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THE EFFECT OF CHANGE IN THE NONLINEARITY
AND THE DISPERSION RELATION OF
MODEL EQUATIONS FOR LONG WAVES

J.L. BONA AND M. SCIALOM

ABSTRACT. The purpose of this paper is to understand
the dependence of solutions of nonlinear, dispersive wave
equations on the nonlinearity and the dispersion relation. This
program of study is carried out here in the relatively specific,
but practically important context of Korteweg-de Vries-type
equations. In the last part of the paper, it is shown how the
results for the Korteweg-de Vries equation and its relatives
may be adapted to other classes of model equations such as
nonlinear Schrodinger-type equations and regularized long-
wave equations. The general thrust of our results is that small
perturbations of a given dispersion relation or nonlinearity
make only a small difference in the solution over a relatively
long time scale. While not unexpected, this kind of theorem
is useful as a guide to model builders in showing what sort
of approximations can be countenanced without affecting the
resulting solutions in an intolerable way.

1. Introduction. Considered herein are wave equations featuring
nonlinearity and dispersion. The results of the investigation to be
reported presently apply to several classes of model equations. To fix
ideas, interest will first be focused on generalized Korteweg-de Vries
equations having the form

(1.1) ug + uz + f(u)z — Muz =0,

where f : R = R and M is a Fourier multiplier operator defined via
its Fourier transform as

(1.2) Mh(k) = m(k)h(k).

At a later stage, the discussion will be broadened to include other types
of equations including the regularized long-wave equations, certain
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types of nonlinear Schrédinger equations, and higher-order water-wave
models.

Equations of the form (1.1) arise in a wide range of physical contexts
as models for the propagation of waves (cf. [2, 5, 31, 46]). Because
these models apply to problems in the theory of wave propagation,
we shall refer to the independent variables z and t as the spatial
and temporal variable, respectively. Typically both nonlinear effects,
modeled by f and dispersive and sometimes dissipative effects, modeled
by M, are only approximations to a more complete accounting of these
aspects of wave propagation. (Even though dissipative effects modeled
by a non-zero imaginary part of m are included in principle in our
development, most of the examples in view have m real-valued. In
such cases, the operator M is purely dispersive, and we will often refer
to it as the dispersion operator. When m has a non-trivial imaginary
part, the operator associated to the imaginary part will be called the
dissipation operator.)

In consequence of this state of affairs, it becomes interesting to
understand to what extent the detailed structure of the nonlinearity or
the dispersion and dissipation is reflected in solutions of the equations.
Attention will be given to this issue in the context of the pure initial-
value problem for (1.1), in which the dependent variable u is specified
for all = at some fixed time ¢, say ¢t = 0, so that

(1.3) u(z,0) = ¢(z)

for all z € R. The specification (1.3) corresponds to determining the
wave profile everywhere at some given instant of time. While not
always the most practical specification, it tends to be the easiest to
understand theoretically and consequently attracts a lot of attention.
In the present work we shall consider variations of both the nonlinearity
and the dispersion relation. The question that will be posed is, for a
fixed initial datum ¢, if the dispersion relation m is perturbed, or if
the nonlinearity f is changed, what can be said about the resulting
variation of the solution u?

A more complete view is now offered of the issues that come to the
fore in the remainder of this paper. First, recall that when the model
equation (1.1) is written in the form presented, where f and m are
order-one quantities, then they are usually formally valid only for small-
amplitude, long-wavelength waves in which nonlinear and dispersive
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effects are relatively small, and approximately balanced in strength.
This means that for small values of the dependent variable u and for
small wavenumbers k, the effects of f and M should be relatively
small, but, should have the same order of magnitude. Suppose the
nonlinearity f and the dispersion relation m are homogeneous so that
f(u) = uvP*! and m(k) = |k|®. Let £ be a representative value of
the amplitude of the motions in question and X a typical value of the
wavelength, where it is presumed that both these quantities have been
non-dimensionalized with respect to an underlying length scale present
in the problem. In these circumstances the initial wave profile ¢ is
naturally scaled as

(1.4) o(z) = eyp(A~'a),

where 1 and its derivatives are of order one. Then the conditions
that nonlinear and dispersive effects are small and balanced are the
requirements that e A® is of order one, while € and A~! are both small.
The quantity S = ePA* is a natural generalization of the classical Stokes
or Ursell number of shallow-water theory (cf. [48, 39, 50, 51, 11]). If
the small parameter ¢ is defined to be P, then A has order 6~/ and

the relation (1.4) can be expressed in terms of the single parameter &
as

(1.5) o(z) = §'/Py(8/x).

If the dependent variable u is rescaled in the form
(1.6) u(z,t) = 6Y/Py(8Yz, 61/1),
then v satisfies the initial-value problem
(1.7) vy + vz + 6vPv, — Msv, =0, v(z,0) = ¥(z),
where 1) is as above. Written in this way, it is apparent that the
nonlinear term vPv, and the dispersive term — Mjv, represent balanced,
small corrections to the basic uni-directional wave equation v; +v, = 0.
Typically, when such wave equations are derived as models, there are

higher-order effects of nonlinearity, dispersion and perhaps dissipation
that have been ignored. In the variables used in (1.7), the terms
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corresponding to these effects come with a 6% attached. Thus in
these variables, one expects that nonlinear and dispersive effects will
accumulate and may have an order-one effect on the wave profile on a
time scale of order 1/8, while the ignored terms could produce order-
one effects in a time scale of order 1/6% (see the discussion of Albert
and Bona [3]). Thus interesting nonlinear and dispersive effects will
oceur on time scales of order 1/4 whilst neglected effects may render
the model invalid as a description of reality on a time scale of order
1/62. Translating these observations into the corresponding aspects
relating to the variables appearing in (1.1), it is seen that

(i) nonlinear and dispersive effects may accumulate to make an
order-one relative difference to the wave profile on a time scale of order
1/811/2 and

(ii) neglected effects may render the model invalid on a time scale of
order 1/§2+1/=,

These time scales will appear later in the more technical portion of
our discussion.

Even in cases where f or M is not homogeneous, the above consid-
erations may still apply if f and m have the form of a homogeneous
part plus a remainder which is higher order in the respective dependent
variable. Examples of this situation appear in Sections 4 and 5.

The central question that will attract attention here is the following.
With initial data as in (1.5), suppose two different dispersion relations
my and ma or two different nonlinearities f; and f, to be given, and
let uy and ug be the corresponding solutions of (1.1) emanating from
a given initial value @. For relatively small values of 4, it is expected
that both u; and up will be small, but, depending on the difference
my —mgy and fi — fo, it may be that u; — up is smaller still, at least
over certain time intervals. A result of this sort may be interpreted
as saying that the difference between using m» and f2 rather than m;
and f; is relatively negligible, at least over certain time intervals. As
will appear below, this time interval is often large, proportional to an
inverse power of 4, and, under reasonable hypotheses, coincides with
the time scale mentioned above over which interesting nonlinear and
dispersive effects appear at the leading order.

The plan of the paper is as follows. Section 2 contains a brief expla-
nation of our notational conventions together with theorems attesting
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to the well-posedness of the initial-value problems for (1.1). In Section
3, a general theorem of comparison for equations of the form (1.1) is
formulated and proved. This relatively straightforward result is the
mathematical heart of our theory. Detailed commentary on particular
comparisons made with the use of this result, together with interpreta-
tion in terms of the physical problems being modeled comprise Section
4. Section 5 contains similar results to those obtained in Sections 2,
3, and 4 for other classes of equations. The paper closes with some
commentary and suggestions for further research in Section 6.

2. Well posedness of initial-value problems. This section
contains results preliminary to the main theory for Korteweg-de Vries-
type equations enunciated in Section 3 and used in Section 4. We begin
with a few remarks about notation.

Notation. The notation employed throughout will be that which is
currently standard in the theory of partial differential equations. Thus
L, = Ly(R), for 1 < p < oo is the usual Banach space of pth-power
integrable functions (essentially bounded functions if p = co) whose
norm is denoted by |- |,. As in (1.3) a circumflex adorning a function
connotes that function’s Fourier transform. The solutions of the initial-
value problem (1.1)-(1.3) which will be discussed are, for each instant
of time, members of Sobolev spaces H? for various s > 0. If f € H?,
then its norm is

1lls = [ /_ 2(1 + §2)’|f(§)|2dg} 7

Notice that the La-norm has two, different notations, between which
systematic preference will be given to | - |2. If X is any Banach space,
the space C(a,b; X) is the collection of continuous maps u : [a,b] - X
with the norm

llullc,p:xy = sup [lu(t)|lx,
a<t<b

where || ||x connotes the norm on X.

Turning now to the well-posedness of the initial-value problem for
equations of type (1.1), the following general result applies.
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Theorem 2.1. Let s > 2 be fired and suppose f:R — R is a C°°-
Junction and the symbol m = my + imy of the operator M to have the
properties that my, mg are real-valued, m; is an even function, and
mg 13 an odd function with m2(€) > 0 for £ > 0. Suppose also that m
satisfies the growth condition

(2.1) Im(k)| < C(1+||7)

for some constant C and some positive number r. Let initial data ug be
given in H*. Then there is a T = T(||uo]|s) > 0 and a unique solution

(2.2) ue CO,T; H*)NCY0,T; H*™™)

of the equation (1.1) such that u(-,t) = wug in H® ast — 0, where
v’ = max{r,1}. Moreover, the correspondence that associates to initial

data ug the solution u is continuous from H® to the function class in
(2.2).

Remark 2.2. This theorem is a straightforward consequence of Kato’s
general theory for quasi-linear evolution equations [34-36). In Kato’s
theory, attention is given to abstract evolutionequations of the form

Z—?+A(u,t)u+F(u)=0, for0<t<T,

u{0) = uo,

where u(t) takes values in some reflexive Banach space X and A is
a mapping from [0,7] x W into G(X,1,8), the generators of Cj-
semigroups on X such that [le=*4t¥)|| 5 x) < €P*, for some real number
B, and where W is an open set ir a smaller reflexive Banach space Y.
The symbol B(X) connotes the Banach algebra of bounded operators
on X. If s > 7', then the theory developed in Kato’s first paper
[34] suffices, (with A(y,t) = M8, + f'(v)8;, F =0,Y = H*® and
X = H* ") while if s < 7', then the technique introduced in Kato (35)
of conjugating the solution with the associated linear semigroup allows
the earlier theory [34] to be applied. (Note that the operator M maps
real-valued functions to real-valued functions since its symbol m has
an even real part and an odd imaginary part.)
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It is worth mention that for the Korteweg-de Vries equation (KdV-
equation, commonly)

U + Uy + Uzzz = 0,

and for certain other equations having the form (1.1), the presently
available theory for the pure initial-wave problem is considerably more
refined than is suggested by Theorem 2.1. In particular, the KdV-
equation possesses an unexpected smoothing effect which was noticed
in the works of Cohen Murray [22] and Sachs [43], and which received
general attention in Kato [36]. The most recent theory is due to
Bourgain [17,18], Constantin and Saut [23], Ginibre and Tsutsumi
[26], Ginibre and Velo [27] and Kenig, Ponce and Vega [37, 38], and
we may safely refer the interested reader to these papers for further
references and detailed statements of results.

While Kato’s theory is very powerful in terms of the range of its
applicability, the dependence of the existence time T on the size of the
initial data wug is rather complex and usually far from optimal. It will
be useful later when questions of time scales arise to have an indication
of the size of T as it relates to |[ug|ls, say. Because of the relatively
simple form of (1.1), such an estimate is not hard to supply.

It is a consequence of Kato’s theory that if we have in hand an a
priori deduced finite bound on |lu(-,t)||s for suitable values of s and
any ¢ in some interval [0, Tp], then the maximum existence time 7" for
the solution of (1.1) starting at wug is at least Ty. Therefore, if we can
provide such a bound on a time interval [0, Tp] it will follow that the
solution of (1.1) emanating from ug exists at least for 0 < ¢ < Ty and
that it respects the bound in question. These remarks set the stage
for the following corollary to Theorem 2.1 in which the nonlinearity is
specialized to the homogeneous case to obtain a simpler statement.

Corollary 2.3. Let s, m and ug be as in Theorem 2.1 and suppose
f(z) = zP*! for a positive integer p. Then the solution u of (1.1)
corresponding to these specifications ezists at least on the time interval
[0, To), and on this interval

(23) [u(, t)l2 < luol2
and
[uzz (-, t)]2 < Cplug|2
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where

2.4 To = —@p=2)/a;, np+2/4
(24) ol D4 s P

and Cp, and d;, are constants depending only on p. Moreover, there are
constants Dj, depending only on p and ||ugll2, 2 < j < s, such that

185u(-, t)|2 < D;|0uol2

for2<j<sand0<t<To.

Proof. As discussed above, it suffices to deduce blounc'ls on the H*-
norms of solutions that are valid on the advertised time mtfzrvals. The
energy-type estimates we shall use in establish'ing the .desued resui’cc’s
may be derived formally as if the solutions in question were C. -
functions all of whose partial derivatives lie in Ls. T}.le resulting in-
equalities are then justified for solutions of finite regularity on the b.asxs
of the continuous dependence result in Theorem 2.1. In the calculations
below, the dispersive and sometimes dissipative term —Mu, plays es-
sentially no role.

The general relation that is effective here ig to take the pth-dersivative
with respect to the spatial variable z, multfply.the rf:sult by d2u and
then integrate with respect to Z over the entire line. Smc? the opelra_tor
m; corresponding to the real part M; of the -symbol m is self adjoint,
this series of operations leads to the differential relation

. %%l@;u(-,t)lg - /_  Btu(e 00, 2, ) do
' B / (€2) Ema(E)[(E, £)|? dé.

For s = 0 in (2.5) we obtain that the Lo-norm is a decreasing function
of t so that
(2.6) lu(:, )|z < |uol2

for all ¢ for which the solution exists. Of course, if mg = 0, the L2-norm
is time-independent and equality holds in (2.6). Using (2.6) and (2.5),
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the case s = 1 does not appear to provide information in the absence
of a more specific assumption on mg, but one may obtain bounds on
higher-order, Lo-based seminorms. For example, if s = 2, integration
by parts in (2.5) leads to the relation

1d 2 _ 5(p+1)p/°° p—1 2
2 dtIU::=|2 = 2 . u ULUL, dz
1 -1(p-2) [
(27) + (P + )P(P4 )(P ) / up—3uidm
-0

-/ " emye)lale, o) .

Dropping the last term in (2.7) and using straightforward estimates
and interpolation of function classes between L and H? produces the
differential inequality

(3p—2)/4 (p+10)/4
|2 z |2 )

-2 uzsly < o |
g gt etz = ol Uz
where ¢, is a constant depending only on p. Using (2.6) leads to
li 2 (3p~-2)/4 (p+10)/4
luzzls < cpluols |uzz|3 .
2dt
The latter differential inequality gives directly the upper bound

gl "

(p+2)/4
28)  luza(: )l < -
’ L~ ((p+2)/4)cpluols™ ™ a2/

for 0 <t< d,/|u0|§3”‘2)/4|ug|§”+2)/“, where d, = 4/(p + 2)c, is a
constant depending only on p.

In consequence, if t < To = 2/(p + 2)cpluolS? /4 |ugf|P2/%, then it
follows that

(29) |u:::('yt)|2 _<_ 24/(p+2)|u6’|2‘

Once this H2-bound is in hand, it is straightforward to derive bounds
on H*-seminorms, s > 2, which depend only on the H2-bound already
in hand, and which therefore apply exactly on the time interval [0, Tg).



10 J.L. BONA AND M. SCIALOM

We pass over the details, which parallel those presented in the case
s=2.

This concludes the proof of the corollary. a

Remark 2.4. If in the last result, the initial data has small amplitude
and long wavelength, then it can be written in the form ug(z) =
ep(A~1z) where ¢ is an order-one function. In this case, a calculation
shows that Tp = CAe~P, where C depends on p and on norms of p,
and so is an order-one quantity that is independent of £ and A. Note
in particular that if the amplitude and wavelength are balanced in the
way explained in Section 1, then € = §¥/? and A = 6~/ 50 that
Ty has order §~(1+a)/e  which is exactly the time scale over which
formal considerations indicate that the weak effect of nonlinearity and
dispersion can have an order-one effect on the wave profile.

Remark 2.5. In many cases, including most of the examples that
appear in Section 4, the imaginary part ms of the symbol m vanishes.
In these cases, one can sometimes derive bounds that do not become
infinite in finite time by making use of the dispersion operator M. In
fact, for sufficiently smooth solutions u of (1.1), the quantity

(2.10) /w[%wmﬂMﬂ@Jy—Fw&J»}h

is time-independent, where F' = f and F(0) = 0. In conjunction
with (2.5), and for suitable symbols m and nonlinearities f, (2.10)
yields time-independent bounds on the semi-norm ( { uMu dz)*/? which
depend only on |ug|z and the value of this semi-norm at uy. If the
symbol m(€) grows fast enough as £ — oo, these bounds translate
into global solutions of (1.1) (see {36, 1]).

3. The comparison theorem. The principal technical result for
equations of type (1.1) is formulated and proved below as Theorem 3.2.

Suppose there are given two symbols m and n corresponding to
dispersion operators M and N, respectively. Consider the initial-value
problems

(3.1) ug + uPuy — Mu; =0,
(3.2) v + vPug + bvIv, — Ny =0,
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where p and g are integers and ¢ > p, with initial data
(33) u(z,0) = v(z, 0) = p(72),
where 7 is a fixed, positive number. Rescale u and v by the relations

u(z,t) = eU(e"z, ePt),

(3.4) v(z,t) = eV(e7z,€Pt),

where 8 = p+ 7. Then U and V satisfy the initial-value problems

U, 4+ UPU, — M.U, =0,
(3.5) Vi + VPV, + be?PVV, — N.V, =0,

with
U(z,0) = V(z,0) = ¢(z).

Here, if F is a function of the spatial variable z, then M.F is defined
by its Fourier transform as

(3.6) M.F(€) = ePm(e7€) F(€) = m.(6)F(€),

and similarly for Ne. It is to this pair of rescaled initial-value problems
that the next result speaks.

Lemma 3.1. Suppose v and p are such that for all £ and sufficiently
small e the symbols m, and n. defined in (3.6) satisfy

(3'7) lms(f) s ne(§)| < EIP —1(€)|a

for all € € R, where r > 2 is an integer, and P,_; is a polynomial of
degree v — 1. Let p € H**T where k > 0. Suppose that the initial-value
problems (3.5) are well posed in the sense ezpressed in Theorem 2.1, in
C(0,T; H**7) for some T > 0 and that the H**"-norms of U and V
are bounded on [0, T| with a bound that depends only on the norm of ¢
in H*7 and not on ¢ at least for € small. Then there erists aneg > 0
and constants B;, such that for 0 <t < min{1,T} and 0 < € < ¢y,

(3.8) |82 (U(-,t) — V(- t)|, <etB;,
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for 0 < j < k. The constants B; depend only on T and the norms of
the solutions U and V in C(0,T; H*+T),

Proof. The method employed here to establish this technical fact is to
define w as the difference U — V and then apply energy-type arguments
for its estimation. Toward this end, note first that w satisfies the initial-
value problem

(3.9)

P
e Z —1_ p Vi(,wp+1—i)=
i=0 p +1- i\i

p—l 1 D
itly o op—i _
i gz T1 (’L) (V )::w Mcwz
= (M, — N)Vz — be?PVIV, w(z,0) =0,

at least in the sense of tempered distributions. The inequalities in (3.8)
will be established by induction on j. In what follows, calculations will
be made as if the solutions U and V are C°-functions, all of whose
derivatives lie in L. The formulas that result therefrom will only
involve spatial derivatives of order less than or equal to k + 7. As
in Theorem 2.1, these formulas may then be justified for initial data
¢ in H**+" by taking recourse to the continuous-dependence result in
Theorem 2.1.

To begin, we write a master, energy-type relation. Differentiate the
equation in (3.9) j times with respect to z and multiply the result
by 8iw = w(;), where a new notation has been introduced for partial
derivatives with respect to the spatial variable z. Upon integrating the
equation that arises from the just-described operations with respect
to = over the entire real line, with respect to ¢ over the interval [0, 1]
where t < T, and after suitable integrations by parts, using the fact
that w(-,0) = 0, there appear the relationships

P t
gy (- )13 = =320 / (Vi) wi) ds

i=0

(3.10) ~Y 26 /0 (V)P gy wip) ds

i=0
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t
+ 2/0 ((Mg - NE)V(J-_,_l),w(J-)) ds

t
_2b5<1—P/ ((Vqu)(j)aw(j))ds
0

0 sl

Tp+l-—i i+1

for 0 < j < k, where

1

As mentioned above, the calculations leading to (3.10) are straightfor-
wardly justified.

Formula (3.10) will be used inductively to derive the bounds adver-
tised in (3.8). Consider first the case j = 0 for which (3.10) may be
written in the form

p t poo
lw(-, )13 = —E2a,~/ / Vi(wPt~t)wdz ds
0 J—oo

=0

p—1 t poo .
_ Zzﬂt/ / (Vt+1)zwp—i+1 dz ds
(3.11) = Jo -

t oo
+ 2/ / (M. — N.)V,wdzds
0 oo

t ]
— 2be?7P / / ViV, wdz ds.
0 J—-o0

Note that in the first sum, the term corresponding to ¢ = 0 is zero.
Estimating the first and second terms on the right-hand side of (3.11)
in a standard way and applying Plancherel’s theorem, the Cauchy-
Schwarz inequality and (3.7) to the third term on the right leads to the
inequality

s _oemp—i+tl ff
GOR<2) ——a; s Pt .
e 0 £ 235 g [ 107l efuds
p-1 t )
(312 +23 0 [ V)l ol ds
0

i=0
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t
+eao [ IViolulads
0

¢ 2o / Vet ds
g+1 0 ’
where
2/¢P,-1(8)]
3.13 =sup-——o.
(i) 3 eeg (14 £2)r/2
If we define
. = 2 + l 1 p—i
- ( g_% 5l (V9)a(, Dleolt” ™ )len
1 .
- 2Zﬂ.-|V'+l<-,t)|w|wp-*-‘<-,t)|m)
i=0
P _ )
< 2Za,~iIIV|l'C_((1J'T;Hx)||V||c(o,T;H2)||w"zc’:(5.T:H‘)
i=0
+2) BillVIES 7 Il oz
i=0
and

0<t<

2b '
o= g (cllV (.l + eV, lh ),

where ¢g is as in (3.13), then Gronwall’s lemma implies that

eAcl/Z =,
(3.14) |’LU(‘,t)|2 S 5CO—A— S EBot
0

provided that 0 < t < T. Notice that By depends on T and on the
norm of the solutions U and V. Also note that (3.14) may be used to
obtain a better estimate of Ag, namely that

Ao < 2P||V”c(o T, HI)HV”C(O,T;H’) + 2"V"FC.J(O,T;H‘) +0(e)
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as € | 0. However, this refinement has no bearing on the issues at the
fore here. Consider now the case 7 = 1 for which the master relation
(3.10) may be put as

lwz(-,t)|2 = —Z(p—z+ l)a,/ / (V)P *wl dzds
- Z(p—i-}- 1)(p—i)a,-/ / ViwP~ 13 dx ds
i=0 0 J-
= ¢ 20 P o
- Zzﬂl / / (V'+1):=’wp_‘w,, dI ds
i=0 i =00

p—l t poo
_ A s i+1 —i-1, 2
ZZﬂ,(p z)/o /_oo(V YewP " "t wi dr ds

i=0

t o0
+ 2/ / (M¢ — N )Vezwo dxds
0 J-o

+ -2 s / [ / N (V1) w, dz ds.
q+1 0 J—-o©

The second term on the right-hand side of the last relation is estimated
using the embedding of H'/® into L3 and interpolation. The other
terms are estimated in obvious ways, the upshot being the inequality

P t
e (5 D < S0 — i+ 1o / (V) leolw[BS 1022 ds
=1

p-1
ko> (p—i+1)(pi)es / Vo lwl25 ey ol 2 ds
1=0
(3.15)

r—1 t
+3 26 / (V) e B ol 2 ds
i=0 0

-1

+ 32— 0 [ 1074l el s

1=0

s / Vallolws|2 ds
0
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2b
g+1

t
+ B / (V) ool fwels ds,
0

where kg is an embedding constant and co is defined in (3.13). The
third term on the right-hand side of (3.15) is further bounded above
using (3.14) as follows:

t
(3.16) / (V). Lol wlzhwa 2 ds
0

t
< By [ V) el Hscla ds

Much as before, if we let

= ax
0<t<T

P
A1 = g (o =+ Dol (V el
i=1

p-1
+ ko (p—i+1)(p— Dol VI lwlis  wally2

=0

+3 20 - i)ﬂal(V"”l)xlmlwl’;J"")

=0

p—1

Cl = max (BOZ|(V1+1)::|oo|wp_‘+1|oo +COHV:I:"7‘
2b

+ eq—p—l Vq+1 )’
e

then Gronwall’s inequality applied to (3.15) and (3.16) yields

eA;.'./Z =i
(3.17) lwz(‘,t)|2 S ECl—A—‘
1

provided that 0 < t < T. Again, B; dependson T and on norms of the
solutions U and V.

S EBlt

The proof is finished by an inductive step wherein the desired result
(3.8) is assumed to be valid for j <m where m < k, and then on that
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basis the result is established for j = m. To this end, attention is given
to the master relation (3.10) with j = m. First note that

oo
(3.18) / (VP ™ )2) (m)wiem) dT
—00
Z/m\ [, p—i+l
=Y (. (V)i (WP ™) m—j41)Wim) 42
Z\i) J-co

oo
= / V‘(wp_1+1)(m+1)w(m) dz
-0

)
+m (Vi)x(wp—i*—l)(m)w(m) dz

(™ = i —i
+3 0 (V)5 @) m—j+1) Wim) 42
J
=2 -

Expanding the derivatives of powers of w and integrating by parts the
one term where w(,,41) appears, we come to an expression of the form

o0 (= o]
/_oon%m)da:-i-‘[-wG'w(m)dx,

where F is a polynomial in V,Vz,w and w; and G is a polynomial
in V,Vz,..., Vim), Wy Wz, "+ * s W(m-—1)- Estimating the L.-norm of F'
and the Lo-norm of G, and using the induction hypothesis leads to an
inequality of the form

/ T VA @) (o D0 (4 8) 2

-00

< ailw(m) ('a t)lg + ebi|w(m)(" t)|2'

Making similar estimates of terms in the other sums on the right-hand
side of (3.10), and combining these with the bounds

‘ / (Ms - NE)‘/(m+l)w(m) dz
—c0

< ECO“V"r+m|w(m)|2a
and

oo
qu_p[ (VI i1y Wm) 42| < DT PIVITY || (i 1y [wimy |2,

-0
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there appears the inequality

t t
(319) (.08 < Am [ wm(1 ) ds +Cm [ (- lads

from which it follows that
eAmt/2 _ 1
An

for 0 <t < T. The constant B,, depends as before on norms of U and
V, on T, and on the previous constants By,... ,Bmn—_1. The inductive
step being established, it is concluded that (3.8) holds for all j < k.

The proof of the lemma is thereby finished. a

(3.20) lw(m)(‘st)l2 < eCm < eBnt

As an immediate corollary of this lemma and the transformations
(3.4), the principal technical result to be used in the later sections is
obtained.

Theorem 3.2. Suppose that condition (3.7) is valid for the scaled
operators M, and N, for some value of r and fired values of p and
v, and let B = p+ . Suppose the associated equations (3.5) scaled via
(3.4) with these values of v and B are both well posed on a time interval
[0,T] and that T and the C(0,T; H**")-norms of the solutions depend
only on the H**"-norm of the initial data @ for some k with k+1r > 2,
and is independent of € sufficiently small. Let ¢ € H**" be given and
let ue and v be the solutions of (3.1) and (3.2), respectively, with initial
data as in (3.3). Then there are constants B;j, 0 < j < k which depend
only on the norm of ¢ in H**" such that for 0 < j <k,

(3.21) 182 (ue — ve)lo < €2F7U-1/2 B.ePt

provided 0 < t < Te~8. By interj;olation, therefore, it follows that
(3.22) |84 (e — ve)|oo < €219 C;€P1

for0<j <k and0<t<Te P, where C; = (BjBj41)"/2.

Remark 3.3. If we take A = ¢~” in Remark 2.4 following the proof of
Corollary 2.3, then a lower bound on the time scale over which (3.1)
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or (3.2) is well posed is e™P~7 = ¢~#, thus showing that the relevant
initial-value problems are well posed over the advertised time scales.

Remark 3.4. It is worth specializing Theorem 3.2 to the case where
the symbol m of the dispersion operator M is homogeneous and the
symbol n of N is a higher-order perturbation of m. Thus consider the

case m(£) = |€|® and n(€) = |€]* +al€]” where yv > p+ 1. In this case,
it is straightforward to see that

Ime(€) — ne(€)] < ae™PI¢|” < aclé]”,

as € | 0, where m, and n. are the symbols of M, and N, respectively
(see (3.6)). In consequence, the condition (3.7) holds and the conclu-
sions of Theorem 3.2 hold. It would thus appear that larger values of «y
lead to better results, and that the power a appearing in the symbol m
is irrelevant to the considerations. However, for an arbitrary value of v,
the symbol m.(€) has the form £7*~P|£|*, whereas the nonlinearity has
no e-dependence at all. If y« is less than p, the dispersive term features
an inverse power of €. In this case the detailed structure of the solution
is expected to be dominated by dispersive effects for small values of ¢,
despite the gross, e-independent bounds available from Theorem 3.2.
Alternatively, if ya is greater than p, the dispersive term has a positive
power of ¢ attached, and it will follow from the arguments presented
in the next section that dispersive effects do not make an order-one
relative contribution to the wave profile on the time scale during which
nonlinear effects accumulate to make an order one relative difference.
Thus on one hand when ya — p < 0, we find a singular situation in
which dispersive effects become increasingly dominant as € becomes
smaller, and on the other hand when ya — p > 0, dispersive effects
become negligible for small . The choice ¥ = p/a is the only one
that avoids both these situations and formally renders nonlinear and
dispersive effects at the same order of approximation. Notice that with
this choice, the power v of the perturbation is no longer unrestrained.
Instead, one has v > (1+ 1/p)a > a, which accords naturally with the
idea that the perturbation should be of higher order.

4. Applications to equations of KdV type. In this section
a number of interesting examples will be set forth which show the ef-
ficacy of the theory developed in Section 3 to equations of KdV-type,



20 J.L. BONA AND M. SCIALOM

as in (1.1) or more particularly, of the type displayed in (3.1). As al-
ready noted in Remark 3.3, the initial-value problem for such equations
automatically satisfies the hypotheses of Theorem 3.2 concerning ex-
istence of solutions and of e-independent bounds over an appropriate
time scale. In consequence, the conclusions about comparison of solu-
tions of two such equations enunciated in Theorem 3.2 will be available
as soon as condition (3.7) is verified for the two dispersion relations
associated to the relevant equations.

The examples listed below all arise naturally in practically important
situations that require modeling of long waves.

A. Higher-Order corrections of the dispersion relation. The situation
envisioned here is perhaps the most straightforward application of
Theorem 3.2. The idea is that the two symbols m and n of the
operators M and N are the same except that one has a higher-
order correction to the modelling of dispersion. A paradigm for this
situation is provided by the surface water-wave problem in which the
full, linearized dispersion relation is

1) o(k) = (tanh(k))llz

k

in suitably normalized variables. The Korteweg-de Vries equation
is obtained when c is replaced by the first two terms in its Taylor
expansion about the origin, namely

(4'2) Crav (k) =1- k2/67

which will be a good approximation provided only small values of k
(long waves) are in question. It may happen that one needs to model
dispersive effects more accurately, however, while still staying in the
realm of long-wave models, and in" this situation it is natural to take
an additional term in the Taylor expansion, namely

1 19
4. k) =1— -k? + —k?
(4.3) ck)=1 z + 360k
(cf. Abdelouhab et al. [1]). The model equations corresponding to

(4.2) and (4.3) are

1
U+ Ug + UU + ZUgzr = 0

2 6
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d
- +vs+ Svug + 2v L2, =0
UVt Vz 2 'z 6 T 360 zxzzz — Yy

respectively. (The factor 3/2 in the nonlinear term comes out naturally
in the usual non-dimensionalization of variables, as in Benjamin et al.
[6]). The natural scaling for small-amplitude long waves on the surface
of shallow water is that of (3.4) with v = 1/2 and 8 = 3/2 (cf. Bona
and Smith [16]). By moving to a travelling frame of reference, the
linear translational term u; can be eliminated, and one is then left
with the two equations

3 1
(4.4&) Uue + Euuz + ‘ﬁ‘u:::c:: =0,
3 1 19
(44b) v + E'U'U:: + g'v:z: + '?E)‘v:::zx: =0

Letting M connote the operator —82/6 and N the operator -092/6 —
1984 /360, we find ourselves in the situation envisioned in (3.1)-(3.2)
with p = 1. As mentioned already, the initial-value problems for the
equations in (4.4) satisfy the hypotheses about existence of solutions.
(Indeed, in this particular case, the relevant initial-value problems are
globally well posed in H k for k > 0 and possess time-independent
bounds in H? for j =0,1,2:-- ,k for (4.4) and for k= 0,1,2 for (4.4)
(see [16, 34, 14, 18, 36, 37]). Hence to apply Remark 3.4 in this
situation it is only necessary to check condition (3.7) of Lemma 3.1. A
straightforward calculation reveals that the symbols m. and n. of the
associated operators M, and N, satisfy the relation

19
lme(é) . ne(§)| . 566664’

for all £ € R. Thus taking r = 5 and supposing the initial data ¢ lies
in H*+5 for some non-negative value of k, it is deduced at once that

(4.5) 183 (u — v)|oo < Cje23/243/2

for0 < j < k,provided 0 <t < €~3/2 with similar estimates for the L2-
norm of the difference. One concludes that the inclusion of higher-order
dispersive effects is without formal consequence at the level of modelling
inherent in either equation in (4.4). In the Korteweg-de Vries equation
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written as in (4.4a) and with small-amplitude, long wavelength initial
data eg(¢'/2z), we know that nonlinear and dispersive effects accu-
mulate to make an order-one relative contribution to the wave profile
at time ¢ of order £3/2 (see Bona et al. [12]). Equally, at time ¢ of
order €~%/2, the error terms inherent in the Korteweg-de Vries model
could in principle, and do in fact make an order-one relative contri-
bution to the wave profile (see again Bona et al. [12]), thus rendering
the Korteweg-de Vries approximation invalid. The same remarks apply
to the extended model because higher-order nonlinear effects have not
been included. Now, referring to (4.5), we see that while u and v are
both of order €, their difference is of order €2 at t = £=3/2. As 2 is the
order that would be contributed by the neglected terms in either model,
it is inferred that the effect of the higher-order dispersion relation in
the extended model is of no consequence on time scales over which the
neglected effects remain relatively insignificant.

B. Dissipative effects. It is often useful in both theoretical and
practical investigations to include dissipative effects in a model that
accounts for nonlinearity and dispersion. Such equations may take the
form

(4.6) v + vPu, — My, + Lv = 0.

In the notation of Theorem 2.1, I(€) = &my(€) where mo is the
imaginary part of m = m; + im;. Because ma(£) > 0 for £ > 0
and m; is assumed to be an odd function, it follows that { is even and
non-negative valued (cf. (7, 8, 9, 10, 11, 25]). Frequently encountered
examples include the KdV-Burgers equation

(4.7) V¢ + Vg + Upzr — VUL, = 0,
where v > 0 and the parabolic regularization
(48) Ut + VVUz + Vszg + VVgzze =0

of the KdV equation (cf. [4, 28, 32, 33] and the references contained
therein for (4.7) and Abdelouhab et al. [1], Iério [30], Saut [44] and
Temam [49] for (4.8)).

Here we consider the effect of perturbing equation (3.1) by a homo-
geneous dissipative operator L whose symbol I(£) = b|¢ [# for b > 0 and
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some u > 0. Suppose the dispersion relation m(€) = |¢]® is also homo-
geneous. As explained in the Introduction, the scaling appropriate to
the unperturbed initial-value problem

ut + uPu; — Mu, =0, u(z,0) = epp(A\"'z),

is that in which eP A is order one, or what is the same, the scaling for
which A has the same order as e7P/*. Taking v = p/a, 8 = p+ 7 and
N =M + L8Z*, we find that

me(§) = [€1* and n.(€) = [¢]* + ibeP((B=a—1)/a) | g|u=1g0n ().

Thus the relative effect of the dissipation operator L depends upon the
exponent § = p((u —a—1)/a). In case 4 > o+ 1 so that 6 is positive,
then

Ime(€) — ne(€)] < be®|]#1,
and Theorem 3.2 may be applied with £ in place of €, to deduce that

(4.9) |62(1 — v)]oo < MHHP/NiC;eBY

for0<t<e P,

For example, suppose u =4, « = 2 and p = 1 so that (4.8) is being
viewed as a perturbation of the KdV equation. Then 8 = 1/2 and
| —v|oe < Ce®t. Thus while u and v are both order ¢ in the L-norm,
their difference is of order £%/2 at ¢ = £=3/2, QOn the other hand, the
Burgers-type dissipation in (4.7) has § = —1/2, and consequently this
term does not constitute a small perturbation of the KdV operator.

C. Higher-order correction of the nonlinearity. In this subsection,
consideration is given to the effect of including a higher-order nonlinear
term in the model equation. A case that arises often in practice is the
inclusion of a cubic nonlinearity in the Korteweg-de Vries equation. The
appearance of u%u, as the next term in the approximation of nonlinear
effects is explained in Benjamin et al. [6], where it is argued heuristically
in effect that this term will generically account for nonlinear effects at
the second order.

Attention is thus given to the two equations

(4.10)  w +uuz + Ugyy = 0, and v, +vy, + cv2vx + Vrze =0
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where ¢ is a nonzero real number. Taking the scaling appropriate to the
Korteweg-de Vries equation, namely v = 1/2 and = 3/2 in (3.4) and
applying Theorem 3.2 leads directly to the conclusion that for k > 2,
g€ HFand 0< j <k,

(4.11) 8 (u — v)|oo < tCje?HI/2H3/2,

at least for 0 < t < £73/2, just as in (4.5). Referring to the
discussion in Section 4A, it is concluded that during the time period
over which significant alteration of the initial profile takes place due
to nonlinear and dispersive effects, the cubic nonlinearity remains
relatively negligible for data that satisfies the basic Korteweg-de Vries-
type scaling.

D. Comparison between the Korteweg-de Vries equation and Smith’s
equation. This comparison is a little more subtle than the simple
perturbations featured in Sections 4A~C. The evolution equation

(4.12) Uy + uuz — Muz =0,

where the symbol m of M is m(£) = /1+£? — 1, was derived by
Smith [47] as a model for continental shelf waves. (The form of the
symbol in (4.12) corrects a minor oversight in Smith’s paper.) Because
m is smooth and has the approximate form £2/2 near £ = 0, it is
natural to ask whether or not an appropriate version of the Korteweg-
de Vries equation might be just as good as a model for the phenomena
in question. This depends upon the scaling assumption that applies
to the initial data. If the waves to which the model is to be applied
are adequately represented by the scaling eg(eY/?z), as is implicitly
assumed by Smith, then we will show now that one might as well use
the Korteweg-de Vries equation as a model.

Turning to a detailed analysis of the last assertion, we attempt
to apply Theorem 3.2 to equation (4.12) and the Korteweg-de Vries
equation in the form

(4.13) Vg + Vg + Vzze /2 = 0.

Again we choose ¥ = 1/2 and B8 = 3/2 which is consistent with
the use of the Korteweg-de Vries equation. The crux of the matter
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is to establish condition (3.7) in Lemma 3.1. As the symbol m
is not homogeneous, this is slightly more complicated than for the
perturbation featured in Section 4A. The operator M, has a symbol

m, given by -
V1+eg2 -1
me(§) = ——,

£
whereas if N = —82/2, its symbol n. is €2/2, and consequently

lms(g) . ns(§)| < 5§4/4'

Thus, supposing that g € H k+5 for some k > 0, it may be inferred from
Theorem 3.2 that

(4.14) 182 (u — v)]oo < C,e¥i/2+3/2¢
for0<t<e 2 for0<j<k-1

The conclusion one deduces from (4.14) is that for data that has an
amplitude to wavelength relationship well approximated by the form
eg(e}/2z), it does not matter whether (4.12) or (4.13) is used to model
the wave evolution. Both give the same answer to within the inherent
order of accuracy of either equation on the long time scale over which
nonlinear and dispersive effects make an order-one relative contribution
to the wave profile.

E. Comparison between the Korteweg-de Vries equation and the in-
termediate long-wave equation. This is an interesting application of the
general theory to a comparison between the Korteweg-de Vries equa-
tion and the intermediate long-wave equation. The physical setting in
which the latter equation arises is in a stratified fluid bounded above
and below by planar, rigid boundaries. The fluid is assumed to con-
sist of 2 homogeneous top layer of thickness Hy and density p; lying
over a homogeneous bottom layer of thickness Hz and density p2 > p1.
Provision can be made for a thin, transition layer separating the two
homogeneous layers. In the special cases where either H; and Hj are
nearly equal, or in the case where one of H, or H> is much smaller than
the other, and assuming also that small-amplitude long waves propa-
gate in a single direction without variation in the direction transverse
to that of the primary motion, one derives the model equation

(4.15) u +uuz — Lyuz =0,
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where, for H > 0, the operator Ly is a Fourier multiplier operator as
in (1.2) with symbol

(4.16) 1) = % (g coth(HE) — %)

The parameter H is taken to be Hy = H in case H; and H; are nearly
equal, whereas if Hy < H,, then H = H, or if H, <« H,, then H = H;.
For a discussion of the derivation of this model, see Kubota et al. [40]
and the more recent commentary of Bona and Rose [13]. It is known
that if a sufficiently smooth initial datum is specified, then in the scaling
represented in (4.16) the solution u = uy tends to the solution of the
Korteweg-de Vries equation with the same initial datum uniformly on
bounded time intervals as H tends to zero (Abdelouhab et al. [1]).
The result below is a much more precise rendition of the last-quoted
theorem in that it provides detailed estimates of the difference between
solutions of the intermediate long-wave equation and the Korteweg-de
Vries equation over long time scales.

To this last-mentioned end, the theory developed in Section 3 is
again brought to bear. We attempt to apply Theorem 3.2 with
M = Ly as above and N = —32/3 corresponding to the Korteweg-
de Vries equation, and with ¥ = 1/2 and 8 = 3/2. A straightforward
computation reveals that the symbols m, and n. of the operators M,
and N, that appear after the change of variables (3.4) with the above
values of ¥ and 3, are

1 (a2 12 L 1.
(4.17) eH(E £ coth(e*/“H¢) i and 35,

respectively. Using the elementary fact that
coth(z) = 1/z + z/3 + z°h(z)

where h is a smooth function which is bounded on the real axis, it is
easy to establish that

(4.18) |me(€) —ne(&)| < 50H§4y ]

where cy = H2h(e'/2H¢). Hence, if an initial datum ¢ is presented in
H¥+5 then there are constants C; depending only on the norm of ¢ in
this space such that for 0 <t <e32and0<j<k-1,

(4.19) |3;('u, — )| £ CjH2€2+j/2+3/2t’
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where u and v are the solutions of the intermediate long-wave equa-
tion and the Korteweg-de Vries equation, with initial data ep(e!/2z),
respectively. Notice that in this case, the result is uniform on any
bounded interval of values of H, and that it improves when truly small
values of H are considered, a fact consistent with the aforementioned
result of Abdelouhab et al. [1].

F. Comparison between the intermediate long-wave equation and the
Benjamin-Ono equation. In this comparison, interest is turned to large
rather than small values of the parameter H appearing in the interme-
diate long-wave equation. According to the results of Abdelouhab et al.
(1], if the intermediate long-wave equation is scaled appropriately, then
solutions converge to the solution of the Benjamin-Ono equation in the
limit as H — oo, uniformly on bounded time intervals. As remarked
in the just-cited reference, the scaling that leads to the Benjamin-Ono
limit is not the same as that which leads to the KdV equation. This
will be reflected in the H-dependence of the forthcoming estimates, as
it was in (4.18) when comparing the intermediate long-wave equation
to the Korteweg-de Vries equation.

The intermediate long-wave equation is taken in the form (4.15) where
now the symbol of the operator Ly is

(4.20) 1 (€) = £ coth (¢H) — %

This evolution equation is to be compared with the Benjamin-Ono
equation

(4.21) v +vv, — Nu, =0,

where the symbol n of the operator N is n(¢) = |£|. Theorem 3.2 is
applied with 4 = 1 and § = 2. This is the natural scaling for the
Benjamin-Ono equation when it is written in the form (4.21). Indeed,
the evolution equation (4.21) is invariant under this scaling.

To apply our theory, it remains to estimate appropriately the left-
hand side of (3.7) in the present circumstances. Reference to Lemma
4.1 in Abdelouhab et al. [1] leads to the conclusion

(4.22) cothug) — Il < -,
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uniformly for £ € R. (Note that by evaluating the left-hand side
of (4.22) at £ = 1/p, one sees that this inequality is sharp in its
dependence upon p). Combining the last three relations with the
change of variables (3.4) leads to the estimate

1
(4'23) IlH.e(g) - ne(§)| < CE‘_I{-

An interesting point comes to the fore now, namely the relationship
between the small amplitude parameter € and the large depth parame-
ter H. This issue has been discussed in some detail by Bona and Rose
[13], the conclusion being that in order to achieve the Benjamin-Ono
limit, it is natural to take H = e~2. With this proviso, (4.23) implies
(3.7) with r = 1.

5. Other types of model equations. The foregoing theory is
easily adapted to other types of nonlinear, dispersive wave equations.
Included in the list of obvious candidates are regularized long-wave
equations, certain versions of nonlinear Schrodinger equations, Boussi-
nesq equations and Boussinesq systems. It is our purpose here to indi-
cate how the conclusions presented earlier pertaining to Korteweg-de
Vries-type equations carry over to some of these other models.

A. Regularized long-wave equations. As explained in Benjamin et al.
[6] and Albert and Bona [3], the regularized long-wave equations

(5.1) ue +uz + f(u)z + Mu, =0

are often useful as models in contexts where Korteweg-de Vries-type
equations arise. Here, f and M are the operators defined in (1.1)-(1.2).
Indeed, in the last-quoted reference, a theoretical discussion was under-
taken of the relationship between the initial-value problems for (1.1)
and (5.1) for small amplitude, long’ wavelength data.

A theory entirely analogous to that presented for models of the
Korteweg-de Vries type may be developed for regularized long-wave
equations. Such a theory may be constructed by following the argu-
ments of Section 3 more or less line for line. The one difference that
manifests itself is that (5.1) may be written in the pseudo-parabolic
form

(I+M)ut+u: +f(u):: =0,
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or equivalently
(5.2) up + (I + M)78,(u+ f(u)) = 0.

Because (I + M)~! is a smoothing operator, the theory of the initial-
value problem for regularized long-wave equations is more straightfor-
ward than for the associated Korteweg-de Vries-type equation. A local
existence theory along the lines of our Theorem 2.1 is easily concluded
(see Albert and Bona [3, Lemma 3]). Moreover, if the symbol m of the
dispersion operator M satisfies m(€) > a|€|* for some positive constant
a, at least for large values of |€|, then the initial-value problem is glob-
ally well posed in any L,-based Sobolev space stronger than the space
H,, provided that (i) @ > 1, or (ii) @ = 1 and f’ grows at most cubically
(see Albert and Bona [3, Theorem 2]). The space Hp, is composed of
those Lao-functions h such that

I, = [ 2(1 + m(€))Ih(E)Pde

is finite.

Another way to make comparisons between solutions to the initial-
value problems for the equation

(5.3) ue + ug +vPus + Mu, =0
and, say,
(5.4) vy + vz + Vv, + v%, + Nv, =0,

is to use the theory of Albert and Bona [3] to compare (5.3) with (3.1)
and (5.4) with (3.2), then use the theory of Section 3 to compare (3.1)
and (3.2). The outcome of this somewhat round-about argument is the
same as that gleaned by the more direct method of simply following the
calculations in Section 3, but applying them to equations of the form
displayed in (5.1). Here is a formal statement of the result in view.
The context to which this result applies is that surrounding Lemma
3.1 and Theorem 3.2. That is, relative to (5.3) and (5.4), it is assumed
that the initial data satisfies

(5.5) u(z,0) = v(z,0) = ep(e"z),
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as in (3.3). Letting 8 = p + « as before, we further assume condition
(3.7) to hold for the rescaled operators M, and N, as defined in (3.6).
In this situation, and assuming (5.3) and (5.4) are well posed on the
appropriate time interval, the following analog of Theorem 3.2 obtains.

Theorem 5.1. In the situation delineated above, let u. and v, be the
solutions of (5.3) and (5.4), respectively, that correspond to initial data
as in (5.5) where ¢ € H* for some k > 1. Then there are constants
Bj, 0 < j < k which depend only on the norm of ¢ in H* such that

(5.6) |83 (ue — ve)l2 < Bje**7U=1/2ehy

for 0 < j < k, provided 0 < t < e~2. By interpolation, it therefore
Jollows that

(5.7 |82 (ue — vs)|°<> < C;e?tight

for0< j<kand0<t<eP, where C? = B;Bj4 for all the relevant
values of j.

Remark 5.2. The examples provided in Section 4 for Korteweg-de
Vries-type equations all have immediate analogues for the associated
regularized long-wave equations.

B. Nonlinear Schrodinger equations. Attention is now turned to the
initial-value problem for a class of nonlinear Schrédinger equations,
namely

(5.8) tuy — Mu+g(u) =0 and u(-,0) = (),

where g: C = C, M is a Fourier multiplier operator as in (1.2), and
u = wu(z,t) is a complex-valued function of the variables z € R"
and ¢t € R. Equations of the type exhibited in (5.8) are natural
generalizations of the cubic Schrédinger equation

(5.9) iUy — Au+ |uffu=0

that arises as an approximate model in several physical contexts. The
initial-value problem for equations of the type

(5.10) iug — Au+ f(z,u) =0
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has been the object of considerable effort for the last several years, and
the theory is well developed in certain respects, though much remains
to be done. A recent and comprehensive review of the theory for (5.10)
together with an extensive bibliography may be found in Cazenave [20].
A much studied generalization of the cubic Schrédinger equation has
the nonlinearity |u|u, where ¢ > 0. If ¢ is not an even integer, then
such a nonlinearity has limited regularity at the origin, and this in
turn will usually limit the regularity of the solution, regardless of how
smooth the initial data proves to be. The interplay between the value
of o and how smooth solutions can be has been carefully exposed by
Cazenave and Weissler [21].

We first consider the small-amplitude, long wavelength scaling asso-
ciated with (5.8). Assume as before that the initial data ¢ has the form
¢(z) = e¥(A~'z). Suppose both the nonlinearity and the symbol m
of the dispersion operator M are homogeneous; say m(€) = [€]* and
9(z) = |2]**z, with v > 1. The condition that nonlinear and dispersive
effects be small and balanced is that £ and A~! are both small, but
at the same time S = £2“)\° is order one. This sort of condition is
still valid as the requirement that weak nonlinear and dispersive effects
be balanced, even for nonhomogeneous nonlinearities and dispersions
provided they are dominated by homogeneous parts for small values of
the independent variables. Guided by the relationship that S be order
one, it is natural to make the change of variables

W(z,t) = eu(e®/z, e 1),

corresponding to the choice A = ¢=2¥/@ and an associated time scale.
The new dependent variable is a solution of the equation

(5.11) iWy —eMW +e|W|[PW =0

with order-one initial data W(z,0) = %(z). As before, one infers
formally from (5.11) that on a time scale of order 1/e, the nonlinear
and dispersive effects can have an order-one effect on the wave profile.
Assuming that neglected effects come in at order €2, we infer in the
same formal way that these may have an order-one effect on the time
scale 1/e®. Thus, in these variables, one sees the model to present
interesting nonlinear and dispersive effects on a time scale of order
1/e, but to be formally invalid on a time scale of order 1 /€%. In the
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original variables in which the initial data has small ,a.mplitude and long
wavelength, this means that nonlinear and dispersm_a effects make an
order-one relative difference to the wave profile on a time -:scalt? of order
£~2", while neglected effects may make substantial contributions on a
time scale of order e~ ~1.

A local existence theory for (5.8) can be provided under various
hypotheses on the symbol m and the nonlinearity g. For the comparison
results that are the principal goal here, relatively smooth solutu.:ms
are needed. In consequence, we assume here that g is a C°°-n.1app1'ng
of R? into R2. While this severely restricts the type of nc.mhnear-lty
encompassed by our theory, it nevertheless applies to an interesting
example to be presented shortly. In the case where g 1s smooth, a local
existence theory is easily provided via semigroup tl_leory .(cf. (34, 36}).
In applying this theory, it is perhaps easiest to wrﬂfe u in terms of its
real and imaginary parts v +iw. Then v and w satisfy the system

(5.12) we + Mv — g1(v,w) =0, v, — Mw + g2(v,w) =0,

where g = g1 +1ig2. If one writes U for the column vector (v,w), then
(5.12) has the form

(5.13a) U, + A(U) = F(U)

where

(5.13b) A= (1?4 _(])M> and F= (_‘q;l)

(The mappings A and F correspond to those with the same a.ppeilat'%on
in Kato [34].) The linear portion of (5.13) corresponds to the evolution
equation

(514) Zee + M2Z = 0,

which is satisfied by both dependent variables. This is a 'generleize:d
version of the ‘good’ Boussinesq equation. It is purgly dmpergve in
character, and the evolution it generates defines an .1sometry in any
of the Lo-based spaces H*. It therefore certainly satlsﬁ.es the criteria
imposed on the operator A in Kato [34]. Because g is taken to be

smooth, gy and gz define locally Lipschitz mappings of H® provided
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that s > n/2 where n is the dimension of the underlying spatial domain
R™. These simple facts combined with Kato’s theory yield the following
local existence theory, which suffices for the present purposes.

Proposition 5.1. Let s > n/2, let g : C = C be smooth, and
stuppose the real-valued, even symbol m of the dispersion operator M
to satisfy the polynomial growth condition (2.1). Then corresponding
to initial data ¢ € H?, there ezists a T = T(||¢|ls) > 0 and a
unique solution u in C(0,T;H®) of the initial-value problem (5.1).
Moreover, T and the mapping that associates to ¢ the solution u of (5.1)
with initial data ¢ are continuous from H* into Rt and C(0,T; H®),
respectively.

As in Section 2, one can provide an explicit lower bound on the time
interval T of existence by differentiating equation (5.8) with respect
to the spatial variable s times, multiplying by 8;%, integrating over
R™ and considering the imaginary part of the result. The resulting
differential inequality is of such a form that, for suitable values of s, it
yields a finite upper bound on |8Zu(:,t)|2 on a time interval inversely
proportional to the H*-norm of the initial data ¢. In the case of a
homogeneous nonlinearity g(u) = A|u|?*u, the form of the upper bound
can be presented explicitly.

Attention is now given to comparisons between two different Schrdd-
inger equations. We content ourselves here with comparing solutions
of the following, relatively concrete Schrodinger equations, namely

(5.15) iug + aju|*u — Mu=0
and
(5.16) ivg + ajv|**v + bjv[>%v — Nv =0,

where k and ¢ are integers with ¢ > k, and M and N are Fourier
multiplier operators with symbols m and n, respectively, as in (1.2).

Imagine both equations to be presented with the same initial data
¢(z), and guided by the earlier remarks about the balance between
nonlinear and dispersive effects, suppose p(z) = ep(e?*/ez) for z €
R™, where a > 0 reflects the lowest order portion of the symbol m of
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M. Make the changes of variables
(5.17)  u(z,t) = eU(e®*/ oz, 1), v(z,t) = eV (e?*/*z,e%*1).

The new dependent variables U and V are found to satisfy the initial-
value problems

iU + a|U>*U — MU =0,
(5.18) Vi + a|V|*V 4+ 420 B|V|2V - N,V =0,
U(z,0) = V(z,0) = ¥(z),

for z € R", where a and b are constants and M, and N are defined as
before (see (3.6)). In this circumstance, the following result applies.

Theorem 5.2. Suppose that for all £ and sufficiently small € the
dispersion operators M, and N. in (5.18) have symbols m. and n.
which satisfy the inequalily

(5.19) Ime(€) — ne ()] < *|P-(€)] ,

where r is a nonnegative integer, Py is a polynomial of degree r, and
u > 1. Suppose i € H**" where s > 0 and s +r > n/2 and that
both initial-value problems in (5.18) are well posed in the sense of
Proposition 5.1 in C(0,T; H**") for some T > 0. Then there exists
€0 > 0 and constants B; depending only on norms of ¢, 0 < j < s,
such that for 0 < t < min{1,T} and 0 < € < &,

(5.20) 102(U (-, t) = V(,t))l2 < €"tB;,

where v = min{y, 2(q — k)}.

As an immediate corollary of Theorem 5.2, we have the following
result stated in terms of the original variables u and v.

Corollary 5.3. Suppose the hypotheses of Theorem 5.2 to hold and
that T > 1. Let u and v be the solution of (5.15) and (5.16), respectively,
with initial data p(z) = ev(e?¥/2z). Then for 0 < t < e~%, one has

(5.21) |3i(u . v)|2 < Bjt51+u+2k+(k/a)(2j—1)
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for 0 < j <'s. By interpolation, it follows that
(5.22) |62 (u — )| < Cjteltv+2k+2ki/a

for0<t<e > gnd0<j<s-1.

Remark 5.4. Consider the special case wherein a = 2, ml¢] = €12,
and k = 1 that corresponds to taking the cubic Schrddinger equation

(5.9) as the initial model. An interesting perturbation of this model is
the equation

(5.23) v, + o204+ blu|*y + Av — A2y =0

corresponding to adding higher order nonlinear and dispersive terms.

In this case, ¢ = 2, 4 = 2 and r = 4, and the estimates in (5.22)
becomes

(5.24) 182 (u — v)|oo < Cjte®+

for 0 <t < e72. As 8u and &Jv both have size of order eI we see
ti;at' at a time ¢ of order €2, the difference 82 (u — v) has size of order
£, showing very convincingly that the higher order terms in (5.23)
are not playing a serious role on this time scale.

C. Higher-order water-wave equation compared to the Korteweg-de
Vries equation. As explained earlier, the Korteweg-de Vries equation
represents only a relatively low-order approximation to the complete
description of small-amplitude, long-wavelength surface water waves.
Starting with the full Euler equations for two-dimensional waves on
the surface of a perfect, irrotational fluid being acted upon by gravity
one may systematically derive approximations to any formal orderr
Carrying the approximation to the next order after that which yields
the Korteweg-de Vries equation leads to the model

(5.25)
d 32 23 5 19
Ve + 2’!)’!): + EUIII - gv vz + ﬂvx”:x + E’U’Uxx: = %vzz:z: =0,

v(z,0) = eyp(Az),

(cf. Olver [41]). Here v(z,t) is proportional to the local amplitude
of the wave expressed as the deviation of the free surface from its
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equilibrium position at the spatial point = along the channel at time 2.
The parameters € and A are measures of the amplitude and wavelength,
respectively, and they satisfy the conditions noted in the introduction
that € and A~! are small and the Stokes number S = €2 is of order one.
As before, 1 and its derivatives are all of order one and surface-tension
effects have been neglected, as is often appropriate for long waves.

According to the formal ideas outlined in part 4A, one expects the last
four terms in equation (5.25) to comprise higher-order corrections to
the basic Kortweg-de Vries equation. Consequently, it is to be expected
that these terms will make no substantial contribution to the evolution
of small-amplitude, long wavelength initial data over the time scale
corresponding to the validity of the Korteweg-de Vries equation. (In
this regard, it is worth noting that Craig [24] has shown conclusively
that an appropriate solution of the Korteweg-de Vries equation provides
a good approximation to the solution of the full Euler equations over
the formal time scale 0 < ¢ < £73/2)

Indeed, the content of parts 4A and 4B is that the inclusion of the
fourth and seventh terms in equation (5.25) is without consequence in
that they only make a small relative contribution to the wave profile.
Equation (5.25) and the Korteweg-de Vries equation as written in
(4.4a) have the form (3.1) and (3.2) withp = 1, M = =82, ¢ = 2
and N = -2 — 82 except for the fifth and sixth terms v,v., and
VUzzz in (5.25). While not covered explicitly by our Theorem 3.2,
these terms may also be determined to make a negligible contribution
by the same sort of energy estimates used previously. Indeed let
v be a sufficiently smooth solution of (5.25) and u the solution of
the Korteweg-de Vries equation in (4.4a) with the same initial data.
Questions of existence, uniqueness and appropriate bounds on solutions
corresponding to regular initial data have already been dealt with by
Saut [44] and Ponce [42]. After performing the change of variables
(3.4) with ¥y = 1/2 and § = 3/2 we obtain new dependent variables U
and V, and letting w = U — V, it is ascertained that w satisfies the
forced evolution equation

3 3 1 3 _, 23
(5.26) w, + —2-(Vw)z + WUz + g Wezz + geV Ve - ﬂeV,VzJD
5 19

. 'ﬁ'evvx::z . ﬁsvz:::z = 0,

with zero initial data at ¢ = 0. This is the analog of equation (3.9)
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which formed the basis for the proof of Lemma 3.1. In this case we see
explicitly that ¢ = 2 and that

19

(5.27) m (&) — n(€)] < ggret”

Hence the general energy relation (3.10) will be the same in this case
save for the additional terms which are

23 t o0 d
(5:28) e | _m(VxVu)(j)W(j) <
5 t o0
+—¢ / f (VVzzaz) 5ywis) dx ds.
12 0 J—oo

Thus if one adds to our previously defined constant C; the quantity

23~ (] 5 Ja/
ﬁk—o(k) Vik+1yloollVILi—k+2 + ﬁkzzo(k Vikyloo IV Il j-k+3,

then inequality (3.19) will hold for the present version of w(;). In
consequence, (3.20) will also hold for the w(;) under consideration here
and this translates into the relations

|02 (u = v)|oo < Cje* /232

for 0 < t < €3/ provided 0 < j < k — 1, where the initial data 3
lies in H*+3 with k > 0, and the constant Cj; still depends only on the
norms of u and v in C(0,T; H**5). As mentioned above, appropriate
bounds on norms of v have already been provided in the works of Saut
[44] and Ponce [42]. Thus we obtain the same result as that which
appeared in (4.5), and the conclusion is that all the higher-order terms
are sensibly irrelevant to the waves’ evolution over the time interval
0 < t < €732 in which the nonlinear and dispersive terms uu, and
uzz> make a relative contribution of order one to the shape and speed
of propagation of the initial wave profile.

It deserves remark in the context of (5.25) that this equation contains
the complete formal description of the propagation of small-amplitude
long waves on the surface of an ideal fluid through order €2, where ¢
measures the wave amplitude. One therefore expects this equation to
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faithfully track solutions of the Euler equation over the time scale g=5/2
in the variables pertaining to (5.25), and hence to conclude that it may
have interest as a model beyond that of the KdV equation. This puts
(5.25) in a substantially different status than the perturbed equations
in (4.4b) and (4.6). The recently derived model

Uy — Julg + 2UzUzz + Ulzgr — Uzt = 0

of Camassa and Holm [19], which has some of the features of the second-
order model (5.25), suffers in the same way as (4.4b) and (4.6) from
being an incomplete description at second order, and hence our theory
would show it to be no more effective then the KdV equation as a model
for the propagation of small-amplitude long waves on the surface of an
ideal fluid under the force of gravity.

5. Conclusion. In the body of this paper, we have sought to un-
derstand in a mathematically exact manner the consequences of adding
higher-order terms to model equations for long-wave propagation. We
find that in many practically interesting situations, the inclusion of
such terms is without consequence relative to certain, long time scales.

Such results are potentially valuable in several respects. As exempli-
fied in Section 4D, one may sometimes conclude that a simpler model
yields comparable results, so preferring the KdV equation to Smiths
equation when a)? is of order one. Alternatively, one may add a term
or otherwise modify the model equation for mathematical or numerical
convenience in certain ways without changing the accuracy appreciably.
This is seen clearly in the arguments leading to the family (5.2) of reg-
ularized long-wave equations (Benjamin et al. [6]), and is also present
implicitly in commentary pointing to the study of the KdV equation
with an extended dispersion relation as in (4.4b).

Similar theory can be worked out for comparing solutions of scalar
Boussinesq equations such as

Ugt = Ugz + ('U'2 - u:l:.‘t):l::l:)
though there are a few interesting points that intrude into the anal-

ysis. However, Boussinesq systems that take account of the two-way
propagation of waves present more difficulty than one might initially
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expect. Such systems present interesting modeling and mathematical
issues that seem worth further study. The interested reader may con-
sult the recent script of Bona et al. [15] for more commentary on these
matters and an introduction to the existing literature.
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