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Abstract

The initial-value problem for the Korteweg-de Vries equation with a forcing
term has recently gained prominence as 2 model for a number of interesting
physical situations. At the same time, the modern theory for the initial-value
problem for the unforced Korteweg-de Vries equation has taken great strides for-
ward. The mathematical theory pertaining to the forced equation is currently
set in narrow function classes and has not kept up with recent advances for the
homogeneous equation. This aspect is rectified here with the development of a
theory for the initial-value problem for the forced Korteweg-de Vries equation
that entails weak assumptions on both the initial wave configuration and the
forcing. The results obtained include analytic dependence of solutions on the
auxiliary data and allows the external forcing to lie in function classes suffi-
ciently large that a Dirac §-function or its derivative is included. Analyticity
is proved by an infinite-dimensional analog of Picard iteration. A consequence
is that solutions may be approximated arbitrarily well on any bounded time
interval by solving a finite number of linear initial-value problems.

*This work was supported in part by the National Science Foundation and the W. M. Keck
Foundation. The paper was completed while the first author held a CNRS position at the Centre
de Mathématiques et de Leurs Applications, Ecole Normale Superieure de Cachan and the second
author held a post-doctoral position in industrial mathematics at the Institute for Mathematics
and its Applications at the University of Minnesota. The authors thank G. Ponce for advice and
encouragement at the outset of the present study.

1



1 Introduction

Considered herein is the initial-value problem (IVP) for the forced Korteweg-de
Vries (KdV) equation

Opu + udu + Ou = f(z,t),
(1.1)

u(z,0) = uo(z),

for z, t € R. Here, the dependent variable u = u(z, ) is a real-valued function of the
independent variables z and ¢ that in most situations where the equation appears as
a model, are related to distance measured in the direction of the waves propagation
and elapsed time, respectively. The initial value uo and external forcing f will be
suitably restricted presently.

The problem (1.1) arises naturally in situations close to those that lead to the
Korteweg-de Vries equation as an approximate model, but which feature suitably
small non-homogeneities. For example, the IVP (1.1) has arisen in studying wave
motion over a flat, horizontal bottom that has a localized perturbation (see Cole
[9] or Grimshaw and Smyth [14]) and in attempting to determine the response in a
channel to a surface disturbance moving into undisturbed fluid (cf. Akylas (1], Lee
[23] and Wu [28]). The forcing term f may also be thought of as providing a rough
accounting of terms that are neglected in arriving at the tidy KdV equation (1.2)
below.

Interest in (1.1) lagged behind that associated with the IVP

I Oy + uBpu + 02u = 0, z, t € R,

~
o
[N}

N

l u(z,0) = uo(zx), z € R,

for the KdV equation. The intensive investigation of (1.2) by an army of scientists
was sparked in large measure by the inverse-scattering theory pertaining thereto. So
far, no effective means has been found to bring this fruitful theory to bear upon the
forced KdV equation (1.1). Indeed, this has remained a major open problem since

the 1970’s (see Miura [24]).

The well-posedness of the IVP (1.2) in the classical, L,-based Sobolev spaces
H*(R) for s > 3/2 was well established in the mid-1970’s (cf. Bona and Smith
[3], Bona and Scott [4], Kato [15], [16], Saut and Temam [26] and the references
contained therein). In the early 1980’s Kato {17] discovered a subtle and rather
general smoothing effect for the IVP (1.2). While this effect had been apparent in
the early work of Cohen [8] (see also Sachs [25]), the simplicity and power of Kato’s
observations inspired new consideration of the IVP (1.2) by Constantin and Saut [10],
Ginibre and Velo [12] and Kenig, Ponce and Vega [18], [19], for example. This theory



shows the IVP (1.2) to be locally (resp. globally) well-posed in H*® provided that
s > 3/4 (resp. s = 1) [19], [20]. Recently, Bourgain [7] demonstrated (1.2) to be
globally well posed in H°(R) = L*(R) using a contraction-mapping argument in a
very cleverly chosen space. Combining Bourgain’s theory with their estimates in [20],
Kenig, Ponce and Vega [21] showed shortly thereafter that (1.2) is locally well-posed
in the space H*(R) provided only that s > —5/8.

By contrast, the theory pertaining to the IVP (1.1) for the forced KdV equation
has remained less developed. The following result was given by Bona and Smith [3]
in the early 1970’s.

Theorem 1.1 For given T >0 ands >3, if (1) uo € H*(R), (i) f € C(-T,T; H*(R)),
and (ii) fi € C(=T,T;L*R)), then the IVP (1.1) has a unique solution u €
C(=T,T}; H(R)NCH-T,T; L*(R)). In addition, the solution u depends continuously
in C'(=T,T; H'(R)) on uo in H*(R) and f in C(-T,T; H*(R))NCY(-T,T; L*(R)).

This result was strengthened recently by Zhang in [29] where he showed that the
conclusion of Theorem 1.1 holds without assumption (iii).

Tt is our purpose here to bring the theory for the IVP (1.1) into the general range
of what is known for the IVP (1.2). Four aspects of the IVP (1.1) will occupy us in
the body of the paper. Use will be made throughout of the recent developments for
the unforced problem (1.2) (cf. [6], [7], [12], [13], [18], [19], [20], [21], [30], [31]). While
in most aspects it is only required to adapt the tools available in previous works, the
theory that emerges is very much more satisfactory than the earlier results quoted
above.

Before going into a little more detail, it is convenient to discuss briefly our nota-
tional conventions.

Notation

In general, if X is a Banach space of functions of one or two variables, its norm
will be denoted by || - ||x except for the abbreviations listed now. The norm for L*(R)
will be written without decoration as simply | - || and the standard norm

vl
ol = [ (1+ 1Py la(e) Pt (13)

for the L2-based Sobolev space H*(R), s any fixed real number, will be written as
indicated in (1.3). Here and elsewhere, a circumflex adorning a function of one or
two real variables denotes that function’s Fourier transform. In one instance, it will
be useful to consider the Fourier transform of a function g = g(z,t) in only the first
variable z, and this will be indicated by the non-standard notation § = §(£,t). As
this partial transform only appears briefly, its notation should not cause confusion.



If X is a Banach space, C(a, b; X) is the set of functions u : [a,b] — X which are
continuous. This is a Banach space with the norm

sup [lu(t)] x-

a<t<b
In case a = —oo or b = oo, we will append a subscript b to connote that the mappings
u are bounded. Thus Cy(R; X) is the space of bounded, continuous mappings of R
into X equipped with the norm just displayed. The collection L?(a,b; X) is defined
similarly, as are the Sobolev classes W*?(a, b; X)) of functions whose first k derivatives
lie in L?(a, b; X).

1. Well-posedness of the IVP (1.1) in the space H*(R)

Our goal is to update the known results for the IVP (1.1) to the general level of
Kenig, Ponce and Vega’s recent work [21] on the IVP (1.2). Indeed, armed with the
new tools introduced by Kenig, Ponce and Vega [18], [21] and Bourgain [7], we are
able to show that

for given T > 0 and s > —5/8, the IVP (1.1) is locally well-posed for initial data
uo in the space H*(R) and forcing f € L*(~T,T; H*(R)) (f € L'(—T,T; H*(R))
if s > 3/4).

As a consequence of the above well-posedness result, the IVP (1.1) establishes a
nonlinear map K from the space H*(R) x L*(—T,T; H*(R)) to the space C(—T,T; H*(R))
by the specification Kr(uo, f) := u, where u is the solution of the IVP (1.1) corre-
sponding to the initial data up and the forcing function f.

I1. Regularity of the map K.

For the homogeneous KdV equation, the IVP (1.2) also defines a nonlinear map
Ky from the space H*(R) to C(—T,T; H*(R)). Bona and Smith [3], and Kato [15],
[16] showed that K is continuous from the space H*(R) to the space C(—T,T; H*(R)).
Then, Saut and Temam [26] proved that Ky is Hélder continuous with exponent 7
from the space H**'/?(R) to the space L*(—T,T; H*(R)). These early results did
not use smoothing properties of the equation. Much stronger regularity can be estab-
lished by taking advantage of the various smoothing properties possessed by the KdV
equation. Simply as a by-product of their contraction-principle approach to the IVP
(1.2), Kenig, Ponce and Vega [20] showed that the map Ky is Lipschitz continuous
from the space H*(R) to the space C(—T,T; H°(R)). Zhang [30] then proved that
the map Ky is infinitely many times Fréchet differentiable from the space H*(R) to
the space C(=T,T; H*(R)) and that for § > 0 sufficiently small, the formal Taylor
series expansion

[ore) (“} n
Ka(¢+n) = 3 22 O] (14)

n=0
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converges in C(=T,T; H*(R)) amiformly for ||k|ls £ 6, which is the same as saying
that the map Ky is analytic from the space H*(R) to the space C(=T,T; H!(R)).
Here, K,@(q&) is the n-th derivative of Ky at ¢, an n-multilinear map from the n-fold
product of H*(R) to C(-T,T; H*(R))

We show in this paper that

the map K1 corresponding to the IVP (1.1) is analytic from the space H*(R) x
L*(—T,T; H*(R)) to the space C(-T,T; H*(R)).

As a result, the solution u of the IVP (1.1) can be expanded as a Taylor series
with respect to its initial data o and the forcing function f. Since each term in the
Taylor series may be obtained by solving a linearized KdV equation, any solution of
the nonlinear IVP (1.1) can be written as a series of solutions of associated linear
problems.

IIL  Smoothing properties of the IVP (1.1).

It is a standard issue arising in the study of inhomogeneous partial differential
equations to determine whether solutions have higher regularity than the forcing
term. For the IVP (1.1), the regularity of solutions u(z,t) in the spatial variable z
is usually the same as that of the forcing term f(z,t). However, for the associated
linear problem,

O+ Ou=f, u(z,0)=0,

standard semigroup theory shows that the solution u lies in C(-T,T;H s+3(R)) if
f e W (-T,T; H*(R)). The price paid for the extra spatial regularity is that f
is required to have stronger regularity in the temporal variable t. We present here
similar results for the nonlinear problem (1.1). Indeed, we shall be able to prove the
following sort of theorem, stated here with zero initial data for simplicity.

Forug = 0 and s > —5/8, if the forcing term f € WY(=T,T; H*(R)), then the
solution u € C(—T,T; H***(R)) and if s > —~17/8, then f € W%'Z(TT,T;HS(R))
implies that u € C(=T, T} H¥(R)) for any s’ < s+ 3/2.

As a particular example, the theory allows one to take a Dirac é-function (or even
the derivative of a é-function) as a forcing function acting on the right-hand side of
the KdV equation and conclude the corresponding solution u lies in C(~T,T; H*(R))
for any s < 5/2 (for any s < 0).

Smoothing properties of the IVP (1.1) with respect to its initial data are also
considered. The IVP (1.1) is shown to have the same smoothing properties as those
proved by Kenig, Ponce and Vega [19] for the IVP (1.2).

IV. Global existence of solutions in the space H*(R).



It is familiar in nonlinear analysis that a global existence result for an initial-value
problem usually follows from a local existence result and appropriate global a prior:
estimates. For the IVP (1.1), the needed global estimates when s = 0 or s > 1 can
be established with the aid of forced versions of the conservation laws appertaining
to the unforced KdV equation (1.2). Consequently, we are able to show that for any
up € H*(R) and f € L*(R; H*(R)), the corresponding solution of the IVP (1.1) exists
globally in the space H*(R). (For 0 < s < 1, bounds can be obtained by interpolation
between s = 0 and s = 1, for example, but we leave this point aside in the present
development.) However, when —5/8 < s < 0, the needed estimates in H*(R) are not
available. The question arises naturally as to whether a solution of the IVP (1.1)
exists for all time or blows up in a finite time in the space H*(R) when —5/8 < s < 0.
This is an open question, even for the homogeneous IVP (1.2) (cf. [21]).

An interesting point that casts some light on this last mentioned issue follows from
the analyticity of the map K. For any s > —5/8 and T' > 0, let DT be the collection
of all (uo, f) € H*(R) x L?*(R, H*(R)) for which the corresponding solution u of the
IVP (1.1) exists in the whole interval (-7, 7).

For —5/8 < s < 0 and any T > 0, DT is a dense open subset of H*(R) x
L*(R, H*(R)).

The paper is organized as follows. In section 2, useful linear estimates from [21]
are briefly reviewed. Then consideration is given to the associated linear IVP

Oy + 8;(vu) + 8u = f,
{ 0s)
u(:c,O) = uo(x),

for z,t € R where v = v(z,t) is a given function. The well-posedness of the IVP
(1.5) in the space H*(R) is established and estimates of the solution in terms of ug
and f are provided. This theory is the basis for the demonstration of analyticity of
the map K. In section 3, the well-posedness of the IVP (1.1) in the space H*(R)
(s > —5/8) and the analyticity of the map K are established. Instead of dealing
directly with the nonlinear system (1.1) itself, we first consider the infinite system of
linear equations

Owy1 + O (uyr) + 83ys = by,
(1.6)
y1($>0) = hum
and, for n > 2,
3 1=/ n
6tyn + a:c(uyn) + azyn = _5 Z k az(ykyn—k),
k=0 (17)

yn(xa 0) = Oa



where u is assumed to be a solution of the IVP (1.1) corresponding to the initial data
uo and the forcing term f. According to the theory in section 2, the linear system
(1.6)-(1.7) is solvable. It is then shown that

is a solution of the IVP (1.1) corresponding to the initial data uo+ h., and the forcing
function f+hy provided the size of hy, and hy is smallin a particular sense. The well-
posedness of the IVP (1.1) and the analyticity of the map K follow as corollaries.
In section 4, we discuss smoothing properties of the system (1.1), while section 9
provides global existence of solutions of the IVP (1.1) in H*(R)-spaces. In section 6,
theory is developed for the periodic IVP for the forced KdV equation, namely (1.1)
where ug is chosen from appropriate classes of periodic functions. Results similar to
those established for the IVP (1.1) posed on the entire real line R are obtained.

2 Linear Estimates

To begin, we introduce a special Sobolev-type space used by Kenig, Ponce and
Vega in [21], which is a modified version of the space first introduced by Bourgain in

[7]-
For any s,b € R, let Y, be the completion of the space 5 (R?) of tempered test
functions with respect to the norm

1R, = [ [T 0 = P eI e Pt

where f (¢,7) denotes the Fourier transform of f(z,t). As shown in [21], if u € Ysp
with s > —1 and b > 1/2, one has

u € Cfho(R; Li(R))
for any o € (0,1 + s), and consequently
u € LE 1oo(R; Li(R)),
for 1 < p <L oo.
Let {W(t)}*% denote the unitary group generated by the operator
Af ="

in the space L?(R). Suppose that ¢ € C(R) with suppy C (-1,1) and ¥(z) =1
for every z € [—1/2,1/2].

The following lemmas are results or simple corrolaries of results in [21].
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Lemma 2.1 Let there be given s > —5/8 and o € C$*(R) with its support in the
interval (—1,1). Then there exists a fo € (1/2,1) such that for any b € (1/2, o),
there is a 05 > (2b—1)/2 for which

lo*(671)0u(uv)lly, by < c8%|lully,, [Iv]ly, , (2.1)
for any u, v €Y,y and § € (0,1).

Lemma 2.2 Let s, o and b be as in Lemma 2.1. Then, for any u, v € Y, and
T >0, there is a ¢c; = ¢1(T') such that

lo(T)0=(uv)llv, oy < exlitlly, vy, s (2:2)

Lemma 2.3 Let b > 1/2 and s € R be given. Then Y,, C Cy(R; H*(R)) and there
is a constant ¢ > 0 such that for any f € Yy,

sup || (-, 8)]ls < el f
teER

ys,b'

Lemma 2.4 For given s € R and b € (1/2,1], there is a constant c such that
(8 )W (t)uo

v,y < 647 g (2.3)

and

[(571%) [ Wit = )1 rly,, < eSO fly,, 24)
for any 6 € (0,1).

Remark 2.5 Combining (2.1) and (2.4), one has

leb(67"¢) /Ot W (t = 7)o (r/8)(0u(w0)) (-, 7)dr Iy, , < 8% |lully, flvllv.,  (2.5)

This comprises a global smoothing property of the linear KdV equation.

Attention is now turned to the linear problem

{ Opu + Oz (vu) + 02u = f,
(26)
u(z,0) = up(z),

for z,t € R, where v = v(z,t) is a given function.

Theorem 2.6 Suppose to be given s > —5/8, T > 0, b as in Lemma 2.1 with
1/2 < b <1 and v € Y,p. Then for any up € H°(R) and f € Y,p_1, the IVP
(2.6) has a unique solution u € C(—T,T; H*(R)) which is the restriction to (—T,T)
of a function u € Y, that satisfies the estimate

lally,s < ex (lolls + 1 fllv,ps ) (2.7)

where ¢; = ¢ (T? ”v“Ys,b)'



Proof: We attend first to the local existence of a solution using Kenig, Ponce
and Vega's contraction-mapping argument [20]. First rewrite (2.6) in its equivalent
integral-equation form

u(rt) = W) + [ W= mdr = | "Wt - r)0u(uv)(, T)dr.

For the given auxiliary data (ug, f) and 6 € (0, 1), define a map I' of the space Y as
follows:

D)) = BEOW @) + 967 [ Wit =) -

b(671t) /0 ‘Wt — r)o?(57)Bu(vw)(-, T,

for any w € Y;p, where o € C§° (R) with o =1 on the support of 1, and the support
of ¢ C (—1,1). Using the preceding lemmas, one sees as in [21] that if § is chosen
such that

266+ 7 ||olly,, < 1, (2.8)

then the map T is a contraction in the ball
Hyr = {w € Yop; [lwlly,, < M},

where

M = 268072 (Jluolls + 1 F1¥p-0)- (2.9)

As a consequence, there exists a u € Hjs such that

uot) = PEW Rl + (670 [ W= (m)dr

(6 [ Wt M6 o) )

In particular, one has

u(-,t) = W (t)uo(-) + /Ot Wt —T1)f(-,7)dr — /Ot W(t— 7)0g(uv) (-, 7)dT

for —6/2 <t < /2. Hence u(z,t) is a solution of (2.6) for —6/2 <t < 6/2 and in
this range of t, satisfies

lu(, B)lly,, < 2¢64722(luolls + 1/ 1¥zps ) (2.10)

This local solution is easily extended to the entire interval (=T, T). Indeed, be-
cause the time of existence § depends only on v and the solution u possesses the bound
(2.10) in Y53, a straightforward iteration of the contraction-mapping argument start-
ing with u(-,t’) as initial data at successively larger values of |t'| allows one to conclude
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in a finite number of steps existence and uniqueness on (—7,T"). The function u ob-
tained by pasting these local solutions together plainly lies in C(—T,T; H*(R)). That
it is the restriction to (=T, T) of a function in Y;; follows by writing it as a finite
sum of elements of Y, using a partition of unity of [—7', T] whose supports are based
on the local patches of solution obtained via the contraction-mapping principle. The
bound in (2.7) is obtained by applying (2.10) to each summand in the partition-of-
unity representation of u. The proof is complete. O

For any given T' > 0, s € R and b > 1/2, define
w* = {v € Ys,b : ’U(-,t) = w('at)a Vi e (_Ta T)}

and
Y;Il; = {w*> w € Y;.b}'

The space Y}, is a Banach space equipped with the quotient norm
P s,b q

Jlw”]

vz, = inf ||vly,,.

According to the definition, v € Yﬂ, is a family of elements in the space Y. It will
occasionally be convenient to ignore the distinction between the equivalence class
v E Y}_; and a representative of this class. As long as values of t € (=7, T') are in
question, this abuse causes no difficulty.

Remark 2.7 In the above notation, and keeping in mind the convention concerning
equivalence classes and their representatives, Theorem 2.6 may be restated as follows.

Let s > ~5/8, T > 0 and v € Y. Let b in the range (1/2,1] be chosen as in
Lemma 2.1. Then for any uo € H*(R) and f € Yiy_1, there is a unique u € Y};,
which is a solution of (2.6) in the time interval (=T, T). Moreover, one has

lellyz, < e (lluolls + 11 ¥sps) » (2.11)

where ¢; = c1(T, ||vlly,,) may tend to +oo if T — 400 or ||vlly,, — +oo.

3 Well-posedness and Analyticity

Throughout this section it is assumed that s > —5/8 and b > 1/2 are as in Lemma
2.1. Define the product space X, to be

Xs,b = HS(R) X }/s,b—l-

It follows from Theorem 2.6 that for given T' > 0 and (uo, f) € X, s, there corresponds
at most one u € Y, which is a solution of the nonlinear IVP (1.1) in the time interval

10



(=T,T). Thus solving the IVP (1.1) defines a map K from X,z to Y, given by
u = Ki(¢), where ¢ = (uo, f) € Xsp and u is the corresponding solution of the IVP
(1.1) if it exists.

Let DT = DT(K|) denote the domain of the map K7 in the space Xsp. Obviously,
DT is not empty since 0 € DT . We show that DT is an open set in the space X, and
that the nonlinear map K is analytic from DT to Yﬂ,

Formally, if K7 is an analytic mapping from DT to YsTb, then,forn =0,1,2,---,its

n-th order Fréchet derivative K }")(qﬁ) at ¢ € DT exists and is the symmetric, n-linear
map from X, to YST;, given as

K Dlhss o) = { g KK+ 2 6uhe) )
Leune i k=1 0,..,0

for any h1,ha, - hn € Xsp. The homogeneous polynomial K§n)(¢)[h”] of degree n
induced by K™ (4), where k™ = (h, h, ..., k) (n-components), is

K& () = {gg—nf{z(cb + £h)}

¢=0

for b = (hu,, hy) € Xsp. If we define y, by

v = KM (9)[RM,

then it is formally ascertained that for —T' <t < T,

af.yl + a.'z:(uyl) + agyl - hf)
(3.1)
yl(xao) = Rugs
and .
1&
aty'n, + ar(uyn) + (92yn = _5 Z ( Z ) am(ykyn—k)7
k=0 (3.2)

yn(:E) 0) =0,
for n > 2, where u = K;(¢) and h = (hyy, hy) € Xsp.

On the other hand, for any ¢ = (uo, f) € DT, let u = K1(¢) and consider solving
the linear systems

{ Byr + Ox(urn) + oy1 = by,
(3.3)
yl(.’IJ,O) = huov
and .
atyn + ax(uyn) + agyn = —%d)(gf) Z ( 7,: ) az(ykyn—k)a
k=0 (3.4)

yn(z,0) =0,

11



for n > 2, where h = (hy,,hs) € X;p and 1 is as in the previous section. It follows

from Theorem 2.6 that (3.3)-(3.4) defines a homogeneous polynomial of degree n from
X, to Y as described by the following proposition.

Proposition 3.1 Let T > 0 and ¢ € DT = DT (K;) be given and let u = K;(¢).
Then (3.8)-(3.4) defines a homogeneous polynomial K\™(¢)[h"] of degree n from Xsp
to Y.}, Moreover, there exists a constant c3 such that

ynllyz, < cgnll|hl,, (3-5)

for any n > 2, where ¢ = c3(T, “u'lyT ), and it may be that c3 — +00 as T — +oo0
or ”u”yT — 400, but in any case ¢z — 0 if T — 0.

Proof: The proof is a straightforward consequence of Lemma 2.1 — Lemma 2.4 (cf.
[30, Prop. 3.3]. O

Define a Taylor polynomial P,(h) of degree n, for h € X, s, by

N ,(k} ) S n
k=0 k=1 "
and a Taylor series by ®)
< KiY(g)[h*
P(h) ICZ _# (3.7)

Proposition 3.2 For any ¢ = (uo, f) € DT = DI(Kj), there exists an n > 0
depending only on ||Ki(¢ )HyT such that the formal Taylor series (3.7) is uniformly

convergent in the space Yb with respect to h € X,p with ||k]x,, < n. Moreover, if
v = P(h), then v € Y} solves the IVP

O + vdgv + 82v = f + ky,
(3.8)
v(z,0) = ug + hy,

for =T <t<T.
Proof: It is readily seen that the sequence {P,(h)}%2, of Taylor polynomials is

Cauchy in Y7 » uniformly for % in the ball of radius  in X, for suitable 5. Indeed,
because of Proposition 3.1, it transpires that, for m > n >0,

1Bn(h) = P (P)llvz, = IIZ Zillvz,

Ic'—n

k=n

m
<X alhll,

k=n

12



If n is chosen so that
n <1/(2¢s), (3.9)
then for h € X, with ||k||x,, < 7, one has

1P = PalBlz, < 2 55

which goes to zero uniformly as n, m — oo.

Since {P,(h)}%, is a Cauchy sequence in the space Y%, it makes sense to define
v = P(h) as its limit as n — oco. Then v € Y] and v solves the IVP (3.8). To see
this, note first that

ac ;:.'I:,U
”@ﬁ)zjzy&!)

k=0

= u(,0) +y:(=,0)

= up(x) + huo (2)-

Moreover, since the series P(k) is absolutely convergent in the space Ysﬂ c C(-T,T; H°(R)),
it follows that

1l

o
TN
N

[

»N

+
[~]s
‘Q

A R~
kol

+
[N
[~]s

|
N
N———

=4

3

N~

3

b
N~—

In consequence, we have

1
O + 50(v 2) 4 v = du + 2 ty’“ + 8%+

B e Py Z{ -t -z—l,ali‘f(ﬁ)az@nyn_k)}

n=0

(@u + §am(u2) + agu) + (atyl + Oz(uy1) + 52311) es

+i -,i—, {&:yk + Oz (uyr) + 5 Z < ¢ ) o (YnYn—k) + Biyk}

k=2 'n—O
= f+hy.
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The proof is complete. O

The following theorem is now readily adduced.

Theorem 3.3 (Analyticity) Let s > —5/8 be given and let b > 1/2 be as in Lemma
2.1. For any T > 0, the IVP (1.1) establishes a map K1 from the space X, to the
space YSI; having as its domain DT = DI (K;) a nonempty open subset of X,4. The
map K is analytic from DT to qu;, in the sense that for any ¢ € DT, there exists an
n > 0 such that for any h € X, with ||h||x,, <7, the Taylor series expansion

© K{M(4)[h"

Ki(¢+h) = Z f_(‘?)i_]_

ot n!
converges in the space Yf'; Moreover, the convergence is uniform with regard to h in
the aforementioned ball in X, ,.

In particular, since 0 € DT, there exists an n > 0 depending on T, such that
for any ¢ = (uo, f) € Xup with ||¢||x,, < n, the IVP (1.1) has a unique solution
u € Y}, defined at least in the time interval (—T,T'). Moreover, according to (3.9)
and Proposition 3.1, 7 — oo as T — 0. The local well-posedness of the IVP (1.1)
thus follows as a corollary to Theorem 3.3.

Theorem 3.4 (Local well-posedness) For any uo € H*(R) and f € Y,_q, there
ezists a T' = T(|uolls, || flly,,-.) and a unique u € Y.§ which is a solution of the IVP
(1.1) on the time interval (—T,T) and which satisfies

lellyz, < ellluolls + Il fll¥. - )

for some constant ¢ = c(|[uol|s, || flly,,_,) > 0. Moreover, for any T' < T, there ezists
a neighborhood U of (uo, f) in the space X, such that the map K; is analytic from
UtoYE.

Remark 3.5 The approach to the IVP (1.1) taken here is to demonstrate the analyt-
icity of the map K by establishing the solvability of the n-linear system (3.1)-(3-2).
The well-posedness of the IVP (1.1) follows as a corollary. An interesting aspect of
this approach is that it shows the solution of the nonlinear IVP (1.1) can be obtained
by solving a series of linear problems. Another interesting point emerging from the
theory is the fact that for given T' and s > —5/8, the domain DT of the map K is
a non-empty open subset of the space X, ;. This is potentially useful information in
the study of the global well-posedness of the IVP (1.1) as will be seen in section 5.

The well-posedness of the IVP (1.1) can also be established using the same
contraction-mapping argument that Kenig, Ponce and Vega developed in [21]. More-
over, as pointed out to us by G. Ponce, ! the analyticity of the map K; can be

1Private communication
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established by using the implicit-function theorem. In outline, the argument would
proceed as follows.

Let u be the solution in ¥} corresponding to (uo, ) E H*(R) x Y},_;. Consider
neighborhoods Uy, Vae, Dy of u, ug, [ 1IN sb, H*(R), Y} _,, respectively. Define a
map F from Uy, x Vi, X Dy to Y2 by

t
F(v,v,f) =v—W(t)vo — / W (t — 7)(vve — f)dr.
0
It is clear that F(u,uo, f) = 0 and that
t
Q}—r-(u,uo, Ho=v— / W (t — 7)(uvs + vug)dr.
Ju 0
Thus 2£(u, uo, f) is a map from Y., to Y%, which may be written as
oF
EJ(U,,UO,f) =1- G
where I is the identity map and G is the linear map from Yf;, to Yf}, defined by
t
Gv = / W (t — 7)(uv)edr.
0

If T is chosen appropriately small so that the operator norm of G is strictly less
than one, then it follows from elementary considerations that the map 311. OF (4, ug, f) is
invertible. There thus exists g : Vo X Dy C Vi x Dy — Y] such that

F(g(do, ), 0, ) =0, forall (a, f) € V., x Dj. (3.10)

Since the map F depends analytically on its variables, the map g also depends ana-
lytically on the variables to and f.

4 Smoothing Properties

Consideration is first given to smoothing properties of the IVP (1.1) with regard
to the forcing term f.

Lemma 4.1 For any s,b € R, the embedding
Wl_b’z(R, Hs—3(1—b)(R)) C Ys,b—l
is continuous.

15



Proof: If v = O;u, then v is a solution of the IVP
{ Opv + Oz (wv) + v = fi,

v(2,0) = £(z,0) — u/(x) - ua(c)us(a).

Because of the regularity of the initial data and the forcing term, it is deduced from
the preceding theory that u and d;u liein Yﬁ} for some T > 0. In Fourier transformed
variables, this means

L[ @ 1eD™Q+ 1A+ I - €DPlate, 7 Pdgdr < oo
Since b < 1, there is a constant ¢ such that
(L+16D < 1+ Ir = €)% + 7))
Hence it follows that

/.Z /_0;(1 + €2 4 7|10 fa(e, 7)[2dedr

= /_o:o /_Z(l + D2+ T2+ |7 — )2 la(e, ) Pdedr.

The right-hand side of the last ingeuality is bounded, so
u € Wi-b2(R; H+3(RY),

which in turn implies

Oou € L*(=Ty, Ty; H*+*1(R))

and
wdpu € L*(=Ty,Ty; H°(R)).

Finally, it is seen by writing the equation in the form
Ugex = f — UUp — Uy

that
u € C(=Ty, Ty; H3(R)).
The proof is complete. O
Remark 4.5 Ifit is only assumed f, f; € Y;_ rather than f € WY3(—T, T; H*(R)),

we still have

u € W(R : H*¥3(R)).

This follows immediately from the sort of calculation appearing in the proof of the
last theorem.
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Proof: Since

14 |€| =1+
<14 (J8 =7+ )
< (1416 = NP + |3

for some positive numerical constant ¢, it follows that for any u € Wi-b2(R, H*-30-D(R)),

Hu“%}Vl—b,Z(R'Hs-S(l—b)(R)) - f_oo [_oo(]- + |€I)25(1 + I'T = §3|)2(b_1)|u(£,'r)|2d§d7'

0o 0O e 1+ 2(1-b) 1+ 6(1-b)
= Loo /_00(1 T |£|)2( = b))(l :_ |TI|)72-(!3—b](1 :_ lT l_élé)el)z(];_b}|u(§77—)|2d£d7

< C/_oo /_00 (1 oL |El)2(s_3(1—b))(1 g |T|)2(1_b)|u(£,7)|2d£d7‘

= c|lully,, .-
The proof is complete. O

The next theorem now follows directly from Theorem 3.4.

Theorem 4.2 Let s > —5/8 be given and b > 1/2 be as in Lemma 2.1. Then for
any uo € H*(R) and f € W"¥(R, H*=30-Y(R)), there is a Ty > 0 and a unique
u € Yf; which defines a solution of the IVP (1.1) corresponding to the instial data uo
and the forcing f.

Note that the constant b in the above theorem can be chosen as close to % as one
likes. As a consequence, we have the following result.

Corollary 4.3 Let s > —17/8 be given. For any f € W22(R, H*(R)) and up €
HS+%(R), there exists a Ty > 0 such that the corresponding solution u of the [VP
(1.1) lies in the space C(~Ty, Ty, H ' (R)) for any s’ < s +3/2.

As Corollary 4.3 indicates, the price paid for a gain in spatial regularity of the
solution of the IVP (1.1) is the assumption of more temporal regularity in the forcing
function f. If one is willing to assume further temporal regularity, then the conclusion
of the last result can be strengthened.

Theorem 4.4 Let T > 0 and s > —5/8 be given and let b > 1/2 be chosen as in
Lemma 2.1. Then for any uo € H**3(R) and f € WY*(=T,T; H*(R)), there ezists
a Ty > 0 and a unique u € YSF‘G} which is a solution of the IVP (1.1) over the time
interval (—Ty,Ty) where Ty < T depends on |luolls+s and || flly, -, Moreover,

dueYh and ueC(-T,Ti; H(R)). (4.1)
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Attention is now given to smoothing properties of the IVP (1.1) with regard to
its initial data, which is the property that solutions may be more regular in their
spatial variable than the initial data. Let s > 0 and T' > 0 be given. For a function
w: R x[-T,T] — R, define the quantities

M(T,w) = sup |lw(-, )]s,
[—T,T]

T 1/2
(T, w) = (sup /—T ]D’@,,w(a:,t)Pdt) N

1/4
Xa(T, w 1) = /T 17 05w(-, )[4, dt
3\L 5 Wy _r T ’ 00
with I € [0, s — 3/4] where J* = (1 — §2)*/2,
1/2
M(Tyw;r)=(14T)" </ sup IJTw(m,t)|2d:c)
R [—T,T]
with r € [0,s3 — 3/4] and p > 3/4 a fixed constant, and
7,1'(T; w) = max {)‘1(T7w)7 )‘2(T) w), )‘3(T’w; l)7 )‘4(T,w; T‘)}
Define also the function class XTZ: ;* by
X5 ={we C(-T,T; H(R) : A)(T,w) < oo}

for (r,1) € [0,s — 2] x [0, s — 2). This linear space is a Banach space when equipped
with the norm

7l

[wllxze 2= Ap (T’ w)

introduced by Kenig, Ponce and Vega [20]. Clearly, X, T\ i a subspace of C (=T,T; H*(R))

Ty

with a stronger topology. It has the following properties established in [20].

Proposition 4.6 Let T > 0, s > 3/4 and (I,r) € [0,3/4] x [0,3/4) be given. Then
there is a constant ¢ independent of ug, f,u and v such that

IW (t)uoll s < cluoll, (4.2)
t T
| [ Wt=n)fCndrligme S+ T [ I5Cmldr, (43)
and T
S 18e(uv)ludt < 21+ T |l o]l (4.4)

where p > 3/4 is another constant that is independent of u and v.
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The answer is affirmative if s > 3/2 and the proof is an easy exercise. The issue
remains open when s < 3/2. There are many discussions in the literature about the
uniqueness problem for the IVP (1.2) for the KdV equation (cf. [13] and [22]). But
the results thus far extant require that either the solution w is in a stronger space
than C(—T,T; H*(R)) or the initial data decays at a certain rate as £ — +o0o. The
uniqueness results appearing in Theorem 3.4 and Theorem 4.8 also require solutions
in spaces stronger than C(—T,T; H*(R)), namely 37’;, and Xg: i°, respectively. On
the other hand, these uniqueness results do imply uniqueness of the so-called strong
solutions of the IVP (1.1). These are defined as follows.

Definition: A function u € C(=T,T; H*(R)) is called a strong solution of the IVP
(1.1) if there exists a sequence {um}2_, lying in C=(—T,T; H*(R)) such that

atum el uma:cum s agum = fm
forz € R, te (-T,T),

lim sup “um(,t) - u('7t)”5 . 0’
M= _ P i T

and for which

Jim N\ fm — fllzz-rmmegy = 0-

Proposition 4.9 Let s > —5/8 and T > 0 be given. Then the IVP (1.1) has at
most one strong solution u € C(—T,T; H*(R)) for any given uo € H*(R) and f €
L¥(~T,T; H*(R)).

Proof: It suffices to show that if u € C(—T,T; H*(R)) is a strong solution of the
IVP (1.1), then u € Y} since the IVP (1.1) has at most one solution in this space.

Let {um}_, be a sequence of functions corresponding to the assumption that u is
a strong solution of the IVP (1.1). Our theory shows that for all m, un € YZ. Note
that fn tends to f in the space L:(—T,T; H*(R)) and that um(:,0) tends to uo(+)
in the space H*(R). In addition, sup_rcicr ||um(:;t)|ls is bounded independently of
m. It follows from the local well-posedness result in Theorem 4.8 that the sequence
{um}*_, is a Cauchy sequence in the space Y}, whose limit v is a solution of the IVP
(1.1) corresponding to the given uo and f. Since u is a limit of {un,} in the space
C(-T,T;H*(R)) and the space Y is a stronger subspace of C(-T,T; H*(R)), we

must have u = v. O

Corollary 4.10 Let s > 3/4 and T > 0 be given. Let uy be the unique solution of
the IVP (1.1) in the space XZ:,’S and u, the unique solution of the IVP (1.1) in the
space Yf;, Then u; = ug for =T <t <T.
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Remark 4.7 The estimate (4.2) reveals a stronger version of both the Kato smooth-
ing effect and the Strichartz’ global smoothing effect for the unitary group W(t) (see
[20]). The estimates (4.3) and (4.4) show a global smoothing property which is similar
to (2.5).

In [20], Kenig, Ponce and Vega showed that for any up € H*(R) with s > 3/4,
the IVP (1.2) for the homogeneous KdV equation has a unique solution u € XTT, °. A

similar result holds for the IVP (1.1) of the forced KdV equation. Indeed, the same
arguments as those used in section 3 provide the following result.

Theorem 4.8 Let s > 3/4, T > 0 and (I,r) € [0,s — 3/4] x [0,s — 3/4) be given.
Then for any (uo, f) € H*(R) x L*(—=T,T; H*(R)), there are positive constants

&5 C(“UOHS, ”f”Ll(—T,T;H-’(R)))

and

T = Ta(|luolls; | fllzr (-1 1msry) < T,

and a unique solution u € XT:’:}’S to the IVP (1.1) satisfying
lull x7ye < e(luolls + 1 1lzs (-z.rsmre(ay)-

Moreover, for any T' < Ty, there exists a neighborhood U of (uo, f) in the space
H*(R) x L'(—T,T; H*(R)) such that the map K is analytic from U to the space
X2

The space L*(—T,T; H*(R)) is a subspace of the space L}(—T, T; H*(R)) and the
space Y;p-1. But the space Y} and the space Xg: ;> are not related by one being
included in the other. Neither are the spaces L'(—T,T; H*(R)) and Y; ;_; so related.
This raises an interesting question. Suppose up € H*(R) and f € L*(-T,T; H*(R))
with s > 3/4. Then Theorem 3.4 provides a solution u; € Y/; for the IVP (1.1) and
Theorem 4.8 provides us another solution u; € X;f? i’. Are these two solutions the
same? This question is related to the following uniqueness problem for the IVP (1.1).

Uniqueness Problem: Suppose uy, uy € C(=T,T; H*(R)) are both solutions of
the equation

O+ ubpu + Bu = f

for some f € L*(=T,T, H*(R)). Does the fact ui(-,0) = uy(-,0) in the space H*(R)
imply ui(+,t) = ua(+,t) in H°(R) fort € [-T,T)?
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Proof: It follows from Proposition 4.9 and the fact that both uy and uy are strong
solutions of the IVP (1.1). O

In consequence of these developments, we have the following result.

Theorem 4.11 Let s > 3/4 and T > 0 be given. For any up € H*(R) and f €
L2(~T,T; H*(R)), there ezists a Ty = Ty(luolls, | fll 2 -T.smemy) < T such that
the IVP (1.1) has a unique strong solution u € C(=Ty,Ty; H*(R)). Moreover, the
solution lies in Yﬁ} and X,::f‘s, where b > 1/2 is as in Lemma 2.1 and (l,r) is as in
Proposition 4.6.

5 Global Existence Results in the Space H*(R)

The local well-posedness theory developed in the preceding sections leads naturally
to consideration of whether or not the solutions can generally be continued in time,
s0 becoming global solutions of the IVP. Of course, if the auxiliary data (uo, f) is
sufficiently regular, global solutions are known to obtain therefrom via the earlier
theory [3], [29]. However, for weaker specification, it is possible that solutions might
blow up in finite time, so ceasing to exist at a certain point. This issue arises pointedly
when one is concerned with the IVP (1.1) as an approximate description of wave
phenomena.

The following two criteria for whether or not a solution of the IVP (1.1) ceases
to exist in finite time follow from Theorem 3.4 and 4.8, respectively, by a standard
argument. Throughout this section, we continue to suppose that b > 1/2 is fixed in
accordance with the requirement that Lemma 2.1 is valid.

Proposition 5.1 Let s > —5/8 and T > 0 be given. Then for any uo € H*(R) and
f € Y,p1, there exists a mazimal value Ty with 0 < Ty < T such that the IVP (1.1)
has a unique solution u € qu;f for any Ty < Th. The mazimal value Ty < T' if and
only if

lim ||u(-,t)||s = +o0.

t—=T,

Proposition 5.2 Let s > 3/4, (I,r) € [0,s —3/4] x [0,s — 3/4) and T > 0 be given.
Then for any (uo, f) € H*(R) x L}(—T,T; H*(R)), there is a mazimal value Ty with
0 < T, <T such that for any T, < Ty, the IVP (1.1) has a unique solution u € Xt
and Ty < T if and only if

lim ||u(-,t)|ls = +oo.

N

In consequence of these results, global a priori estimates for solutions of the IVP

(1.1) in the space H*(R) suffice to infer the global well-posedness of the IVP (1.1).
It is to the provision of such bounds that attention is now turned.
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Lemma 5.3 Let there be given T > 0 and u € C(—T,T; H®(R)) a solution of the
IVP (1.1). Then the following inequalities appertain to u:

sup )l < (fuoll+ 17,00t ), 6.1

T
sup [lu(-, )l < ¢ (||uo|12 + ol + [ nf(-,t>nldt) , (52)
[_T7T] -T

and for any s > 0,

T T
sup )l < v ([ 10wt ot ) (ol [ 11 O0) (52

where the numerical constants ¢ and ¢, are independent of ug and f.

Proof: The proof of the estimates (5.1) and (5.2) is standard. The estimate (5.3)
follows from the argument used in the proof of Lemma 3.2 in [19]. O

Theorem 5.4 (Global well-posedness) Lets>1,T >0 and (I,r) € [0,s—3/4] x
[0,s — 3/4). Then, for any (uo, f) € H*(R) x L}(—T,T; H*(R)), the IVP (1.1) has
a unique solution u € Xg:,’s. Moreover, the corresponding map K ts analytic from
H*(R) x LN(=T.T; H*(R)) to the space X{".

Proof: This follows from the global a priori estimates (5.2), (5.3), Proposition 5.2
and Theorem 4.8. O

Theorem 5.5 (Global well-posedness) Let T' > 0 be given.

T4 7 T2/ _m m. 120 D\

) o ey (0 £~ T2(D\ .. . 4L - TI7D
(&) L£07 Ghy \UgyJ) © L(1l) A L(—dL,y L, L \1L)), Wi I

VP (1.1) has a unigue
solution u € YOTb and the associated correspondence Ky is an analytic mapping between
these spaces.

(i) For any s > 1 and (up, f) € H*(R) x L*(=T,T; H*(R)), the IVP (1.1) has
a unique solution u € Yf;, N XZ,‘S and in this case also Ky is an analytic mapping
between these function classes.

Proof: In the case s = 0, the result follows directly from the a prior: estimates (5.1)
and Proposition 5.1 by a standard argument.

If s > 1, the IVP (1.1) has a solution u € X,?:,’a according to Theorem 5.4. In
particular,

sup [[u(-, )l < +oo. (5.4)
[“T’T]
On the other hand, from Corollary 4.10,
u(-,t) = v(-,t) in the space H*(R), for t € (—T1,T), (5.5)
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where v is the unique solution of the IVP (1.1) in the space Yg;} corresponding to
(uo, f) for some Ty > 0. Because of the estimate (5.4) and Theorem 3.4, the solution
v can be extended to the whole interval (=T, T) in such a way that v € Y2 and (5.5)
holds for t € (=T, T). The proof is complete. O,

The case wherein —5/8 < s < 0 is interesting since the needed global a priori
estimates are not available, although the IVP (1.1) has been shown to be locally
well-posed in the relevant H°(R)-space. This raises the question mentioned before
of whether the corresponding solutions blow up in finite time or exist globally in the
space H*(R).

As an application of the analyticity of the map K7, a partial answer to this problem
can be provided. For (ug, f) € Xsp, the corresponding solution u of the IVP (1.1)
exists globally in the space H*(R) if and only if

(uo, f) € DT = DI (K;), for any T > 0.
Now we know that if —5/8 < s < 0, then
L*(R) x L*(R; L*(R)) C DT

for any T > 0. In addition, DT is a non-empty open subset of X, according to
Theorem 3.1. The following theorem is then obvious.

Theorem 5.6 Let s > —5/8 be given. Then, for any T' > 0, DT = DI(K;) is a
dense open subset of the space Xsp.

We close this section by giving still another global existence result.

Theorem 5.7 Let T > 0 and s > 0 be given. For any
uo € H*Y*(R) and f e WH(-T,T; H°(R)),

there exists a unique u € Y], which is a solution of the IVP (1.1) in the time interval
(—T,T). Moreover,

Oyu € Ysl_;, and u € C(=T,T; H**(R)).

Proof: It follows from Theorem 5.5 (s = 0) and Theorem 2.6 that u, us € ¥a.
Then using the argument presented in the proof of Theorem 4.4, one has u €
L*(~T,T; H**3*(R)). In particular,

T
[ 10zu,)lmydt < oo.
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It then follows from (5.3) that

sup |lu(:,%)|ls < o0
[_TvT]

for any s > 0. As a result, u € Ys?; Then Theorem 4.11 implies
b €YE, weC(-T,T; H*(R))

for any T > 0. The proof is complete. O

6 The Periodic Forced KdV Equation

In this final section of the paper, we analyze the periodic initial-value problem
for the forced KdV equation. The situation in view assumes that both the initial
data and the forcing function as regards its spatial variation are periodic of the
same period, and focuses on solutions having the same periodicity in space. This
problem is usually somewhat artificial as regards application to physically interesting
situations. However, it frequently arises in numerical simulation where unbounded
domains are hard to model and the relative simplicity of imposing periodic boundary
conditions is very attractive. As a model of physical reality, the idea is usually that
the initial disturbance and the forcing often take place far from boundaries, and hence
the imposition of periodicity should not affect the solution significantly provided the
period is large enough. According to the theory in [5], this approach is justified over
certain time scales provided the initial data is suitably evanescent at +oo.

Here, we treat the periodic IVP with a finite period, and leave aside the question
of the relationship between the periodic IVP and the pure IVP. Because the period A
is finite and the equation is written in a frame of reference having no linear transport
term J,u, a simple change of variables allows us to assume A = 1, and this convenient
normalization will be adopted hereafter.

Let H*(S) denote the real Sobolev space of order s (s > 0) on the unit-length
circle S in the plane. H°(S) may be characterized as the space of real 1-periodic
functions v whose Fourier series

v(z) ~ _i vkexp(2irke) (6.1)

1s such that

1

o]l = {i(l " |k|)25|vk|2}5 o (62)

—00

The left-hand side of (6.2) defines a Hilbert-space norm on the linear space H*(S).
Let D? represent the fractional derivative of order s, so if v has the Fourier series in
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(6.1), then
D*v ~ > vilk|*exp(2imkz).

We consider the IVP for the forced KdV equation, namely
O+ ubpu + 02u = f, u(z,0) = uo(z), (6.3)

forze S,t€R.

The IVP (6.3) is first normalized by subtracting the mean-value of a putative
solution. For any integrable, real-valued function g defined on S, its mean value is
denoted by [g] and is given by

g1 = [ 9(e) de.

Let u be a solution of the IVP (6.3) and let v = u — [ug). Then v is a solution of the
VP

Byv + [uo)Bpv + vOpv + O = f,
(6.4)

v(z,0) = uo(z) — [uo]-
Tt is straightforward to see that [v(-,t)] = 0 provided that [f(-,¢)] = 0.

Let s >0 and B € R be given. For w: S x R — R, define A?(w), j=1,2,3, to
be
M) = (

n=-0o

- - 1/2
55 @ ln [7 0+l = o+ gl nPar)

o

s I W
A(w) = ( et [ ey ﬂnldT) |

[e o]

. o\ 1/2
A (w) = ( S 1+ n])* [/_o:o 1+ [1;”5”:;1 ﬂn|dT] ) .

n=—oo

Define the Hilbert space Zj3 by
25 = {w e L*(S x R) : A{(w) < oo}

equipped with the norm
lwllz; = A% (w).

In addition, let
Fg={f(z,t): ¢ €8, t€ R Aj(f)+A5(f) < oo}
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with the norm
1 7lls := AS(f) + AS(CH).

Obviously, we have

L*(R,H*(S)) C F}.

The space Zj was first introduced by Bourgain [7] to deal with the periodic IVP for
the homogeneous KdV equation. It has the following properties.

Lemma 6.1 Let s > 0, 8 € R and let u, v € Z§ satisfy
[u](t) =0, [v](t) = 0. (6.5)
Then it follows that
l146(67) 05 (uv)]

where ¢ is as in Lemma 2.4, an element of CP(R), suppyp C (=1,1) and p =1 on
[-1/2,1/2].

a1
Fy < ¢87 [|ul 73

v ZE’ (66)

Remark 6.2 This is very minor modification of Lemma 7.41 and 7.42 in Bourgain
[7). A nice feature of the spaces Z is that their structure absorbs the dispersion
relation of the KdV equation. The estimate (6.6) reveals a very subtle smoothing
effect in this context.

The following two technical lemmas may be found worked out in Bourgain [7] and
Zhang [31].

Lemma 6.3 For any h € Z3,
1% (67 )Rl z5 < c(b)61 72| A |z, (6.7)

for any b with 1/2 < b < 1, where v is as above. The constant ¢(b) may tend to 400
as b — 1/2.

Let {Wp(t)}=,, denote the unitary group generated in L2(S) by the operator
Apf = —f" - Bf,
which is defined for any f € H3(S).

Lemma 6.4 Let ¢ be as above, let B € R be fized and let ug € H*(S) and f € Fj,
where s > 0. Then we have

19(87 ) W (t)uo|

z5 < cuolls, (6.8)
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& 1-2b
b(67%0) [ Walt = 1)f(r)drlizg < 8% x5, (69)
for any b > 1/2, where ¢ may depend on b. For any T with 0 < T < oo and f € F,

Jiis0) [ Wate = n)somyar| < eadl)

S
Define another space X3 by
X5 = {(uo, f) € H*(S) x F§ : [uo] =B, [f(-,1)]=0}
and for any T > 0 and s > 0,
257 = 25 N C(=T,T; H'(R)).

As in the non-periodic case, the IVP (6.3) defines a nonlinear map Kp from the space
X5 to the space Zj 1 via the correspondence Kp((uo, f)) := u, where u € 23 r is the
solution of the IVP (6.3) on the time interval (—T,T) corresponding to the initial
data uo and the forcing term f.

Let DT (Kp) be the domain of the map Kp. Then an argument entirely similar to
that used in the non-periodic case gives the following.

Theorem 6.5 Lets >0, T > 0 and B € R be given. Then the following results hold.

1. (Analyticity) DT (Kp) is a non-empty, dense, open set in the space X3 and the
map Kp is analytic from its domain to the space Z§ 1 (cf. [81]).

2. (local Well-posedness) For any (uo, f) € X3, there exists a Ty = Ta(Jlulls, ||f||F§)
with 0 < Ty < T such that the IVP (6.3) has a unique solution u € Zjr,.
Moreover, for any T' < Ty, there is a neighborhood U of (uo, f) in the space Xj
such that the map Kp is analytic from U to the space Zj 1.

3. (Global well-posedness) If s =0, or s =1, or s 2 2, then
H*(S) x L*(-T,T;H*(S)) C DT(Kp).
The following is a version of Theorem 5.7 for the periodic IVP.

Theorem 6.6 Let s > 0 and T > 0 be given. Then, for any ug € H*t*(S) with
[uo] = B and f € WY2(=T,T; H*(S)) with [f(-,t)] = 0, the IVP (6.3) has a unique
solution u € Z§ p. Moreover,

Oue Zzr and u€ C(-T,T; H**(39)).
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A version of Lemma 4.1 for periodic function classes is the following.

Lemma 6.7 Let s, € R be given. Then
W1/2’2(R, HS(S)) - Fg’
for any s’ < s+ 3/2.

As a consequence, one can show by methods that are now familiar the following
theorem.

Theorem 6.8 Let s > —3/2 be given. For any uy € Hs+%(S) with [uo] = B and
f e WY22(R, H*(S)) with [f(,t)] =0, the corresponding solution u of the VP (6.3)
lies in the space Z§ 1 for any s' < s+ 3/2, where T > 0 may depend on |lug||s13/2
and “f”F;+s/z.

There are two serious restrictions in the above results. First they require [f(-,%)] =
0 to get an existence result. Secondly, the map Kp is only shown to be continuous
from the space Xj to the space Z4 7 rather than from H*(S) x L%(R, H*(S)) to
C(=T,T; H*(S)). For instance, if f = 0, v, = uo/n with uo a non-zero element
of H*(S), the above result does not imply that the corresponding solution w, of
associated IVP (6.3) goes to zero as n — oco! These restrictions result from the
assumptions entailed in Lemma, 6.1. It is not clear whether they can be removed.

On the other hand, it has been known for many years that the map K correspond-
ing to the IVP of the homogeneous KdV equation is continuous from the space H*(S)
to the space C(—T7,T; H*(S)) when s > 3/2 (cf. [17] and [26]). In the following we
show that a similar result holds for the forced KdV equation using energy estimates.

Theorem 6.9 For s> 2 and T > 0, if ug € H*(S) and f € LN=T,T; H%(S)), then
the IVP (6.3) has a unique solution u € C(~T,T; H*(S)). Morcover, the solution u
depends continuously on ug in H*(S) and f in LY(=T,T; H*(S)).

Remark 6.10 If 3/2 < s < 2, a local well-posedness result can be obtained using
the same approach.

Proof of Theorem 6.9: It suffices to show the existence and continuous dependence.
The proof of the uniqueness is a simple exercise for this range of s.

First choose a family {f.} c C(0,T; H*(S)) and a family {¢} € H*(S) such
that, for any r > 0 and € > 0,

”¢6“8+r == 0(6_§)a ”¢e . uO”S—r = 0(6_5)5 (6'10)
| fellor(-rmmro(s)) = O(7%) and  ||f. — Flles-r.rime—r(s)) = o(€¥), (6.11)
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as € | 0. The construction of such approximating families is straightforward and may
be found in [3}, for example.

For € > 0, consider the regularized IVP
Opu’ + usdgut + 02uf = f, u(z,0) = ¢(z). (6.12)

It has a unique solution u¢ € C(=T,T; H*(S)) (cf. [3] and [26]).
Claim 1. Given T > 0, there are constants K, independent of € such that,

sup |lu“(-,t)|ls < K, (6.13)
["TvT]
and for any r > 0,
sup] ”ue("t)”s+r =0 (E_E) (6.14)

ase |0
It is not difficult to show that (6.13) is true when s = 2 by using the forced version
of the conservation laws for the KdV equation. This bound implies ||u||2 is bounded
by a constant Kj, independently of 1 > ¢ > 0 and ¢t € [-T,T). In general, for [ > s,
we apply the operator D' to both sides of the equation in (6.12) and take the L?-inner
product of the resulting equation with D'u¢, coming thereby to the relation
1d
2dt

Write the second term on the left-hand side of the last equation as

| D'ul))2 + (Dl(ueazue),D'uc) = (lee,Dlue) i

(ueDlazu‘,D'ue) + ([D' : ue]azue,Dlue) A

where the commutator [D' : u]v = D'(uv) — uD'v. Applying Lemma 1.1 in [26] and
using the fact that D' and 8, commute shows that, on account of the just mentioned
bound on [|uf|s,

INA

| (D! (utdpue), D'u)

e lallu|la] Dw]| + |(w D' Bpus, D'ue)

VAN

1
Ko|| D'l + 5 |(8.uDiu, D'ue)

IN

€ € 1 € € €
(Cffz(llu | + || D'ue]l) + -2‘||u [l2]| D'u H) || DM
c1||D'ufl] + co|| D'l

IN

In consequence, there appears the differential inequality
1d

S 1D < el Dl + DLl + ),
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This in turn implies that

T
|0 < c(n¢6n1+ /. erllzdt)

for a suitable constant ¢ that depends on T' and the bound K on |[uf);. Reference
to (6.10) and (6.11) shows that both (6.13) and (6.14) hold.

Next it is shown that {u‘}cso is a Cauchy sequence in C(~T,T; H*(S)). Its limit
as € — 0 is the desired solution of the problem. This approach has the advantage
that it provides the continuous dependence of solutions on the auxiliary data almost
automatically (see [3] and [19]).

Assume 0 < ¢ < € and let w = u® — u¢. Then w solves the IVP

Osw + uOw + whyus + Bw=AFf w(z,0)= Ay, (6.15)
where
Af = Je— fe, A"/’ = $e — o
Claim 2.
sup |lw(-,t)]li =0 (eT) (6.16)
[_TvT]
as € ] 0.

In fact, taking the L*-scalar product of each member of the equation in (6.15)
with w, there appears

1 i
[wl? + (Beucw, w) — 5 (Bpu,w) = (Af,w),

4 - I

| —
5| o

which implies that
T
owp 1,01 < e(avl+ [ 16 7a)

[-T,T]
= o (6%) (6.17)

because of (6.13). Then, applying 9, to each member of the equation in (6.15) and
taking the L?-scalar product with 8,w, we see after integration by parts that

d / /
Zl8e0l* = — (8o + 20,4 )0, B,w) —~ 2 (82u'w, Bw) + 2 (8, A f, Bpw)
< Jluf + 2u allGowl|? + |u o lfwlloolOew]] + 14 F1]||Be0]

< alldowll + collwlloo||0:0]] + 118 A f][| Oz
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by (6.13), which, when combined with (6.17), implies (6.16).

Now we prove that
sup. () = o) (6.18)

as € | 0. Applying D* to each member of the equation in (6.15) and taking the
L?*-scalar product with D*w, there obtains the differential equation

%HDSwH2 = —-2(D*(u‘0w), D°w) — 2 (D’(w&ucl),Dsw) +

+ 2(D°Af,D'w). (6.19)

By again using Lemma 1.1 in [26] and (6.13) in (6.19), it is found as above that

| (D*(uBpw), D°w) | = [([D* : uldsw, D*w) + (u*D** 1w, D*w) |
< | Dl
and
’(Ds(wazue'),Dsw)’ = ]([Ds s wlud', D*w) + (wDSHuf',Dsw)]

< D wlu|| | D*w]| + | D*Hue |||y || D w]|
< o|D*w|f? + o(eFH)O(78) || D*w|

< dlDwlf + o1) | D],
It thus follows from (6.19) that
d S s $ S S
FIP°wll* < el D*wll* + o) D*w]| + | D* Af|||| D*w],

which implies (6.18). The proof is complete. O
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