Us" 4 Up™).

(iii) For j =0,1,..., Joux — L1t
Initialize UJ33° = U™, i =1,2
For £ =0,1,..., Jun —

Compute U™ ¢ = 1,2 solving the linear system (4.6
; Jad,
Set U = Uihtion = 1,2
(iv) Set U™ =U3" , i =1,2 4
(v) Compute U™ Ptrom U™, U™, i = 1,2 via (2.15¢). (4.9)

It is clear from the outline (4.9) that the heart of the computation is forming
the right-hand side R of the linear system (4.6) for each j and ¢ and then solving
for Z; note that the operator I + k3J(U*) is independent of the inner and outer
iteration indices and is hence formed and decomposed once at each time step. (In
practice, if the solution is not changing rapidly with time, the same U* may be
safely used for, say, 10 to 20 time steps, without increasing Ji,, or Joyu).

It is outside the scope of this paper to analyse rigorously the convergence of the
doubly iterative scheme (4.9) to the solution of (2.15a). Such an analysis can be
made along the lines of the analogous proof in Dougalis & Karakashian (1985).
Later in this section it is verified ezperimentally that, for Jou =1, Jin, =2, the
resulting overall time-stepping procedure is stable and has an Ljy-error bound of
O(k* + h") in the cases of current practical interest r = 3,4,6. We content our-
selves here with pointing out the crux of the matter, namely that for k sufficiently
small, the operator in the linear system (4.6) is invertible if the scheme is stable
and the previous values U" 77, 0 € j < 3 are sufficiently accurate.

The implementation of the algorithm (4.9) as a computer program follows the
general plan laid out in the case p = 1 in §3 of Bona et al. (1986). The only
exception is that general nonlinear terms of the form (?¢, x) where ¥, ¢, x € Sy,
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Table 1. CPU time (seconds) per mesh interval per time step

Jout = 1, Jinn = 2 Jout = 2, Jinn = 2
p “r=3 r=4 r=6  r=3 r=4 r=6
1 2.56 (—4) 3.94 (—4) 7.57 (=3) 3.94 (—4) 6.02 (=4) 1.16 (—3)
2 429 (—4) 6.87(—4) 143(-3) 645 (-4) 1.02(-3) 2.09 (=3)
3 476 (—4) 805(—4) 1.67(=3) 7.22(—4) 1.22(=3) 2.51(-3)
4 528(—4) 875(—4) 1.85(-3) 8.12(-4) 1.34(-3) 2.83(—3)
5 576 (—4) 9.92 (—4) 212 (=3) 9.06 (-4) 156 (—=3) 3.27 (=3)

are now evaluated using Gaussian quadrature with a sufficient number of nodes
that the quadrature is exact.

We omit reporting the detailed operation counts and timings of various parts of
the complete algorithm, but some of this data is summarized in table 1. Recorded
there is the CPU time per time step per spatial mesh used by the algorithm for the
methods corresponding to the two cases {Jou =1, Jinn =2} and {Jous =2, Jinn =2}
forr =3,4,6 and p = 1,2, 3,4,5 when run in double precision on an IBM 3090 at
the University of Tennessee, Knoxville. While these aspects are not labored here,
it deserves remark that interesting issues arise under this computer-science aegis.
The authors stand ready to provide the interested reader with further details.

Attention is now turned to the order of accuracy, stability and related as-
pects of the methods when they are applied to the generalized KdV equation.
In order to build confidence in the methods in view of the more challenging nu-
merical experiments to be described in §5, we investigate briefly their accuracy
in some well-controlled experiments, namely in approximating solitary-wave so-
lutions. The initial-value problem for solitary waves comprises equation (1.2a),
reproduced here for convenience, with a solitary wave as initial data,

Pu, ey =

e A, | 102
whose solution is given by

u(z,t) = Asech”?[K (z — 2°) — wt], (4.100)
for z,t € R, where

K =p(A*/2(p + 1)(p+2))"?

and w= K+ 247)(p+ 1)(p+2)).
Unless otherwise specified, the waves were initially centred at #" = >. These

solutions are stable if 1 < p < 4 and unstable for p > 4 (see §5). However, in the
order-of-accuracy experiments for p > 5, small enough amplitudes A and time
intervals [0, T were chosen so that the instability did not manifest itself during
the calculations. Although (4.10b) is a solution to the pure initial-value problem
(4.10a) on the whole real line, if K is sufficiently large it may be considered as a
good approximation to a solution corresponding to periodic boundary conditions
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Table 2. Errors E(t) and spatial rates of convergence for quadratic splines (r = 3)

t=20.1 t=0.5 t=1.0

At okt T E(®) rate  E(t) rate  E(1) rate

96 1000 0.9516 (—-3) 3.42 0.1170 (-2) 3.44 0.1363 (-2) 345
144 1000 0.2375 (—3) 3.43  0.2900 (— 3) 355 0.3368 (—3) 3.62
192 1000 0.8853 (—4) 3.33 0.1044 (-3) 3.48 0.1189 (-3) 3.58
256 1000 0.3393 (—4) 3.24 0.3831 (—4) 3.39 0.4243 (—4) 3.50
320 1000 0.1646 (—4) 3.15 0.1796 (—4) 3.28 0.1942 (—4) 3.39
512 1000 0.3743 (=5) 3.08 0.3844 (—5) 3.14 0.3941 (=5) 3.20
768 1000 0.1075 (—5) 3.01 0.1074 (-5) 3.01 0.1076 (=5) 3.01
1024 1500 0.4519 (—6) 0.4521 (—6) 0.4522 (—6)

since the tails of the solitary wave decay exponentially and are zero to machine
accuracy within the period (see Bona 1981b).

One result emerging from the experiments is that the rates of convergence for
p > 1 are essentially the same as those for p = 1. Thus in the following we
restrict ourselves to reporting results for the KdV equation p = 1. As in Bona et
al. (1986, §4), we took 7 = 1 and used the parameters ¢ = 0.2058 x 1074, 20 = %
and A = 0.2275.

First, the convergence rates of the scheme in both the spatial and temporal
variables with Jou. = 1, Jiun = 2 were investigated for » = 3,4, 6. The measure of
error used was the normalized L,-norm given by

E(t) = [|U" =l )|/ lluoll (4.11)

if t = nk, n = 1,2,..., whereas for other values of ¢, E is defined by linear
interpolation. To determine experimentally the spatial convergence rate, the ap-
proximate solution was determined for 0 < t < 1 using values of N = h™' ranging
from 96 to 1024 (from 96 to 768 when r = 6). For these runs, very small time steps
were taken to render the temporal error negligible. The observed error as defined
in (4.11) was recorded at t = 0.1, 0.5 and 1. The convergence rate corresponding
to two different runs with spatial meshes b, and h, and corresponding errors £
and E, is defined to be log(E,/F;)/log(hi/hs), as usual. The convergence rates
derived from the runs mentioned above are presented along with the associated
errors in tables 2, 3 and 4 which correspond to the values r = 3,4 and 6, respec-
tively. A rate shown in the tables at a given value of N is computed using the
values of E and h for that value of N and those corresponding to the value of IV
following it in the table.

From these tables it is safe to conclude that the convergence rates for the
spatial Lo-error between the exact solution and the approximation produced by
our computer code are indeed 3, 4 and 6 for quadratic, cubic and quintic splines,
respectively.

The experimental determination of the temporal accuracy is a somewhat more
delicate matter because long runs with very small values of h are prohibitively
expensive, both in terms of run time and storage. We took three values of A,
namely h~! = 192, 384 and 480, and computed solutions to the periodic initial-
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Table 3. Errors E(t) and spatial rates of convergence for cubic splines (r = 4)

t=0.1 t=0.5 t=A10

[ T rate E(t) rate E(t) rate

96 5000 0.1777 (—3) 4.79 0.1806 (—3) 4.81 0.1847 (=3) 4.84
144 5000 0.2547 (—4) 4.42 0.2566 (—4) 4.43 0.2503 (—4) 4.45
192 5000 0.7145 (~5) 4.23 0.7168 (=5) 4.24 0.7199 (=5) 4.25
256 5000 0.2113 (=5) 4.14 02115 (-5) 4.14 02118 (=5) 4.15
320 5000 0.8387 (—6) 4.07 0.8391 (—6) 4.07 0.8397 (—6) 4.07
512 5000 0.1237 (=6) 4.03 0.1237 (—6) 4.03 0.1238 (—6) 4.03
768 5000 0.2415 (~7) 4.01 02415 (=7) 401 0.2416 (=7) 4.01
1024 7500 0.7611 (—8) 0.7611 (—8) 0.7611 ( 8)

t=20.1 t=0.5 l=14
Rt k! i E(t) rate E(t) rate  F(t) rate
96 2000 02131 (—4) 816 02126 (—4) 8.16 02143 (-4) 8.18
144 3000 0.7777 (=6) 7.12 0.7778 (=6) 7.2 0.7781 (=)  7.12
192 5000 0.1002 (-6) 6.70  0.1002 (-6) 6.70  0.1002 (—6) 6.70
256 8000 0.1460 (—7)  6.45 0.1460 (—7)  6.45 0.1460 (—7)  6.45
320 10,000 0.3459 (—8)  6.25 0.3459 (—8)  6.25 0.3460 (—8)  6.25
512 25000 0.1833 (=9) 611 0.1833 (-9) 6.04 0.1833 (—9)  6.07

768 22,500 0.1539 (—10) 0.1581 (—10) 0.1567 (—10)

value problem with solitary-wave initial data up to T' = 1 for various values of k. It
was found that as the value of k decreases, the Ly-error E(T) ceases to decrease
at a certain point because the temporal error becomes much smaller than the
spatial error at which point their combined effect cannot be distinguished from
the spatial error. It is thus hard to see the asymptotic rate of the temporal error.
A way around this problem is now explained. For a fixed value of h, we made
a reference calculation with a small value k = k.. We took ko = ;—Oh, a value
well below the threshold of about 3h to $h where E(T) stabilized as a function
of k. The approximate solution Um & Um(h kwe) determined by the reference
simulation differs from the exact solution by an error that is almost purely from
the spatial discretization. For the same values of h, we then define a modified
error associated to values of k that are larger than k..¢, namely

E*(#) = U™ (R, k) = U™ (hy ket ||/ | wol (4.12)

where t = nk = mk,.;. It transpires that for small values of k which are neverthe-
less considerably larger than k¢, the expected temporal rate of convergence is
visible because subtracting U™ (h, k) from U™(h, k) essentially cancels the spa-
tial error inherent in the latter approximation. The results of these comparisons
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are shown in table 5 which refer to splines of order 3, 4 and 6, respectively. For
each simulation, the tables show E(T), E*(T) and the error E(T") associated with
the reference approximation U™ (h, k) by means of which E*(T") is computed.
The expected temporal rate of convergence o = 4 emerges clearly from these
experiments for all values of h and r tested. In addition, it does not appear that
an upper bound on some quantity such as kh~' is needed to insure stability of
the scheme.

The next set of experiments reported here feature computing the approximate
solution of (4.10) up to 7' =5 in order to study various kinds of errors pertinent
to the numerical approximation of waves and, also, to assess the effect of the
number of outer and inner iterations on the accuracy of the method over longer
temporal intervals.

To begin with, based on experiments not reported here, we concluded that the
combination {Jou = 1, Ji,, = 1} was unstable. It also became evident that it is
unnecessary to perform more than two outer iterations since no extra accuracy
seems to be gained by further pursuing this aspect of the algorithm. Moreover,
in either of the cases Jy = 1 or J, = 2, the experiments with Ji,, = 2 and
Jinn = 3 gave essentially identical results. Hence, in what follows, attention will
be restricted to the two cases {Jou, = 1, Jinn = 2} and {Jou = 2, Jinn = 2}. We
studied the various errors associated with these two combinations in three runs
with discretization parameters suitably chosen to yield errors E(t) of magnitudes
on the order of 107!, 1073 and 10~°, respectively.

In table 6, errors are shown at times t; = ¢, 1 < ¢ < 5 for the methods
corresponding to the two aforementioned combinations of Jou and Ji,y,, both run
with parameters r = 3, N = 44 and J = 500 time steps on the temporal interval
[0,5]. These values were calculated to yield errors E(t) of order 10" for 0 < ¢ < 5.
For these runs, various measures of error are computed for the approximations
to the solitary wave. In addition to the normalized Ly-error, we also provide the
I.o-based shape error, the phase error and the amplitude error, quantities which
are now defined. The shape error S" is defined for each time step n =0,1,..., J
as follows. Fix n and consider the quantity

{2(7'):/Ol|u(a:,T)—U”(x)|2dx//01u2(ac,0)d:v

where u(z,t) is given in (4.10b) and U" is the computed solution at the nth time
step. Let 7* = 7*(n) denote the value of 7 near nk where £2(7) takes its minimum
value. If U™ resembles a solitary wave in shape, it follows that 7* is well defined.
Then S™ = £2(7*) measures by how far the computed solution differs from the
original solitary wave as regards its shape, as measured by the normalized L-
norm. The phase error P" at any time step n with 0 < n < J is defined to be
nk — 7*(n). This quantity measures the error in the position at which the wave
is located. The amplitude error A™ is defined as (A — UZ,,)/A where A is the

amplitude parameter in (4.10b) and U", is the maximum value of U™(x).

In figure 1 we show E(t) and the shape error as functions of time for the data in
table 6. Table 7 and figure 2 show the analogous data for r =4, N = 96, J = 900,
parameters designed to yield an E(t) of order 1072 for 0 < ¢ < 5. Finally, table
8 and figure 3 correspond to r = 6, N = 128, J = 2600, parameters that yield

an E(t) whose order of magnitude is about 107°. Tables 6 and 7 and figures 1
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Table 9. Invariants I and I3 for numerical schemes for the KdV equation corresponding to the
parameters of tables 6-8

Data from table 6.

Vi t Jout - 17 Jinn =2 Jout b 2, Jinn =2

I 0.0 0.227276952065 0.227276952065
(x107?) 5.0 0225441004323  0.227276951121

I3 0.0 0.30877046040 0.30877046040
(x107%) 5.0 0.30408278723 0.30822810524

Data from table 7.

I 0.0 0.227365272650 0.227365272650

(x1072) 5.0~ ~0:227306893470— —0.227365273577
Is 0.0 0.31035264712 0.31035262165

(x107%) 5.0 0.30408278723 0.30822810524

Data from table 8.

I 0.0 0.227365280110 0.227365280110
(x107%) 5.0 0.227365275602 0.227365280110

Is 0.0 0.31035360715 0.31035360715
(x107%) 5.0 0.31035359689 0.31035360714

5. Numerical experiments: adaptive procedures, instability, and
blow-up of solutions

In this section, one of the numerical schemes analysed and tested in §§3-4 is
used as a tool to investigate some interesting aspects of the GKdV equations. We
begin with a short discussion of the state of the theory that provides impetus for
the present study.

The KdV equation itself is solvable by the inverse-scattering transform (cf.
Ablowitz & Segur 1981) and consequently we understand a great deal about the
solutions of the pure initial-value problems (1.1) or (1.2) in case p = 1. This is
also true of the case p = 2, but for p > 2 the GKdV equation is apparently
not integrable by an inverse-scattering transform (McLeod & Olver 1983). There
are many, interesting lessons to be gleaned from the completely integrable cases
p = 1,2. For our purposes, the major point of interest is that the solitary-wave
solutions introduced earlier play a distinguished role in the solution of the pure
initial-value problems (1.1) or (1.2). In fact, for p = 1 or 2, a large class of ini-
tial data has the property that the solutions of (1.1) emanating therefrom resolve
themselves into a finite sequence of independently propagating solitary waves and
very little else. The residue after the solitary waves are accounted is termed a
dispersive tail, a waveform composed of relatively high frequencies that slowly
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spreads and decays in amplitude. Another, surprising property emerging from
the inverse-scattering theory is the exact interaction of solitary waves, so lead-
ing to the term soliton for such special solitary waves. In this aspect, a solitary
wave overtaking a smaller-amplitude solitary wave on account of its greater phase
speed, emerges unscathed and leaves the smaller solitary wave likewise unsullied
after the nonlinear interaction between the two. Although this property of exact
interaction does not generally carry over to non-integrable equations, the reso-
lution into solitary waves and the general importance of solitary waves continue
to be guiding features of the long-time behavior of solutions of the initial-value
problem for the GKdV equations. Indeed, the presentation of evidence in favour
of this last assertion is one of the goals in sight here.

Because it is interesting in its own right, and because of the conviction enun-
ciated above about the general importance of solitary waves, there has been a
considerable theory developed concerned with the stability of these waveforms as
solutions of the initial-value problem. The theory began with the paper of Ben-
jamin (1972) which in turn spawned many refinements and extensions (e.g. Bona
1975; Bennett et al. 1983; Weinstein 1986, 1987, Albert et al. 1987; Grillakis et
al. 1987; Bona et al. 1987; Bona & Sachs 1988; Souganidis & Strauss 1990; Albert
& Bona 1991; Albert 1992; Pego & Weinstein 1992). The upshot of this theory as
it applies to the GKdV equation is that, whatever the value of the phase speed
of the solitary wave in question, it is stable if and only if p < 4.

The notion of stability to which the last statement refers is the following. Let
uo € H*, where k > 2, be an initial datum and let u be the associated solution of
(1.1). Suppose u is near in L, to a particular solitary-wave solution ¢ of (1.1).
Then ¢ is called stable if to any € > 0 there corresponds a 6 > 0 such that if
o — 61l < 6, then

inf [lu(- €)= 6 + )l < e 1)
for all £ > 0. In the current context, this is just the usual notion of orbital stability.
Notice that the quantity on the left-hand side of (5.1) is, up to a normalization,
the continuous version of what in §4 was called the shape error.

An issue that appears to be intimately related to the question of stability of
solitary waves is that of global existence of solutions of the initial-value problem.
As stated earlier (see theorem 2.1), the initial-value problem (1.1) is known to
always possess global solutions corresponding to Sobolev-classes of initial data
exactly when p < 4.

Thus two questions emerge naturally from the current state of theory regarding
(1.1) or (1.2). First, what happens to an unstable solitary wave? Second, in case
p >4, is (1.1) or (1.2) globally well posed or not? It is proposed to cast light on
these two questions by use of our numerical scheme. Regarding the instability of
solitary waves for p > 4, we are aided by an appreciation of some of the details
in the work of Bona et al. (1987) which gives an indication of the direction in
function space that produces instability. As for the issue of global existence, it
was shown in Albert et al. (1988) that a solution u of (1.1) or (1.2) is global if and
only if the solution remains bounded on bounded time intervals. (Indeed, even if
u remains bounded in L, on bounded time intervals for some ¢ > p — 2, the same
arguments will show u to be global.) Thus, evidence in favour of a global solution
corresponding to a particular initial value is that it settles down to some sort of
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Table 10. Errors, Umax and Is for the run of figure 4

! 6 12 18
E(t) 0.244(—2) 0.779(—2) 0.373(~1)
shape error 0.212(--2) 0.417(-2) 0.957(—2)
phase error 0.130(—3) —0.705(=3) —0.384(—2)
Unax 0.800 0.803 0.806

Iy —0.274508236(—2) —0.274508234(—2) —0.274508231(—2)

bounded state, whereas if a solution is not to be global, then it must necessarily
become unbounded.

As hinted earlier, our investigations indicate these two questions are related. Tt
seems that the theoretically predicted instability manifests itself in the solitary
wave giving way to a similarity solution that forms a singularity in finite time.
This in turn yields a negative answer to the question of global existence. Indeed,
indications are that even for initial data far removed from the branch of soli-
tary waves, the solution derived therefrom resolves itself into the same similarity
solution and ceases to exist in finite time.

In the process of examining the issues just discussed, it was found to be ex-
tremely useful to extend the work described in earlier sections by allowing for
local spatial and temporal refinement in our numerical scheme.

Attention is now turned to a detailed description of our adaptive scheme and
an interpretation of the outcome of our numerical experiments, including several
concrete conjectures generated by our observations. In all cases the parameter n
in (1.2a) was taken to be zero. The vast majority of the numerical experiments
reported in this section were performed on a SUN Sparcstation 1 with a double
precision, Fortran, variable-grid realization of the numerical scheme described
earlier. In all the experiments reported in this section, we used as a base scheme
the 2-stage Gauss-Legendre method (¢ = 2) with cubic splines (r = 4) and
iteration numbers Jo,, = 1, Ji,, = 2. All initial wave profiles were organized to
be symmetric about the point z = 1.

Described first are experiments on the solitary-wave solution of (4.10a) given
by (4.10b). The numerical scheme with constant spatial mesh length and constant
time-step (the situation analysed in the preceding sections) seems to be adequate
for describing solitary-wave solutions of (1.2) having small amplitude A, at least
over time scales for which such solutions remain stable. For example, figure 4
shows the temporal evolution corresponding to solitary-wave initial data with
parameters p = 5, A = 0.8, ¢ = 107*, obtained with the uniform discretization
parameters h = 1/384 and k& = 10~2. The profiles are plotted at t = 0, 6, 12 and
18.

In addition, in table 10 we show the normalized Ly-error E(t), the shape and
phase errors (all defined in §4) as well as the amplitude U,,.. and the invariant
I3 of the discrete solution for this run at the three times ¢ = 6, 12 and 18. (The
value of the approximation to I at t = 0 was —0.274508237 x 1072.)

It is evident that the uniform-mesh scheme was able, with these discretization
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Figure 4. Numerical simulation of a solitary-wave solution, p = 5, A = 0.8, ¢ = 10™* using a
uniform mesh with b = 1/384, k& = 1072, (a) t = 0, wmax = 0.800; (b) t = 6, Umax = 0.799; (c)
t =12, Umax = 0.802; (d) ¢t = 18, umax = 0.806.

parameters, to approximate the travelling wave quite satisfactorily. Moreover,
there was no hint of a developing instability during this time period.

The situation was different when, with p = 5, the amplitude was increased to
A = 2 and € was taken to be 5 x 107%. The temporal step size was reduced to
2 x 10~* while the spatial meshlength remained 1/384. Graphical output from
this run is depicted in figure 5 at the instants ¢ = 0, 0.04, 0.08 and 0.1.

The solitary wave rapidly lost stability, exhibiting a significant change in ampli-
tude. The growth in amplitude in turn triggered what appeared to be a numerical
instability, wherein the approximate solution began to break down by develop-
ing small oscillations due to dispersive pollution. For this particular experiment,
the oscillations disappear if the spatial mesh length and the temporal step size
are reduced. However, they reappear at a later time as the amplitude of the
sharp peak increases. It became evident that tracking an unstable solution which
quickly develops into a large-amplitude disturbance is difficult with a fixed space-
time grid. But this experiment and others like it provided the first hint that the
instability of the solitary-wave solutions of (1.2) for p > 4 may result in the for-
mation of a singularity where the solution becomes unbounded at a single point.
To better track the development of the instability and to increase confidence in
the supposition that the solution becomes unbounded in finite time, we turned

to an algorithm based on the 2-stage Gauss-Legendre method and cubic splines
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Figure 5. Numerical instability in the simulation of an unstable solitary-wave solution, p = 5,
A =2 ¢e=5x10"" using a uniform mesh with A = 1/384, k = 2 x 107%. (a) t = 0.00,
Umax = 2.00; (8) t = 0.04, Umax = 1.98; (¢} t = 0.08, umax = 2.53; (d) ¢t = 0.10, Umax = 2.45.

which can perform automatic grid refinement in both the spatial and temporal
variables.

Note that the error analysis of §3 does not preclude changing the temporal
stepsize k since all time-stepping schemes in the class considered are single-step.
(Care should be exercised in interpolating starting values for the new time step
and, of course, the various constraints appearing for example in theorem 3.1
should be taken into account.) However, the error estimates obtained in §3 do
depend on the assumption of a uniform spatial mesh because of reliance on the
approximation properties of the quasi-interpolant in the space of periodic splines.
Based on our numerical experience, it appeared evident that this assumption
would need to be relaxed if the problem of approximating well the apparent
blow-up of solutions is to be tractable. Indeed, from the discrete conservation law
(3.38) and the L, — L, inverse inequality in (2.2), it follows that for n > 0,

U oo < k™2™ | = ch 2T (5.2)

Hence the approximations {U™(x)},>¢ cannot develop an arbitrarily high peak
without A becoming arbitrarily small. For instance, if ||U°|| and ¢ in (5.2) are of
order one, say, then a modest peak of amplitude 10% cannot be attained unless h is
about 107¢. Both in terms of computational time and storage, it is not currently
possible for us to sustain calculations on a uniform spatial grid with a million
points.
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Attention is now given to the aforementioned adaptive algorithm developed
in response to the difficulties documented above. This algorithm and the cor-
responding computer code are geared towards approximating solutions of the
initial-value problem that develop a single, infinite singularity at a point (z*,t*)
for some z* € [0,1] at some finite time ¢t* > 0. The adaptive mechanism of the
code consists of three main parts:

(i) local refinement of the spatial grid,

(il) temporal step-size reduction, and

(iii) spatial translation of the peak to a region with a finer grid.

Our spatial, local grid refinement is effected by occasional additions of even num-
bers of new nodes that are distributed evenly about the midpoint z = 0.5, but
within successively smaller intervals. Since the task in view is to approximate
wave profiles that travel to the right and apparently develop a single, very high
peak, the solution is occasionally translated to the left and the peak centred near
2 = 0.5 to keep it in the region of highest density of nodes and away from regions
of coarser mesh. Thus, in effect, we translate the solution to conform to the grid,
which is being refined locally around a fixed point, rather than design a grid that
moves with the peak and condenses around it. This technique proved to be far
simpler to program than actually moving the nodes, but it lacks the generality of
a fully spatially adaptive scheme. Nevertheless, this idea was quite effective when
applied to the problems considered here.

In describing the adaptive procedure of spatial refinement, it is convenient to
introduce some notation. At t = 0, the temporal integration is initiated with
a uniform partition of the spatial interval [0,1] consisting of N mesh intervals
of length hy = 1/N. At some later time, spatial refinement starts according to
a criterion to be specified below. At a refinement stage, let NSPLIT stand for
the number of times additional nodes have been introduced thus far and h, =
hnsprir = 27 VSPUT /N be the current, finest meshlength. Each time new nodes are
added, NSPLIT increases by one and h, is cut in half. At each refinement stage,
a fixed, even number NADD of nodes is added, symmetrically and contiguously
about the point z° = ;. (After some experimentation, NADD was set to 36
except at the first refinement where it was given the value 72.) Then the interval
{2, given by

0, = [0.5— NADD x h, , 0.5+ NADD x h,]

is the current neighborhood of the midpoint z° = 0.5 to which the most recent
new nodes have been added symmetrically about z = 0.5, and therefore it is the
region with the finest grid (having a uniform meshlength h,). Each time nodes
are introduced, (2, is thereby cut in half. With this kind of system of spatial
refinement, it is clear that the effect of the spatial translations in step (iii) above
should be to insure that the peak of the numerical approximation lies in {2,.
Keeping this notation in mind, we turn to the details of the steps (i)-(iii) of the
adaptive refinement.

(i) Local refinement of the spatial grid. This is based on the L, — L, inverse
inequality (5.2). Let U™(z) be the current, fully discrete approximation, and

compute
1/2
Zy = (/ [U”(a:)]zda:> .
[oR
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Estimate the max-norm of U" by Z, = max,cq|U" ()|, where @ denotes the
set of all Gauss-quadrature abscissae in [0,1] which are used to evaluate integrals.
(A set of n, Gauss points is used in every spatial mesh interval to ensure exact
computation of integrals; e.g. for p = 5 and r = 4, n, = 11.) Then, refine the
mesh locally, as described previously, if

2. hif?

Cylig

> TOLLI, (5.3)

where 0 < TOL1 < 1 is an empirically chosen tolerance, usually taken to be equal
to 0.2 or 0.1 in practice, and where the constant ¢, is an estimate of the constant
c appearing in (5.2). A reasonable approximation of ¢ is the constant oceurring
in the Lo, — Ly inverse equality |x| = c.h™1/?||x]|, where x is the bell-shaped,
cubic spline basis function with support on [0,4h]. Thus in (5.3) we took

_maxy g () 12 _ 151\ /2 N
c, = = 'T, Th ml v ~ 1.04.
(fo" x*(x) dx)

(The exact value of c is greater than ¢, and has an easily calculated, coarse
upper bound of about 4.2. Hence a value of TOL1 < 0.2 represents a conservative
choice.)

If the inequality (5.3) holds at a certain stage in the calculations, then at that
point the spatial mesh is locally refined by cutting h, and (2, in half to give the
numerical scheme a chance to approximate the peak better; in effect, allowing
the right-hand side of (5.2) to grow so as not to inhibit the growth of the left-
hand side. Notc that since new nodes are added without shifting the old ones,
the subspace Sy, is imbedded in S, .. for all j, and the coefficients of a function
v € 5y, are simply recomputed to correspond to the new basis.

(ii) Temporal stepsize reduction. The temporal stepsize k is adjusted in an
attempt to preserve accuracy in the fully discrete approximation of the third
invariant (see (4.13))

1

()= [ B - L+ D+ 2)er?) do,
0

Given U™, the fully discrete approximation of u(-,t"), an estimate of U"*! is

computed by our single-step scheme using the previously available value of k.

This estimate is accepted if

|Is(U™HY) — I;(U™)|
Jo (Unt1y2de

where TOL2 is a small parameter, typically taken to be in the range 10~ to
1075, If (5.3) is not satisfied, the time step is cut in half and the approximation
to the solution u(:,t"*!) recomputed as U™, The denominator in (5.4), one of
the two terms comprising I3 , plays a normalizing role. In fact, it was found that
taking the denominator to be |I;(U™)|, say, thus imposing a maximum relative
error tolerance on I3, was too stringent a restriction that typically resulted in
cutting the time step too soon and so drastically that the numerical process could
not even approach the blow-up point. Considerable experimentation indicated
that normalizing the numerator in (5.4) by the square of the L, norm of U*!

< TOL2, (5.4)
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Diagram 1. Subprogram STEP

was an effective choice. This normalization coupled with a suitable choice of
TOL2 generates a rule for cutting the time step at a rate which is sufficient for
a satisfactory approximation of the solution even when the amplitude becomes

large.

It should be noted that keeping I3 under control is difficult in actual computa-
tions since it is the difference of two terms fol uP™? and fol u2, both of which must
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become large if the solution is to form a singularity. Our experience showed that
refining the time step by imposing condition (5.4) on the fully discrete version
of I3 was helpful in avoiding deterioration in numerical accuracy as the solution
approached what appears to be a blow-up time.

(iii) Spatial translation of the peak to a finer grid region. As mentioned previ-
ously, part of the idea of the adaptive scheme discussed here is to occasionally
shift the numerical solution with the purpose of keeping the large function- and
derivative-values within {2,, the region of the highest node density. This is ac-
complished in the following manner. Evaluate max,c, |[U™(z)| and let y be the
right-most point in @ (the set of Gauss abscissae) where the maximum is at-
tained. If y > 1(14+NADD x h,), translate U™ to the left by a distance s = z,, — 5l
where [z, z,| is the mesh interval containing y. In general the translated function
U™ (z — s) will not lie in S),. Hence the translation U"(- — s) is projected onto an

element U™ in S), by requiring
U, x) = (U"(- = 8),x) forall x € Sh.

The flowchart (diagram 1) summarizes the three steps of the adaptive mechanism
and indicates the sequence in which they are implemented. In the chart, one full
temporal step is performed by the subprogram STEP.

Having constructed a code with this adaptive mechanism in place, it is inter-
esting to repeat numerical experiments such as the one whose results are depicted
in figure 5 in which a relatively large-amplitude solitary wave was propagated.
A collection of such experiments will be described below, which suggest that
solitary-wave solutions are indeed unstable if p > 4, the instability probably be-
ing precipitated by truncation and roundoff errors in the representation of the
initial data and the solution. To hasten the onset of instability it was convenient
to use as initial data functions of the form

uy(z) = AAsech®?[K (z — ), (5.5)

where K is defined after (4.10), (with n = 0, 2° = 3) and where X is a perturba-
tion factor, usually taken to be either 1.05 or 1.01.

In a preliminary experiment we took A =2, p =5, ¢ =5 x 107* (the same
parameters as those present in the run corresponding to figure 5) and A = 1.01.
Starting with initial, uniform-mesh parameters ho = 1/192, ky = 1072 and using
TOL1 = 0.2, TOL2 = 107° as tolerances in the adaptive procedure, the tempo-
ral evolution was that depicted in figure 6. It is worth note that the small-scale
numerical oscillations are no longer in evidence. In this figure, the four plots are
taken at four times when additional spatial refinement was called for, specifi-
cally when NSPLIT became 2, 4, 6 and 9, respectively. As the peak value U,y
increases, the vertical axis is rescaled so that the entire profile is shown. This
has the effect of making the solution appear to be quite small everywhere ex-
cept near the peak and the shelf trailing immediately behind it. Because of the
translations that are part of our adaptive scheme, the peak is always kept near
the midpoint of the interval. The tolerances chosen in the adaptive procedure
enabled us to continue this run to the point where U,,,, was about 2 x 10°, all
the time maintaining a smooth, small-oscillation-free profile.

A closer look at the structure around the solution’s peak as it continues to
grow may be obtained by rescaling the horizontal axis as well as the vertical
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Figure 6. Numerical simulation of the instability of a solitary-wave solution, p = 5, A = 2,
e =5x107%, A\ = 1.01. Variable grid with hy = 1/192, ky = 1073, TOL1 = 0.2, TOL2 = 10~ °,
(a) t = 0.01975, umax = 2.55; (b) t = 0.02251, umax = 4.57; (¢) t = 0.02254, umax = 8.02; (d)
t = 0.02254, Umax = 18.3.

axis. This is done in figure 7, where, at four different times the solution has been
1

translated by —; so that the peak lies near zero, and then only that portion is
plotted corresponding to an interval centred at zero and having the same length
as the then current, fully refined interval {2,. These four plots were taken at
times when NSPLIT = 10, 21, 29 and 40, respectively. By the final plot the local
spatial and temporal mesh sizes had decreased to the point where h ~ 10714
and k ~ 10738, respectively. The corresponding amplitudes Uy, are indicated on
the legends. This experiment provides strong evidence supporting the conjecture
that, not only is the solitary-wave solution unstable, but the instability manifests
itself as a single-point blow-up in finite time. Moreover, as the graphs in figure 7
illustrate, the blow-up appears to be of a similarity type. We shall return to this
point presently.

To better understand the blow-up instability of solitary waves, a series of nu-
merical experiments was performed aimed at estimating the rates with which
various norms and semi-norms of the solution tend to infinity as ¢ approaches the
blow-up time t*. Let M (t) be a quantity of interest associated with a solution
v and let p > 0 be its blow-up rate at t*, which is to say it is presumed that
M(t) ~ c(t* —t)=* as t T t* for some nonzero constant c¢. If this supposition is
valid, then in principle if the values of A/ are known at two distinct instants 7
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Figure 7. The solution of figure 6 near its peak, with both axes scaled and the z-axis trans-
lated. (a) t = 0.02254, Umax = 2.4 x 10; (b) t = 0.02254, tmax = 5.0 x 10%; (c) t = 0.02254,
Umax = 4.6 x 10%; (d) t = 0.02254, tmax = 9.8 x 10%.

and 7, near to, but less than ¢*, the quantity p may be estimated as the ratio

~ log (M(n)/M (7))
log ((t* — m)/(t* — 12))’

Of course, in practice t* is not known and must be estimated numerically. In ad-
dition, for an accurate determination of p one needs to compute all the quantities
in (5.6) carefully to avoid loss of precision due to cancellation.

The following procedure appeared to be successful in determining the values
of p corresponding to a number of interesting quantities. As the peak of the
solution steepens, the code starts refining in space by locally cutting h as outlined
previously. Let 7;, ¢ = 1,2,..., f, be the time at which the ith spatial refinement
occurs and let Ar; = 7, — 71, 2 <1 € f. We approximate the actual blow-up
time ¢* as the time of the final spatial refinement 7¢. The code itself terminates
either when the maximum amplitude of the peak exceeds a specified ceiling or
when the differences A1; = 7, — 1,_; fall below a certain floor. Define the quantity
s; by s; =1y —7;, 1 <i < f—1. Then, the rate p in (5.6) is approximated by the
sequence of rates p; given by

- __lng (ﬂa‘r(ﬂ)/ﬂf—(ﬂu))
' t”f_-’;[-"'-e/«‘-";'-i 1)

In the experiments reported here, the times 7, are exceedingly close to 74 for
larger 7. To avoid loss of accuracy due to subtractive cancellation in forming

(5.6)

L i=1,2,..., f—2. (5.7)
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Table 11. Blow-up rates. Solitary wave, p = 5, ¢ = 5 x 107, 75 = 0.22543 x 107!, f = 42,

w" = 061333, Unax = 224,766, kuwin = 0.23 X 107, A7y = 0.16 x 10738, TOL1 = 0.2,
TOL2 = 107"

i Ly I Lyt Lpia Lo Lop  Leop

5 0.5029(—1) 0.6683(—1) 0.7795(—1) 0.8590(—1) 0.1336 0.3008 0.4657

10 0.5047(—1) 0.6729(—1) 0.7853(—1) 0.8657(—1) 0.1348 0.3028 0.4731

15 0.4983(—1) 0.6647(—1) 0.7759(-1) 0.8554(—1) 0.1334 0.2992 0.4618

20 0.4989(—1) 0.6658(—1) 0.7773(-1) 0.8572(-1) 0.1338 0.2999 0.4690

25  0.5044(—1) 0.6728(—1) 0.7851(—1) 0.8654(—1) 0.1347 0.3029 0.4747

30 0.4974(—1) 0.6633(—1) 0.7741(—1) 0.8534(—1) 0.1329 0.2985 0.4685

35 0.5001(—1) 0.6672(—1) 0.7786(—1) 0.8583(—1) 0.1336 0.3004 0.4654

Table 12. Blow-up rates. Solitary wave, p = 5, ¢ = 5 x 107*%, 7/ = 022618 x 107!, f = 44,
¥ = 0.61383, Umax = 307,834, kwin = 0.15 x 107*, Ar; = 0.16 x 107%°, TOL1 = 0.15,
TOL2 =2 x 1075

i 5 Ly [ Lpyo by 2.8 B

5 0.5035(—1) 0.6675(—1) 0.7779(—1) 0.8567(—1) 0.1328 0.2998 0.4681
10 0.5003(—1) 0.6662(—1) 0.7768(—1) 0.8558(—1) 0.1320 0.2995 0.4677
15 0.5000(—1) 0.6672(—1) 0.7789(—1) 0.8587(—1) 0.1339 0.3007 0.4698
20 0.5043(—1) 0.6727(—1) 0.7850(—1) 0.8654(—1) 0.1347 0.3027 0.4724
25 0.4982(—1) 0.6641(—1) 0.7745(—1) 0.8531(—1) 0.1324 0.2989  0.4605
30 0.5006(—1) 0.6681(—1) 0.7799(—1) 0.8600(—1) 0.1342 0.3011 0.4743
35 0.5027(—1) 0.6706(—1) 0.7828(—1) 0.8630(—1) 0.1342 0.3019 0.4655
40 0.5006(—1) 0.6679(—1) 0.7795(—1) 0.8593(—1) 0.1342 0.3014 0.4770

T; — Ti, We compute s;41 as the sum s;,; = Z§:i+2 A7;. (The quantities A7, are
easily accumulated as sums of a few successive values of the current time step.
Typically, near a singularity the code appears on the average to cut about three
times in time for every cut in space.) The denominator in (5.7) is then evaluated
as log ((sir1 + ATit1)/Sit1).

Described now are the experiments and the blow-up rates that were calculated.
For p = 4,5,6, and 7 we recorded the blow-up rates p; of the L,, norms of the
approximate solution U for m =p—1, p, p+ 1, p+ 2 and oo and also the L,
and L, norms of U, (shown in the tables under columns L, p and L, p) at the
times 7;, usually every few 7. Positive rates were obtained for all these quantities.
Thus the experiments suggest that they blow up as t — t*.

In tables 11-14 are shown the blow-up rates that were obtained for solitary-
wave solutions for p = 5, initial amplitude A = 2 and perturbation factor A =
1.01. In tables 11-13 we took € = 5 x 10~* and changed the parameters TOL1 and
TOL2 occurring in the spatial and temporal refinement procedures, respectively.
In the legends are recorded the final time 7, used as an approximation to the
exact blow-up time, the index f corresponding to 7y, the approximation to the
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Table 17. Blow-up rates. Perturbed solitary wave, p = 4, ¢ = 5 x 107%, 75 = 0.59411 x 107!,

f =10, z° = 0.74118, Upax = 26.56, kmin = 0.76 x 107°, A7y = 0.25 x 10~°, TOLI = 0.1,
TOL2 = 107"

i B, L, Lyyi Lyss  Lax  Lap  Leop

2 04990(—1) 0.8523(—1) 0.1048 0.1170 0.1652 0.3479  0.5501

3 0.5278(—1) 0.9052(—1) 0.1115 0.1247 0.1889 0.3714  0.5068

4 0.5435(—1) 0.9196(-1) 0.1124 0.1252 0.1870 0.3746 0.5701

5 0.5483(—1) 0.9069(—1) 0.1101 0.1225 0.1835 0.3673 0.5491

6 0.5958(—1) 0.9612(-1) 0.1161 0.1291 0.1939 0.3869 0.5796

7 0.6259(-1) 0.9918(-1) 0.1195 0.1328 0.1994 0.3990  0.6026

8 0.6407(-1) 0.1001 0.1204 0.1339 0.2014 0.4023 0.5981

We took A = 2, p = 4 and e = 5 x 10~ in the calculations whose outcome
1s depicted in figure 8. Note that wuy(#) is continnons but not differentiable at
T = il and at @ = %; this aspect did not seem to have any significant effect on
the computation. The initial value u, in (5.8) should not be thought of as a small
perturbation to the solitary wave for p = 4 in the same sense as were the previous
initial profiles (for p > 5). Rather, it is a datum obtained from the solitary wave
by first adding a constant value which results in non-zero asymptotic values at
=0 and z = 1, and then perturbing the result in a very special direction which
In turn is cut off to preserve periodicity. Despite the more substantive nature of
the perturbation than those seen heretofore, the solution that develops from
appears to be dominated by travelling-wave behaviour for small time. However,
as the perturbation is felt, the solution steepens and develops a thin spike like
those seen for the cases p > 5. Following this leading peak is an almost horizontal
shelf which develops more complex structure as the evolution continues. At about

= 0.05941 (f = 10) the leading peak had risen to a maximum value of about
26.56. Our numerical simulation appeared to lose accuracy thereafter. The rates
of the supposed blow-up are recorded in table 17. They are not as convincing as
those obtained earlier for the cases where p > 4, perhaps reflecting the difficulty
the numerical procedures were experiencing with this borderline case.

It is worth noting that we tried a considerable range of pertubations of the
solitary wave in the case p = 4 that seemed not to lead to blow-up. For example,
we tried perturbing the solitary wave in the direction 1 — vtanh(v) mollified by
a weight function that brought the perturbed initial data rapidly and smoothly
to zero at z = 0 and @ = 1, but the resulting solution did not appear to form a
singularity in finite time.

In a second set of experiments we computed the solution of the GKAV equation
starting from an initial Gaussian profile

ug(z) = exp (—100(x — 3)?), (5.9)

taking at first p = 5,6, with e = 1.21 x 107, (The calculations started with hy =
1/384, and ko = 0.5 x 1073.) For p = 5 it was observed that the solution produced
a solitary-type wave travelling to the right and a ‘hump’ that followed. After
emerging, the solitary wave became unstable and rapidly formed a singularity
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Figure 8. Blow-up of a perturbed solitary wave, p = 4. (Data corresponding to the values listed in
table 17.) (a) t = 0.0000, uyax = 2.05 (B) ¢ = 0.0542, tnx = 3.1; (¢) £ = 0.0550, ttmax = 3.2; (d)
t = 0.0578, tmax = 3.8; (€) t = 0.0592, Umax = 5.5 (f) t = 0.0594, tmas = 7.7; (g) t = 0.0504,
Umax = 115 (h) t = 0.0594, Umax = 15.
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