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This paper presents and evaluates the numerical solution of a
coupled system of equations that arises in a model for the formation
and evolution of three-dimensional longshore sand ridges. The
model is based on the interaction between surficial or internal
weakly nonlinear shallow-water waves, having weak spanwise spa-
tial dependence, and the deformable bottom topography. The pre-
sentation of the details concerning the discretization of the model
is primarily motivated by: {1) the model involves equations for which
little is known regarding its solutions; (2) we believe that the method-
ology used in simplifying the solution to the coupled sand ridge
model may be of interest to other researchers in the geophysical
community; and (3) the predictor-corrector scheme presented here,
which combines finite difference techniques and fixed-point meth-
ods, is simple, fast, and general enough to be used in the discretiza-
tion of other partial differential equations with local nonlinearities
whose solutions are smooth and bounded. & 1995 Academic Press, Inc.

1. INTRODUCTION

The dynamics of sand ridges are not well understood. Sand
ridges are underwater barlike features of the continental shelf,
composed of loose granular sediment. Hundreds of meters long
and up to a few meters high, sand ridges are usually found in
groups, arranged in more or less parallel rows separated from
each other by hundreds of meters. They may be loosely classi-
fied as either tidal ridges or longshore sand ridges. Tidal ridges
are oriented more or less parallel to the prevailing direction of
the local ocean currents, whereas longshore sand ridges are
oriented normal to the direction in which the overlying water
waves propagate. In [1, 2], the authors proposed a model for
the formation and evolution of three-dimensional longshore
sand ridges on the continental shelf, based on the nonlinear
interaction of long water waves and a movable bottom topogra-
phy, a mechanism first proposed in [3].

Briefly, sand ridges may be formed by the highly organized
second-order Stokes flow generated by the passage of the long
gravity waves. We believe that the chief morphological charac-

I Preprint MCS-P408-1293, Mathematics and Computer Scierce Division,
Argonne National Laboratory, Argonne, IL, 1993.

teristics of sand ridges, namely, their cross-sectional asymme-
try, their spacing and height, as well as their orientation, cannot
be fully accounted for by either the action of violent storms
and/or linear gravity waves. We have proposed that the disper-
sive and weakly nonlinear effects of energetic long gravity
waves traveling over a featured bottom will lead to the above-
mentioned features. We also conjecture that the bottom topogra-
phy, which influences the propagation of the overlying water
waves, evolves in time frames that are significantly larger than
those of the water waves. The interactive nature of the waves
and the sediment-laden boundary layer immediately above the
movable bottom topography leads to a coupled nonlinear evolu-
tionary model.

In scaled variables a model for nonlinear. dispersive shallow-
water waves of amplitude z = n(x, ¥, ) and tranverse velocity
u(x, y, #), traveling over a bottom topography z = —h(x, y, T)
= O(1) is the Boussinesq system [4, 1]

m Vo + amul =3 B - (FE] =0 (D
u, +ou-Viu+-Vn=0, 2)

where coordinate x increases in the shoreward direction, y is
the spanwise direction, time is indicated by #, and « and B are
real parameters described below. The evolution of the bottom
topography is assumed to occur in time scales typified by T >
t, and to be approximately described by the mass transport
equation

M=E<§&+a—”>. ®

aT P \dx 9y

with K/p, a constant of proportionality; u and » are the shore-
ward and spanwise mass fluxes, respectively. defined as

= [ 02U ) de

v= f:" plx, 7YV (x, ') dz’,
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where the integrations over the bottom-following vertical coor-
dinate z’ span the thickness of the boundary layer &y; p is the
suspended sediment concentration, U and ¥ are the x and y
components of the Stokes drift generated by the surface water
waves. For simplicity, the lossy mechanisms of bottom drag
and kinetic dissipation in the surface waves and the bottom
topography respectively have been omitted.

The solution and analysis of the above system are quite
challenging. In order to make the analysis of the model more
tractable, we opted to make the following simplification: as-
sume that the surface waves are composed solely of an incident
wave field. Since most of the energy of these weakly nonlinear
waves is in the neighborhood of a few distinct peaks in the
spectrum, a WKB approximation for the wave packet solution
of the Boussinesq system is

U X0 = D [aX, y) + O(@)les o +cc..  (4)
j=1

where c.c. stands for complex conjugate of the expression im-
mediately preceding its appearance. The a’s are the complex
amplitudes of wave packets centered at wavenumber k; and
with support Ak, < k. The real parameter @@ < | characterizes
the degree of nonlinearity of the waves. The relation between
the frequency w; and the wavenumber is )

k!
W — T = 0, ®)
L+ Bi(kj/3)
where the real constant 8 < 1 is a dimensionless parameter

related to the degree of dispersiveness in the water waves.
Similar wave packet expressions are assumed for the spanwise
velocity and the amplitude of the water wave. Let by =
2k — &, where & = 0 is the detu ning parameter. A compatibil-
ity condition results when the Boussinesq system is expanded
in terms of a series in e using the wave paciet representation.
This compatibility condition leads us to the equations that
control the spatial variation of the wave packets in the
domain of interest. Further, we assume that the waves have
only weak y-dependence, hence a parabolic approximation
is adopted [1, 5].

The following system of equations constitute a -crude but
very useful version of the model for the formation and evolution
of three-dimensional sand ridges on the continental shelf,

aw — iKa, + K f(x,y, Ta, + iKse ™ajq, = 0
Qox — iKayy + K, f(x, y, T)a, + iKee"™a? = 0
a(X=0,) = sh(y, T)
@(X=0,y) = dy(y, T),

(6)

RESTREPO AND BONA

and

K
hr =—{uxh, a\, ax) + y(h, a,, a,)] ,
Po (7

h(X, 3, 0) = F(X, y),

with appropriate boundary conditions on y = 0 and y=MN.
The scaled detuning parameter appears in A = §/w. Also, note
that X = ax. The real constant coefficients K are given in the
Appendix. The bottom is (X, y, T) = 1 + ef(X, y. T), where
& < 1 typifies the size of the slopes of the bottom topography.
Equation (6) describes the spatial structure of the complex
amplitudes of the two most energetic wave packets of weakly
nonlinear dispersive ocean waves traveling in the shoreward
direction x over a deformable bottom topography. The bottom
evolution is given by the mass transport relation, Eq. (7).

As mentioned above, the model assumes that the evolution
of the bottom topography has characteristic time scales that are
much longer than the time scales in which surface waves adjust
to changes in the bottom topography: an incident wave field
senses a bottom which is essentially fixed in time, from the
moment it enters the purview of the model to the time it eventi-
ally leaves it. The bottom deforms slowly after the passage of
many waves. Owing to the widely discrepant time scales be-
tween the (fast) evolution of the water waves and the (slow)
bottom topography, this coupled system may be solved itera-
tively: Given an initial bottom configuration (X, y), we seek
a solution to the water waves using Eq. (6). The bottom is then
updated using the mass transport equation, and the surface
equations are solved using the new bottom configuration. The
whole procedure is repeated until some prescribed final time
T}, say.

The input to the model is composed of an initial bottom
configuration and the wave-packet amplitudes at the line
X = 0. The required dynamic parameters are the fundamen-
tal frequency; an estimate of the size of the parameters
@ < 1 and B < 1, and the dimensions of the rectangular
paich, 0 = X = M, 0 = y < N, of ocean on which the
solution is to be computed.

The similarity of Eq. (6) to the nonlinear Schridinger
equation (NLSE) leads us to guess that the numerical tech-
nique presented here applies to the NLSE in a straightférward
manner. In fact, any equation or system with solutions of
sufficient regularity with local nonlinearity may be solved
by the method described below.

Several issues have motivated the particular choice of the
scheme to be presented: (1) an efficient, simple, and sufficiently
accurate method is desired to implement the above nonlinear
system numerically; (2) the accuracy requirements are not very
sophisticated since the main objective at present is the explora-
tion of phenomenological questions; (3) a uniform grid is pre-
ferred over a variable one, so that both the surface and mass
transport equations may be easily computed on the same grid;
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and (4) the computational domain is fairly large for the sort of
problem presented in this study, hence we would like to use a
numerical method that is computationally efficient. The first
level of simplification in the solution of the coupled system is
the application of the decoupling algorithm described above.
The next level is to adopt an efficient method for the solution
of the surface and mass transport equations. The mass transport
equation will be solved using standard methods. The coupled
nonlinear surface system will be solved by combining finite
difference techniques and fixed point methods. We refer to
the numerical scheme adopted in this study as the fixed-point
method (FPM). Among its best features are low storage require-
ments, high speed and simplicity.

The use of the FPM acronym does not imply that the method
is completely novel. The use of fixed point techniques in the
solution of hyperbolic systems is not as common as it is in the
solution of other types of equations; an example of a successful
application of fixed point methods to the solution of hyperbolic
equations is Tappert's spectral split-step method for the solution
of the Korteweg—de Vries equation and the NLSE [6]. We wish
to show, using the sand ridge evolution model as an example,
how finite difference and fixed point methods may be combined
to solve nonlinear systems of equations with bounded solutions.

The following difference operators pertain to the discreti-
zation,

A= u(g;-1) — u(gy) forward difference

V,u = u(g) — ulg/—1)
St = u(gj-vn) — u(gj-1)
A= u(g;-y) + u(g;)

backward difference

central difference ®

forward average

in the independent variable ¢, say. The physical space is given
byR2X T;= [0 =X <M, 0 =y=N] X {I; = 0}. Define
REXTi= (X, y) X T, =(rAx, s Ay) X n AT E R* X Tj.
Furthermore, there are integers m and n, such that M = m Ax,
N-= n Ay.

2. DISCRETIZATION OF THE MASS
TRANSPORT EQUATION

The mass transport equation is solved numerically by the
well-known two-step Lax—Wendroff scheme [7], which is sec-
ond-order accurate in time and space. The constant factor K/
po is set to 1 for simplicity in what follows. Equation (7) is
approximated by the following computational module,

1 AT AT
n+1/2 —_ n [unnbalil n —_
hr+llZ,:+|l2 4 (Ar + AJ')hr,s + 2 5 A,\'”’r.: + 2 Ay A)‘ I/I.r.:
9)
o AT . AT -
hﬂ:l i hr,: + Kx— 8.\'6T,U~'r,: o A_y 6)6T V'Ir,:

on R} X T,. It may be shown [8] that the formal linearized
stability condition is that the magnitude of the growth factor
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v AT

—| <1
2 Ax

& =

where v is the local phase velocity of the conservation law.
Hence, we need to identify v in the mass transport equation:
Since

du dat

_oudh oar
daF 9X

au d9a;
= £y
M= 50 ax

da; 0X

with i = 1, 2. The first term is £-vhy, and the remaining
terms can be thought of as forcing terms. Using Eq. (70), the
expression for £-v is given by

2 2Bk} Cla|?
oy = E ._.f__.-ﬁ J[{J ('2“% 4 ‘Bﬂ }:j> + c.c.
= gy @; g;

Using the same argument, we can find §-v. For the spanwise
component

The size of », and u, can be estimated to be 8h aj|2, assuming
that the model’s other parameters are of O(1). The higher of
either wave packet amplitude is taken here. Hence, for stability
the grid size is determined by the constraint

AT ol 1-2
h—A-;S,B ““a,-' 2, and
(10

AT i =
ey Hay| 2.

Dissipation effects would manifest themselves in the solu-
tion of the model primarily by aitenuating the amplitude of
the water waves and of the drift velocity. Since the model
is nonlinear, attenuation would then lead to drastic changes
in the morphology of the bars, namely, smaller bars with
longer interbar spacing. Dissipation is known to occur in
the two-step Lax—Wendroff scheme, except when g = 1.
The effect, however, can be quite small—fourth order in
Ax and Ay—if the grid size is restricted to being much
smaller than the wavelengths.

3. SOLUTION OF THE SURFACE EQUATIONS

Since exact solutions for (6) are unknown at present, we will
make use of the two-dimensional version of the model, which
was studied by Boczar-Karakiewicz et al. in [3], to check the
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numerical solution, albeit in a limited way, of the fully three-
dimensional model. The two-dimensional case is

ax = —iKs f(X)a, — iKse " *¥a¥a,
= —iK,f(X)a, — iKe* gl
a(X=0)=4d,
a(X=0)=s,,

(11)

where o, and &, are constants. In [3], it was found that the
numerical solution of Eq. (11) could be successfully carried
out using an explicit fourth-order Runge—Kutta scheme. We
adopt the same computational scheme and rely on their confi-
dence in their method to enable us to use its solutions as the
approximately correct solutions to the three-dimensional case
under appropriate circumstances,

For the surface equations in the three-dimensional case, Eq.
(6) is rewritten as

aix — iKja, + K f(X, yia, = _iKse_i“Xai"az

Qo — iKZaz.‘.“ + iK4f(Xv y)al = —iK(,e”"‘xaf
aX = 0, y)= .ﬂl(y’ T)
a(X=0,y) =8y, T)

a,(X,y=0=0 12
aX.y=0=0
a,(X,y=N)=0
aX,y=N)=0

to separate the linear and nonlinear parts. The first two boundary
conditions are inherent in the physics of the problem. The
remaining boundary conditions are artificial. These Neumann
boundary conditions, combined with a computational procedure
that will be explained presently, ensures that the overall struc-
ture of the solutions remains negligibly affected by the choice
of lateral boundary conditions. We call this technique the ‘‘zero-
flux procedure.” i

To justify the need for such procedure, we spell out what
sort of problem we are faced with: Since we need to compute
a solution over a finite but large domain, care must be exercised
in imposing boundary conditions on the lateral sides so as to
avoid the introduction of structure in the solution that is strictly
mathematical rather than physical in nature. The use of Neu-
mann boundary conditions make the problem well-posed, but
these hard barriers will reflect waves back into the domain, a
situation that does not mimic an effectively laterally unbounded
ocean. Another possible way to compute a solution of the
problem over an effectively unbounded domain on a finite grid
is to impose periodic boundary conditions. However, periodic-
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ity imposes unwanted symmetries on the structure of the com-
puted solutions. To avoid this situation, we opt to use the lateral
boundary conditions that make the problemn well-posed and, in
addition, place restrictions on the initial bottom configuration
and the boundary condition at X = 0 so that we can compute
an oceanic event on a swath of what amounts to be an effectivel y
unbounded domain. We have found that when used with care,
the zero flux procedure is simpler to use, and as effective as
other synthetic boundary conditions in minimizing unwanted
structure in the solutions.

A posteriori we know that the solution to the model is two-
dimensional if neither the bottom, nor the boundary condition
at X = 0, have y dependence. In such a case the Neumann
boundary conditions have no effect on the solution over any part
of the domain (i.e., it does not lead to y-dependent solutions). To
carry out the zero flux condition we calculate the system over
a computational domain that is divided into three regions. The
large central region, flanked by two sufficiently wide lateral
strips, is one in which y variation in the initial bottom or in
the boundary condition at X = 0 is possible. In the lateral strips
no y dependence in the above-mentioned quantities is permitted.
The solution in these lateral strips is discarded. The initial
bottom and the boundary condition at X = 0 are connected
smoothly in all three regions so that a minimal amount of
structure is introduced in the solutions. The flux at the bound-
aries can be calculated for monitoring purposes, however, it is
not hard to guess what size to use for the lateral strips so that
nearly zero-flux conditions are met.

Before considering the discretization of the three-dimen-
sional system, we introduce some notation that will make the
presentation more concise. Define the following vectors, with
the superscript T meaning transpose,

k =ik, K] €€

ke = if (X, y)(K;, K,]T € ¢? (13)
¢ = [al(X1 y)1 aZ(Xv )')]T S (62
with (X, y) € R}. With this notation Eq. (12), is
[0x — ko, + ki = b(X, y, ), (14)

with the linear part on the left-hand side and the nonlinear
terms on the right of the equals sign, plus boundary conditions,

¢, =0
b=

ony=0,y =N,
onX = 0.

(15)

The term b(X, ¢) represents the nonlinear terms. Succinctly,
the above equation may be written as

Lo = b, (16)




DISCRETIZATION OF LONGSHORE SAND RIDGE MODEL

where &£ is the linear operator. Let L be a suitable discretization

of the linear operator. Suppose the value of the vector ¢ at

level r for all s is known. The value of the vector at level r +

I may be found making use of fixed point methods.
Equation (16) is discretized

L% = B(rAx, sAy, ¢1), an

where B is a discretization of the right hand side of Eq.
(16), and [ is the index of the iteration. To start the iteration,
we use the value of the field variables at the rth level in
X (e, ¢" = ).

If so desired, the calculation may be performed on a computer
in two steps: let ¢ be an intermediate result. Then the following
computational sclieme may be used:

Lé., = B(Ax, Ay, ¢

_ (18)
Lt = B(rAx, sAy, é).

The condition for convergence of Eq. (17) is found by appeal-
ing to the fixed-point theorem [9, Chap. 5]. For the purpose of
determining the convergence criterion, define &, a region in
¢*, a four-vector complex space. Let ® and h € % be two
vectors in that space. For some A € ¥ the derivative of A with
respect to P is

. A,
Ag EJ((I)) = E

'

(19)

If the second derivative is continuous for all ® € %, then
it satisfies

Aee(®@, h, b <RI} (20)

for all ®, where R is a constant. Furthermore, let ||A|,, with
p = 1, 2, o, represent the [, ;, and /. induced norms,

i=1 i=t j=1

3y

Al = max {3 1.
i=n {j=

Equations (14) and (15), are used to construct a supersystem

[9x — K9, + K]® = b(X, y, ®), (22)
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with boundary conditions

®,=0 ony=0,y=N
(23)
=P, onX=0
and
K=[kk*¥I"Te¥
Ki(X,y) = ke, k¥]T € Z (24)

D = [a(X, y), &(X, y), at (X, y). a¥(X, y)I" €L

Let L be the resulting discrete operator of the supersystem
on R, composed of L and its complex conjugate, and B be the
discrete counterpart of the nonlinear terms in the supersystem.
Choosing a consistent nonsingular discretization for L (hence
L will be nonsingular as well), and multiplying both sides of
(22) by L7, we have

O =AX,y D), (25)
where A = L™'B. We wish to solve Eq. (25) by the procedure
suggested in Eq. (17). That is,

O = AX,y, D). (26)
Define the iteration discrepancy as
s, = @' — @, @27

Appealing to the fixed-point theorem, it can be surmised that

6@, = [|A(®") — AD N,
= |J@H4, .
(28)

=< [J@"H{LII @ N6P ), = - - -
k=1
= [T13@,llo@,,
1=0 :
the inequality holds provided
0 <|J(@"H, < 1. (29

Equation (29) yields the convergence criterion for the iteration
process. It must be emphasized that inversion of the operator
L is not required in the actual computation. What we are trying
to do is to find the conditions required for convergence of
the scheme.

An estimate of the rate of convergence can be found by
considering the continuous problem, projected onto the grid.
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Let ¢ > 0 be given such that the set of vectors $ = {® |
= s|l, < ¢} contains a fixed point s of a(s), that is,

s = lim ®' = lim a(®') = a(s), (30)
j—x f=o2

where a(s) = £7'b(s). Further, let & C %, J(s) continuous on
< and |J(s)]l, < 1. Then there exists an & > 0 such that the
fixed point iteration is convergent whenever [@° — s, < e
Define [le!]|,, the measure of difference between the (I + Dth
iterate and the root. Hence

ety = 07! = s}, ~ [[Fs)e’ + A"(; ¢, &), 31)
= [J@el, + Rlle'l.
Quadratic convergence is possible if J(s) = 0,
tim 1 (32)
= ]y T

For the problem in question, however, the best rate of conver-
gence will be linear since J(s) = 0:

”E' l”;r = ”J(S)”p .

el

(33)

lim
—=x

An estimate of the distance between the discrete and the
continuous fixed point on the grid can be established as follows.
Let = be the fixed point of the discrete problem, and assume
= = s — @ Also note that B(s) = b(s), and remember that
the nonlinear term is quadratic. Then

L= ~ ¥s = B(S) - b(s) (34)

hence the truncation error s is related to the distance w by

78 = (L — b'(s)w + $b"(s)w - w. (35)
Assume that ||lw]| < 1 is small, so that the quadratic term may
be neglected. Then
lx + L™'b'(s))L"s], = [lll,, (36)

thus the distance between the fixed points shrinks as the discreti-
zation is refined, as long as the discretization is consistent.

We also show that the cumulative error &' < [¥| in the
fixed point iteration procedure remains bounded, so long as the
condition in Eq. (29) is satisfied, and that the error is controlled
by the grid size. Equation (26) may be recast as

D' = a(P') + & (37

Using the same argument in [10, Pp. 92-93], one can show that
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I(I)’H —8,5%4-./”' (S—qJO—%), (38)

where 1 > J = |J(@")], for all L. In terms of the iterates for
the continuous system,

F'=L"1-LYHb - b’(s)w' + 3b"(s)w'- w'), 39)

so that

F'=1-LL)s — ). (40)
It is assumed that the discretization of the linear operator is
consistent and, as that as shown in Eq. (36), the distance be-
tween the discrete and the continuous fixed points gets smaller
as the grid is refined. In conclusion the bounded iteration error
depends on the size of / and on the grid size,

We now describe the particular discretization used in the
model. There is flexibility in the choice of discretization for
the linear operator L. The most economical discretizations are
those that lead to a tridiagonal or quintadiagonal matrix. One
possibility is to adopt the scheme (7, p. 138]

B e
L¢r..r ol (2 Ax A.r 2 Ax Vt) d)r..r

k
. (A—yz 6\2 - kl‘i_|> ¢r+l.:

which leads to twon X n tri-diagonal matrix. Thus L has eigen-
values

(41)

A=—0C+2p+2 Axky)

ST
s=1,..,n,
n+ 1]

where p = 2 (Ax/Ay*) Kk, and the eigenfunctions

(42)

+ 2pcos ,:

ST 25T st |T
1 n—m—e— ... i = ey 1. 4
{smn_’_ 1,s1nn+ T ,smn 1] s=1,.,n (43)

Furthermore, the operator L is diagonally dominant, since

A+l

E lLij' = 'L,'," [ = 1, ey 2n,
J#i

the L;;’s being the entries of the matrix L, and nonsingular since

Li] > |Liwa| >0 i=1,.,2n—-1
Lil = |Ligu] + |Liy] LivLysy #20 i=2,..2n—1
ILiil > ,Lii—ll 1=2,..,2n

(SR I AR T G st O
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If ¢ = £, where 8 = o Ays, upon substituting these quantities
in L the magnification factor is

l
~ 2p(1 — cos 6) + 2 Axk, + 3

{2+ V1 =2p(1 —cos 6) — 2 Axky},

3

(44)

from which it is clear that |¢| =< 1. Thus the discretization of
the linear operator is unconditionally stable.

An estimate of the accuracy of the discretization of the linear
operator, as well as a check on its consistency with the continu-
ous operator on the grid, is given by
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Since the scheme is inapplicable at r = 0, a standard back-
ward Euler scheme,

1 1
A_x Ax¢r..r - A_yz k6-¢r+).1 i Ax(kf¢)r+l,n (46)

is used to discretize L for the first step in X, which can be
shown to be unconditionally stable as well.

Having made a choice on the particular form of the operator
L, the condition that || J(®)||, < 1 for the surface system must
be determined explicitly, so that convergence is established for
the sand ridge problem. To estimate the size of J(®) we use
the supersystem, Eq. (25), to find that

§£ sz i _-_\\-3 5(I)I+l = J(q)l)5¢l
Tp=(L— =—— +k==—d¢,, T . (45
$=(L—DP=—=dr+ kT b 45) R -
. _— . i 5 etc.
Equation (45) impies that the scheme is O(Ax? + Ay*) accurate.
Consistency of the discretization is readily established by i
comparing the continuous problem with its discretization in the
limit as the grid size gets smaller. It can be shown that the J=L"'B' (D), (48
discretization approaches the continuous operator on the grid
uniformly. where
0 —iKse Mgy —iKe ™ nah 0
—i2Ke ™ ¥e-1al 0 0 0
B(®') = , , \ 49)
L iKe ™ gh 0 0 iKset gl (
0 0 2K et ibXemght 0

for the {" iterate. In Eq. (49), it is understood that the a’s are
defined only on the grid.

From Eq. (48), |J|l, < 1 if the size of L is greater than the
size of B'. In the /> norm, the convergence condition is

131 = =B, = L~|1|B’

L= 1.

(50
Since LL' = L’L, where L' is the Hermitian matrix of L,
then the spectral radius gives a measure of the two norm. Using

this information, we have that

Il = min A,
s=la

, (5D

or, using Eq. (42),

+ V(K + 4K)|a]? + Kiap/(3 + 2 Axke) < 1, (52)

where the [, in y is used to estimate the size of the vectors,
that is, a; = max,<,<, af, { = 1, 2. Hence, Eq. (52) gives strict

constraints on p, Ax, and g;, to be satisfied in order to guarantee
convergence in the solution. Phase error may be possible if
Ax > 2m/6. However, since the size of § <€ 1 phase error
constraints are not difficult to meet.

4. PERFORMANCE EVALUATION OF THE
NUMERICAL SCHEMES

4.1. Evaluation of the Mass Transport Equation Scheme

We ran a few test cases in order to confirm qualitatively
the stability, consistency and accuracy of the Lax—Wendroff
scheme, checking for agreement with the well-established theo-
retical results. Of more concern to us was the issue of damping
and of phase drift. We wish to determine the upper bounds for
the spatial and temporal discretization of the mass transport
equation schiome that will ensure good qualitative results with-
out requiring excessive computational resources. To quantify
the scheme’s dissipation and drift, we integrated a model prob-
lem for which an exact solution is known over time scales
comparable to those used in the sand bar problem.
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Dissipation of the norm ¢(7.. 8) with & = 0.1 for the Lax—Wendroff
= 0.05, 0.1, 0.2, and 0.4, respectively.

The model problem was

hr+ khh, =0, x€R'T>0, (53)
with initial condition
(1 X<0
A(x,)=<¢1+ex 0=x=]| (54)

1+el x>1

in which 0 < k < 1, and e < 1. The exact solution of Egs.
(53) and (54) is

1 x<kT
X —= kT
h(x, TY={1+e& T+ kT KT=x=I1+k(1+eD)T (55)
1 + &l otherwise.

Different values of k were tried—it scales the time step—but
we report our results for k = 0.1, which is in the range of
values for constants in the mass transport equation. For such
a case, convergence is possible if & AT/Ax < 10 in the
time interval O to 7. Since Eq. (53) conserves a quantity
proportional to A4, where s is an integer, we compared the
computed value #} with the theoretical value % as a function
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of 8 = k AT/Ax and as a function of time T, to get an
idea of the scheme’s dissipation. Specifically, we monitored
the constant of motion

MiAx

o(T, 0) = 2 AT, r Ax)r Ax
(56)

+= kT[h (T, M) — hi(T, 0],

where M is a very large value in x,. For an estimation of the
phase drift, we computed

s x)P.

N6, T) =

> |hs(T, x,) = (57)

Figures 1 and 2 show parametric plots of ¢ and e, respectively.
The main source of error is the resultant oscillations in the
calculated solutions in the neighborhood of the discontinuity
in the derivative in the solution. These oscillations lead to the
noisy character of the phase calculation evidenced in Fig. 2,
which was seen to disappear with smoother initial conditions.
The plots suggest that 8 = 0.2 is a reasonable upper limit for
the discretization of the sand bar problem.

4.2. Performance of the Runge—Kutta Scheme

The accuracy and dissipation of the explicit fourth-order
Runge—Kutta was investigated using a flat bottom and &, con-

0.012 T T T T

0.010 [

0.007

drift

0.002

1 1 1 L

64.0 96.0 128.0 160.0

time T

FIG. 2. Phase drift eXT, 6) for the Lax—Wendroff scheme with k = 0.1.
From top to bottom, @ = 0.4, 0.2, 0.1, and 0.05, respectively.
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FIG. 3. Comparison of a portion of the exact (solid) versus Runge -Kutta
(crosses) solution for Ax = 1. Magnitude of a..

stants. The domain was 60 units in extent, or roughly 15 interac-
tion lengths. The energy, which is proportional to the sum of
the mode amplitudes squared, was conserved by all trials: the
increased error with grid size Ax was only 0.2% for Ax = 2.0.
The two-dimensional solution will be used later on in making
an assessment of the FPM solution. We wish to determine
an appropriate range for Ax that will enable us to perform
such comparison.

An exact solution to Eq. (11) is known when f(X) = 0. To
estimate the error in the scheme we compared the outcome of
the numerical solution with the exact solution of this special
case (cf. [11, 12]). When &, = 0.5 and &, = 0.0, in terms of
Jacobi elliptic functions ‘‘sn,”’ the exact solution is

-1

ai(®) = v sn’[v;*%; v,]

a3(®) = 1 — ai(®),

where v, is a constant that depends on the detuning parameter
6, and ¥ is a normalized distance coordinate. The Jacobi Elliptic
functions need to be calculated. Hence, by exact solution we
mean a series solution.

The following measures were used to estimate the accuracy
of the discretization:

p = [Zelxtr Ax) -y @]
T B e

) (58)

norm = [ | x(r Ax)[2]'2. (59)

Here y is the calculated value of a;, and y' the exact value at
the grid location. The exact solution x’, was computed using
the algorithm given in [13, p. 189]. The error manifests itself
in the soiution as spatial phase drift and as a degradation in
the ability to capture sharp features. Figure 3 shows the superim-
position of the computed and the series solution, for Ax = 1,
The error as a function of grid size is shown in Fig. 4 on a
log-log plot. The upper plot in the graph shows the 1, error
norm described above, showing convergence, albeit not fourth-
order in Ax. This slower convergence is due to the nature of
the series solution. The lower curve is the plot of the norm of
the Runge—Kutta solution as a function of the grid size. For
these trials the o, = 0.5, o, = 0, in Eq. (11), a flat bottom
and parameters & = 0.3, 8 = 0.1, w, = 0.5, were used.

4.3. Fixed-Point Method Performance and Evaluation

Since an exact solution to the three-dimensional surface wave
system is as yet unknown, we sought to discern the accuracy
of the fixed-point method (FPM) using local analysis. Let A
be the size in X or y of each grid element. A comparison of
the computed solution at a particular point, using A, with a
solution with grid size A/2 yields

lXs = xarl = &, = CO'[(A12)). (60)
Halving the grid size again
xae — xaul = b = col(A/4y). (61)

Thus, using Eq. (60) and Eq. (61) one can solve for p to get
an estimate of the order of accuracy of the scheme:

_logk, — logk,
= __—_log > . (62)

Using the same parameters and boundary conditions as those
used in connection with the Runge—Kutta scheme evaluation
trials, and a domain with length of 128 and span of 32, we
found that FPM yields an average value of p = 1.8, with a
standard deviation of 0.5 for the X-discretization and about
p = 2 for the y-discretization with some degradation in the
immediate neighborhood of the lateral boundaries. Values of
both field quantities were used to estimate p, and they were
taken from various points in the domain.

Convergence of the FPM scheme was checked by examining
the solution as the grid was refined. The domain was a square
of 60 units per side. Since comparisons of the computed solu-
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tions with an exact expression for the three-dimensional case
were not possible, a comparison of the cross-sectional values of
an effectively two-dimensional solution computed using FPM
along the whole length in X and midway in the spanwise direc-
tion y, with a solution computed using the Runge—Kutta method
with a very fine grid spacing was made to ascertain the qualita-
tive correctness of the FPM scheme. A measure of the error is
given by the norm

[Z, |x(r Ax, mid) — x'(x,)
[Z, |x'(r Ax)P]"

1]”3

L(Ax, Ay) = (63)

where x represents the solution obtained using FPM and x'
the solution computed with the Runge—Kutta scheme.

The result for the case Ax = Ay is shown in Fig. 5. Note
that there is no v dependence in the solution for this particular
trial. The same outcome is obtained when Ay = 0.25 and Ax
is varied. On the other hand, when Ax = 0.25 is fixed and Ay
is varied, very little change in the norm is observed, as it should.
In this last case, the norm had an approximate value of
1.35 X 1075 for all grid sizes in the y direction that were
used, which lead us to conclude that the fixed point procedure
converged uniformly along y.

The rate at which the iteration procedure converges in FPM
as a function of the grid size was also investigated. With o =
0.3, B = 0.08, w, = 0.5, and boundary conditions &, = 0.5
and &, = 0.1, and a flat bed, the iteration discrepancy

log o [max {ﬁ: [¢'(X, s Av) — ¢'(X, s Ay)|}] 64)
s=0

was monitored at a particular value of X in a fairly large domain.
It was found that the number of iterations required to meet a
certain iteration tolerance decreased as the grid was refined.
Figure 6 shows how the iteration discrepancy, as defined in
Eq. (64), drops after each iteration / for a number of different
grid sizes. It is evident from the graph that a finite and small
number of iterations are required to reach adequate error toler-
ances using reasonably sized grids.

The iteration convergence of the solution at the first step in
X was examined as well. Recall that for the first step a back-
wards Euler scheme was used to discretize the linear operator
instead of the second-order scheme. The finding is that the
number of iterations was roughly double the number required
elsewhere in the domain, where the second-order scheme is
used.

An example of a solution computed using the FPM/Lax—
Wendroff scheme is shown in Fig. 7. This example shows how
an initially flat bottom topography f(X, y) = 0 at T = 0 will
eventually develop a refracting pattern when acted upon by
water waves boundary conditions are &, = 0.5 + 0.001y and
s, = 0.02 + 0.001y, corresponding to an incoming gravity
wave that has slightly higher amplitude at one end than at the
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other. The parameters for this run were « = 0.1, 8 = 0.08,
w; = 1.2,and € = 0.2.

4.4. Storage and Speed of the FPM

An estimate for the operation count for the FPM is as follows.
Eq. (18) leads to the problem of solving a tri-diagonal system
L for the unknown ¢ at each r, where L is a 2n X 2n matrix.
This system is solved m times to cover all values of X in the
domain. The efficient way to solve the tri-diagonal system is

0.02

AN
: _’4“\\“\\;_'
AN 4

spanwise
507 o 20 3
shoreward

FIG.7. Fate of an initially flat bottom after T = 100 AT under the action
of a refractive water wave field.
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to decompose the problem in two steps: let L = WU, where
W is a lower triangular matrix and U and upper triangular
matrix. Then

Wg=b (65)
is solved for g, followed by
Ud = g, (66)

to finally obtain & at each r, The total operation count for the
solution of Equations (65) and (66) is 2(5n — 4) multiplies and
2(3n — 3) adds. All told, O(] 6n) operations. In turn, this process
is performed / times to compute the (/ + 1)th iterate, where [ is
usually a small number that depends on the iteration discrepancy
tolerance; finally, m times to cover all values of X. The total
is then m X [ % O(n).

The storage requirements of the FPM may be estimated as
follows: the old and the new vector at each X, and another
vector for the iteration process, need to be stored. Hence 6n
values are stored. In addition, all the entries of a tridiagonal
matrix of size 2n X 2n, or roughly 6n values need to be stored.
The total is thus 12n values. In fact, we could be even more
economical and use multipliers in the entries of L, so that only
one half of the tri-diagonal matrix entries need to be stored.
Note that the economy of resources hinges upon the simplicity
of the matrix that the discretization generated. Obviously
higher-order schemes could lead to more storage requirements.
The point being made here is that FPM does not increase the
storage cost over the amount required already for the discretized
linear part of the model. This advantage is somewhat offset by
having to compute more, but as we have shown the iteration
leads to an acceptably low number of extra calculations,

A somewhat unavoidable problem with the FPM is that the
discretization has significant dissipation. The attenuation we
know is inherent in the discretization of the linear operator.
However, the dissipation can be made tolerable at the expense
of greater computational resources, that is, by refining the grid.
To illustrate the degree of dissipation in the surface system
FPM implementation, we used the same parameters and domain
that was used in connection with the iteration issue, and we
fixed the iteration discrepancy tolerance at 1075, Two types of

TABLE 1

Energy Fluctuation vs Grid Size (Equilateral Grid Case)
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TABLE II
Energy Fluctuation vs Ay (Ax = 0.25 Fixed)

Grid size Ay Fluctuation
4.00 0.0018
2.00 0.0013
1.00 0.0013
0.50 0.0012
0.25 0.0014

trials were carried out, both using a flat bottom. In the three-
dimensional trial we assumed the boundary conditions were
“y =05+ 00lyand o, = 0.1 + 0.01y and monitored the
conserved Hamiltonian along the length in the X direction,
midway in the spanwise direction. With & = a,e ¥, the Hamil-
tonian density [11] is

H = R[(ar)a,] + Ki|a | + K.|@,? + Slafr2,  (67)
for a flat bottom. In the two-dimensional trial, we set &f, =
0.5 and &, = 0.1 and monitored the reduced Hamiltonian
density which results when y dependence in Eq. (67) is dropped.
The outcome of both trials was qualitatively similar: the com-
puted conserved quantity oscillated with a period equal to the
interaction length, i.e., the length in which energetic exchanges
recur in the modes. The difference between the peak value and
the minimum value increased as the grid size was made larger.
In addition, dissipation (i.e., the drop of the peak value as a
function of position X) increased as the grid size was made
larger, and as a result, the local interaction length grew since
the amplitude of the modes were attenuated. The dissipation and
oscillation of the conserved quantities can be made negligible by
refining the grid. We also found that the effect is much more
pronounced when o, = 0 exactly, which yields solutions with
very sharp minimas in the field variables. Table I shows the
difference between successive maxima and minima for the
second trial as a function of grid size, with Ax = Ay. We also
report the outcome of fixing Ax = 0.25 and varying Ay, in
Table 11, and the opposite settings are illustrated in Table III.
The two-dimensional trials for Ax = 0.25 and Ay = 4 showed

TABLE IIT
Energy Fluctuation vs Ax (Ay = 0.25 Fixed)

Grid size A Fluctuation Grid size Ax Fluctuation
4.00 0.1002 4.00 0.1415
2.00 0.0627 2.00 0.0628
1.00 0.0168 1.00 0.0198
0.50 0.0050 0.50 0.0049
0.25 0.0014 0.25 0.0014
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TABLE IV

Wall-Clock Times in Seconds vs Grid Size (Number of Grid Points per Domain) for the Computation of the Surface System over the
Whole Doimain Using the Fixed-Point Method

Machine A =1,(50 X 50)

A = 0.5, (100 X 100) A = 0.25. (200 X 200)

Sun Sparc SLC
Sun Sparc 2
Ardent Titan 2X P1

25.42 78.8
7.81 23.13
13.9 44.81

significant discrepancies when compared with the Runge—Kutta
calculation, and the energy for this case oscillated in a somewhat
regular pattern.

To conclude this section, we report the wall-clock times for
three runs of the surface wave equations, as discretized using
FPM. The code was written in Fortran 77. using recursion in
the iteration procedure. For the size of these runs, the use of
recursion was probably marginally slower than having opted for
repeated subroutine calls. No machine optimization or floating-
point accelerators were used. The time trials were carried out
with an initial bottom configuration f = 0.01X. All other param-
eters and physical quantities were the same as those used pre-
viously. The domain was a square with 50 units on its side.
The wall clock times appear in Table IV, corresponding to the
total time required to find the field variables everywhere in
the domain.

5. SUMMARY

The model for the formation and evolution of three-dimen-
sional sand ridges on the continental shelf described in [1,
2] has been shown to be adequately discretized using finite
difference techniques and fixed point methods. The mass trans-
port equation is implemented by using a standard Lax—
Wendroff scheme, while the surface system was discretized
using a second-order scheme for the linear part and iterative
correction for the nonlinear terms.

The schemes’ performance was cvaluated in detail. It was
found that both schemes are second-order accurate in time and
space. As a result of the small number of iterations required
in the fixed point procedure, the FPM scheme is also found to
be efficient in both storage and speed. The schemes were found
to converge as the mesh size was diminished. In order to reduce
the phase error and dissipation in the computed solutions, the
mesh size must be small and comparable in each dimension.
The Lax—Wendroff scheme was found to have significant phase
drift, especially when the mesh size is increased. The FPM was
shown to have significant diffusion for large grid spacings.
Since the model is a nonlinear hyperbolic system this damping
will introduce phase errors-in the waves, especially if the do-
main is quite large. An outcome of the evaluation is that confi-
dence in the qualitative outcome of the coupled model can be
assured with spatial grids as large as 1 and time grids roughly

twice as large, assuming that the extent of the computational
grid is in the order of 1000 X 1000 and the number of time
integrations is in the mid hundreds.

The size of the solutions to the wave system must be moni-
tored to insure proper convergence of the iteration procedure.,
Included in this study is a prescription to monitor the stability
of the solutions. This condition was monitored a posteriori in
all trial runs. The condition poses a restriction on the size of
the computed solutions, but it has been found to be large enough
to encompass most physically relevant situations.

In order to not introduce unwanted structure in the solution
of the surface system due to the boundary conditions, a ‘‘zero
flux condition’” was introduced to handle the boundary condi-
tions on the lateral sides of the domain. The condition amounts
to placing Neumann boundary conditions on the lateral sides
of the domain, sufficiently far away from the region of interest.
The central region is connected smoothly to the lateral swaths
of computational space. In the lateral swaths the three-dimen-
sionality of the solutions is gradually collapsed into two dimen-
sions. For domains that are very long in the X direction in
which considerable refraction in the waves is possible, the
computational domain must be supplemented with fairly sig-
nificant auxiliary computational swaths in order to avoid the
effects from the lateral hard barriers on the solution, making
the calculation more expensive. Nevertheless, it was preferred
over other alternatives that would complicate the problem or
pose severe symmetry conditions on the solutions.

APPENDIX

The following are real constants associated with Eq. (6):

K, =F,

K,=F,

Ky = D\E,

K, = D,E, (68)
Ks=DS,

K= D,S,
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