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This essay is concerned with computation as a tool for the analysis of mathematical
models in economics. It is our contention that the use of high-performance com-
puters is likely to play the substantial role in providing understanding of economic
models that it does with regard to models in the physical and biological sciences.
The main thrust of our commentary is that numerical simulations of mathematical
models are in certain respects like experiments performed in a laboratory, and that
this view imposes conditions on the way they are carried out and reported. Journal
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1. INTRODUCTION

The principal aim of this article is to provide commentary on the use of
high-performance computers combined with numerical algorithms in the
investigation of mathematical models of economic activity. The use of
computer simulation to provide insight into mathematical models is dis-
tinguished from the better developed use of computers in recording and
processing economic data, and it is intended here to concentrate only on
the former.

There are several points to be emphasized in the body of this essay.
A central one is that computer simulation is destined to become more
commonly used in attempting to understand detailed behavior of simple

* The authors thank Karl Shell for the idea of writing this article and for his remarks on
an earlier draft. Ken Judd provided very helpful commentary on a second draft for which we
are most grateful. We are also indebted to our collaborators Jenny Li and Jesus Vigo for their
active participation in the numerical examples stemming from our joint work.
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242 BONA AND SANTOS

economic models, and for comprehending fundamental aspects of more
complex ones. This lends importance to the primary item of discussion,
which centers around the contention that computer simulations of mathe-
matical models have much in common with laboratory or field studies in
the natural sciences. All of these activities comprise sampling aspects of
something that is usually too complicated to deal with as a whole, in the
hope of finding patterns or other information that convey understanding of
some of its essential features. In the case of a field or laboratory study, one
obtains data about physical processes using various measuring or sensing
devices. A numerical simulation gathers information about a mathematical
model by using various approximation techniques and an associated com-
puter program. In all these situations, there is an art to conducting the
investigation in a telling way. But in the case of laboratory or field projects,
there are also well-understood guidelines pertaining to setting up and
conducting the study and reporting the outcome. If one agrees with the
analogy we draw, then it becomes immediately attractive to carry these
guidelines for laboratory and field work over to the realm of simulation of
mathematical models. For example, it would never occur to a good
experimentalist to report findings without the particulars of how they were
secured. The same is true of field studies; data reported without a complete
description of how and in what circumstances they were obtained is usually
not going to be taken seriously.! It is our conviction that such attitudes
should generally prevail regarding carrying out and reporting numerical
simulations of economic models. For instance, to generate confidence in
reported numerical results, it is necessary to set about these experiments
in an environment of a firm analysis concerning possible differences in
behavior between the computed and true solutions. A cursory remark to
the effect that solutions were computed and the display of an associated
computer-generated graph or table is at best inadequate reporting, and it
may conceal a poor job of constructing and verifying a numerical
approximation together with an associated computational algorithm for
obtaining the putative solution. These sentiments will be amplified below.
We believe that the themes discussed presently concerning computational
methodology and reporting deserve to become common practice.

We begin the discussion with a brief commentary about the advent of
computer simulation in the physical sciences to set the stage for remarks
more specifically aimed at economic simulation. It must be acknowledged,
however, that many of the general remarks made later in the Introduction
and in Section 2 apply to computer simulations used to study issues in a
wide variety of areas.

' Likewise, the editor of a good physics journal would not consider asking an author to
delete such details, but would instead view them as an essential part of the research.
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Through the 19th century, mathematical modeling was mainly confined
to the physical sciences, though simple economic balance laws were cer-
tainly expressed in Walras’ classical work and Mendel’s work on genetics
made use of elementary probability theory. In the physical sciences, much
of the serious theoretical progress through this period was made on the
basis of linear approximations, though there was no shortage of rather
complex, nonlinear models in existence, some dating back to the 17th and
18th centuries. Analysis of nonlinear models in the physical sciences gained
a little momentum toward the end of the 19th and in the early 20th cen-
tury, e.g. in the works of Stokes, Rayleigh, Boussinesq, Poincaré, and later
Birkhoff, Kellogg, Schauder, and Leray, to mention a few.

In the last few decades, remarkable progress has been made in develop-
ing tools and techniques for the analysis of nonlinear problems. In finite
dimensions, one has the beautiful theory of dynamical systems. In infinite
dimensions, a plethora of methods from functional analysis and differential
geometry have been used on problems originating in mathematical models
bearing on issues arising in the physical, biological, and social sciences. At
the same time, stochastic analysis has reached new levels with discoveries
such as the Itd calculus.

While the arsenal of techniques applicable to the analysis of nonlinear
systems has recently grown enormously, it must be acknowledged that our
collective hands are often tied when confronted with what appear to be
simple nonlinear problems. Even in situations where modern analysis
affords us with a helpful methodology, it frequently fails to provide the
specific predictions needed to test a model. Moreowver, if reliance is placed
solely on analytical methods coupled with the occasional, small-scale
numerical example carried out by hand, then the scope of inquiry is limited
to only the most elementary of models.

In situations where our analytical resources fail to cast light, computa-
tional simulations of a model can provide much needed clues to what con-
stitutes the true behavior of the system in question. This approach has had
considerable recent success in many areas of the physical and biological
sciences and in mathematics itself. Indeed, whole areas of inquiry owe their
existence to the careful examination of well-conceived numerical computa-
tions. And some of the progress in nonlinear analysis referred to above was
suggested initially by the outcome of computer simulations of particular,
important models.

Economic modeling embraced a rigorous method of analysis with the
general equilibrium theory of the members of the Carl Menger seminar in
Wien, Abraham Wald being perhaps the most noteworthy personality of
the group. It was not long before this activity reached North America, and
found in John von Neumann a unique driving force. The mathematical
approach to the study of market behavior came of age in the early 1950s
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when the proof of existence of equilibria in a general competitive setting
was provided by Arrow, Debreu, and McKenzie. Analysis of mathematical
models was later extended to different economic frameworks, including the
activity analysis approach pioneered by Koopmans and its development
within the linear programming framework by Dorfman, Samuelson, Solow,
and Gale, the mechanism design literature pioneered by Marschak and
then Hurwicz, and the optimal growth or turnpike literature that merged
the models of Ramsey and von Neumann and to which Gale, Morishima,
McKenzie, Radner, and Uzawa were some of the crucial contributors. The
optimal growth framework, together with the consumption-loan model of
Samuelson, freed competitive equilibrium theory of its static straitjacket
and set it on the road to a fully developed mathematical theory of time-
dependent competitive equilibrium, realizing after some 30 years the
research program outlined by John Hicks in his classic treatise Value and
Capital*

One troublesome aspect of a considerable portion of economic modeling
is its essential nonlinearity, sometimes made even less tractable by being
coupled with a stochastic element. Because of this, the analog in £CONOMmics
(linear programming, input-output analysis, and the like) of the very fruit-
ful linear period that characterized much of 19th-century physics has had
a shorter run.

Considering this state of affairs, it is not surprising that the use of
numerical simulation in economic theory is increasing. Even linear or static
models such as those found in the works of Leontief, Tinbergen, Johansen
and Scarf (cf. [35, 60]) benefit from the use of high-speed computers, not
so much because the behavior of solutions is mysterious as because the
number of variables is quite large. Numerical methods show their power
even more clearly on fully nonlinear problems such as the above-mentioned
dynamic equilibrium frameworks of optimal growth and overlapping
generations (cf. [38, 40, 54, 67]). While these tools are not yet common-
place in economic analysis the way they are in the physical and biological
sciences and mathematics, it seems safe to predict that they will grow in
importance in the same way as in these other disciplines. One should also
expect that these methods will help to bridge the traditional gap between
theoretical and applied economic analysis.

With the prospects presented by the relatively new computational tools
at our disposal go certain responsibilities, and it is to these that the present
work speaks. The crucial realization mentioned already is that usually
numerical simulations of 2 model have many aspects of an experiment, and
consequently they should be performed and evaluated with the same sort

2 For further history and recent developments in these areas the reader is referred to the
monographs {3, 4, 33, 59, 64].



ON THE ROLE OF COMPUTATION 245

of critical eye that is appropriate to laboratory or field studies. In the body
of this paper, the reader will find discussed various technical aspects of
numerical simulation as a tool in economic analysis, together with poten-
tial pitfalls associated thereto. The issues under discussion are illustrated
with a couple of extended examples.

The plan of the paper is as follows. In Section 2 a framework is put
forward for carrying out mathematical modeling in which our discussion of
numerical simulation is to take place. Section 3 deals with the formulation
of discrete models and algorithms for their solution, analysis of the algo-
rithms, and procedures to follow when testing computer codes based on the
algorithms. Procedures to follow when reporting numerical results are
briefly discussed in Section 4, while Section 5 deals with the very important
issue of interpreting the output of numerical simulations. We close our
study in Section 6 with some suggestions for further reading.

Some of the important points that will be raised in the course of our dis-
cussion are the following.

« When the model is rendered fully discrete in preparation for
generating a computer code to simulate it, does the discretization mirror
well the general structure of the situation under consideration?

o Is the algorithm for the simulation of the model correctly coded
(correctly realized as a set of computer instructions)? How do we know?

. How accurate is the algorithm? What tests were performed to
determine its accuracy, stability and other characteristics?

« Is there any theory of convergence ot provision of error bounds for
the algorithm? If so, are the test simu}atignsﬂconsistent with this theory?

. How efficient is the algorithm? Are there algorithms that produce
the required accuracy at less cost?

. If the model's quantitative predictions are being taken seriously,
how has the model been calibrated? Was the calibration independent of the
predictions on which the model’s success is being judged?

o When numerical results are reported, is enough information
provided so that a skeptical reader can reproduce them?

. How well has the state space been sampled before general conjec-
tures are formulated?

e Is there unwarranted identification between the numerical
experiments and the mathematical model?

« Is there unwarranted confusion between the numerical experiment
or the model and reality in forming interpretations of the results?

—_— ———r— T
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2. MATHEMATICAL MODELS

Our purpose here is to provide a general framework to which the more
particular development of numerical simulation will refer. The structure
presented is commonplace, and so our description need not be elaborate or
exhaustive. Nevertheless, it will be useful presently to have these ideas
specifically laid out. Not everyone will agree with all aspects of the concep-
tion put forward here, but most of our later commentary about numerical
simulation is not strongly dependent upon the details of the discussion on
which we now embark.

The framework we have in mind is that in which science is normally
carried out. We intend to outline briefly the major components of the
scientific method and some of their interrelations. The gist of the discussion
is reflected in Fig. 1, which shows our view of the high points in scientific
investigation.

Fig. 1. Some aspects of scientific investigation.
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Science begins with some phenomenon, activity, or situation that
warrants investigation because of need or curiosity. A typical initial step is
to make experiments or observations of the phenomenon. Often these are
first undertaken in a mode of discovery, with more exacting scrutiny taking
place at a later stage.

Armed with observations, one begins to theorize about the phenomenon.
It is often useful to form an idealization of the real-world situation being
studied. Constructs such as point masses, ideal gases, perfect fluids, con-
sumers defined solely by preferences and income, or firms designated by
simple production functions are sometimes Vvery helpful in isolating the
important mechanisms operating in the phenomenon or activity in ques-
tion and in guiding one’s further thinking. Indeed, carefully controlled
observations are usually effected with some framework in mind to aid in
the design of the study and in deciding exactly what to measure. At a cer-
tain point, need will be felt for the predictive power and precision of a
quantitative description. At this stage, one builds a mathematical model
wherein the crucial aspects of the phenomenon are represented by mathe-
matical variables whose interrelations are meant 1o mirror the functioning
of the phenomenon. The mathematical model is usually based on the
idealized situation rather than on the real-world situation that is of under-
lying interest. The power of a quantitative formulation is twofold. First,
and most obvious, it allows quantitative predictions to be made. This is
helpful when one attempts 10 verify the model, and essential when one
attempts to calibrate the model and use it to predict the future. Equally
important, it allows one to discover general principles and new, some-
times unsuspected phenomena by using mathematical and computational
analysis.

Naturally, predictions and discoveries made using the mathematical
model must be referred back to the underlying real-world situation. Indeed,
comparing model predictions with observations is the primary way in
which a mathematical model is validated. Initially, observations and
experiments should be made that correspond as well as possible to the
idealization underlying the mathematical model. After one has some con-
fidence in a model’s predictive power in the center of the range in which it
is expected to apply, further insights to the phenomenon under study may
be gained by exploring a larger range of situations so as to determine the
limits of the validity of the model.

When the performance of a model system is evaluated, different criteria
will come to the fore depending on the purpose and stage of the modeling
effort. If the theoretical construct has as its goal simply to understand
better the interaction of the dependent and independent economic
variables, then qualitative properties of the model may be all that one
needs to ascertain. For example, if a money supply model is in question
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Computation often plays a considerable role in the process just outlined.
As mentioned in the Introduction, computational techniques may come to
our aid both in controlling experiments and in gathering and processing
data. Indeed, modern methods of robotic control and data analysis are
becoming very sophisticated, but we eschew discussion of these matters. In

the next sections, interest will be focused entirely on computation as it is
related to the analysis of mathematical models.

3. FORMULATION, ANALYSIS AND TESTING
OF NUMERICAL PROCEDURES

In this section, it is presumed that a mathematical model of an activity
under consideration is in hand, and that it describes quantities that can be
measured which are related to the phenomena. The discussion will center
around general issues that arise when attempting to use computation to
shed light on such a model.

Formulating a Numerical Model

Most mathematical models of economic activity are not initially fully
discrete; that is, they are not formulated in such a way that they can be
directly simulated/approximately solved via a finite list of computer
instructions. Many have some discrete aspects, like discrete-time dynamical
models, but there are typically exogenous, endogenous, and control or
state quantities drawn from infinite-dimensional continua. Digital computers
are not capable of directly coping with even domains in R", let alone open
subsets of function spaces, and consequently most economic models cannot
be realized fully intact as a computer code.

Thus, the first step one must take in order to involve the computer as an
aid is the formulation of a fully discrete model of the activity in view. Here,
one has at least two alternatives. One can resort to the idealized situation
and derive directly a fully discrete mathematical model, or one can dis-
cretize an existing model which has continuum features using ideas from
approximation theory. Some problems lend themselves to the first
approach, and it is our feeling that this is preferable when it is convenient.
The reason for this view is that a fully discrete model obtained directly
from the idealized situation is more likely to preserve the mathematical
structure inherent in the continuum model than one obtained by rote
application of approximation theory. Experience gleaned from the numeri-
cal analysis of ordinary and partial differential equations indicates that a
carefully chosen scheme preserving any special structure the equation may
have tends to mimic the qualitative and quantitative aspects of solutions bet-
ter than a scheme just posited without thought to the equation’s structure.
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For example, it is found that when integrating a Hamiltonian system, the
use of a discrete scheme which has a discrete Hamiltonian describes solu-
tions better than a scheme generated by finite differences or finite elements
without thought to the Hamiltonian structure (cf. [66]).

It must be acknowledged, however, that most situations are more easily
conceived with some of the quantities coming from infinite-dimensional
spaces. Moreover, our techniques for analysis of continuum mathematical
structures are far more powerful at present than are those for the analysis
of discrete mathematical structures. Consequently, fully discrete models are
most often and most easily derived by the use of discrete renditions of the
continuous quantities already extant in the model. It is our view that even
when following this path, it is worth looking for symmetries and other
structure in the continuum model, and trying to maintain as much of this
as possible in the discrete scheme.

Fortunately, there are well known methods from approximation theory
that come to our aid when we are faced with discretizing a continuous or
partially continuous problem. An advantage often gained by using well-
studied techniques rather than some ad hoc invention that occurs on first
inspection is that an analysis of the error embodied in the approximation
is often readily available using standard theory. This point will figure in
some of our later commentary. (It is worth note that if we agree that com-
putation will continue to grow in importance, use, and acceptance, then it
behooves us to suggest that our students make an effort to get a proper
grounding in modern numerical analysis, the rudiments of approximation
theory, and elementary structured programming, as well as becoming
familiar with some of the more powerful software environments.)

ExampLe 1. Here is an illustrative example that focuses on some of the
points under discussion. Consider the following optimization problem.
Given 6 > 0 and k,, find an (absolutely continuous) path {c(t), k(t)} 50 as
an optimal solution to

o

W(k,)=sup f u(c(t)) e dt

[V}
subject to

k()= flk(t)) —c(2), with  k(0)=k,,

for t =0, where ¢(t) and k() are n-dimensional vectors, and k(t) denotes
the time derivative of k(t). This is a continuous-time version of the
standard, neoclassical model of economic growth. From an analytical point
of view, this problem is frequently approached in the following more
abstract framework, which is convenient for our purposes:
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2}
0

W(k,) = sup [ o(k(t), K(t)) e~ dt

subject to (3.1)

(k(1), k(t))e T  with Kk(0)=ko, for t=0.

The following commonly used assumptions are easily derived from
standard hypotheses on the primitive functions u and f.

Assumption A. The set T< R?" is convex with nonempty interior.

Assumption B. The mapping uv: T— R is continuous and on the interior
of its domain it is infinitely differentiable. Moreover, the function u has
bounded second-order derivatives and there is some constant x>0
such that v(k(1), k(1)) + (/2) Ik(t)||* is a concave mapping for all (k(1),

K(t))eT.

Assumption C. There exists an open set U in R" such that for every k,
in U there is a unique optimal solution {k(f)},5o to Problem (3.1) with
k(0) =k, and (k(?), k(1)) eint(T) for all t 2 0.

The norm ||-]| is the usual Euclidean norm. The concavity requirement
asserted in Assumption B is termed a, -concavity. It follows from [56] that
under the above assumptions the value function Wisa C * mapping on U.
Hence, this function must obey the functional equation of dynamic
programming, the so-called Bellman equation,

SWik,) =sup vk, k) + DW(ko) -k, (3.2)
Kk

where DW(k,) denotes the derivative of W at k,. Under the above assump-
tions, {k(t)}, =0 is an optimal path if and only if it satisfies at all times
Eq. (3.2). Moreover, differentiating (3.2) with respect to &, we obtain that
the optimal feedback control or policy k = glk) must fulfill at all times the

first-order condition
D,ulk, kY + DW(k)=0. (3.3)

Under the above postulates of concavity and differentiability, one readily
sees from a simple application of the implicit-function theorem to (3.3) that
g is a C'-mapping on U.

In most applications, one faces the problem of computing the functions
W and g. This is usually achieved by numerical methods, though if one is
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satisfied to assume a quadratic objective, then the problem may be solved
in closed form. (Incidentally, the solution to the quadratic problem can
be very helpful when trying to test a numerical method that could be
applicable to a whole class of problems of the form depicted in (3.1).) A
thorough knowledge of the qualitative behavior and stability properties of
the model is generally very useful in order to devise the most appropriate
computational procedures. For example, if the model contains a unique,
globally stable steady state, then it is generally possible to determine the
law of motion of an optimal path at a desired level of accuracy by relatively
fast methods (e.g., see [481). Sometimes, however, the problem becomes
less tractable, especially if the state space is multidimensional or if it com-
prises a stochastic component. In such circumstances, the behavior of an
optimal model may be so complex that for the purposes of ascertaining
properties of a solution one must rely for the most part on standard numeri-
cal techniques. Several issues are generally involved in an approximation of
a model such as (3.1) in order to achieve a given level of accuracy.

Assume that a decision has been taken to discretize both the state space
and the temporal variable if the model is not static. Then the following
questions may arise.

(a) In what way and how finely must the state space be discretized?

(b) In what way and how finely must the temporal variable be dis-
cretized? How should these discretizations be related to each other?

(c) What is the most suitable length for the time horizon? Which

terminal conditions are most appropri te if the horizon is to be truncated?

In many cases a discretization of the set of feasible strategies S, say,
takes the form of replacing S by a suitable finite-dimensional space S,
whose elements are specified by a finite number of parameters, and then
reformulating the model for S, instead of S (eg a finite-clement
approximation of a function space; see [37]). In other cases, the full dis-
cretization is presented implicitly, as with a finite-difference scheme for
solving an ordinary differential equation or a Newton method for comput-
ing the solution of a system of nonlinear equations.

With respect to the discretization of the temporal space, it should be
observed that most dynamic idealizations in economics can be visualized as
either continuous- or discrete-time processes. An issue that arises frequently
is whether one should initially posit the discrete- or the continuous-time
version of a given dynamic model. An answer to this question is heavily
dependent on the qualitative properties of both frameworks and on the
underlying computational requirements. Our subsequent analysis on com-
putational requirements and loss of accuracy involved in the discretization
of the temporal variable suggests that unless the model has some specific
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structure it is worth posing from the start the discrete-time version of the
model. This is certainly a good strategy if both versions share the same
qualitative behavior. If, however, the problem in question is better con-
ceived as a continuous-time process, then it is usually a good idea to con-
sider the continuous-time version as the reference model and start with
those approximations that most nearly resemble the fundamental aspects of
the problem. On the other hand, regarding the issue of truncation of an
infinite horizon and choice of an appropriate terminal condition, we shall
illustrate below that sometimes it becomes fairly convenient to obtain
numerical estimates of these terminal conditions from relatively fast com-
putational procedures.

Following previous work on numerical analysis of problems such as (3.1)
(cf. [12, 22]) the following discrete-time approximation is proposed:

4 k ——k

174 i+ 1) i _—y
ko) =sup Y v <km;,-ﬂ'+m———"£> me %"
i=0

subject to (34)

koot —Kmi
<kmi7'l1“_+”__ﬂ>€ Ta 1=0, 15 2; i
m

In this formulation it is assumed that controls and states are piecewise
constant, and may jump at discrete times, 0, m, 2m, ...

For the discretization of the state space, let us assume that the set of
feasible states k, lies in a compact polyhedron X for which Assumption C
is still satisfied. This is not a restrictive condition for most economic
applications. Let {S’} be a finite family of simplices which comprise a fri-
angulation (ie., |) S’=X and int(S/) N int(S*) = & for i# j). Let

h= mglx{diam(S")}.
J

Denote by k’ a generic vertex of the triangulation. Consider then the space
of continuous, piecewise affine functions

w'h ={W": X~ R|W),is continuous, with constant derivative

n m m

DW" in int(S”), for each j}
Observe that #7" is a complete metric space, as it is a closed subset of the
space C(X) of continuous functions on X equipped with the maximum
norm || W), [l =maxye v | W (k).
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The following equation will play a crucial role in our subsequent
analysis:

W”(k-f)—maxv<kf M)m_,‘_ Wh(k )e-—o‘m
m\'vo) 0> m m\"vm

Km

subject to (3.5)

o ,
(ké,%—“)eT, forall k.

This is the corresponding discretized version of Bellman’s equation which
must hold at each of the selected vertices, kj=k’. For each of these nodal
points, define g’ (k’) as the optimal solution to (3.5) for k4 =k’ If the solu-
tion is unique, this set of values uniquely defines a piecewise affine function
' on X compatible with the given triangulation {S/}. We shall refer to g7,

as the policy function for W/ in (3.5). Our main concern now is with the

n
error arising from these approximations.

Analysis of Error and Complexity

If the fully discrete model has been derived by approximation of a con-
tinuum model, it is generally very useful to analyze the difference between
solutions of the fully discrete model and their continuum counterparts.
Such an analysis gives an idea of how fine the approximation parameters
such as mesh size, order of polynomial approximant, and so on need

to be chosen so that the discrete model faithfully mimics the continuous

model. This is also useful in helping to verify the code, as discussed below.
In many situations, a rigorous error analysis can be performed using exist-
ing theory together with a priori derived qualitative information such as
existence, uniqueness, and smoothness about solutions of the continuum
model. In certain, novel situations, new theory must be conceived to effect
an error analysis. Frequently, a formal error analysis can be carried out in
which rigor is replaced with judicious guesses about certain aspects of
the approximate and exact solutions. While not as satisfactory as a fully
complete analysis, the information gleaned from a formal analysis of error
may still be useful in the ways it is when there are rigorous error bounds
established. '

What often comes out of an error analysis is an order of accuracy
estimate. For example, if N is the number of unknowns in a fully discrete
model, then we may be able to infer that the error between the
approximate solution and the exact solution is on the order of 1/N", where
r is a positive real number determined by the approximation scheme being
used. This information lends credibility to the scheme, and it is handy at
another stage to be discussed presently.
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When the problem has been rendered fully discrete, one must face the
issue of its implementation via a computer code. A working knowledge of
modern structured programming is very helpful at this stage. In addition,
one sometimes needs to think very carefully about the sequences of com-
putational events to try to minimize the computational complexity of the
code. If the computation to be performed is extensive, it is a good idea to
carry out an approximate count to determine in terms of the input
parameters how many of the more time-consuming operations like multi-
plications, divisions, exponentiations, comparisons and so on are Lo be per-
formed. This sort of count is helpful to get an idea of running time, and it
is also useful when trying to judge accuracy achieved for work expended.

ExaMPLE 2. Another example is introduced that shows several of the
aspects just mentioned. The model in question is taken from Bona and Li
[8] and follows from an earlier model of Grossman and Weiss [28] (see
also the working paper [7]). It is an infinite-horizon model for the money
supply that is especially designed to capture the economic response of
prices, interest rates and so on to monetary injections. The principal issue
in view is to determine how government intervention in the money supply
can influence the economy in a positive way.

The model features consumers, firms, the public sector (government),
and discrete temporal periods in which transactions are made. Firms are
owned by the consumers and produce a perishable, exogenous good that is
sold to other consumers at a profit. Because consumers need cash to
purchase goods, they sell bonds to the firms and the government. The firms
use the profit from selling goods to purchase bonds from consumers and
immediately place them in the owners interest-bearing accounts. The
government issues cash to buy bonds to inject money into the market. The
cash ends up in the hands of the consumers from the bond market (bank)
via the sale of bonds. The transaction cost of making withdrawals is
accounted for by requiring COnsumers to visit the bank only once every tWo
periods, and these visits are staggered in that only half visit the bank in
gach period. The two lypes of consumers, type “a” and type “b,” say, visit
the bank at the end of the odd and even temporal periods, respectively, and
withdraw enough cash to finance their consumption expenditures over the
next two periods. The amount of withdrawal is determined by the
possibility of intertemporal consumption substitution, and therefore is
influenced by expected prices and future nominal interest rates. The model
is completely deterministic and the consumers are taken to have perfect
foresight.

The variables in the model are now defined. For w=a or w=b, let My
denote the cash that a consumer withdraws at the end of period £, C) the
amount of the single consumption good that consumer w consumes during
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period ¢, and p, the price level in period ¢. The quantity R, will connote 1
plus the interest earned on deposits maintained at the bank during the
entirety of period ¢+1 and o, =(Ry)(R)(R,) -+ (R, ) where ay=1.
A consumer of type w with initial wealth W} and initial money holdings
M} is confronted with choosing the appropriate bank withdrawal and
consumption plan in order to maximize the total utility

o

Y BTUCY) (3.6)

t=1

for w=a, b, where 0 < f < 1 is a positive discount factor and U= U"is the
consumer’s utility function which is assumed to have the usual convexity
properties. The following constraints are in force during this optimization,

ZlM‘,"= Wy, (3.7)
. &

where summation is over odd periods if w=a, and over even periods if
w=b,

p. Ci=Mg, (3.8)
a if te{l,3,5.}
p,+,C,+l+p,+2C,+z=M,,wherew= b 13 t€{0,2,4,.,.}, (3.9)
and
: : : a if te{2,4,6, .}
M'=M"_ ,—pC/ h = 3.10
="l WErCl SRS {b i oref13.5.). O

Equation (3.7) is a wealth constraint reflecting the fact that every agent
must balance his budget. The initial, nonmonetary wealth W} of agent w
consists of three parts, a claim on a fraction of the firm’s profits which is
deposited into the agent’s interest-bearing account every period, govern-
ment bonds of one-period maturity, and, on the other side of the ledger,
the taxes to finance the interest payments on government bonds. (The lat-
ter are assumed to be an equal lump-sum levy paid each period from each
agent’s interest-bearing account.) Equations (3.8)~(3.10) are cash-in-
advance constraints. Without loss of generality, we assume that the interest
rate is positive, so each optimizing consumer must spend all the money in
hand by the end of the second period after having withdrawn it.

For the market to be in equilibrium, it is necessary that the flow of cash
into the market at each period equals the consumers’ desired withdrawals,
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and that the goods produced equal the quantity of goods demanded by
consumers. These conditions imply that for all >0

Ce+Ch=C, (3.11)

M+ MP=M, (3.12)

where (C!, M) is the solution of (3.6)-(3.10), w=a,b; C is the
exogenously given output produced by the firms; and M, is the
exogenously given money supply, assumed to be equal to one. For con-
sistency, in the initiating stage, it is required that Mé+MG=M,. The
money supply changes only through government intervention.

The model is initiated in a steady-state configuration with a price level
p=p,, which is then disturbed by an unannounced, open market opera-
tion by the government at the end of the temporal period =1 in which
the money supply is increased by the fraction k, so that if M, was the
initial money supply, then at the end of period 1 the money supply is
M,=(1+k) M, The goal is then to understand the economic consequen-
ces of this monetary injection. (As just described, the model appears in a
predictive guise. A further goal is one of control of the consequences, but
this aspect will not be dwelt upon here.)

Let us assume that the utility function U(c) is identical for all consumers
and that it is given by a power law ¢'=7/(1—o) (the case of constant
elasticity of intertemporal substitution), where ¢ > 0. The discussion in [8]
does not require this stringent presumption, but it simplifies the exposition
here and nothing is lost in regard to the issues about simulation under dis-
cussion. In this case, a straightforward analysis reduces solving the model
outlined above to finding a sequence g = {q,} of normalized prices such
that

q,+¢< L )q,_l=1, (3.13)
qrv1

for t> 1, where g, = (p, +k)/(1 +k), q,=p./(1+k) for 1>1, and

ﬁl/a
¢(Z) :ﬁl!’n i I[rr— (BT

This problem, in turn, can be recast in another convenient form based on
the ansatz that there is a solution qg=1gy,42, ) Of (3.13) such that
g, =Sg)t= 1,2,... 1f (3.13) can be solved in this form, then once the
function f is determined, we will have at hand a solution for all initial



258 BONA AND SANTOS

states. According to (3.13), the function 1, which we will refer to below as
the price function, must satisfy the relation

(W
f=1- s (L) RN (14

t is shown in the aforementioned paper that (3.14) possesses 2 unique
solution corresponding 0 any of the possible steady state configurations
which are assumed tO obtain prior Lo government intervention. Moreover,
the solution is given by a price function f, and this function is smooth so
that the problem (3.14) is robust in that small perlurbations of the initial
steady state lead to only small perturbations of the solution in a certain
precise sense which need not concern us here.

The issue that is of concern here is the numerical approximation of solu-
tions of (3.14)- It is worth noting that an early attempt at approximating
solutions of this equation (Bona and Grossman 7 used 2 combinatorial
algorithm and an approximate, finite-horizon problem. This method was
poor in nearly all the ways we have outlined above: there was no theory
for its accuracy, it was very difficult to check accuracy computationally,
and the operation count grew exponentiaily with increasing accuracy. It
did have the salutory property of being easy 1o program. Here we present
a much better technique effected by a finite-element method. Let C(L0s 1)
connote the continuous, real-valued functions defined on the closed interval
(0,11 and let ¥, connote the subspace

V,={ve C([0,11):v s linear on each interval [ X;, X;+ Js

j=0,.,N—=1}

of piecewise linear functions on & aniform grid 0=X0< X, < v SXNT 1,
where h=1/N, %= jIN, j=0 {,2,3, .. N. Any element v in the finite-
dimensional space V, is determined by its values v(X)), j=0,1 N, and
hence the space Vis spanned by the tent functions w; € V. 0=<i <N, such
that

wi(x) =0
where 8, is the Kronecker delta which is zero when i# j and when i=Jj it
takes the value 1.

If v lies in C([0,11) define I (v) € v, to be its nodal-value interpolant

N
Ih(v)(x) = Z v(x)) W_j(x)'

j=0
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Then the fully discretized version of (3.14) is the equation

Slx) = Fy( fi)(x) = L(F(£,))(x) (3.15)

for f, in V,. A rigorous analysis of the approximate problem (3.15) is
carried out in [8, 44]. This analysis provides several useful facts. First, for
h small enough, it is inferred that the approximate problem possesses a
unique solution for relatively small monetary shocks. Second, if f is the
solution of the continuous problem and f, is the solution of the discrete
problem, then the difference between them is bounded above as follows,

1/ = fallcigo. vy S ME2 "Wl o, 11y (3.16)

where the constant M depends on the size of the shock, but not on 4. Note,
incidentally, that this estimate requires one to have ascertained that the
solution f of the continuous problem (3.11)—(3.14) is at least twice con-
tinuously differentiable. This is the kind of information that is very often
needed to obtain rigorous error estimates, and it provides impetus for
understanding the smoothness properties of solutions of model problems.
For the model under consideration here, one infers the solution to be
infinitely differentiable (in fact, real analytic), and one can give bounds on
the derivative /" in terms of ¢ and S.

ExampLE 1 (Continuation). Discussion is now initiated of error
estimates for the approximation sketched at the end of Example 1. This
analysis will shed light on the important issue of how fine the discretization
of the temporal intervals should be with respect to the discretization of the
state space. An optimal choice of the two discretization parameters will
have the error induced by either to be of the same order of magnitude. To
put it another way, there is no point in refining the state space further if
the total error is already dominated by the error in the discretization of the
temporal variable.

Using similar discretization procedures, Falcone [22] has established
approximation estimates for a related model. Sharper bounds will be
derived here from smoothness properties of the value function. As shown
in [ 55-57], under “regular” conditions the value function W in (3.1) is C?,
but fails to be higher-order differentiable.

Our main findings are summarized in the following theorem. Let g be the
policy function for W in (3.1), and let g’ be the optimal policy for W” in
(3.5).

THEOREM 3.1. Under the above assumptions, there are constants M and
N such that || W= Wh | ci < M(m-+ 1) and |lg = gl | con < N(m" + h).
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This theorem is proved in the Appendix. The result extends to the
continuous-time model the analysis of [58] . It should be also observed
that Lemma A.3 below illustrates that if in addition k, is such that
[ DWik,) — DW,, (ko)1 - glky)/| DWlko) — DWW, (ko) #0, there is a constant
N’ such that || g(kq) — g ko)l coxy S N'(m+ k). The bounds M, N and N’ are
independent of the values m and h, for m and h small enough. It thus becomes
clear that generically mesh sizes m and / make similar contributions to the
global estimate of the policy function, and consequently they should be
specified with the same order of magnitude. Indeed, the exact, leading form
for the error | g(k,) — g"(ky)| is Am+ Bh, where A, B are constants. If an
estimate for 4 and B is available, then for small values of m and A, the choice
h=m(A/B) balances the error generated by the two discretizations.

The above approximation exploits C2-properties of W. Although higher-
order approximations could be pursued, it should be realized that under stan-
dard conditions the value function may fail to be higher-order differentiable.

Testing the Computer Code

It is crucially important to test the code extensively once it has been con-
structed and debugged. Just because a computer program runs does not
mean that it is computing what was intended. There are a number of ways
in which codes can be tested to give an indication that they have been
correctly entered into the machine and to try to determine their accuracy.

If exact solutions of the continuum model are known, then one can com-
pute their fully discrete analogs and form the difference between the exact
solution and the approximate solution. An idea of the absolute error is
thereby obtained. In the same circumstance, it is good practice to com-
pute the approximate solution -for several values of the approximation
parameters and to check that the error decreases at the rate predicted by
the error analysis. If it does not, something is wrong, most likely with the
code. In any case, no confidence should be placed in the output until this
consistency is reached. If an exact solution is not available, then a standard
procedure is to compute the solution with a very fine level of approxima-
tion and treat this as an exact solution. Then the same comparison of con-
vergence rates can be made by computing the outcome at coarser levels of
approximation. Again, one is looking for the rate of convergence predicted
by the error analysis.

If an approximate operation count has been obtained, one is in a position
to compute the accuracy achieved for work expended. In the final analysis,
this is the most exacting test of a numerical method. If several approxima-
tion parameters appear in the problem, then by performing a series of com-
S putations featuring different values, one can determine optimal ratios or
’.i'_-_( i i values of these parameters to achieve a given level of accuracy. This can be
e very helpful if many simulations of a similar type are contemplated.
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The problem under consideration may have other consistency conditions
that can be used to check the code. For example, the solution may neces-
sarily be composed of nonnegative numbers, and the appearance of negative
numbers in the computer output is a sure signal that something is wrong.

ExaMpLE 1 (Continuation). For illustrative purposes, we shall limit our

attention to a simplified, discrete-time version of the above growth model.
The optimization problem is written as

W(k,) = max i Blule,)
=0

subject to

Cl=f(kl)_kl+|

(3.17)

ko given, 0<f<1,t=0,1,2, ..,

where all variables are positive real numbers. It is well known that for the
functional forms u(c) =1log ¢ and f(k)= Ak*, with 4 >0 and 0 <a <1, the
value function W has an analytical solution given by W{k,) =B+ Clogk,,
in which B and C are given constants. Moreover, the optimal policy is
defined by the simple law of motion k, . | = fadk?.

We now treport some numerical results from [58]. The point to be
stressed here is that before proceeding to a computational analysis of a given
economy in the specified family (3.17), it is worthwhile to use the computer
program based on the numerical model to attempt to compute the above
simple analytical solutions as a check that the program has been correctly
coded.

Following the iterative process outlined previously, we consider the
operator W' =T"(W"_,), where the maximization

W' _ (k}) = max log co + W _\(k\)
‘1

71— | =1

subject to (3.18)
CO =Ak3—kl,

is carried out at each vertex point k/, for n=1, 2, .., and W, given. That is,
at each iteration n the maximization is performed over a fixed grid of points
{k{}, with mesh size h, and these values define the piecewise affine
function W”. The iterative algorithm stops when the difference between
two consecutive value functions W _, and W" is such that | W% _, — Wh| «(x)
< NK?, and N is selected in accordance with our estimates of the error
involved in our discretization scheme along with further considerations
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related to the computational cost of additional iterations. (Observe that if
(Wh_ — W qx < N, then the contractive property of T" implies that
the fixed point " in (3.18) lies within a distanced BNH%/(1—B) of W)

We consider parameter values f=0.95, A =5, a=0.34. For such param-
eterization the policy function takes the simple form k.. =1.615k*. This
function has a unique, globally stable steady state, k*=2.0673. For the
purposes of our analysis the space of capital stocks X is restricted to
ke[0.1,10]. This is a large enough domain so that it contains the steady
state value k* and has the property that all optimal solutions are interior,
and so Assumption C is satisfied.

The numerical experiments, which were coded in standard FORTRAN
77 and run on a DEC 2000 workstation (300 ALPHA AXP, rated at
358.1 MFLOPS/150 Mhz) started with A= 10-! and an initial condition
W, =0. In computing the approximate fixed point w" in (3.18) for
h=10"", the program stops after 99 value-function iterations with a
reported computer time of 3s. In a further computation of wh, for
h=10"2 a continuation method is implemented that takes as initial condi-
tion the previous piecewise linear function W" obtained with A=10"".
The program stops now after 91 additional iterations with an extra
reported time of 33 s. The same procedure is finally applied to the com-
putation of W" for h= 10-3. Figures 2-4 depict the observed error
¢"(k) = | Wi(k) — W"(k)| for the restricted domain of capital stocks k over
the interval [0.1, 10]. Observe that the error function features the same

18125x10" r . -

1.8100x10"' |

1.8075x10 " |

1.8050xt0 ' |

1.8025x10 ' |

1.8000x10 . . A + L L -
0 2 4 6 8 10

Fig. 2. Observed error efi(k)=|W(k)— W’,;(k)l.lz=10",ﬁ=99,ﬁ=0.95, for the deter-
ministic growth model of Example 1.
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1.800x10? T v T T

1.796x10%

1.792x10

1.788x10?

1.784x10°
0

Fig. 3. Observed error ef(k)=|W(k)— Wf;(k)l,I1=10‘3,n‘=91./)‘=0.95, for the deter-
ministic growth model of Example 1.

asymptotic behavior predicted by the theoretical analysis. In other words,
cutting the mesh size by a factor of 10 results in a decrease in the error on
the order of 100, which is consistent with the predicted convergence being
O(h*) as h = 0. Therefore, the computed value function converges quadrati-
cally to the true value function. Additional information is provided in

1.870x10% v . v B

1 865x10%

1.860x109 |

2 4 6 8 10

1 .855x10%
0

Fig. 4. Observed error eh(k) =|W(k)— Wf;(k)l,h=10"‘,n‘=90,ﬂ=0.95, for the deter-
ministic growth model of Example 1.
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TasLE |

A Numerical Experiment for the One-Sector Deterministic Growth
Model with a Continuation Method

No. of vertex points ~ Mesh size No. of additional CPU time Max. observed

iterations (s) errorin W

100 10-" 99 3 1.8x 10"
1000 1072 91 33 1.7 x 10“?
10000 1o-* 90 298 1.8x 107

Table 1, which summarizes some key points of this numerical experiment.
For further details, the reader is referred to the aforementioned paper from
which the example was taken.

Other theoretical properties of the model lend themselves to testing the
code. For instance, in the above value-function iterated algorithm, one can
instruct the program to verify at each consecutive iteration the contractive
property of the operator T" in (3.18). Likewise, one can solve for the
steady states of the true and computed solutions, and analyze the possible
sources of the observed difference. Many properties of the mathematical
model have a corresponding counterpart in the numerical algorithm, and
such properties provide basic information for testing the code.

In problems involving a sequence of computational steps, it is also very
important to design a modular testing procedure, effecting separate checks
of each individual unit of the calculations. This procedure is usually very
effective in detecting errors, and allows one to assess the performance of the
different parts composing the program. (In devising and interpreting a
numerical experiment, one should always be aware of how the inaccuracies
of different maximizations, integrations, and related operations unfold into
the numerical algorithm.)

The above growth model offers an appropriate illustration of the points
just made. It is well known (e.g., see [40, 45]) that in such a model one
could compute analytically the sequence of functions {W,} =, where
W (ko) = max,, log[ 4k{— k.14 BW,_\(k,) and W,=0. This sequence
of analytical forms, along with the known fixed point W(k,)=
max,, log[ 4k5—k,] + fW(k,), provides us with very useful information
within which to evaluate the performance of the maximization subroutines
or related operations. In addition, if the model contains stochastic
variables, then proposed integration procedures and related operations
should be thoroughly tested with the aid of analytically simple forms before
incorporating such sets of instructions to the body of the computer
program.
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It is also important to realize that several approximation schemes are
generally available in a given problem. For instance, in the formulation of
our discrete model in (3.5) we confined our attention to piecewise linear
functions over triangular subdivisions. In some cases, however, it seems
more natural to consider alternative (possibly higher-order) interpolations
over rectangular subdivisions. When several choices are at our disposal a
theoretical analysis of the problem along with some illustrative computa-
tions should give an idea of the best way to proceed in order to attain a
given level of accuracy.

Again, the above numerical calculations are useful for this purpose. As
can be seen from Table I, it takes roughly 0.03 5 to effect an iteration for
h=10"" (first row of Table I), it takes roughly 0.3 s to effect an iteration
for h=1072 (second row of Table I), and it takes roughly 3 s to effect an
iteration for =107 Hence, the computer time spent in each iteration
increases linearly with the number of grid points. Thus, if we were to con-
sider mesh size # =10, then it would be expected that each single iteration
would take roughly 30 s. In this case, in order to attain such a fine level of
accuracy, it would likely be profitable to resort to higher-order interpolations.

One should also be aware that some approximation methods fare better
in small-scale models, whereas other methods are more suitable for large-
scale models. Some numerical methods are subject to what is known as the
“curse of dimensionality,” in which the computational requirements grow
exponentially with the number of exogenous and endogenous variables.
These methods then become unfeasible for the computation of solutions of
large-scale models. It should be remarked, however, that, excepting cases
having a special structure, rigorously analyzed schemes that allow for arbi-
trary levels of accuracy are generally subject to the “curse of dimensionality”.

ExampLE 2 (Continuation). Lastly we verify the order of magnitude of
the approximation error in our monetary model. This model does not
feature a closed form solution. In spite of this fact, we can still inspect
numerically that for sufficiently small /,

e(h) = Ch” (3.19)
for some constant C and p =2, and where

e(y=1/—fil Cr0, 13+

Since the values C and p are expected to be independent of A, we obtain
from (3.19) that for sufficiently small 4,

h h?
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TasLE [I

‘ Error Analysis of Numerical Computations

J () P
2 0.0043 1.5650
3 0.0045 1.9449
4 0.0045 1.9923
5 0.0047 1.9423
6 0.0049 1.9570
. 7 0.0050 1.9679
8 0.0049 2.0221

Combining (3.19) and (3.20) yields

o — logy—at.
P=0% ehp2)

We first let # =2 ' and compute the approximate solution for f. Such an

approximation is fairly accurate and will play the role of the “exact” solu-
tion in all of our computations. Let i, =2/ and define

I A
o) = elhy)/h2, p(j) = log, ef}t ) )
il

For j ranging between 2 and 8, the computed results are listed in Table 1L
We observe that ¢(/) converges to a constant 0.0049 and p(j) hovers
around 2. This array of numerical outcomes conforms with our previous
theoretical analysis; moreover, although not implied by our theory, the
approximating constant € settles down to a given number. This type of
regularity is observed in many other similar numerical experiments.

4. REPORTING NUMERICAL SIMULATIONS

The important point here is that a numerical simulation of a mathemati-
cal model constitutes an experiment in much the same way as does a
laboratory study or field observation. There is a well defined culture about
| reporting laboratory studies. and in our view these guidelines apply equally

to reporting numerical studies. :
First, the formulas used to generate the code should be written explicitly.
The general structure and any numetical shortcuts used in the actual cod-
| ing should be mentioned. If standard software packages are used in the
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code, these should be identified explicitly and the conditions of their use
specified. It is even a good idea to report the machine and operating system
with which the code was executed. The overall goal is that enough informa-
tion be provided for a skeptical reader to reproduce your simulation.

It is worth pointing out to journal editors that deleting the sort of
material mentioned and substituting a reference to the author(s) for further
details does not lead to a satisfactory state of affairs. If the relevant details
are not in the permanent record, it is nearly certain they will be lost in due
course, and perhaps before the article’s useful lifetime is exceeded.

Second, whatever €rror analysis was deemed possible to carry out and
useful should be reported, along with at least an indication of why it was
expected to be valid. Best is a rigorous error analysis and a compilation of
accuracy achieved for work expended pased on a careful operation count
together with a series of simulations. [f rates of convergence OF other
approximation characteristics are relevant, tabulate some outcomes 1o
show that they are consistent with the error analysis. (Such material can be
relegated to an appendix if it interrupts the flow of the exposition unduly.)
Keep in mind that you are expecting the reader to believe the numbers and
the trends you report. Unlike the proof of a theorem OF other logically
based piece of analysis, the reader cannot verify your results by detailed
inspection without good reporting from you on the conditions under which
you performed the numerical experiment. It is incumbent on Yyou to
provide an indication of the care with which you constructed and tested

your code and carried out the calculations to generate 2 reasonable level
of trust in the claims put forth based on your computations.

5. INTERPRETING NUMERICAL EXPERIMENTS

Perhaps the most important aspect of the entire exercise is embodied in
the interpretation put on the results. There are several pitfalls that appear
regularly in reports of numerical simulation of mathematical models.

First, one must take care not to confuse the original mathematical model
unduly with the numerical model. If care was taken 10 ensure that the
program actually computes what is desired, and if one has a convincing
case for the level of accuracy achieved by the program, obviously one is on
a firmer ground at this stage. Even with this level of care, if the model is
time dependent or has recursive features, the small errors can easily
accumulate in ways that make for even quantitatively different behaviors
between solutions of the mathematical and the numerical models.

It is similarly wrong 1o impute overall behavior to the numerical model
based on a small sampling of the state space. Again, one will reach a
healthy conception of this aspect if it is kept in mind that the simulations
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are akin to experiments. It is not expected that a physicist will put forth a
new law of nature on the basis of a single set of experiments. Instead, a
conjecture will be formulated which is then amenable to further testing.
A well conceived conjecture is tremendously valuable in science because it
focuses activity on a defined and, it is hoped, an important objective.
Numerical simulations of a mathematical model should be treated similarly
as a guide to formulating conjectures about the model which one can then
investigate by further simulation or by mathematical analysis, aided by the
particular view provided by the conjecture.

Another confusion that sometimes oceurs is to identify the abstracted or
the real situation too closely with the model and with the outcome of the
numerical simulations. This is an overall objective, of course, but care must
be exercised not to establish this circularly by making the identification t00
early in the investigation. A nice example of this sort of confusion occurs
in an interesting discussion of [38, Chap. 13] concerning the computation
of a simple rational expectations model, namely an infinite-horizon growth
model of the form

max ‘Z plu(c,)

=0

C,=f(k,)—k,+l, 0<,3<1, t=0,1, ...

In discussing the approach to this problem in which one attempts to solve
the associated Euler equation, the issue of accuracy of a certain approxima-
tion is addressed. One method, discussed above and in [ 38], is to compute
a solution by other, slower but more reliable means, and compute the dif-
ference between the approximate solution thereby obtained with that
obtained via the much faster method based on the Euler equations. This
certainly gives a direct measure of the accuracy achieved: However, another
route is suggested in cases where it is awkward or infeasible to carry out
the method just defined. Namely, one checks by how much the Euler equa-
tion is violated at an approximate solution. In a particular calculation, it
is determined that the Euler equation is very nearly satisfied, and that,
indeed, the error is less than two dollars in every hundred thousand
dollars, say. The author then goes on to argue that “...that approximate
policy function is as compelling a description Of behavior as the equi-
librium policy function since it is unclear why individuals would bother
making the nontrivial effort to find the “true” policy function if the gain is
so small” Of course, this argument ignores the well known mathematical
problem that there may be multiple solutions of the Euler equations
associated with an optimization problem, and that some of these solutions
have nothing to do with an optimum policy, and it likewise ignores the
general problem that & function E such that F(E) is nearly zero may be
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a long way from a function H such that F(H)=0. If, indeed, E and H are not
close, then there is no reason to expect the utility associated with them to
be close. The author is aware of both of these pitfalls as one can see from
other parts of his text. However, invoking an argument from the point of
view of an individual about effort expended to reach a better solution when
the model itself takes no account of this aspect is exactly the kind of confu-
sion between the model and the idealized economic situation that should
be avoided. To put the matter another way, heuristic arguments of the sort
just reported may be helpful at the level of the idealized model or even with
regard to the original situation under consideration, but once one has
reduced the issue to a mathematical problem, it is only mathematical
argument that can win the day.’

6. SUGGESTIONS FOR FURTHER READING

It is the purpose of this brief section to offer a few suggestions aimed at
someone who is interested in incorporating numerical simulation into their
research program, but who is a relative neophyte. Scholars more experienced
with numerical simulation will probably not feel the need to study the
following remarks.

One of the first, practical issues that arises is in what language the com-
puter code is going to be assembled. There are many good programming
languages available. Generally speaking, if a scientist already has command
of one of the major languages, then for most purposes learning a new
language is not necessary. Good computer codes can be constructed in all
the major, all-purpose languages. If one has to choose a language, then it
makes sense to select one of the modern ones such as C or one of its
descendants, or the most recent update of FORTRAN.

Perhaps more important than the choice of language is the way in which
one programs. It is extremely helpful in this respect to acquire some
command of structured programming. This is probably best done in a
computer science course, but it can be learned on one’s own. Some good
texts in this area are [17, 29, 41, 69]. The advantages of structured
programming over just assembling the necessary computer instructions
willy-nilly is that the resulting program is more readable by others, it is
more portable, and is far easier to debug, update, and extend.

3 A related example from the macroeconomics literature is to formulate a rational expecta-
tions model (with perfectly rational agents) and interpret the outcome of an associated
numerical simulation as the solution of a different model with boundedly rational agents. The
point here is that if one is interested in the analysis of a model with the possibly more realistic
assumption of boundedly rational agents, such an assumption and the corresponding equi-
librium concept should be specified from the outset of the formulation of the model.
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As the examples offered in Section 3 should attest, it is very useful to
have a working knowledge of some of the standard ideas and methods
from numerical analysis. Contrary to what one might think at first, this is
far from a new subject. Indeed, Newton, Gauss, and many other scientists
from earlier centuries made substantial contributions to this area that are
still in use today, even though their analyses pre-date the modern high-
performance computer. Most modern economic theorists have a sufficient
knowledge of mathematical analysis so that the texts mentioned below are
technically accessible. Perhaps the most fruitful strategy is to learn one’s
way around one of the more comprehensive of the advanced under-
graduate/early graduate-level texts. It is also useful to have at hand one or
two of the many compendia of formulas for approximation of certain
functions (e.g., [1]).

Numerical analysis is a large subject worth lifetimes of work by its many
practitioners. As mentioned above, it is an old subject, but one that has
come to the fore because of the development of computing machines. The
modern version of the subject comprises the design and analysis of methods
for the approximation of quantities using digital computers. It is dis-
tinguished from abstract approximation theory, which is really a branch of
functional analysis, and which generally does not deal with deriving algo-
rithms that can be implemented as computer programs. The novice will
find a bewildering array of methods, many of which have more than one
name. In fact, most of the overall ideas in modern numerical analysis are
relatively simple and easy to grasp. More daunting are the technical aspects
of the subject where these simple ideas are turned into powerful, multipur-
pose methods whose analysis can be anything but transparent. It is not
necessary for a user of the theory to master every detail of the sometimes
difficult analyses, but it is important to understand the implications of
these as they often bear on practicalities.

Another aspect of practical concern is the dramatic technological
development that the field has experienced in the last decade, especially in
issues related to computation, algorithm design, and software. Such
progress has fostered the numerical analysis of a wide range of problems in
various areas to limits beyond what one could possibly imagine even in the
very recent past. Further advances in computing and data processing will
certainly extend the boundaries of numerical analysis, and allow for a
better effected use of computational methods.

Al the present stage, there are a large number of professionally designed
subroutines that can tackle a variety of standard numerical problems. Some
of these are bound together in packages designed for particular classes of
computational tasks, such as LINPACK, QUADPACK, MINPACK and
SLATEC, to mention a few. There are also some all-purpose libraries such
as NAG and IMSL. There are several advantages in using software devised
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by recognized experts in the field. First, the algorithms and the coding have
been extensively tested and often come equipped with various safeguards
that alert the user to possible anomalies of misuse. Also, these algorithms
and their implementation are generally familiar to a large community of
researchers, and hence the outcome of their use is unders_tood with relative
case and confidence.

One should have 2 good idea of the nature of the algorithm and the pet-
formance characteristics of this kind of software before using it in an essen-
tial way as part of 2 code for the simulation of an economic model. For
example, it 15 2 good idea 10 test the software in a familiar situation to be
gure one understands its use and the form of its output. In general, it
probably is not efficient to attempt 10 redesign such software for gpecial
purposes. Often the code has been optimized in a way that makes tamper-
ing with it an uncertain business. If the software does not fit the job, look
for more suitable material or seek advice at a friendly mathematics of com-

uter science department.

We now offer some suggestions for further reading. For 2 first approach
to the subject, We recommend 2 start with the introductory textbook by
Kahaner, Moler, and Nash [391. This book provides a good background
on several topics and features SOmMe nice historical excursions together with
discussion of modern software. For additional theoretical material we
recommend WO classic monographs in the area: Conte and de Boor [16]
at an intermediate level, and Stoer and Bulrisch [63] at 2 more com-
prehcnsive and advanced level. Regarding more practical issues about
scientific computing, the well known source Numerical Recipes [50] 1s @
most appropriate reference. All these monographs analyze at different levels
yarious subjects such as systems of linear equations, interpolation, pumeri-
cal integration, ordinary differential equations, solving nonlinear systems,
optimization, simulation and random aumbers, and partial differential
equations. These topics are also covered in a host of speciaiized treatises.
The following is a partial list of some mMOre 5pecialized references.

1. Matrices and Systems of Linear Equations. They frequently arise in
lincarizations of economic models. The classical monographs [27, 34, 681
cover a wide range of topics in this area, and should be suitable for most
applications.

2. Ordinary Diﬂeremial Equations. This is a field that has expanded
considerably in the last 15 years with extensive work on computational
methods, Gear [25): Henrici [32], and Lambert [43] are classical
{reatises in this area. The two-volume monograph by Harier et al. [30, 311
provides a more updated and encyclopedic treatment.

3. Approximau‘.an. A good grounding of these methods 18 often
necessary for the efficient formulation of numerical models. In addition to
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the above«mentioned treatments [16, 63}, Davis [19], powell [511, and
Rivlin [53] discuss issues on optimal approximation and further topics on
the theory and approx'.malion methods. Schumaker (611 is devoted to
gpline functions. Modern ideas about multigrid, spectral approximation,
and projection methods can be found in the recent monographs 9, 111
Also, wavelets have proven most effective for the analysis of time series,

and an excellent introduction t0 this topic 18 provided in [18].

4. Optimization. This is a basic ingredient of many static and dynamic
economic models. Techniques for solving optimization problems generally
involve finding zeroes of systems of equations. Ortega and Rheinboldt [49]
15 a recommended source for basic methods for solving gquations.
Moreover, for static optimization. Bazaraa et al. 51 Dennis and Schnabel
[21}, Fletcher [23]. and Gill et al. [26] cover several theoretical aspects
and algorithms for the solution of linear and nonlinear models. Regarding
dynamical models, two recent texts [24, 427 survey important theoretical
work in this area.

5. Partial Differemia! Equations. These equations often arise 10 the
finance literature and in other optimization problems. There are several
standard procedures for computation of the solutions, guch as finite-dif-
ference methods, finite-element methods, multigrid methods, mixed
methods, and the like. Ames [211s still a recommended reference for some
basic theory. Ciarlet and Lions [13], Richtmyer and Morton 1521 and
qmith [62] offer an introduction to finite-difference methods, whereas
Brenner and scott [10] Ciarlet and Lions [ 141, and Johnson [36] cover
extensively the topic of finite-element methods as applied 0 different types
of partial differential equations. In addition, and as mentioned previously,
Canuto et al. 1111 present an excellent modern treatment of spectral
approximation and projection methods. |

6. Numerical Integration. This is a subject with numerous applications
in economics, and deserves 10 be treated rigorously. The corresponding
chapters in 59, 631 contain a good introduction to some basic procedures.
Also, [20, 657 are useful general references. '

APPENDIX

Our goal here is to prove Theorem 3.1. The proof follows from tk
following series of lemmas.

LEMMA Al Assume that W is the value functions defined in (3.1), a
W, is the palue function defined in (3.4). Then under Assumptions A 10
there is @ constant M - 0 such that =W N e o< Mm.
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Proof. For given ko, let k= g(k,) be the optimal solution to (3.2), and
let k,, = gm(ko) =(k,,—ko)/m be the optimal solution to (3.4). Then we

have

SWik,) = viky, ko) + DW(ko) -k (7.1)
and
W, (ko) = vk, K,,) m + W(kq +mk,,) e =" (7.2)

It is well known [e.g, 12] that on compact sets, the functions #,, and
g,, converge uniformly to W and g, respectively. Hence, for m small
enough, k,,, = g,.(k,) lies in the interior, and so W,,isa C _function [cf. 6].
Then an application of the mean-value theorem to (7.2) yields that

Wm(kO) = U(k05 k.m) m+ [ Wm(kO) + DWm(k.r) : mknl] e—¢5m (73)
for some k, in the segment (k,, ko +mk,,). Rearranging terms, we obtain

Wko)[1—e~"]
m

= v(kO, km) + [DWm(ks) . Iém] e—(sm. (7'4)

It follows that
5Wm(k0) = v(kO’ k.m) + DWm(kO) ' k.m +F(m) (75)

In this case, it is easy to show that DW,, is a Lipschitz function and the
Lipschitz constant can be defined independently of m, for m small enough
[cf. 47]. Hence, the residual term F(m) is a Lipschitz function of m such
that F(0) =0. Moreover, from (7.4) and (7.5) and the definition of k,, we
deduce the existence of a Lipschitz function G, (m) with G,(0)=0 such
that

SW,(ko) + G,(m) = max v(k,, k) + DW,(ko) - k (7.6)
K

Consider now an arbitrary solution to (3.1), {k'(#)},5, With k'(0)=k,.
Then, we have

Wm(kO) — e_dl m(k/(T)) JL)T [§I’V,,,(k'(s)) -—DW,”(k’(j‘)) . k’(s)] e—d“' ds
T . ‘
> [ Lok (5), £1(5)) = Gefm) &= ds

> [ [ote(s), K1) — Glm) ] &= d,
0
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where the first equality comes from the definition of the integral and the

other two inequalities come from (7.6) and the fact that on a compact

domain X, the Lipschitz constant G can be selected independently of k.
Letting T go to infinity we then see that

Wolleo) > [ 0l (5), K (5)) e~ di + K(m),

where K(m) is a Lipschitz function. Hence, for all k, in a compact
domain X,

Wlko) + Mm = W(k,)
for some constant M. The reverse inequality
W(kO) = Wm(kO) — Mm

follows easily from the basic observation that W(k,)>e”"W,(k,), as
piecewise constant controls are feasible solutions to (3.1).

LemMMAa A.2. Assume that g is the policy function for W defined in (3.1)
and g, is the policy function for W, defined in (3.4). Then under
Assumptions A to C there is a constant N >0 such that || g — g, | ¢ x) < Nm'/*.,

Proof. The proof becomes more transparent in the one-dimensional
case, and so we assume temporarily that k and k are simply real numbers.
We shall prove that the established bound in the previous theorem imposes
an additional restriction on the first-order derivatives DW and DW,,. This
is because such derivatives are Lipschitz functions.

To establish the lemma, consider for some arbitrary & in X the extreme
case

W(k)=W,,(k)+ Mm, M>0,
and
DW(k)y=DW,(k)—G, G>0.

In this situation, G cannot be an arbitrary constant. Indeed, the worst
possible case is to assume the existence of a point k¥’ > k such that

W'Y+ Mm=W (k')
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and
DW(k'y=DW,(k').

Then k' —k > G/K, where K is a Lipschitz constant for both W and W,,,.
Hence

[Wu (k') — W (k)] = [ W(k') — W(k)] =2Mm

= J‘kl [DWm(s) _DW(S)] ds
k

2

GIK 1G
>L (G—Ks)ds =3 %

Therefore, 2Mm > 1G?/K. Thus, G < (4KM)'? m'2. Since k was an arbitrarily
chosen point, we have proved the existence of a constant K’ such that

IDW —DW, |l o0 < K'm'”. (7.7)
(X)

Moreover, the same sort of result holds in the multidimensional case, as
the same argument can be applied separately to each coordinate, leaving
constant the remaining components. Lemma A.2 is now an easy conse-
quence of the definitions of g and g,, [cf. Egs. (7.1)~(7.3)], since by
Assumption B the function v is o;-concave.

We now illustrate that under additional assumptions it is possible to
obtain higher orders of convergence.

LEMMA A.3. Assume that the sequence of values

[DW(kO) _DWm(kO)] ' g(kO)
IDW(ky) — DW (ko)

is uniformly separated from zero for all m small enough. Then under the
conditions of the previous lemma, there is a constant N' such that
lglko) — g,lko)ll < N'm. In particular, for k, a real number, || g(ko) — gnlko)ll
< N'm if glko) #0.

Proof. Tt follows from Lemma A.l and Egs. (7.1) and (7.5) that there
exists a constant M’ such that

— M'm<o(ky, k) + DWko) -k — vlko, k) — DW (ko) - kK, <Mm. (18)
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Under the maintained assumptions, we now claim the existence of K> (
such that |DW(k,)—DW, (ko) < Km. Let ¢e=DW(k,)—DW,(k,). Con-
sider the optimization problem

V(e)= max v(ky, k) +(DW(k,) +¢) - k.

Let k, be the optimal solution. Then it follows from (7.1), (7.5), and (7.8)
that for some ¢ in the interval {0, &),

|V(e)— 1(0)| = |DV(e') -¢| = [k, - ¢l < Lm

for some constant L. As k., converges to k, and |k-¢| #0, we must have
in view of (74) and (7.5) that under the asserted concavity of o,
|DW(k,) — DW,(k,)|| <Km for some K> 0. The proof now proceeds as in
the previous lemma.

We now provide an error bound for the discretization of the state
space X. Let us define

W;,={W,,: X— R|W,, is continuous}

W ={W": X— R|W" is continuous and the derivative

m’

DW?" is constant in int(S”), for each S/}.

Observe that both #,, and #" are metric spaces withi"the distance ~
induced by the norm || W] ¢, —maxA <x | W(k)|. Also, define the functmna{
operators, T,,: #,, = W, and T": #,, > %" by

T, (V(k)) = max,v(k, k) m+ V(k + mk) e=*" subject to (k,k)eT, for
all kin X, and V in #/,; and

n

T" (V(k’)) = max, v(k’, k) m + V(k’ +mk) e’m subject to (k/,k)e T, for
each vertex k/ in X, and V in ¥%,,.

LemMa A4. Under Assumptions A and B, Eq. (3.4) has a unique fixed
point W, in W,,, and Eq. (3.5) has a unique fixed point W" in w"

m

Proof. The proof is the standard one [cf. 227. One immediately sees that
T" and T* are well defined and that both are contraction mappings with
modulus 0 <e~%"< 1, By a well known fixed-point theorem, Eq. (3.4) has a
unique fixed point W,, in #,, and Eq. (3.5) has a unique fixed point W’ in

m

,W‘h

m*
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LemMMa A.5. Assume that wh is a fixed point for Eg. (3.5). Under
Assumptions A to C, there is a constant K>0 such that for sufficiently small

m and h, it must be the case that |\ T, W — T, Wl con < Kh*m.

Proof. Pick an arbitrary point keX in a simplex S’ Then
k=14 ak)k', where k' is a generic vertex point in S/ and 0<a, (k)<L

Assume that k' is an optimal solution to
max v(k, k) m+ W (k+ mk) e "
subject to (K, kyeT.

Also, for i=1,.,n+ 1 assume that k' is an optimal solution to

max ok, k) m+ Wik + mk) e
subject to (ki,k)eT.

—dm

Then for sufficiently small m and A it must hold that

ok, K'Y m+ W, (k+mk') e

m

—om

'S LakyL (ot K o WK K €]

i=1

n+ 1
< 2 [a(k") lo(k, k') — (k' K| m]

1

n+ i
+ Y, [a(k’) ok, ki) — oK', k') m} < Kh*m,
i=1
f the optimal controls k' and
k and every vertex point k' (by the
Ty irement is always satisfied

h, or else if the domain of controls k is a given fixed set).
from [58, Lemma 3.4] for some constant K.

where the first inequality is true i
E(i=1,.,n+1)are all feasible for both

convergence properties of W. and W’ this requ

if / is small enoug
The last step follows
int of Eq. (34) and that wh

LEMMA A.6. Assume that W,, is a fixed po
o C, there is a con-

is a fixed point of Eq. (3.5). Then under Assumptions At
stant M >0 such that |\ W, — wh A oo < M.
the functional operators defined previously

Proof. Let T, and T", be
respectively. Then

from equations (3.4) and (3.5),

u Wm - an “ ax= “ Tm Wm - T?n Wi'n H c(Xx)

g H Tm Wm e Tm Wi'n " c(X) + “ Tm qu - Tilu W"’n “ c(x)
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Hence, by Lemma A4,
“ Wm - WI:” “ [&P.¢] < e—51!1 “ Wm - W?p, “ < X) + “ Tm W’r'n - Tl:n erln “ (X

Moreover, by Lemma A5,
Kh*m
“ Tm Wm - Tll:l W?” “ (40 4] < Tj__;:_i;l:;

1
e—dm

“ Wm - W/’l” “ [4P.¢! < 1 _
is now easily established from the observation that

Lemma A6
to 1/0 as m converges to 0.

mf(1 —e~ ") conVerges
ot k' be a generic vertex point. Let g, (k') be the policy
em (3.4) at k', and let g" (k') be a point of the

Lemma AT, L
35) at k. Then under Assumptions A

function for optimization probl
optimal policy for optimization problem (
to C, there is an N> 0 such that

g (k) — ik Mewn < Nh.
Proof, Letk/eXbea vertex point. Assume k, = gnk’) and k" e ghik?)-
Observe that
D,o(k’, k) + pw, (k' +mk,)=0 (79)
' and
(7.10)

— D,u(k’, k) € oW (ki +mk.,),
where a4, denotes the generalized gradient of the Lipschitz'function wh
(cf. [15D) Moreover, for every point k in the interior of @ simplex S’ for
which k/ is a vertex point we must have

\LWulk) —
= |[DW (k) — DWh(K)]- (k=

w,(k)1-1 wh (k) — wh (k)1
k)| < 2Mh?,

(k! k) the first equality comes from the mean-value
theorem and the fact that the derivative DW" is constant over the interior
of each simplex s/, and the upper bound 2Mh’> follows from Lemma A.6.

there 18 @ constant

Since k is an arbitrary interior point, it must hold that
N' such that for every vertex point k/ and every d in dW" (k') one has

\DW, (k) —dI <N'B. (7.11)

where for some K in

mma A.7 is now 2 simple consequence of (7.11

From (7.9) and (7.10), Le
ery vertex point K.

and the o -concavity of v, for ev
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Clorrections to the Galley Proofs
»On the Role of Computation in Economic
Theory”

J. Bona M. S. Santos

Page 1, line 9: Insert 7190947
Received December 23, 1994, Revised March 1, 1996
Page 3, line 14: change »beautified” to ”beautiful”

Page 4, end: Footnote 3 should be moved to page 29. (It is the last remark

in Section 5). Observe that in this footnote there is an ”e” missing off one

of the "the”.
Page 7, line -9: Delete capital W and close up-

Page 8, line 8: Delete comma; at most use a » comma” superscript for pos-
session. (See the original manuscript).

Page 9, line -16: We are missing a period and a capital D.
. continua. Digital computers
Page 9, line -6: Delete comma
Page 10, line -14: write ” proper” , not ”propel”.
Page 11, equation (3.2): k below sup (not k). Please see original manuscript.

Page 11, line -3: dash between C* and mapping.
C'-mapping



Page 11, line -2: comma after applications

In most applications, one faces...

Page 12, line 8: comma after state

_stable steady state, then it is...

Page 12, line 19: replace colon by period

.. may arise.

Page 13, line 6: "nearly” instead of ” neatly”

Page 13, formula (3.4): It needs a period at the end of it.
i=0,1,2, ...

Page 13, line -5: close up in the definition of WP that is marked.

Page 14, line 8: Insert "Tf the solution is unique, this...”

— line -20: Insert ”comma”, delete »and” to make it read

such as mesh size, order of...

Page 15, line 11: 7 to” instead of "too”. Delete one 70"
Page 16, line -12: non-monetary, insert a dash.
Page 17, line 7: Insert »  assumed to be equal to one.”

Page 17, line -13: change ” analysis” to” discussion” ( we use analysis in the
next sentence)

The discussion in [8]...

Page 17, line -10: take out dash
Page 18, line 10: take out dash

Page 18, second display : close up between "v and ”is linear on...”

Page 18, line -9: xn instead of x,



Page 18, line -8: We left out zero here
=0,1,2,3...

Page 19, line -7: insert ”under”

in [55-57], under ” regular conditions”...

Page 19, line -4: Change »policy function” to ” optimal policy”

Page 20, line 1: Change” this” to ”the”
The result extends...
— line 13: Dash between C? and properties
(2-properties of W. ...

Page 21, line -11: 7 attempt” , add a "t”.

— line -7: something wrong with the first WP_,, it should be the same as
the following ones.

Page 22, line 2: Delete comma, insert ”and”
value functions W/ , and W} is such...
— line 10: It should read k* = 2.0673

— line 15; Insert the sentence (note that we must change ” experiment”
to "experiments” ):

The numerical experiments which were coded in standard FOR-
TRAN 77 and run on a DEC 2000 workstation (300 ALPHA AXP,
rated at 358.1 MFLOPS/150 Mhz.), started with h=...

e Page 22, line 21: change 7460” to 7917
_ line 22: change ” 2 min 51 s.” to 733 8.
o Page 23, legend of figure 3: change "7 = 559” to ”n = 917

o Page 23, legend of figure 4: change 7 = 1478” to "7 = 90”



e Table 1: The Table should be as folows

No. of vertex | Mesh size | No. of additional | CPU time | Max. observed
points iterations in seconds error in W
100 1071 99 3 1.8 x 107"
1000 1072 91 33 1.7 x 1073
| 10000 1073 90 208 | 18x10° |

o Page 25, lines 13-15: A dot after s (for seconds ) seems to be missing.
e Page 25, line -18: Change "may” to nwould likely”. A stronger statement
is warranted here. Also insert a comma after ”accuracy’ .
...accuracy, it would likely be profitable

_ last sentence before the example: Change [not viable for full-fleshed
models involving four or more variables] to [subject to the ”curse of
dimensionality”.]

— last line: period missing at the end.

Page 25 and 26, formulas (3.19) and (3.20): delete the 7=" sign

— line -9, -8: Chahge »gets very close to” to ”hovers around”.

...p(j) hovers around 2. This array...

Page 29, line 18: Insert footnonte 3 after "day”

..argument that can win the day.?

Page 29, line -3: Delete the "1’ sitting there by itself.

_ line -2: It is more portable; not "its portable”.

Page 30, line 6: "modern”, lower case m, not Modern

— Last line: change "ISML” o ?IMLS”

page 31, line 26: Change "there” to ”these”

4



— line -6: change " considerable” to ” considerably”

e Page 33, line 7: Insert "the”

...on compact sets, the functions...

_ line 9: insert dash; ”C!'—function”

_ line 10: insert a dash; ”"mean-value theorem”.

— line 12: insert a comma after ” terms”
...Rearranging terms, we obtain...

— line -10: 7of” instead of "on”
Lipschitz function of m such...

— Equation (7.6): i; below max, (not k). See manuscript.

_ line -5: "an” instead of "any”; delete the "y”.
Consider now an arbitrary...

_ lime -5: it should say {k'(t)}s>o0 (See the manusript)

— line -4: make it read

Then, we have

e Page 34, line 2: transpose "two” and ”other”
other two inequalities come...
— End of the statement of lemma A.2: needs a period on line -14
— line -13: change »unidimensional” to ” one-dimensional”
— line -10: Insert a dash
first-order derivatives...
— line -3: start it as ”In this situation,”

In this situation, G cannot be...
e Page 35, line 3: no indentation

— line 4: make it read



Hence, it follows that

— line 6: the subscript is

’7m7’ not ”S”

— line 11: insert a dash; multi-dimensional

— line -7: take out the dash between ”for” and ”all”.

e Page 36, line 10: It is capital W (see manuscript)

— Yine 11: leave a blank line between this one and the next to set off the

end of the proof

— line -14: no indentation

— line -13: delete ”let us’

. it should read

.. Also, define the functional...

_ line -12: delete a comma and delete 7 given”

W by...

— line -11: The phrase "subject to » could go on the next line

_ line -9: The phrase "subject to " could go on the next line

Thus both of these would have the form (3.1)-(3.5).

_ line -7: insert comma after B
...A and B, Eq. 34
— line -4: delete a comma between ” defined” and ” and”

are well defined and that...

e Page 37, line 3: Replace "hold” by "be the case”; comma after ”h”

m and h, it must be the case that ...

_ line 5: delete comma after gJ

vertex point in S7and 0<...

— line -11: space between kiand (i =1,..,n+ 1)

_ line -7: delete comma after (3.4)
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...fixed point of Eq. (3.4) and that...
— line -6: insert ”a constant” after ”is”

...C, there is a constant M>0 such...
— last line: period missing at the end.

o Page 38, line 8-9: change »the policy function” to "a point, of the optimal

policy”

_ line 10: insert "an” after 7ig”

there is an N>0 such that

— line 13: Change ”=" to "€” (change the ‘equal’ sign to the 'belongs

to’ sign)
— line -8: insert dash;
...the mean-value theorem...

_ last line: dot should go just above k (see the manuscript)

e In the references:

[6]: In the title, change » continuous case” to ”continuous-time case”

[8]: The new title of the paper is:

Stabilizing Monetary Injection Policies

[15): In Frank Clarke’s paper change 274 to " 247"
[42]: there is the word "for” missing from the title

»Numerical Methods for Stochastic...



