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Abstract. Considered herein is the Korteweg-de Vries equation with a Kuramoto-Sivashinsky dissi-
pative term appended. This evolution equation, which arises as a model for a number of interesting
physical phenomena, has been extensively investigated in a recent paper of Ercolani, MecLaughlin
and Roitner. The pumerical simulations of the initial-value problem reported in the just-mentioned
study showed solutions Lo possess a more complex range of behavior than the unadorned Korteweg-de
Vries equation. The present work contributes some basic analytical facts relevant tO the initial-value
problem and to some of the conclusions drawn by Ercolani ef al. In addition to showing the initial-
value problem is well posed, we determine the limiting behavior of solutions as the dissipative or the
dispersive parameter tends to zero.

1. Introduction. In this article, attention is focussed upon real-valued solutions of
the Cauchy problem for the generalization

b+ L0e)? A+ 80cxx + Brx 4 Vexer) =0 v(-,0) = ¢0), (1.1)
of the Kuramoto-Sivashinsky equation and also on solutions of the “derivative equation”
w, + WWwx + Swyexx + B(wxx + Wyxxx) = 0, w(, 0) = 4QR (1.2)

These partial differential equations combine characteristics of the Korteweg-de Vries
equation (KdV-equation henceforth) and the Kuramoto-Sivashinsky equation (KS-
equation hereafter), and it is in the combined effect of these traits that we are ulti mately
interested.
The KdV-equation
U+ uby + Uxxex = 0
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and the KS-equation
u, + %(ux)z + ﬂ(uxx + uxx.\'x) =0

have been studied by many scientists. We point especially to the works [11, [2], [5], [6],
(8], [9], (107, [11], [13], [15], not because they represent a complete listing, but because
these are papers from which we draw ideas in the present work.

The combined KdV-KS equations featured in (1.1) and (1.2) arise in interesting
physical situations, for example as a model for long waves on a viscous fiuid flowing
down an inclined plane (see [17]) and to describe drift waves in a plasma (cf. [4]). Our .
interest in this model was piqued by the extensive study of Roitner ([14]—see also [5]).
These works cover a wide range of issues connected with the initial-value problems
(1.1) and (1.2). We point especially to the numerical results showing travelling-wave
attractors in the situation where dispersion is dominant (8 > 1, or, by rescaling, § > 0
fixed and B <« 1) and the theoretical study of travelling-wave solutions when g < 1.
Interest was also focussed on the dynamics when f is held fixed and § < 1. In this
latter situation, it was observed that even quite small values of & served to regularize the
chaotic regime that obtains for the KS-equation itself (the case § = 0).

Our purpose here is two-fold. First, a firm foundation is provided for the initial-value
problem for (1.2) posed on the entire real line R. For fixed 8 > 0and § # 0, the initial-
value problem (1.2) is shown to have globally defined, unique solutions corresponding
to smooth initial data. Moreover, it will be seen that solutions depend continuously
on variations of the initial data within reasonable function classes, thus completing the
proof that the initial-value problem is globally well posed.

These preliminary results set the stage for an investigation of the limiting behavior
of solutions as & or B tends to zero. It will be shown that both of these limits are
nonsingular, and that solutions converge smoothly, and uniformly on compact temporal
intervals to the solutions of the initial-value problem for (1.1) with 8 = 0 or with f = 0,
respectively. Thus in the presence of even a small amount of the KS-dissipation, the zero-
dispersion limit of the KdV-equation or its integrated form ((1.1) with g = 0) remains
globally smooth and continuously dependent upon the initial data. In a similar vein, the
travelling-wave attractor that was observed in the numerical simulations carried out in
(5] and [14] for B > O would necessarily appear at later and later times as 8 becomes
smaller, and would cease to exist altogether in the limit as B tends to zero.

It deserves remark that while the results presented here pertain to the pure ini tial-value
problem, posed on R with initial data that decays at least weakly to zeroat +00, the theory
goes over in every respect to two other interesting problems. If instead of posing initial
data ¢ in L-based function classes, it is assumed that ¢ is a periodic function of period
L, say, then solutions of (1.1) or (1.2) corresponding to ¢ are also spatially periodic of
period L. The entire corpus of our development goes over essentially unchanged except
that, because of the Poincaré inequality that obtains on a bounded domain, certain
estimates are a little easier. In the periodic context, our results considerably improve
upon those obtained via standard semigroup methods in [5, Appendix A]. The other
context which is generally in range of the analysis to be set forth here is that pertaining
to bore-like data, in which the initial state and the resulting solution, both defined on all
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of R, do not have the same asymptotic state at +-0co as they do at —oo. Solutions that
feature a transition from one state to another arise in various contexts. Such solutions
can be analyzed using the present techniques coupled with the ideas put forward by
Bona, Schonbek and Rajopadhye ([3]) in their study of bore propagation on the surface
of water.

The notation to be used is more or less standard. If X is any Banach space, its norm
is written || - |[x. For 1 < p < oo, the usual class of pt h-power Lebesgue-integrable
(essentially bounded if p = 00), real-valued functions defined on the real line R is
written L, = L,(R). The class of L,-functions whose derivatives up to order s also lie
in L, is connoted W;. Appearing frequently is the value p = 2, in which case W; is
usually written H*. One of the standard norms

LI = /_oo [ > Y+ (yz)’]lﬂy)lzdy

0 "0<j<s

on H* is abbreviated || f|l;. Here the circumflex surmounting a function is meant to
denote that function’s Fourier transform. Because it arises very often in our analysis,
the Ly-norm, which is also the H%-norm, is written unadorned as simply

T3k =/ F ).

o0

If T > 0and X is a Banach space, C(0, T: X) is the class of all continuous maps
u: [0, T] — X equipped with the norm

lullc.r:xy = sup Jlu(@)|x.
0<t<T

The value T = +o0 is allowed, and in this case it is demanded that u(f) be bounded in
X, independently of ¢+ > 0. Similarly C'(0, T; X) is the linear subspace of C(0, T'; X)
consisting of those functions whose (distributional) derivative with respect to ¢ lies also
in C(0, T; X). This space, too, is a Banach space if it is endowed with the norm

lullcro.r:x) = lullico.r:xy + Nu'llco.r:.x)-

This scheme generalizes straightforwardly to provide a definition of C¥(0, T'; X) for any
non-negative integer k. If X and Y are Banach spaces, B(X, Y) connotes the Banach
space of bounded linear mappings of X into Y with the usual operator norm.

The paper is organized as follows. In Section 2, results are presented about the linear
initial-value problem associated with (1.1) and (1.2), namely

v+ 8vxxx + ﬂ(vxx + vxxxx) =0. (13)

In Section 3, we establish local well-posedness in H* of the nonlinear problems (1.1)
and (1.2), wheres > 1,8 > 0, 8 > 0, while global solutions are constructed in Section
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5 using the a priori estimates derived in Section 4 together with the technical results
in the Appendix. Sections 6 and 7 are dedicated to the study of the limiting forms of
solutions as & or B tend separately to zero. These limits are studied in H! and H?,
respectively. In taking the limit as tends to zero, use is made of the theory for the
KdV-equation due to Kenig, Ponce and Vega in [11]. In the process of analysing this
limit, results of Tadmor ([15]) on the KS-equation are extended.

2. The linear equation. In this section, consideration is given to the Cauchy problem
associated with the linear part of (1.1) and (1.2), namely to find a function v = v(x, f)
that solves (1.3) with initial value v(-,0) = ¢(-), where ¢ € H°® for suitable values
of 5. Here, the parameters § and j are taken to be nonnegative. The solution of this
initial-value problem can be obtained explicitly by taking the Fourier transform of the’
equation with respect to the spatial variable x, solving the resulting ordinary differential
equation in the temporal variable, and then recovering v by taking the inverse Fourier
transform. Fort > 0 and § € R, let

Fs.5(t, &) = exp(t(i8&> — BE* — §M)) Q.1

and define the semigroup {Es g(t)}i>0 of operators on L, by

Esp(t)f = F~\(Fsp(t. ) F()) 2.2)
where F-! connotes the inverse Fourier transform.
We begin the analysis with several technical results.

Lemma 2.1. Let there be given A > 0, B > 0 and t > 0. Then

TN
g MEE < 1+ — et VI 23)

(B}

for all ¢ € R, where C\ > 0 is a constant depending only on A. Moreover, it follows
from (2.3) that

- A —2p(E4 k2 LU et 2+ 1 gl
f (14 £2)}e 2P 0dE < 233%™ + 27 (——)A) * (24)
—00

where T denotes the gamma function.

A proof of this may be found in [15, Lemma 3.1]. Next, the following detailed
estimates are established.

Proposition 2.2. Let A, B be as in Lemma 2.1. Then, the following are valid.
(1) Esp(t) € B(H*(R), H*t*(R)) forallt > 0ands > 0 and satisfies

I Es.p(Dllan < Cale® + 1+ gy 1ol (2.5)
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for all ¢ € H*(R), where Cy is a constant depending only on A. Moreover,
the map t € (0, 00) > Ej p(t)¢ is continuous with respect to the topology of
Hx+A (R)

(2) Esp(t) € B(L(R), H*(R)) forallt > 0ands > 0and satisfies

IEs s (nlls < Cle® + @B) " F linll, 2.6)

for all n € Li(R), where C; is a constant depending only on s. The map .
t € (0,00) > E; g(t)n is continuous with respect to the topology of H*(R).

Proof. By the definition of E; g, we may write

I Es p(1))I2, = / (1 + E2)° T F 52, £)P(E) PdE

= / (1 + EDre 2PE 80 (1 4 £2)°|3(8) |2 dE X))

. 4_ 3 [/ - L
< sgp{(l + e 2BE g2 < CleT + EP e HPE g2,

The inequality (2.5) follows from (2.3) and (2.7). To prove the continuity result, assume,
without loss of generality, that ¢ > 7 and apply the dominated convergence theorem to
ascertain that

I Es.p(1)¢ — Es p(D)Pl2 40 = / (1 4 £ [ BE' =8 _ o~ PE T 3 ()2

= f (1 4 e M| ORGP

—00

tends to zero as ¢ — 1. In view of (2.4), one has

1 Es 5 (Omll2 = f (1 + E2°| Fy o (1, £)A(E)dE

<@u) i, [+ gy e e g
241
’ B,

< @m0y Inli3, [233%e % + 27T

from which (2.6) follows. Continuity is then a consequence of an argument similar to
the one used in the first part of the proof.

Proposition 2.3. Le-t B,8 > 0 be given. Then for any s € R, the map t € {0, 00) >
Es p(t) defines a C®-semigroup in H*(R) satisfying

NEs (DIl < e (2.8)
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where the norm is that of B(H*, H®). In particular, if € H*(R), then v(-,t) =
Es g(£)@ is the unique solution of (1.3) in the class

C(0, 00; H*(R)) N C'(0, 00; H*~*(R)).

Proof. If 8 = 0, we obtain the unitary group associated with the KdV equation. In this
case (s — 4) may be replaced by (s — 3) and (2.8) can be replaced by || E; o(t)|| = 1
for all 7. For positive g, it is easy to verify that the function g(§) = —B(£* — £2)
is uniformly bounded above by 8/4 so that (2.8) holds. The semigroup property is
obvious and the continuity follows from the definition of Es g(t), Parseval’s identity
and the dominated convergence theorem. The last assertion is an easy consequence of
the previous statements. The result is proved.

3. Local theory in H’(R), s > 1, B > 0. The nonlinear problems (1.1) and (1.2) are
now analysed using the linear results formulated in Section 2. A satisfactory theory of
local well-posedness is the outcome.

Theorem 3.1. Let§ > 0, B > 0 be fixed and suppose ¢ € H*(R) to be given, where
5 > 1. Then there exists T, > O depending on s, l@lls and B (but independent of 8)
and a unique function v = vs g € C(0, T; H* (R)) satisfying the integral equation

v(-, 1) = Es (1) () — & / Esp(t — 1)(@0)2(, )t 3.1)
0

where Es g(t) is defined in (2.2).

Proof. Consider first the range | < s < % and let

t
(Af)(t) = Es (1) — 1 / Esp(t — )3, )Xty dr’ (3.2)
0
be defined in the complete metric space

xs(T)=(f €CQ,T; H*) :Osup () — Es p()lls < M}, (3.3)
<t<T

where T > 0 and the topology of x,(T) is that induced by C(0, T; H*). We will show,
by taking T = T; sufficiently small, that the map (3.2) is a contraction in x,(7). Once
this is established, standard uniqueness arguments (cf. [9]) show that this is in fact the
only possible solution in C (0, T; H*(R)).

To the just-stated end, first combine the estimates and continuity results of Proposition
2.2 with the dominated convergence theorem to verify that Af € C(0, T; H*(R)) for
all f € x;(T), s > I, T > 0. Next it is proved that for T, > 0 small enough,
A(xs(T\)) C xs(T). If u € x,(T), it follows that

i
lulls < 1 Esp()@lls + M < e*li@lls + M,

N
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whence (2.6) implies

lAu(t) — Es p()¢lls < %/ I Es.p(¢ — ') (@) (")l dt’
0

254

4 8 =% =25+
< C sup M@ P[2(* — 1)+ o 75"
0<t<T ,B —25 -+ 7 (34)
— 2141
/ /-4 4 8 8 =24
<C'(M*+e? ||¢||§)[E(el-aE -+ _i e .

Since the term on the right-hand side of (3.4) inside square brackets, which we tem-
porarily denote by g(T'), tends to 0 as T — 0, we can choose T; > 0 such that the
right-hard side of (3.4) is less than M.

Finally, it is shown that there exists 7>, 0 < T, < Ty, such that A isa contraction in
xs(T2). In fact, for 0 < ¢ < T}, one has

lAu(t) — Av(D)lls < 3 sup [[Bu)*(1) — Bxv)’ ()L, &(T1)

0<t<T,
< §0supr () — vl Bl + Tl g(T)
E STy () — v(O)lls (M + e 1 pll)g(Th).

e

Let T < T, be such that (M + e ||¢|l;)g(T2) < 1. It follows that, if 1 <5 < %
then the operator A has a unique fixed point in x;(T>) which satisfies (3.1) and where
T\ and T, depend on s, ||¢|l; and B. If s > % an easy bootstrapping argument using
the integral equation (3.1) satisfied by v(¢) (in H 3 say) implies that v € C(0, T3; H®)
where T; is the H3-existence time. For any s > 1, (2.5) and a further bootstrapping
argument implies that for any € > 0, v € C(¢, T3; H*) where H* is endowed with its
usual Fréchet-space topology. Moreover, d,v € C(0, T, H s—4(R)) and v satisfies the
equation (1.1).

4. A priori estimates. In this section, global a priori estimates are obtained that will
enable the local solutions in Section 3 to be extended to the entire temporal half-line
[0, 00).

Lemma 4.1. Consider the initial-value problem (1.1) with ¢ € H* for some integer
k > 3. Let v be a solution of (1.1) in C(0, T H*) for some T > 0. Then there exists a
constant ¢ > 0 independent of B and § such that the following estimates are valid:

ol < clilgll + TeTB (g’ 115 + B2 116 I)le” @.1)

vl < 16/ lle @.2)
T

lvexll? < {eTPLPI P N2. 8) + (1 + BT) Pa(lipll2, 8)] + b JecTP, (4.3)

252
lvexell? < [Q3 + TP Q4 + BTe TP Q) exp(Be™F Qo T), (4.4)

Il < 1912 explCelvl, + 571 @.5)
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forO <t <T, where J = max({3, k — 1}, the unadorned norm is that of Ly and Py(., §),
¢ = 1,2, are nondecreasing functions of their first argument. Moreover, for 8 > 0, it is
the case that

loxell < 119”1l expleT (B3 (19115 T8 + B)], (4.6)

3 8
lveecll < 16™ | explcT (B3 14'I|5 e + B)]. 4.7

Before proceeding, it should be noted that some of the inequalities used below are
established in the Appendix. Note also that (4.6) and (4.7) will not be used until Section 7.

Proof. We begin by considering the Ly-norm of w = v,. Differentiating (1.1) with
respect to x, there appears the initial-value problem (1.2) for w, namely '

Wy + Wwy + Swyex + Bwy, + Werae) =0, w(,0) = ¢'(). (4.8)
Multiply this equation by w and integrate over R to obtain
d
!

EEIIU)HZ + B(w, wyy) + B(w, Werer) = 0,
where the inner product is that of L,. Integration by parts and the Cauchy-Schwarz
inequality then imply
£
2
Integrating the last relation over [0, t], where 0 < ¢ < T and applying Gronwall's
lemma gives (4.2).

To prove (4.1), use will be made of (4.2). Multiplying (1.1) by v and integrating over
R leads to

d, 2 2
T Mwil® < 2Bl lwilllwall = 2Bllwell® < S llwf?.
dt

d
%;"vﬂz = =30, (1)) = BV, Ve + Vixax) < 30l Lo el + Bllosll? — Bllvse |2

< D0l Huell? + Blloell® < (ol + o l$) + Bllvg |12
< Il + (g'll5 + Bll¢[12)ecT?,

so that (4.1) follows from Gronwall’s lemma.
Differentiating (4.8) with respect to x and defining u = w, = v,,, it is seen that u
satisfies

u, + (wu, + uZ) + Suyxx + Blusx + Urrxx) = 0. (4.9)
Multiplying (4.9) by u and integrating over R, it appears that, for any € > 0,

%d—[uuu2 = —(u, wue) ~ (u, u®) — B(u, ) — Bu, Uyyrs)
= (U, wuy) — Bu, tye) — BU, Ugrry)
< NwillelliseliL, + Bllullle — Blluel (4.10)
< Nwllle il NZ el + Bllulegell = Blliee |2
< HwllCelul® + 673 fuel®) + Bllullluncell — Bl

’ 8 =19, T8
<elld'lle < llul® + (e3¢ le® = B) lexell + Blluellftns -
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Upon choosing ¢ = (M}{E) 3, there obtains from (4.10) the differential inequality

d 3 8 -3 L
Ellullz <cp su¢’||se”ﬂ||u||2+ﬁ||uu||uxxu—§nunu2 < (cB5IP 15 TE+B) lull®.

Gronwall’s lemma is now seen to imply (4.6).
To prove (4.3), use is made of the quantity

®y(w) = %/ [$w? — 8(w,)?1dx, 4.11)

which is a Hamiltonian for the KdV-equation, and is therefore conserved by the KdV-
flow. It follows that (4.8) can be written as

w = —0,(Py(w)) — B(Wxx + Wxxxx), (4.12)

where
@) (w) = 3w + Swy, (4.13)

is the directional (i.e., Gateaux) derivative of ®,. Multiplying (4.12) by @) (w), inte-
grating over R and using the fact that (®(w), —9; P, (w)) = 0, we obtain

0, P2(w) = (q)’z(IU), w,) = _ﬂ(q)lz(w)a Wyx + Wyxxx)- (4.14)

Combining formulas (4.11), (4.13) and (4.14) gives
1 d it 1..3 2
EE'/ioo(jw —8(wy))dx
= B (Wx, Wexx) + B8l wax I — FB(W?, wix) — FBW?, Wrexx)-
Integrating over [0, ¢], we see that
[oe] t
Sllwell® = f [fw’® — L(¢")® +8(¢")*)dx — 288 f [(Ws, Wexe) + Hwsex 1P1dT
-0 0
1]
+ B / (w2, wye) + (W2, Werrr)]dT. (4.15)
0
Substituting inequalities (8.5)—(8.8) in the Appendix into (4.15) leads to
.y 1 '
(6 — cenllwell? < ce; *lwh® + cllpli + slIgl3 — 2ﬂ8/ weeell? dT (4.16)
0

{
+cp fo [Be2llwxll® + &5 wl'® + &3 1 wl®) + e3llwerxll + (S5 " + a) lwirx IP) 1,

P s T T e e
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valid for any positive constants €|, €2, €3 and 4. Choosing g| = %, € =2¢c, 63 = %
£4 = % the inequality (4.16) becomes

é c 10
Enwxn2 < a—luwu: +cllgl; + slloN? (4.17)
!
|
+ﬂ/ (=8l wexx I1* + were | + clw]l® + 6—3||w||6 + 8llw, D)} dx.
]

Upon substituting (4.2) in (4.17), there obtains

c . L0 C 28T 1 ] |
ws | < et lo'IT + 5u¢n§ + 2012 + — g5 Helio 1"+ L [19)eT#)
4
+cﬂ[ lwy % d. (4.18)

0

It follows that

n T ~ !
lwef* < ef”’Pl(u«buz,8)+P2<n¢nz.a)+%+ﬂrefm&(u¢uz.a)+cﬂ/ lwell*d,
0
where

Pilliplz. 8) =873 1¢'1F, Ballglla, ) = 67 113 + 211012,
Py(I9ll2. 8) = c87 (1011 + 52 (16'1%).

Another application of Gronwall’s lemma gives (4.3) with P, = ﬁz + 13; say.
Letr = u, = w,,. Differentiating (4.9) with respect to x gives

re + Qur + wry) 4 8rexx + B(rex + rexxx) =0,

so that multiplication by r followed by integration over R implies

d
%Ellrhz = =3(ur,r) — (w,rry) — B(rez, r) — B(Fesax, 1)
< SHwlllrllirsllze, + BIrlred — Blredl?,

where the last inequality was obtained via integration by parts and the Cauchy-Schwarz
inequality. Proceeding as in (4.10), with u replaced by r, leads directly to (4.7).

To establish (4.4), attention is given to the next conserved quantity for the KdV-
equation, namely

[ o]
d>4(w)=/ (Fw* - 58ww? 4 38%w? ) dx. (4.19)
—0o0
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Multiplying (4.12) by
@ (w) = 3w’ + 58w? + 108wy, + 68 Wrrix (4.20)
and integrating over R, we come to

0, Py(w) = —ﬂ(tbg(w), Wy + Wexxx) 4.21) -
= —;‘}(§w3 + 58w§ + 108wwyx + 682 Wrrx, Wex + Wexxx)-

Now substitute inequalities (8.9)—(8.15) from the Appendix into (4.21) to derive

_3 _13 _9 B
8, ®4(w) < cBllwl® + &5 Nwll ¥ + 865 7wl ¥ + 865wl ¥ + 8¢, * wl) 5]
+ Bl + llwl|? + 8%5  Mws (4.22)
+ [cBe\ + cBSes + cBdes + cBoes + 6B8%es — 688l Waxxx 1%,

valid for any positive constants €|, ...&s. Taking &, = 5—;— €)= £3 =E4 = % £5 = é,
in (4.22) and using (4.2) again, we obtain
3, ®a(w) < BeTPQ (I 11, 8) + lwaell®BeTP Q2 (U141, 8). (4.23)

Upon integrating (4.23) over [0, ¢], it follows that
o0 [oe]
f [Sw* ~ Ssww? + 382wl ]dx < f (5@ — 58¢'(¢")* + 38%(¢")*1dx
—00 —o0
t
+ BT T2 Q1911 8) + BecTP Q2(l1¢'1, 8) f l|wisI* d. (4.29)
0
Substituting (8.16) and (8.17) from the Appendix into (4.24) leads to the inequality
_ 4
S llweel® < c[ISNS + SHSI3 + 82112 + llwecl? + &, wl ¥ + S(eallwel?

3 wl )] + BT Q11 ) + Be TP Qa(ll' I, &) fo lwell? d,

5 5. B 2 =
valid for any positive constants | and &,. Choosing ¢; = i—c and ¢; = 487 gives

182wl < Q31913 8) + e Qull@llr, 8) + BT T Qi (Il &)
+ BT O5(I6 1. 8) fo el dr,

and consequently Gronwall’s lemma implies (4.4).
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We turn to the estimation of ||w|| j» for j > 2. Integration by parts together with the
formulas

(w, wy)j + (w, wwy); + §(w, Wyxr)j + B(w, Wiy ) + B(w, Wyxxy); = 0,
for j =0,1,2,..., where the inner product is that of H/,

i
(,v); = ) (3fu, 8%v),

€=0

shows that

d J
3 7wl < 1w, wwo),l + 8 Y T8 w18 2wl — 952w
=0

J
< clwlzllwl? + g D Iofw)? = (cllwl), + §>uwu?.
€=0

An inequality due to Kato (see (8.4)) has been used to estimate the inner product contain-
ing the nonlinear term. Integration over [0, t] and Gronwall’s lemma imply the desired
result (4.5).

5. Global well posednessin H*, s > 1, B > 0. We will now show that problem (1.1)
is globally well posed in H*(R), fors > 1. If sisa positive integer, the result follows
immediately from the local theory and the a priori bounds obtained in the previous
section. To handle noninteger values of s, nonlinear interpolation theory is applied ([1],
(16]). In what follows we adopt the notation used in [1]: let k > 2 be an integer,
k—1<s <k, By =Ly, B} =C(0,T; L), Bl = H* Bl =C(0, T; H", » = s
6 = . Then

B}E,z = [By, Hkh.z ~ H* !, B‘gl'2 = [By, Hk]g'z ~ H,
where the symbol = connotes equality as linear spaces and equivalence of the interpo-

lated norm with the standard norm for the space on the right-hand side.

Theorem 5.1. Assume that 8 > 0. Then problem (1.1) is globally well posed in H* (R),
Joranys > 1.

Proof. Let A be the map which takes the initial data ¢ € H* into the unique solution
veCCQT; HY of (1.1) obtained in Theorem 3.1. From 4.1), 4.2), (4.6), (4.7) and
(4.5), it follows that

1A®Ne < crlll@lle-) Pk

forall ¢ € H*, where c1:Rt - Rtisa continuous, nondecreasing function.
We now prove the continuity of A and the inequality

1A(D) — AW)llco.1:Ly < colllPlle—r + I ile-Dlld — ¢ 5.1
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forall g, € H*' Let¢, ¢ € H*', u = A(¢), v = A)andw = u —v. It
follows readily that

lwli? = =5 (s + v)ws, w) = BW, Wer + Wiyyy)
< glwlpg, Caell + Nvs D wsll + Bllwlllweell — Blltwes 1
< cllwll® well? el + lox ) + Bllwlllweell — Bllwse
< clwll ¥ weell ol + Hoel) + Blwllweell — Bllwsel®
< cellwll® + 73 wec B Aluell + Noll) + Blwlllweell — Bllwes 2,

1=
2 dt

valid for any & > 0 on account of Young’s inequality. Take ¢ = (—-ﬂ'“—‘":'""—‘) 5 so that
the last inequality reads

d 2 2 -3 8 2
271w < IwieB ™3 (el + lvel)® + 281 willlwyel — Bllwsll
3 8
< IwliP (B3 (el + Nlux )5 + B).

Integrating over [0, 7], combining Gronwall’s lemma with (4.2), and taking the supre-
mum over ¢ in [0, T], we obtain

lwll® < fi¢ — ¥ explT B35 + 1V1I5) + B), (5.2)

and (5.1) follows.
For ¢, ¥ € H*, the formula (3.1) implies

W, 1) = Es p(0)(d — ¥)() — 1 /0 Es 5t — 1Y (2 — v3)(-, £)dY.

From (2.5) with A = 0, s = kand A = 1, s = k — 1, it follows that

t '
8 2 2 =i
TwC, Ol <e*llg — ¢l + %/ luy — villie—ile ™

[+ (¢ = )B)~He TN T g

<% ¢ — il + sup(lullc + lvlli)
!

eT[(TP) + 11e F+HVTDTE ot 0 Ol ,
2;94l 0 (1—1)4

x|
Using a generalization of Gronwall’s lemma (see (6, Lemma 7.1. 1]), there obtains

w0l < e¥ ¢ — Y lIkEs (o), (5.3)
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4
with y = [ supge, <7 (14, Ol + 10, O)lle) F(T, NG

eI‘F[(Tﬂ)% 4 l]e—rg‘z+é1/(Tﬂ)z+4Tﬂ

F(T, ) = 25!
and
oo zan

From (4.2), (4.1), (4.6), (4.7) and (4.5), it is seen that for 0 < ¢ < T,

HuCo Ol < Qe Pr(B 8. T, lplle-1), G, Ol < I I Po(B, 8. T, 19 ley),

and thus, from (5.3), continuity of A for k > 2 follows. According to Theorems 1 and
2 of [1], A is therefore a continuous map from H* into C(0, T; H*) and the proof is
finished.

Remark. The case B = 0 will be treated in Section 7.

6. Convergence of solutions of KdV-KS to solutions of KS. Attention is now turned
to the situation wherein 8 > 0 is fixed, but & tends to zero. The not-surprising outcome
of the analysis to follow is that the limiting behavior is simply to provide solutions of
the KS equation. Thus, in the presence of the KS-dissipation, the small dispersion limit
is not in any way singular. This contrasts strongly with the case 8 = 0 for which the
small-dispersion limit is singular in a very complex way (cf. [12]).

Proposition 6.1. Ler 8 > 0 be fixed. If vy € C(0, T; H*) is the solution of (1.1)
corresponding to a given ¢ € H* obtained in Theorem S. L, where s > 1 and § > 0,
then the limit vy = lims_, o vs exists in C (0, T; H*) and defines a solution of (1.1) with
éd=0.

Proof. Consider ¢ € H* and let v, v® be two solutions of (1.1) corresponding to
the values of § equal to §, and &,, respectively. Then v = v) — y® satisfies the integral
equation

V(. 1) = (Es, 5(t) — Es, p())($) (") (6.1)

t
- %/0 [Es, 5(t — 1) (0)2(, ¢y — Es, p(t — ) @)2(., 1')]dr.
Computing the H*-norm of both sides of (6.1) leads to the inequality

VG Olls < I1(Es, 5(t) — Es, () ()5 (6.2)
+ 1 / ((Es, . p(t — 1) — Es, gt ~ 1"))(wV)?,
0

+ 1 Es, 5t — £)((0)2 = (@), 1dr.
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Each term on the right-hand side of (6.2) will be estimated separately. We begin with a
straightforward case:

I(Es, 5(t) — Es, () = f (1 4 £2)5 e 2BE =8 (108 _ G082 Ge)|2 g

<18 — &2 f (1 + £2)e 286 6D £01 36 2 de

< 18, — 8122|9112 sup(éﬁe‘z'*‘“f‘—f”) (6.3)

< 18; = &2 gl2ClL + (ﬂ),] D 15— 8 PI012C(T, B).

Here we have used the mean value theorem and inequality (2.3) with A = 3. The
constant C(T, B) is given by

C(T,B) = CT'M HTB+/(TBY+12TB)

Inequality (2.4) then implies that
I(Es, p(t — ) — Es, gt — N2

<t =718 — 82 f (1 + £2) e 20-PE =808, ()2 ()2 dg
= ) -
< @m)~' e — P18 — &P, / (L + £2) 3 2-PE0 gg (6.4)

< @yt — P8y - PR 3 4 22 By pe - 1)

< C18; — 82211 %€ ™PIC(T, B) + (¢t — )71,

Finally, the last term in the integral on the right-hand side of (6.2) can be estimated as
follows:

| Es,.p(t — t')((v<‘>>2 — WP s
< Cile" T + (¢t — BT MM = 0PI O,
< Gl + (= )BT UL — o) O +v@)C O
< C(T@, BN — 1) F e, O, (6.5)
where (2.6) and (4.2) have been used to obtain the last inequality. Now substitute (6.3),

(6.4) and (6.5) in (6.2) to get, for 1 <s < 3and0<r <T,

lv(, Olls < 161 =8| C(T, ﬂ)(|l¢lls+ll¢llf)+C(T.ﬂ)ll¢|||/0 (=) o, 1), dr.
6.6)
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Gronwall’s lemma then implies that for0 < ¢ < T,
G, Ol <181 = &ICT, B, 1@lls) Ez: (v1), (6.7)

where E, is defined in (5.4) and y = [C(T, B)l¢ I r(bszﬁ)]%. This shows that

sup [lv(, Dlls = 0 (6.8)
0<t<T

as 81, 83 — 0. Thus there exists vp = lims_gvs in C(0, T; H®), s < -;— Fors > %, we
estimate (6.4) and (6.5) using (2.3), and Gronwall’s lemma then also implies (6.8).
Next it is shown that vy satisfies (1.1) with § = 0. In fact, if v; is the solution of

(1.1), then
vs(-, 1) —vs(-, T) = — /t[%(axva)z +883vs + B(82vs + Bvs)ldr’.
This implies that at least in H*™4, v, satisfies
vo(-, £) — vo(-, T) = — / '[é(axvof + B(32vo + Bfvo)ldr’,

and so vg € AC(0, T; H*=*) N Lo (0, T; H*) from which it follows that vy satisfies
equation (1.1) with § = O for almost every ¢. But the local existence result for § = 0
implies that (1.1) has a unique solution in C(0, T; H*) corresponding to initial data
in H*. Therefore vy coincides with the strong solution of (1.1) with § = 0 (the KS-
equation) and the result is proved.

7. Convergence of solutions of the KdV-KS equation to solutions of KdV-initial-
value problem. The next task is to prove that solutions of the initial-value problem for
the integrated version (equation (1.1) with 8 = 0) of the KdV-equation are obtained as
the limit as B tends to zero of the solutions constructed in Theorem 5.1. Here is the
result in view.

Theorem 7.1. Let § > 0 and ¢ € H? be given, and let vg be the solution of (1.1)
satisfying v(-,0) = ¢. Then the limit vy = limg_,ovp exists in C(0, T, H?) and is the
unique solution of (1.1) with 8 = 0. Moreover, the map ¢ € H* — vy € C(0, T; H?)
is continuous with respect to the topologies under consideration.

Proof. Let v) = vg;, j = 1,2, be solutions of (1.1) with the same initial condition
¢ € H? but corresponding to different values of the parameter 8. Then v = vV — v®
satisfies

v+ %Ux(v,(‘l) + v§2)) + 6v.txx + ﬂl(vxx + Uxxxx) + (ﬂl - ﬂZ)(vg\») + Uﬁ)“) =0.
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Multiplication by v followed by integration over R gives

d
%37"”"2 = 1%, v® + v@) — Bi(V, xx + Vars) — (B1 — B U + v@.)

%nvn2 + 181 = Bl (Nol @1+ Hvec V21D

< cllv® s + V@115 + Billvli? + clBi = B2A U llz + 1@ 1) 1P o

1 i 2 2
< HIv8 + v@ L lvl® +

Integrating over [0, ¢] and applying Gronwall’s lemma once again, we obtain
oG DI < eT1B1 — Bal suplUlv®ll2 + VP19l
f

x exp(c T sup(Jlv@ I3 + [v® (I3 + B1)) (7.1)

for 0 < t < T. From (4.1), (4.2), (4.3) and (4.4), the H>-norms of v(" and v® are
bounded by a function of T and ||¢||5, independently of 8 < 1, say. If Bi, B2 — 0, the
right-hand side of (7.1) converges to 0 so that the limit vo = limg_,oug exists at least in
L,, uniformly with respectto ¢t € [0, T].

Arguing as in Proposition 6.1, it is concluded that vo satisfies (1.1) with 8 = O for
almost every ¢. Standard arguments then show that there is at most one solution of (1.1)
with B = 0. Since H? is continuously and densely embedded in L, it follows that
themapt € [0, T} — wo(-,t) € H 3 is weakly continuous. It is not difficult to verify
that ||¢ |3 = liminf, o4 [[Uo(-, £)|l3, so that the map under consideration is continuous at
¢ = 0 with respect to the H>-topology. Right continuity at f € (0, T) is a consequence
of the continuity at ¢ = 0 and the uniqueness of solutions of the initial-value problem.
Left continuity follows from the change of variables (¢, x) +> (r —t, —x) and the fact
that all of our previous results remain valid if we change the sign of the nonlinearity in
(1.1).

We now turn to the case where the initial data is only in H. In fact, consider a
sequence {¢,)°, in H? converging to ¢ in H 2 Forn=1,2,...,letr, be the solution
of (1.1) with 8 = 0 and initial data ¢,, obtained as above. We know that {r,}52, is a
Cauchy sequence in L. Indeed,

%Ilrn = Imll < 30 = rm)cl(lirallz + lirmll2). (7.2)
Now, g, = 8,r, satisfies (1.2) with B = 0 and initial data ¢, € H L. In view of the
well-posedness result of Kenig, Ponce and Vega ([11]), g, — ¢ in C(0, T; H'), where
q is the solution of (1.2) with 8 = 0 and ¢(-,0) = ¢'. Since each r, is a limit of
solutions of (1.1) as 8 — 0, its H2-norm is estimated by a function of ||¢nll2 and T (see
(4.2) and (4.3)), which is bounded independently of n, since ¢, = ¢ in H 2 Thus there
exists a constant C = C(T, ||¢|2) = OsuchthatforO0 <r <T,

d
g5 lrm = rm | < C(T, I1$l2)I1gn — gmll- (7.3)
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Hence given ¢ > 0, there is N € N such that

E”rn —rmll <€
for m,n > N, and therefore for0 < ¢t < T, |lry ~ rumll < &T + ||¢n — dmll, which
proves that there exists r (-, t) = lim,_ o7, (-, t) in L,. This, together with the existence
of lim, _, 00857y in H', implies that r € H? and r, — r in H?. Itis then easy to verify
that r is indeed a solution of (1.1) with 8 = 0. The uniqueness of the solution follows
from the corresponding property for the KdV-equation.

Finally, it is established that the solution depends continuously on the initial data.
Take ¢, € H? and let r,s € C(0, T; H?) be the solutions of (1.1) with 8 = 0
satisfying (-, 0) = ¢ and s(-, 0) = v, respectively. Using (7.2) with r,, and r,, denoted
simply r and s, we have

d
sl = sl = selldlir 2 + lisll2) < 5lre = sell(FUplla, T + g(Ul¥ll2, T).

Integration of this differential inequality over [0, T'] leads to

t
llr = sl < ¢ — il + 3[fUlliz, T) + gUI¥ ll2, T)]/ lrx = sell dt’
0
Using the continuous dependence proven in [11] we therefore obtain

lr —sil <l =¥l FAollz ivil2, T).

The continuity of the first and second derivatives is of course contained in the results of
[9]. This completes the proof of Theorem 7.1.

Remark. It is not difficult to verify that Theorem 7.1 holds, in fact, for every s > 2.

8. Appendix. Several technicalities that arose in the body of the paper were deferred so as not to interrupt
the general development. These points are established in the present section.

We begin by recalling some standard inequalities that were used earlier in the text, and which will figure
again in the Appendix. Here, D = d/dx, say.

¢ Gagliardo-Nirenberg inequalities:

Mellzee < Nul? 1Dl for u € H (R, s > I: @.1)
ID7ull < Mljull'~# D™ uli®, 0<j<m. ueH"R): 8.2)
e Young’s inequality: Ya,b >0 Ye >0, 1 < p < 00, % + # =1,
’ _ |
ab < ga? + C.b?, where Co =¢ 7T, (8.3)

e Kato's inequality ([8, Lemma (A.5)]): if k > 2 and u € H*(R),
(. uDu)t < Cllull2llullf. (8.4)

where (-, -)x denotes the scalar product in H"(IR).
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The next four inequalities are technical estimates used to prove (4.15):

o 1
3 2 s 1 2 - 10
I/ wdx| < Wz lwll® < Nwl 2 llwell? < erlfwell® +6, 7 w3,
—00

2 -1 2

(W, Wex)| < flwellflwxeell < e2llwell +£ Nweell®
2 3 | 13 5
[, wel < fwlieg lwlillweel < fwll 2 lwell 2 lweell < cllwl 8 w3

-5 13
< c(esllwyxxll + &4 lwli™),

2 1 3
[(w, wyxex)| = 2| (wwy, Wyxr)| < 2"w"Lw lwellllwexx | < 20wl 2 lwe |l 2 wexell

3 3
2 o) 6
< cllwl 2 lwrxx 17 < c(eallweell® + €4 [lwi™),

where the g;,i = I, ... , 4, are arbitrary positive constants, chosen suitably in Section 4.

(8.5)

(8.6)

®.7)

8.8)

The inequalities (8.9)8.15) are estimates of the right-hand side of (4.21) and are used to obtain (4.22):

3 2 2
[(w, wex)] < "w"[‘c,o lwlllweedl < Nwll“Nwelllwsl
5/2 3/2 10 2
S NP hwel?? < ciwl'® + Nweel®),
3 2 2
f(w?, wegxr)| < ||w"L°°“w""wxxxx“ S lwil“fwe Hwy et
1 5 2 -3 2
S cllwll F wexex 17 < cleyllwencc” +&; F lwl 3),
2
(wg, wyx) =0,
2 3 |
((wx. Wyxrx)| < "wt"Lm"wx Mwygextl < Nwell 2 Hweell T fwsexxll
i 13 13 2
2 y ¥
S cwllF lweeaxl B < cleallwinenll™ + & lwi ),
3 1
I(wwye, wex)l < ”wxx"Lm"w”"wxx I < Hwiillwes§ 2 fwyeelt2
1S 9 2 -3 k1)
S cwll® lweexx I < clezllwynentl” + €y lwi7),
1 |
[(Wwyx, Wexxe)| < "w"Loo Hwex Hlwesxll < Nwll I lwell 2 lwex Ml wsexl
1 13 — 22
2 k) T
< cllwll T werex [T < cleallwexeell® + €4 lwlt3),

2 -1 2
{(Wrxxx, Wer)| < Mwax Ml weees | < esllwecex I + Es [lewxxll”

Finally the first and second terms on the left-hand side of (4.24) can be bounded as follows:

% A 2 2 3 7 ]
whdx < [[wllg Nwl® < lwl”lwell < cllwl? lwesll2
—00

2 o = ”
< c(e) l|wxxll + £ lwli 3,

o0
2 3 '
I/ ww, dx| < [wellzg lwliflwelh < (willwell 2 lwell?
S

7 5 2 -3 14
Sclwll#flweh? < cleallwenll” + &5 " llwl]3).

(8.9)

(8.10)
8.11)

(8.12)

(8.13)

(8.14)
(8.15)

(8.16)

(8.17)
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