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Model equations for gravity waves in horizontally stratified fluids are considered. The
theories to be addressed focus on stratifications featuring either a single pycnocline or
neighbouring pairs of pycnoclines. Particular models investigated include the general
version of the intermediate long-wave equation derived by Kubota, Ko and Dobbs to
simulate waves in a model system consisting of two homogeneous layers separated by
a narrow region of variable density, and the related system of equations derived by
Liu, Ko and Pereira for the transfer of energy between waves running along neigh-
bouring pycnoclines. Issues given rigorous mathematical treatment herein include
the well-posedness of the initial value problem for these models, the question of ex-
istence of solitary wave solutions, and theoretical results about the stability of these
solitary waves.

1. Introductidn

Considered here are physical systems that serve as models for waves in laboratory
studies and in certain regimes in oceans and lakes. While these systems are idealized,
they nevertheless present some of the more important aspects of naturally occurring
configurations, and, consequently, they are taken to be worthy of sustained investi-
gation as a guide to practical issues.

In natural environments, various effects conspire to produce water basins having
density variations with regard to depth. Often these variations consist of rather thin
regions of substantial variation concatenated with larger regions of essentially homo-
geneous fluid. In this situation, a region of sharp variation is termed a pycnocline
(see figures 1 and 2). Because of the density variation around a pycnocline, they
may act as conduits of gravity-wave motion, just as does the density variation at a
water—air interface. Such internal wave motions have been found to be a common
feature of ocean and lake environments (cf. Apel et al. 1975; Farmer & Smith 1978;
T'u & Holt 1982; Haury et al. 1978; Hunkins & Fliegel 1973; Osborne & Burch 1980;
Sandstrom & Elliot 1984).

The model systems that are of concern here are composed of a fluid confined be-
tween two horizontal planes that possesses a stable uniform stratification p depending
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only upon the vertical coordinate z, say. Wave motion is considered which is uniform
in the y-coordinate of a standard Cartesian frame oriented so that the z-y-plane
is coplanar with the confining surfaces and z is oriented positively in the direction
opposite to that in which gravity acts. In consequence, a two-dimensional analysis
is appropriate in which the wavetrains propagate’in the direction of the z-axis with
a uniform structure in the y variable. While naturally occurring basins do not have
rigid upper surfaces, constant depths, or uniform stratifications, these special aspects
are sometimes a reasonable idealization. Moreover, conclusions drawn under the aegis
of these idealizations appear to correspond to events occurring in the laboratory and
in nature. For example, Davis & Acrivos (1967) found that the amplitude-wavespeed
relationship predicted by a model equation of the type considered here showed good
agreement with their laboratory observations; while the model system of Liu et al.
(1980, see (1.4) below) successfully predicted the ‘leapfrogging’ phenomenon for in-
ternal waves which was observed later in the experiments of Weidman & Johnson
(1982). Hence these model systems are taken to be an interesting and informative
object for study.

Consider the case of a single pycnocline pictured in figure 1 in which the density
variation is confined to a thin layer of height h whose center is located at a distance
H, below the upper surface and a distance Hy above the lower surface. The total |
distance H between the two bounding surfaces is thus H = H; + H,. Kubota et al.
(1978) have shown that if attention is restricted to small-amplitude long-wavelength
waves, and viscous and diffusive effects are ignored, then the integro-differential
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equation

U + CoUy + QUU, — cpO2 /m Gz — &ul(é,t)dé =0, (1.1)

may be derived as an approximation to the full Euler equations. Here z is, as above,
proportional to distance in the direction of propagation, ¢ is proportional to elapsed
time, and subscripted variables denote partial derivatives. The dependent variable
u(z,t) is related to the stream function v¥(z,z,t) by ¥(z, z,t) = u(z,t)n(z), where
n(z) determines the vertical structure of the wave within the pycnocline and is a
solution of the Sturm-Liouville problem

{%wﬂmuémmmhu for 0 < z<1,
7'(0) =n'(1) = 0.

The function pg(z) describes the undisturbed density profile within the pycnocline,
and the variable z has been rescaled so that z = 0 and z = 1 correspond to the bottom

and top of the pycnocline, respectively. The constant a and the kernel function G
in (1.1) are given by

g
a=51 /. po(z)(7'(2))* dz
and
B = 2’% {coth (%) - sgn(w)}
+26_fi {coth (;—}1) - sgn(m)} , (1.2)
where
= WO g mONO o [ eyas

and H; and H, are now dimensionless parameters (scaled by wavelength).

Equation (1.1) with the general kernel given in’(1.2) has received relatively little
attention despite its obvious importance. Rather more interest has been associated
with cases of (1.1) which correspond to special geometries, namely the formal limit
wherein one of the depths H; or H, tends to zero or the case where H; = Hj. In both
these situations, (1.1) reduces to the well-studied intermediate long-wave equation
(ILW equation henceforth) with kernel

T

Gl = 5%; {coth (-2?) - sgn(z)} . (1.3)

Although the ILW equation (1.1)—(1.3) is less widely applicable as a model equa-
tion than the more general version (1.1)-(1.2), it has attracted more effort because it
falls within the class of equations which are solvable by an inverse-scattering trans-
form (Kodama et al. 1982), and because it possesses explicit solitary-wave and mul-
tisoliton solutions (Joseph 1977; Joseph & Egri 1978). Moreover, the ILW equation is
related in an interesting way to the Korteweg—de Vries and Benjamin—-Ono equations,
to which it reduces in appropriate limiting situations. The initial-value problem for
the ILW equation along with the Benjamin-Ono and Korteweg—de Vries limits has
been rigorously analyzed in the article of Abdelouhab et al. (1989), whilst the orbital
stability of the solitary-wave solutions was established by Albert & Bona (1991).
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In the present article, various aspects of (1.1) with the more general kernel (1.2)
are examined. A global theory for the initial-value problem is established following
the lines laid down in Abdelouhab et al. (1989), an existence theory for solitary-
wave solutions is put forth making use of concentration-compactness arguments as
in Weinstein (1987) and a certain range of these waves is shown to be stable.

A more complex situation is envisioned in figure 2 in which the underlying stratifi-
cation features two pycnoclines. In case these pycnoclines are close together relative
to the underlying wavelengths, a pair of coupled Korteweg-de Vries-type equations
derived by Gear & Grimshaw (1984) gives an approximate description of the system.
In case the pycnoclines are relatively far apart, but not so distant that motion on
one is decoupled from the other, Liu et al (1980) have derived a model consisting of
a coupled pair of ILW-type equations, namely

Uy + 0 uts — 1102H; (u) — 12(82Ha (u) — 027 (v)) = 0, }

) 14
v — Dcvg + auur — 1302 Hs(v) — 14 (02 Ha(v) — 827 (1)) = 0, (14)

where the dispersion operator H; (¢ = 1, 2 or 3) is defined to be convolution with
the kernel G; given in (1.3) with 8 =1 and H replaced by H; and J is convolution
with a kernel J given by :

1 T '
Tl 2—Hztanh (2_172) : (1.5)

The system (1.4) is written in a frame of reference moving with the speed ¢; of in-
finitesimal waves of extreme length on the upper pycnocline. The dependent values
u(z,t) represent the deviation of the centre of the upper pycnocline from its equilib-
rium position at the point z at time ¢ and v(z,t) represents, similarly, the deviation
of the lower pycnocline. The parameters o), as, 41, 72, 73 and 74 correspond to the
wave environment, with a;, 7, and ~, relating to the upper pycnocline and as, v
and -4 to the lower pycnocline, while Ac is the difference ¢; — ¢, between the linear
long-wave velocities on the two pycnoclines. (The choice of signs in the individual
terms of (1.4) will be convenient in §4 below.) The model of Gear & Grimshaw is
analysed in a companion paper (Bona et al 1992). Here, attention is given to the
coupled system (1.4) as its properties parallel those of the single equation (1.1). In
particular, a global well-posedness result is proved for (1.4), and the existence of
travelling-wave solutions is demonstrated.

The plan of the paper is as follows. Section 2 deals with the initial-value problems
for both (1.1) and (1.4). Issues concerning travelling-wave solutions receive attention
in §§3 and 4. The final section features a summary of the earlier accomplishments
together with some discussion of possible related lines of inquiry.

2. The Cauchy problems

Consideration is given to the pure initial-value problems for (1.1) and for (1.4). The
theory for (1.1) follows readily from results in Abdelouhab et al. (1989). Interestingly,
considerations similar to those that come to the fore for ( 1.1) suffice to conclude a
theory for the system (1.4).

The notation used throughout is that which is currently standard in the theory of
partial differential equations. Thus for 1 < p < oo, L,(£2) stands for the pth-power
jntegrable) real-valued functions defined on a subset 2 of R, the real line, with the
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usual modification if p = co. In most instances here where L,({2) arises, the subset
§2 will be the whole of R, and in this case we will usually write L, for L,(R). The
standard norm on L, will be denoted by |-|,. For s = 0, the L»-based Sobolev spaces
H?® = Wy of Ly-functions whose derivatives up to order s lie in L, will also intervene
substantially. The space H* is a Hilbert space with inner product given by

. . o o
(f19)s = f_ 1+ kQ)SWf(k)g(xc) dk ﬂ
and norm defined to be
I £l = &5, 072

(Here and throughout the paper, a c1rcumﬂex over a function f will denote that
functlon s Fourier fransform with respect to the spatial variable z, defined for k € R
by f = [ @ )dz. The overbar signifies complex conjuga,tlon) Finally, if

X and Y are any Banach spaces, then B(X,Y) will denote the space of bounded
linear maps from X to ¥ with the operator norm, while for T > 0, C(0,T"; X) is the
collection of continuous maps ¢ : [0, 7] — X with the maximum norm.

Consider first equation (1.1). After moving to a travelling frame of reference and
rescaling, the initial-value problem for the general ILW equation (1.1) takes the form

U + Uty — B1Miug — BaMou, =0,  ufi—o = up, (21}
where M; is the Fourier multiplier operator defined by
Maw(k) = m; (k)@ (k) (2.2)
and the symbol m; of M; is
1

for 1= 1, 2.

FoIIowmg the line of argument appearing in § 7 of Abdelouhab (1989), the operator
M; is decomposed as M; = —H8, — K;, where H here denotes the Hilbert transform.
A short calculation reveals that /; is a Fourier multiplier operator with symbol a;
given as

1

a;(k) = |k| — kcoth(kH;) + T (2.4)
for i = 1,2, and that for all &,
1
" H < ai(k) <0. (2.5)
In consequence of this decomposition, the equation in (2.1) is seen to be of the form
uy + utgy + (81 + B2) Huge + Kug = 0, (2.6)

where K = §,K; + K, is a self-adjoint operator of order 0 and so bounded on
all the Ly-based Sobolev spaces H*. Because of these observations, the initial-value
problem (2.1) is realized as an initial-value problem for the Benjamin-Ono equation
perturbed by the term Ku,. This allows us to take over intact some of the results in
§6 of Abdelouhab (1989) that apply to the ILW equation (1.1)-(1.3).

Theorem 2.1. Let ug be initial data for the initial-value problem (2.1).

Proc. . Soe. Lond. A (1997)
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(i) Ifug € H¥/? for j = 0, 1, 2 or 3, then there exists a weak solution u of (2 1)
with initial value wy which, for each T > 0, lies in Lo (RY; HY/2) N Ly(0, T Hl(j:l 13,
(ii) If ug € H® where s > 3/2, then t}ns solution is unique and, for each T > 0,
belongs to C*(0,T; H*~%*) for k such that s — 2k » —1. MOIeover for each T' > 0,
the correspondenre that associates u to ug Is continuous from H* to C*0,T; H*~ 2")

for all such k and continuous from H*® into Ly(0,T; . i )

loc

Remarks. The existence of weak solutions goes back to the paper of Saut (1979). . . -
The fact that the equation preserves the spaces H/%, 1 < j < 3, or H® for s > L
3/2 as it evolves from initial data is a consequence of the arguments developed b et al.
Abdelouhab et al for the Smith equation in §7 of Abdelouhab WK_/
smoothing results stated in the theorem are like those proved for the Benjamin-Ono
equation by Ginibre & Velo (1991), Ponce (1990) and Tom (1990). They are valid
for equation (2.1) because it can be written in the form (2.6) and the smoothing
results are stable to a perturbation of the Benjamin-Ono equation by a term of the
form Kwu,, where K is a bounded self-adjoint operator on the spaces H*, s > 0. The
local smoothing allows one to strengthen the just-quoted results for weak solutions.

Indeed, by following the arguments in the references above, but as applied to the
perturbed Benjamin-Ono equation (2.6), one derives readily the next result.

Corollary 2.2. Let ug be initial data for the problem (2.1). Then for j = 0, 1,
2,3, ifug € H7/2, then there is a solution u of {2 1) with initial data ug which, for
each T > 0, lies in C(0,T; H/?) N Ly(0,T; HZ

We turn now to the Liu et al. system (1.4), which can be rewritten in the form

us + aquue — (M), — Yo[(Mau), — (Nv)z| = 0, @7
— Acvg + agvug — Y3(Msv) — v4|(Mav), — (Nu),] = 0 '

where the operators M; (i = 1, 2, 3) are defined by (2.2) and (2.3), and N is the
Fourier multiplier operator deﬁned by

Nuw(k) = n(k)@(k), (2.8)
whose symbol n is
k

Note that, apart from the coupling terms involving (Nv), and (Nu),, each of the
equations in (2.7} is of the same form as the general ILW equation. Moreover,
from (2.8) and (2.9) it is apparent that the operator —9,N is a smoothing oper-
ator, since its symbol (ik*/sinh kH,) vanishes rapidly as |k| — co. (In fact, for any
s € R, 9, N carries H*® to H® = Nyez H*.) System (2.7) has, therefore, the following
shucture.
U + oqutg + (1 + Yo)Hige + Tiug + Syv = 0, (2.10)
U+ oWV + (3 + Ya) HVze + Tovg 4+ Sou = 0, '
where H is again the Hilbert transform, 7} and 7} are operators of order zero, and
S; and S, are smoothing operators.
Concerning the Cauchy problem associated to (2.10), one derives exactly the same
results as those stated in theorem 2.1. To see this, first observe that the total ‘ener gy’
f (74u? + v20?) of the system is conserved (mult]ply (2.7)1 by vau, (2.7)2 by yov, add,
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and integrate the resulting equality over R). Then treat each equation in (2.10) as
a perturbed Benjamin-Ono equation, as in the case of the general ILW equation.
The coupling terms are harmless, due to the smoothing properties of S; and Sy. The
following result emerges from these considerations.

Theorem 2.3. Let uy and vy be initial data for the problem (2.7). For j = 0,
1, 2, 3, if up,vp € H?/?, then there is a solution pair u,v of (2.7), both of which lie
in C{O,T;Hj/'z) N Ly(0, T Hl{cf':])/g) for each T > 0. If ug,vg € H® for s 2%, then
the solution pair is unique and lies in C(0,T; H*) N L,(0, T} H](::lm). In this case,
the correspondence that associates to the initial data (ug,vo) the solution (u,v) is
continuous as a mapping between the associated spaces.

3. Existence of solitary waves

In the context of equations such as (2.1), the term ‘solitary wave’ usually refers to a
localized solution which propagates unchanged in form at constant velocity. The goal
of this section is to prove that such solutions exist for equation (2.1). More precisely,
it will be shown that solutions to (2.1) exist which are of the form u(z,t) = ¢(z—Ct),
where C is a positive constant and the profile function ¢(¢) is even and decreases
rapidly in both directions away from its maximum point at £ = 0. For brevity, in
what follows we will refer to such a function as a ‘decreasing function of |z|". Note
that if a decreasing function of [z is in a class such as L, for some p € |1, 00), then
the function must be non-negative and tend to zero as |z| — co.

For sufficiently smooth functions, ¢, that are appropriately evanescent at infinity,
it is easily seen that u(z,t) = ¢(z — Ct) will satisfy (2.1) if, and only if, ¢ satisfies
the equation

(C+ 1My + Bo M) = %4352- (3.1)
Therefore, to prove the existence of solitary-wave solutions of (2.1) it suffices to
establish the following result. -

Theorem 8.1. For every C > 0, equation (3.1) has a solution ¢(z) € H* which
is a decreasing function of |z|. '

The gist of our argument in favour of theorem 3.1 is taken in large part from
Weinstein!f:# (1987), where the outline of a proof of existence of solitary waves is
presented for a general class of equations. In the present context, the argument which
appears in Weinstein (1987) requires supplementation at two important points. The
first is at the passage from equation (3.4) to equation (3.6) of Weinstein (1987),
which is only valid under certain special conditions on the dispersion operator, and
the second is at inequality (3.20) of Weinstein (1987), which requires additional
justification in the case when the dispersion operator is nonlocal. Because addressing
these two issues affects the structure of the entire argument, it has been thought
proper to present here a complete and self-contained exposition.

We begin with some general commentary about equation (3.1) and its solutions.
Let m(k) be the function defined by

m(k) = Bimi (k) + Bama (k).

Lemma 3.2. Let pn > 0 be given, and define the function K = K, by I?(k) =
(u+m(k))~!. Then K(z) > 0 for all z € R. Moreover, K is a decreasing function of
|z|, and is a member of L,(R) for every p € (1, c0).

Proc. R. Soc. Lond. A (1997)
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Lemma 3.3. Suppose ¢ € L, solves equation (3.1) in the sense of distributions
on R. Then ¢ is in H*(R), and (3.1) holds in the pointwise sense.

Proof. A proof of lemmas 3.2 and 3.3, in the case when one of 8, or Bs is equal to
zero, appears in lemmas | and 4 of Albert (1995). The proof in the general case is
quite similar, and we therefore content ourselves with an indication of the changes
required to make the earlier line of argument decisive. An elementary but tedious
computation shows that, as the complex variable z ranges over the upper half plane,
the function [+ m(z)]~" has poles only at the purely imaginary points z = i,
(1 =0,1,2,...), where 0 < vy <1, < ---. Because [u + m(2)]~! decays like ||~ ! as
|z| — oo, Jordan’s lemma (cf. Whittaker & Watson (1952), ch. 6) and the Residue
Theorem imply that the integral K (z) = (1/27) [* e %[y + m(k)]~1 dk is equal
to —i times the sum of the residues of the integrand in the upper half plane, whence

(e o]
K(z) =) 2mye ", (3.2)
J=0
where
2 : -1
(2vjH) — sin2v,; Hy)
V= {Zﬁk — 3 - .
— 2sin”(v; Hy)
From this point on, the proofs proceed exactly as in the case when one of 1 or Bs
is zero. ' ]

Remarks. From lemma 3.2 and the observation that (3.1) may be rewritten in
the form ¢ = (1/2)K * ¢?, it follows immediately that any non-trivial L,-solution
of (3.1) must be positive everywhere.

A closer examination of the parameters vj and v;, 7 = 0,1,..., appearing in (3.2)
shows that the sequence {7;};-0,,. is bounded and tends to zero as j becomes
unboundedly large like ¢/j for some constant ¢, while the sequence {vi}j=0,1,... grows
about linearly with j as j tends to infinity. In consequence, it is seen that for any
v <y, e ?®lK(z) e L, for any p € (1,00). This point will be useful later in this
section when the rate of decay of solitary-wave solutions of (2.1) is addressed.

Now define a nonlinear functional J on H/2 by

JU):[ftwfdm

o0

where L is the Fourier multiplier operator defined by
Li(k) = (C + m(k))/* (k).

Since the symbol (C + m(k))'/? is everywhere positive and is comparable to [k|'/2
for large values of |k|, it follows from the identity

Ty 51; f_m (C + m(k)|F (k)2 dk, (3.3)

that the quantity J(f) is equivalent to the square of the H/2-norm of f.
Consideration is given to two constrained minimization problems for the functional
J which will be referred to below as problems (P1) and (P2).

Proc. R. Soc. Lond. A (1997)
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problem (P 1) is that of minimizing the functional J(f) over the set

S = {fEHl/E:/DO f(.’i‘,‘)sdle},

while problem (P2) is that of minimizing J(f) over the set

= {feH’l/g:foo |f(:z:)|3dx:1}.

It will be seen below that theorem 3.1 follows readily once it has been shown that
a minimizing function for the problem (P1) exists in H'/2. For technical reasons,
however, it is preferable to work with problem (P2) instead. If the existence argument
is to be based on problem (P2), then it is necessary to establish a relation between
the solutions of the two problems. This will be accomplished with the aid of the next
two lemmas, which are essentially taken from the Weinstein (198?

Lhe_meth.o.d-oﬁ-tba-r-pr—e-ef—tg.LLeb-},

Lemma 3.4. For every f € H'/?, one has |f| € H'/? and J(|f|) < J(f).

Proof. If g = |f|, then it follows from lemma 3.2 that K * g(z) > K # f(x) for all
z € R and every u > 0. In consequence, one has that

oo

| myigwrae=2n [ @) 9@ as

(o] -0

B ] " F@) (K * f)(w)d

= [ wrmen e (sa)

Since [7 [g12dk = [7_|f f|2 dk by Parseval’s identity, it follows that

/_: .u'[l _ (1 + T—ELE))—IJ |F (k)2 dk > /Z p:'{l - (1 + #)AJ [G(k)|2 dk.

Now taking the limit as 1 — co on both sides of the preceding inequality and using
the monotone convergence theorem gives

/_w m(k) | Fk) dk > /_mmw)lauc)mk,

[o0]

which together with the definition of J in (3.3) yields the desired result. |

Recall that for each f in Ly(R), one may define the symmetric decreasing rearrange-
ment of f to be the unique function f* with domam R which is a decreasing function
of |z| and has the property that the sets {z : [f(z)| > a} and {z : f*(z) > a} have
the same measure for every a > 0. In partlcu]ar One has |f*], = If|p forl<p<g
(cf. Hardy et al. (1934), ch. X).

Lemma 3.5. For every f € H'/2, one has f* € H? and J(f*) < J([).

Proof. A lemma of Riesz (1930) states that if ¢ is any even function on R which
decreases with increasing values of |z|, then

/f’f)g*f ) (z)d /f ) (g * f) (z)da.

Proc. R. Soc. Lond. A (1997)




10 J. P. Albert, J. L. Bona and J.-C. Saut

In particular, this inequality holds when g is replaced by K = K, (for any u >
0). Also, by Parseval’s identity, [~ _[f*|*dk = [°,_|fI*dk. The result then follows

exactly as in the proof of the preceding lemma. [ ]

Lemma 3.6. If fy is a minimizer for problem (P2), then |fo|" is a minimizer for
problem (P1).

Proof. Suppose fo is a minimizer for problem (P2). Since rearrangement preserves
the Ls-norm, it follows immediately from lemmas 3.4 and 3.5 that | fo|” is a minimizer
for problem (P2). If |fo|* is not a minimizer for problem (P1), then there exists
g € HY? such that [°, g¢°dz =1 and J(g) < J(|fol"). Letting

g

0 N 1/3°
(Four)

J(h) = L0 <),

([

one obtains

since [* |g|*dz > [* g¢3dz = 1. T_herefore J(h) < J(|fo|"). But [* [P dz =1,
=

so this contradicts the fact that |fs|* is a minimizer for problem (P2).

Let {f;};=1,2... be a minimizing sequence for problem (P2), so that [° |f;|*dz =1
for all j, while lim; o J(f;) = infzes, J(f). In general, because the inclusion of
HY%(R) into Lz(R) is not compact, one cannot extract a subsequence of the sequence
{f;} which converges in Lz-norm. As in Weinstein (1987), this difficulty will be
circumvented by means of Lions’ ‘concentration compactness’ principle. Briefly put,
Lions’ principle provides a method for proving that a subsequence of {f;} can be
found such that, after being suitably translated, each function in the subsequence is
‘concentrated’ on a fixed bounded interval. This then enables one to bring into play
the compactness of the inclusion of H/2(£2) into L3(f2) for bounded sets {2.

For each j, define a function @;(t) on Rt by °

y-+i
@0 =swp [ 1)l dz
yER Jy—t

Then Q;(t) is a non-decreasing non-negative function on R*, with lim; .o @;(t) = 1
for every j. Now, for any finite interval [a,b] € R*, the space of non-decreasing func-
tions from [a, b] to [0,1] with the topology of pointwise convergence is compact (by
Tychonoff’s compactness theorem) and metrizable (since on this space, the topology
of pointwise convergence is equivalent to that of uniform convergence). Therefore,
arguing first on finite subintervals of R* and then using a Cantor diagonalization
argument to pass to all of R*, one can extract from the sequence {Q;}j=12.. a
subsequence {Q;, }n=12, . which converges pointwise on R* to a limit function Q(2).
(For brevity, the notations {Q;} and {f;} will henceforth be used to refer to the
subsequence {Q; } and the corresponding subsequence {f; }.) Since Q(t) is also
non—decreasingpnon—nega,tive, and bounded above by one, the number

a = lim Q1)
t—o00
exists and satisfies 0 € o < 1. The concentration-compactness principle rests on

Proc. R. Soe. Lond. A (1997)




Model equations for waves in stratified fluids T

the fact that the three possibilities o = 0,0 <ao<landa=1 correspond to il LA~
quite distinct types of limiting behavior of the sequence {f;} as j — oo, which are (¥

suggestively labeled by Lions as ‘vanishing’, ‘dichotomy’ and ‘compactness’, respec- —
tively/(see Lions 1984). Typically, one proves compactness by ruling out the first two )

possibilities. We begin by ruling out ‘vanishing’ using an argument of Brezis which
appears in Lieb (1983). .

Lemma 3.7. Let ¢ € C®(R) be such that 0 < ¢ < 1 everywhere, ¢p(z) = 0 for
z ¢ [-2,2], and 2jez®(x—7) =1 forallz € R. Then there exists Cy > 0 such that
for all f € HY?,
> e~ D@72 < Coll F112 .
JEE

Proof. For any s € R, let I;(H*®) denote the Hilbert space of all sequences {g;},ez
such that g; € H*® for each j and > ez 195112 < oo. For each f € He, define Tf to
be the sequence of functions {¢(z — jﬂf(x)}jez- Clearly T : H®* — I,(H*) boundedly
for s = 0 and s = 1. It then follows by interpolation (cf. Bergh & Lofstrom (1976),
§5.6) that T € B(H'2 1,(H'/?)). =

Lemma 3.8. Let ¢ be as in lemma 3.7 and let A be any positive real number.
Then there exists C, > 0 depending only on ¢ and A with the property that for
every f € HY? which satisfies || f||,/» < A and which is not the zero function, there
exists an integer k such that

lé(z = k) F(@)132 < 1+ Gl F159)Ib(z — k) f()[2.

Proof. Since 3., |¢(z — )| = 1, with no more than four of the terms in the sum
being non-zero at any given value of z, it follows that there exists a constant Cy >0
such that 3., [¢(x — 7)1° = C; for all z € R. We claim that the statement of the
lemma is satisfied by the constant €, = (CoA?)/C,, where Cp is the constant in
lemma 3.7. To prove this, assume to the contrary that there exists a non-zero f such
that || f][1/2 < A and

ez = 7 @32 = L+ CilflE )bl — 5) f()

holds for every j € Z. Summing over J and applying lemma 3.7, one obtains

Collflliz2 > A+ Cilf") D bl — ) f()R,
JEZ
from which it follows that
CoA? 2 (1 + Ci|fI33)Calf 2 = C2|f13 + CoA?,
contradicting the fact that f is not zero. 1=
Lemma 3.9. There exists 1 > 0 such that

y+2 )
Supf [fi(z)Pdz > 5
yeER y—2

forall 7 =1,2,3,....
Proof. Observe that since {f;} is a minimizing sequence for problem (P2) and

Proc. R. Soc. Lond. A (1997)




12 J. P. Albert, J. L. Bona and J.-C. Saut

J(f;) is comparable to lfilli/2, then If5lli/2 is bounded independently of j, and
hence lemma 3.8 can be applied to f; with a constant Cs that is independent of i,
Thus for each j one can find k; € Z such that

(L4 Colf515 )bl ~ ks) £5(2)3 > Nlp(z — ki) i ()15 /2 2 ég!ff)(w = ki) ()3,

where Cj is the constant in the Sobolev inequality Ifls < Cs|lflly /2 (valid for all f €
H'?). Since |f;]5 = 1 for all J, it transpires that |6(z—k;) fi(x)|s > (1 +Cy)c)), -
and hence

kj+2
[ 16@F e > 6 - k)@

where n = ((1+ Cy)C2)-3, ]

From the preceding lemma it follows that « # 0, so that the sequence {f;} does
not ‘vanish’ in the sense of Lions. Next we rule out the possibility of ‘dichotomy’.
To do this we use a procedure which is an analogue for non-local operators of the
method used in lemma II1.1 of Lions (1984).

Lemma 3.10. There exists a constant ¢ > ( such that if @ € WL and f e H1/?,
then '

”L’Q]fIZ < c|t9'|00!f]2,
where [L,]f denotes the commutator L(Bf) - 0(Lf).

Proof. Write L =+/C . ] + L, where I is the identity operator on Ly and L is the
Fourier multiplier operator with symbol m(k) = (C +m(k))"/2 — CV/2 Gince [L, 0] =
[VC 1,6+ [L, 0] = [L, 6], it suffices to prove the lemma, with L replaced by I.

The operator L can be written as [, — (d/dz)T = T'(d/dz), where T is the Fourier
multiplier operator with symbol a(k) = (=m(k))/(ik). Since m(0) = 0 and & is
differentiable at k = 0, then o(k) is bounded and differentiable on R (when suitably
defined at k£ = 0). Hence T is a bounded operator on L,. Moreover, it is easily verified
that for every integer j > 0, one has sup,.g [k’ [(d/dk)i o (k)| < co. It therefore
follows from theorem 35 of Coifman & Meyer (1978) that there exists a constant ¢
such that

[IT,0](f"))2 < c|€ ool 2 (3.5)
for all functions 6 and fin C§°(R). A standard density argument then shows
that (3.5) holds with the same constant ¢ for all € W, and all f € HY2. Hence
the desired result may be validated by writing

T - d df ’ !
12,01t = [r 00 ~or ()| <@ pi+ iz,
and using (3.5) and the fact that 7" is bounded on Ls. i

Let ¢ and 4 be smooth functions on R such that ¢(z) =1 forz € [-1,1], ¢(z) = 0
forz ¢ [-2,2], ¢(z) = 1 for 2 Z[-2,2],9(x) = 0forz € [-1,1], and ¢*(x)+1p2(z) =
1 for all z € R. For each R > 0 let ¢r(z) = ¢(z/R) and Yr(z) = ¥(z/R).

Lemma 3.11. Lete > 0, 4 > 0, and a € R be given, and suppose f € HY? jg
such that || f||1/2 < A. Then there exists Ry = Ry(¢, A) > 0 (which depends on ¢ and
A but not on a or f) such that for every R > R,

() = J(g) = T(h)| <,
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where 9(z) = ¢r(z — a)f(z) and h(z) = Yp(z - a)f(z).

Proof. Since J is invariant under translations, we may assume a = 0, so that
g = ¢rf and h =g f. For all R > 0, one has

J(g)_/fo (#r1)) /chLf

oo

w2 [ on@nzodn)+ [ (Laarr. @)

Since |[prleo = 1 and [(@r)'|eo < |¢'|o/R, it follows from lemma 3.10 that

/ T SR(LAL. 1] < Brloal LEIIL, 6r)Fl < cllfyal(@r) ol |2 < cA?/R

and
/ 1L, 0R] fI? < cl(ér)' oI 12 < cA/R?,

where ¢ is independent of a, f, A and R. Hence one obtains from (3.6) that
0= [~ | < g
for R > max(\/(4/c) A%, (4cA?/¢)). Similarly, one has

sy - [ "R < e

o0

for R sufficiently large. Since J(f) = [% (Lf)*= [ q}%(L 2+ 5 vE(LF)?, the
lemma follows.

Lemma 3.12. For every ¢ > 0, there exists a natural number N and sequences
{9:}i=nn41,.. and {h;}j=n N1, in HY? such that for all j > N,

([Z |gj(w)|3dx) i
([ mras) -0 -a

(i) J(f3) = J(g;) + J(hy) —

Proof. For a given ¢, it follows from the definition of @ that there exists Ry >0
such that for all R > Rl,

<e,

(1)

< €,and

(if)

a—e<Q(R) < Q(2R)< a

Let A be such that ||f;]li;2 < A for all § > 1, and let Ry = Ry(e, A) be as in
lemma 3.11. Finally fix R = max(Ro, R;). Since Q; tends pointwise to @ on R*,
then a number N can be found such that for all j > N,

a—€<Q;(R) <Q;(2R) < a+e.
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Hence for each 7 = N one can find y; such that

U,‘|+R
/ lfjlgdl'>ﬂ‘—6,

yi— R

and

yi+2R
/ IfilPdz < a+e
(]

i—2R

Now for each j = N define g;(z) = ¢r(z — y;) fi(T ) and h;(z) = Yr(z - y;) fi(x
where ¢p and g are as in the last lemma. Since f |f;]® = 1, parts (i) and (ii) of
lemma 3.12 follow easily from the preceding two mequahmes and the properties of
the functions ¢ and v, while part (iii) follows immediately from lemma 3.11. |

Lemma 3.13. For each y > 0, define
I(y) = inf{J(f) . fe HY? and / |f(z)]P dz = y}

Then, for all y € (0,1),
I(y)+I(1—y) > I(1).

Proof. The Sobolev embedding theorem implies that j (z)* dz < || f]13,, for
all f € H'/2, where c is independent of f. Since J(f) is comparable to Hle/z, it
follows that I(y) > 0 for all y > 0, and in particular /(1) > 0. Also, one clearly has
I(y) = y**I(1) for all y > 0. The result then follows from the subadditivity of the
function y?/3. [

It follows from lemmas 3.12 and 3.13 that the number o cannot lie in the range
(0,1). To see this, let € > 0 be given and choose a natural munber N and sequences
{gj} and {h;} as jn lemma 3.12. If, for all j > N, we set §; = (a'/®/|g;|s)g; and  instat fhrbrithess
h; = ((1- a}”ejﬂlhji j, then [T |g;[*dz = o s s |h id d:r = (1 - a), from Soxptrssenoh
which it follows thﬁ (g5) = I{e) and .](hj) > I(1 — ). Therefore

{ 9 \ | | 'Se_\
I5) = Lk (0 ((xfu)/g/lﬁé@ d

273
and T
J(h;) = (T%I(l - ), J'IMWL N o
ke 10

and so from lemma 3.12 it follows that

(a— 6)2/3} I(a) + [M] I(1—a)—e

2/3 (1 - a)2/3

J(f5) = J(9;) + J(hs) —
Now taking the limit first as § — oo (for fixed €) and then as ¢ — 0, one obtains that
Iz I(e)+I(1-a)
But if & were in the range (0,1) then this result would contradict lemma 3.13. _
Since we have already ruled out the possibility that o = 0, it follows from the above pre vails.
that o must equal one, and so the ‘compactness’ alternahve of Lions i »
Lemma 3.14. (Lions 1984). Suppose c = 1. Then there exists a sequence of
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real numbers {y,} with the followin
exists a real number R = R(z)

g property: for every z in the interval (%, 1), there
such that for all j sufficiently large,

Yi+R
/ [F* > .
vi—R

i

Proof. Since o = 1, for every z € (%,1) we can find numbers R;(z) and Ny (=)
such that for all j > Ny (z)

y+Ry(z) .
QRN =sup [* s s

VER Jy— R (z)
Hence, for each z there exists a sequence {y;(z)} such that

Yi(z)+Ri(z)
/ 5P > =
)

yJ(Z)* 1(z

Now define y; = y,(3) for each j > Ny(3). Since [ |f;I* = 1 for all §, it follows

that .
19:(2) = ;| < Ri(2) + Ry (),

for all z > §. Then, taking R(z) = 2Ry (2) + Ry(2) and N(z) = max(Ni (2), Ny (1)),

we have
Yi+R(z)
L e s .
vi—R(z)

for all 7 = N(z). [ |
Let f; be the function obtained by translating f; by y;, so that

JEJ(T) = fi(x+y;) forall z €R.

For each natural number k, let » — (1= (1/k))®. Then by lemma 3.14, there ex-
ists a number Ry such that for all sufficiently large 7, the Ls-norm of f; on the
interval [~ Ry, Ry| is greater than ] — (1/k). Hence, since the sequence {f;} is
uniformly bounded in H'2, it follows from the compactness of the embedding of
HY2(2) into Ls3(R2) on bounded intervals 2 that some subsequence of {7;} con-
verges, weakly in H'/2 and strongly in Ls([~ Ry, Ri]), to a limit function fo whose
norm in Ls([~ Ry, Ry]) is greater than or equal to (1 — (1/k)). Now, by a Cantor di-
agonalization argument, we can find a subsequence of {f;} which converges, weakly
in HY2 and strongly in L; on évery compact subset of R, to a function fo defined
on R whose norm in L, (R) is equal to one. But from the lower semicontinuity of the
norm defined by v/J on H/2, we have

J(fo) Sj@gJ{ﬂ) = I(1).

Therefore fy is a solution of the variational problem (P2).

Now from lemma. 3.6 it follows that gy = |fo|* is a minimizer for problem (P1).

Hence, by a standard result In the calculus of variations (see Luenberger (1968),
theorem 2 of §7.7), gy satisfies the Lagrange-multiplier equation

6J(g0) = X - 6K (go) (3.7)
for some A € R. Here K is the functional defined by K(f) = ffooo 2 dx, whilst 6J(go)
Proc. R. Soc. Lond. A (1997)
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and 6K (go) are the Fréchet derivatives of J and K at fy, given as maps from H1/2
to R by

6J(go)[h] = 2/00 Lgo(x)Lh(z)dxr and 6K (go)|h| = 3]%93(3:)/%(27) dz. (3.8)

From (3.7) it follows that L?(gy) = (3A)gZ, in the sense of equality between distri-
butions on R. Taking ¢ = 3Agp, one then obtains a distributional solution of (3.1),

which must in fact be an H*-solution by lemma 3.3. Since ¢ is a decreasing function -

of |z|, this completes the proof of theorem 3.1.

Remarks. As noted by Weinstein (1987), the method used above for proving
existence of solitary waves can be applied to more general equations of the form

uy + uPuy, — (Mu), =0,

where p > 1 is an integer and M is the Fourier multiplier operator defined by
Mu(k) m(k)u(k), with m(k) now denoting an arbitrary measurable function of k.
The associated equation for solitary waves is

(C+M)q5:< ! )qﬁp“. | (3.9)

p+1

The proof of theorem 3.1 goes through essentially unchanged for equation (3.9) pro-
vided that:

(i) lemma 3.2 holds for the new ch01ce of m(k); and

(ii) the operator 7" with symbol o(k ~(1 / )(v/C + m(k) — /C) satisfies the
commutator estimate (3.5).
Of course the Hilbert space in which the variational problems analogous to those
below (3.3) are set will depend on the growth at infinity of m.

We continue our analysis of the solitary-wave solutions of the general ILW equa-
tion. Suppose ¢ to be a solution of (3.1) as obtained via theorem 3.1, say. Interest
now focuses on the spatial asymptotics of ¢(z) as || — co. Of course, since ¢ lies in
Ly and is a decreasing function of |z|, ¢(z) — 0 as z — +oo. However, more precise
information may be obtained by using the recent theory for decay of solitary waves
worked out by Bona & Li (1997).

First, observe that if 5, = 0, we are faced with the ILW equation itself. As men-
tioned earlier, in this case solitary-wave solutions are known explicitly (and known
to be unique to within a translation (Albert 1995; Albert & Toland 1994). These
solitary waves have the form

2a8ssin aHy

3.10
cosh a(zx + xo) + cos aH, (3.10)

$(z) =

where a € (0,7/H,) satisfies aHycotaH, = (1 — CHy/f3;), and it is obvious by
inspection that they decay exponentially to zero at infinity. It is natural to conjecture
the same property for solitary-wave solutions of the general ILW equation (2.1),
though one must keep in mind that not all such model equations feature exponentially
decaying solitary waves (e.g. the Benjamin-Ono equation possesses solitary waves
that decay algebraically to zero at infinity).

In fact, the following general result holds for solutions of the convolution equa-
tion (3.1).
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Theorem 3.15. Let C > 0 be specified and let ¢ be a solution of equation (3.1)
corresponding to this value of C which is an Ly-function with the property that
limz— 400 ¥(z) = 0. Let 2z = lvp be the zero of C + Bymy(z) + fame(z) in the upper
half-plane with smallest imaginary part. Then it follows that:

(1) ¢(x)e”' € Lo for any o < vy; ;

(2) there is a finite constant A > 0 such that limyg|—eo ¢(x)e"!*! = ; and

(3) ¢ is the restriction to the real axis of a function ¢ which is analytic in the
strip {z : —vp < Im(z) < 1}.

Proof. Part (1) for ¢ < vy and part (3) follow directly from theorem 4.1.7 of Bona
& Li (1997, see also Li & Bona 1997) and the earlier remark that the kernel K defined
by b

R (k) = [C + Bima (k) + Bama (k)] ™
has the property
/ e K¢ (2)]? dx < +o0,
for any o < vg.

Part (2) is a consequence of theorem 3.1.6 of Bona & Li (1997). Indeed, from the
representation (3.2) for K, it follows that

lim e”® K (z) = 2m.

z—+o00

The just-mentioned theorem therefore allows one to conclude that
' co
}irf S} = 27r"ygf eV (y)? dy.
T—ITOO — o0
Since ¢ is even in this case,

[ emswray= [ ot ey
—0o0 —0oo

The result claimed in part (2) now follows if we choose A to be 277y, times the
quantity in the last display. =

We conclude this section with a result about the stability of solitary waves as
solutions of the initial-value problem (2.1). A solitary-wave solution is said to be
(orbitally) stable if for every e > 0, there exists 6 > 0 such that when uy € H*
(where s > 3/2) and |lug — ¢[|1/2 < 6, the solution u of (2.1) described in theorem 2.1
satisfies

inf lu(- +y,t) — ¢lly2 <e.
n<t<oo

The result to be proved here is that stable solitary-wave solutions of (2.1) exist
when H, is close to Hy. For general values of H; and Hs, not necessarily close
together, see the remarks at the end of this section.

Theorem 3.16. Let H and C be fixed positive numbers. Then there exists a; > 0
such that for each a € (—ay, ), equation (3.1) with Hy = H and Hy = H + « has
a solution ¢, which is a stable solitary-wave solution of (2.1).

The proof of theorem 3.16 will proceed by verifying the sufficient conditions for
the stability of a solitary wave given in Bona et al. (1987). Since these conditions
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are stated as conditions on the spectryyy, of a certain operator associated with the
solitary wave, it will be necessary to quote some results from the spectral theory
of closed linear operators on Hilbert Spaces. A good reference for this material is
ch. IV-V of Kato (1976) from which oy notation and terminology have been drawn.

Lemma 3.17. Let s 2 0 be an integer, and suppose ¢ € H**'. Let T = C +
BiM, + oM, (where Hy and Hy are a,r};itrary) and let () be the operation of
multiplication by ¢. Then £L = T _ Q is a self-ad j;)int operator on H® with domain
H**! The essential spectrum of L is the interval [C, c0) on the real axis, while the
remainder of the spectrum of £ consjsts of isolated eigenvalues of finite multiplicity.

In case ¢ is even, the same statements also hold if H® is replaced by the closed
subspace H¢ consisting of all even functions in H.

Proof. The operator T is a self-adjoint operator on H® with domain H**! because
it is unitarily equivalent (via the Fourier transform) to the self-adjoint maximal
multiplication operator defined by the multiplier C + fymy(k) + Bamo(k) on the

space of Fourier transforms of functions in H*. The operator @ is bounded on H*
because of the estimates

llénlls < (i?f (@/da) gl ) nlls < l1gllsalinls, (3.11)

which follow easily from the fact that the H*_norm of a function is equivalent to the
sum of the Ly-norms of its derivativeg up to order s. Therefore, by theorem V.4.3 of
Kato (1976), L is a self-adjoint operatoy on H* with domain H**!.

From the definition of T it follows easily that its spectrum consists only of the
interval [C, co), which is also its €ssential spectrum. As explained in § V.5.3 of Kato
(1976), the remaining statements of the lemma, will then follow once it is shown that
Q is relatively compact with respect to 7.

Suppose therefore that {f,} and {2 F,. ) ure Sonmnded sequences in H°; it is required
to show that the sequence {Q frn} has a convergent subsequence in H*. The assump-
tions on the sequence {f,.} imply that it jq bounded in H**!. Since the inclusion of
H**+1(§2) into H*(£2) is compact on bounded domains 2, one may conclude (passing
to subsequences if necessary and using a Cantor diagonalization argument) that there
exists a function g € H* to which {f:} converges in H*(£2)-norm on any bounded
interval {2 in R. Let 1 be a smooth function with compact support on R which equals
one on a neighbourhood of the origin, and define wr(z) = Y(z/R) for € R. Then
for each fixed R, one has |[¢rep(f,, — IIls — 0 as n — co. Moreover, applying (3.11),
with ¢ replaced by Yré, and using the fact that #(z) and its derivatives up to order

s tend to zero as [z| — oo, one obtajng that ||(1 — ¥r)é(frn — 9)lls — 0 uniformly in
n as R — co. Hence, writing

16(fa = )lls < IrB(fr — g), + (1 = ¥r)b(fn — 95,

one sees that ||¢(f.—g)(|s can be made arbitrarily small by first choosing R sufficiently
large in the second term on the right-hang side, and then choosing n sufficiently large
in the first term. This proves that Q f, converges to ()g in H® norm, as desired.
The proof of the statements in the lemma for H? is exactly the same as for H*,
once it is noted that when ¢ is €ven, L carries even functions to even functions. M

Lemma 3.18. Let s > 1 be an integer. Then there exists ap > 0 such that for
every a € (—ay, ap), equation (3.1) with H, = H and Hy = H + « has a solution

1 i
$a € H*!, and the correspondence ¢ v ¢« defines a continuous map from (—ayg, arg)
to HItE,
e
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Proof. Define a map F: R x Hf*! — HZ by
P(e,¢) = Tu(d) — 39

where T,, denotes the operator obtained from T by setting H; = H and Hy = H+ .
Using the fact that ||fglls < c||fllsllglls for all f and g in H*® (with the constant c
independent of f and g),-one obtains easily that the Fréchet derivative Fy of F' with
respect to ¢ exists at any point (a,¢) € (=H ,00) x H:* and coincides with the
operator £=1T, — Q- :

We claim that the maps F : Rx Hs*1 — H? and Fy, : RxHgY! — 'B(H:*, H;) are
continuous. To see this, note first that a simple computation using the mean-value
theorem shows that the inequality

|k coth k6; — k coth k6| < |61 — 62| max(1/67,1/63) (3.12)

holds for all 61,82 > 0 and all k € R. Hence if M, and M, are the Fourier multiplier
operators corresponding to Hy = H+« and Hp = H + o, respectively, then My — M)
is a bounded operator on H:*! with || My — M|l g e+t g2ty S cla — |, where c can
be chosen independently of « and o provided neither H + a nor H + o' approach
sero. The claimed continuity properties of F' and Fy now follow easily from this
observation and the estimate (3.11). '

When o = 0 and H; = H, = H, equation (3.1) has the explicit solution (3.10)
discovered by Joseph (1977), which is denoted by ¢o. Let Lo = F4(0, o) = To — Qo,
where Qg denotes the operation of multiplication by ¢o. In Albert & Bona (1991) it
is shown that the only solutions € Ly of the equation Lon = 0 are the functions
in the subspace spanned by (d¢o/dz). Since these functions are odd, it follows that
zero is not an eigenvalue of £q in Hf. Therefore, by lemma 3.17, zero is not in the
spectrum of Lo, and hence Lg is a linear isomorphism of H:*! onto H. Application
of the @mphcit (tjmction (heorem (cf. Deimling (1985), theorem 15.1) now yields the
existence of a continuous map & — ¢q, taking some interval (—ap, o) into Bl
such that F(a, ¢o) = 0 for & € (—ap, ap). This is the advertised result. 2]

Remarks. Because the mapping F introduced in the proof of the last lemma
depends analytically on o in the appropriate sense, it is adduced from the relevant
version of the Implicit Function Theorem that the correspondence o — ¢q Is an
analytic mapping of a neighbourhood of zero in R to H 4,

We now turn to the proof of theorem 3.16. For each o € (—cvo, ), let Lo =
T, — Q., where Q4 is the operation of multiplication by ¢q. The results of Bona et
al. (1987) (see in particular the proof of lemma 5.1 of that paper) imply that the
solitary wave ¢, will be stable if £, has the following two properties:

(1) as an operator on La, L, has one simple negative eigenvalue, a simple eigenvalue
at zero, and no other points of its spectrum on the non-positive real axis; and

(2) there exists x € Lo such that Lo(Xx) = ¢ and the inner product (X, ®a)o is
negative.

Our task is to verify that conditions (1) and (2) hold for a near zero.

Note first that (3.11) and (3.12) together imply that L, — Lo 18 & bounded
operator on L, for every pair of numbers « and that o' in (—ap, o) and that
|L£a = LallB(La,Lsy — O 88 @ — . Therefore, the correspondence a (o defines a
continuous map from (—ag, @) to the space of closed operators on L, when the latter
space is endowed with the topology of generalized convergence defined in ch. IV.2 of
Kato (1976).
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In the proof of theorem 11 of Albert & Bona (1991) it is shown that condition (1)
holds for the operator £y. Moreover, differentiation of the identity F(q, %a) = 0 with
respect to x yields that £, (d¢,/dz) = 0, so that L, has zero as an eigenvalye (with
eigenfunction de, /dz) for every o € (=H, 00). Therefore, since Lq varies continy.
ously with « in the space of closed operators on Ly, it follows from standard theorems
on the continuity of eigenvalues of linear operators with respect to perturbations (cf.
Kato (1976), § V.4.3), that condition (1) holds for all & in some neighbourhood of
zero. (For details of the argument we refer the reader to the proof of theorem 5 of
Albert et al. (1987) where an exactly analogous argument appears. )

Next recall that, as noted in the proof of lemma 3.18, zero is not an eigenvalue for
Lo in HY. Hence, when considered as an operator on H?, £, does not have Zero in
its spectrum for values of o sufficiently near to zero. In particular, for such values of
@, the inverse £ is well-defined as an operator on H?; and from theorem IV.2.25
of Kato (1976) and lemma 3.18, it then follows that the function y, defined by
Xe = L3 (¢o) depends continuously on « in the L,-norm. Therefore the Ly-inner
product (Xa, #.)o also depends continuously on «, for o near zero. Now in Albert &
Bona (1991) it is shown that there exists a function X € Ly such that Ly(x) = ¢,
and (x, #o)o < 0 (see the proof of theorem 11 and the remarks following theorem 2 'in
Albert & Bona (1991)). Since the nullspace of £g is spanned by (d¢o/dz), which is
orthogonal to ¢¢ in L., then (X0, ®0)o must equal (X, ®0)0, and hence (X0, %0)o < 0.
We conclude by continuity that {(Xa>®a)o < 0 for e in some neighbourhood of zero.

It has now been shown that conditions (1) and (2) both hold for « in some neigh-
bourhood (-a;, ;) contained in (a0, @), and so the proof of theorem 3.16 is
complete. |

Remarks. Notice that for H 1 near Hy, both the concentration-compactness the-
ory and the (dmplicit function (theorem arguments are valid and yield existence of Ay
solitary-wave solutions. Of course, the branch of solutions obtained via the Implicit
Function Theorem comprises the unique even solutions near the explicit solitary-
wave solution (3.10) of the ILW equation. However, in the absence of a uniqueness
result analogous to that appearing in Albert & Toland ( 1994) for the ILW equation,
the solutions obtained from the two different approaches might not coincide, even
when the non-uniqueness due to the translation invariance of the evolution equation
is taken into account. In consequence, even for H; near H,, the solitary waves ob-
tained from the concentration-compactness approach may not be the same as those
for which the orbital stability result holds.

By a separate argument to be reported elsewhere (see Albert 1997), one of us has
been able to use concentration compactness to establish a stability result, valid for all
H; and H,, which is related to, but not as sati Q ] abili
Roughly speaking, the t
a seiibapy-wave-solutionfis posed, then the resulting solution of (1.1), (1.2) remains 0P
forever in a neighbourhood of the set M of all minimizers of 4 variational proble@ /@
<closely related to{P1} In case the solitar: /ave is unique, the set M would amount _
to the set of all translates of Theleifd S%vllsg'ry wave, and the result of Albert (1997) G -l)d:"t\ Caliv
would generalize the orbital stability result established via the Implicit Function
Theorem for H, near H,.

It also deserves remark that the orbital stability result put forward in theorem 3.16
may be improved by an application of the theory developed by Bona & Soyeur (1994).

Theorem 2 of the last-quoted reference allows us to conclude that there is a smooth

(Sb\'tJCﬂY% W
thot winimizes
o Voriationed grablem
lasel od. 4 (P1)

q by ag
o S0 5

ebrem in view states that if initial data sufficiently near to
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function a(t) such that
lo(z — a(t)) — uw(z, )12 <€, forallt>=0, a(0)=0,
and
la’(2) = C| < Cie,

where ' is a constant depending only on the phase speed C of the given solitary
wave ¢.

4. Existence of coupled solitary waves

A coupied solitary-wave’ solution of the system (2.7) is a solution of the form
(u(z,t),v(z,t)) = (¢p(z — Ct),%(z — Ct)), where ¢ and v are localized profiles and
Cisa Conqta,nt Substitution of this form into (2.7) reveals that (u,v) is a solution
if and only if ¢ and 9 satisfy the equations

(C + M+ 1Mz)d — 12N = 50167,
(C + 2O+ 15Ms + 1aMo)d — 1l p = Sy,

The following existence result for (4.1) is the analogue of theorem 3.1 above.

(4.1)

Theorem 4.1. Suppose that the parametgrs 1, Cea, Y1, Y2, V3, Y4 Are positive, and

suppose C' > 0 is given such that C(C + ) > (v274)/Hs. Then the system (4.1)
has a solution (¢,v) such that ¢ and 1) are in H* and are decreasing functions of |z|.

The proof of theorem 4.1 presented here uses essentially the same method as that
of theorem 3.1, and so it will be possible here to refer to § 3 for most of the technical
points that emerge in the discussion.

Define functions a;;(k) for 7,5 = 1,2 by

an (k) = va(mma (k) + voma(k)),

agz (k) = ya(ysma(k) + yama(k)),

a1z(k) = ag1(k) = —yoyan(k ):3 g
where m;(k), i =1, 2, 3, and n(k) are as defined in (2.2) and ( ]Z) Let A(k) be the
2 x 2 matrix-valued function given by

= [ ag (k) aga(k)

and for each pair of numbers p > 0, v > 0 define

0
A,w:[’”‘ J
0 v

If pv > (y2v4/H2)?, then the determinant d,,, (k) of the matrix A, + A(k) satisfies

a1z (k) G.lg(k) :l

2
d,m/(k) 2 d”u(o) = ,U,U = (7‘;{7‘1) = 0, (42)
2
for all k € R. The eigenvalues of A, + A(k) are gzven by
M0 = 3uc+ v+ an(®) + ap (V) - 9
M(k) = 3 (i + v+ ann (k) + aa /f’+ 3
Proc. R. Soc. Lond. A (1997)
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e =

wher ;
eS:\/[(,u—}—a“)(U+a12)]2+4a&‘=/(#+allmﬁ /1 /—l
- 5 N

It follows that 0 < A“(k) < MY(k) for all k € R. Moreover, one finds that ag
k| — oo,

)\‘lw(k) ~ min(éy, &2)| k|,
Ay (k) ~ max(8y, 62) |k,

where 6, = (71 + 72)v4 and &, = (73 + 74)72. Hence there exist positive constants
C1” and C4" (independent of k) such that ;

CI(1+ [k]) € M (k) < A7 (k) < Cy (1 + |k, (4.3)
for all k € R.

Lemma 4.2. Suppose pv > ((y274)/Hsz)?; define functions PE ) for f, 5 =32
by
e e = B AR
P El
Then for 1,5 = 1,2, P5"(z) is a decreasing function of |z| that lies in L, for every
P € [1,00).

Proof. Since

o i B v+a(k) —ap(k)
P+ 4B = 208 [ cosi(k) gt nua(E) }
then |
e ! g(k)
P = (” 1—'g(k)> ’
where

(b +a (k) (v + ax(k))

The function 1 — g(k) is bounded away from zero on R as seen clearly in (4.2), and
so g(k)/(1 - g(k)) is a_C*-function that decays exponentially to zero as |k| — oo.
Therefore g/(1 — g) = 6, where 8 is a smooth rapidly decaying function on R. Also,
because of lemma 3.2, the function K, defined by K; = (p+au)™!is in L, for
1 <p<oo Hence PIY = K;+ K; *0 isin L, for 1 < p<oo.

Next observe that the function h, (z) defined by 7, = g can be written as hy = K, %
Ky* K3* K3, where K is as above, Ky = (v + ag5)~! and K3 = —ays,. By lemma 3.2,
Ky and K are integrable, decreasing functions of |z|, while a table of Fourier trans-
forms enables one to ascertain that Ks(z) = (’yg'}'ﬁrj/}/lngg) sechz(wx)f/XZHz). The
convolution of an integrable decreasing function of || and a smooth rapidly decreas- K\‘
ing function of |z| is again a smooth rapidly decreasing function of |z| (this follows
readily from the identity (p+q)'(z) = [ ¢'(2)[p(z - 2) — p(z + z)] dz which is valid
for even functions p and gq). Hence h; is a decreasing function of |z|, and an in-
ductive argument shows that the same is true of the functions ha, hs, ... defined by

3

\
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;(k) = (g(k)). Since

=)

PR =B+ Rk,
j=1 .
with the series on the right-hand side converging uniformly on R, then

oo
Pl = K1+ (Ky+hy).

j=1
On the other hand, the series on the right-hand side of the last display converges
in L, and, since it is a series of positive functions, pointwise almost everywhere on
R. It follows that PJy’(z) is a positive function decreasing with increasing values of
|z|. This proves the assertions of the lemma for P!}"; the proofs for P}3” and P}," are
similar and hence omitted. (5

As in §3, standard arguments allow one to deduce from the preceding lemma the
following consequence.

Lemma 4.3. Suppose ¢ and 1 are Lo-functions which satisfy (4.1) in the sense
of distributions on R. Then ¢ and v are in H*(R), and (4.1) holds in the pointwise
sense.

Next, variational problems analogous to those considered in §3 are introduced.
Let X and Y denote the product spaces Ly x L, and H'Y? x H'Y2 respectively, with
inner products (-,-)x and {-,-)y defined by

((f1, f2), (91, 92)) x = ([f1, f2)o + (91, G2)0,
((f1, f2), (91, 92))y = {f1, fadasz + (91, 92)1/2,

x = (LY Wflly = (£, 0V 1

and norms given by || f

73C 0
N = 4
— 0 1(C+20) {. .
then from the assumption in theorem 4.1 that C(C + AG) > (7274)/H3 and the . ¢,

discussion preceding lemma 4.2, it follows that the matrix A + A(k) is positive
definite, and hence has a positive-definite square root B(k) = [A + A(k)]/%. One
may therefore define a matrix Fourier multiplier operator L : Y — X by

LJ(k) = B(k)f(k),

where the Fourier transform f of a vector-valued function f = (f, f2) is defined
componentwise by f = (fi, f2). Finally, define a functional J : Y — R by

J(f) = ILfI%.

From (4.3) it follows that the functional 1/J defines a norm on ¥ which is equivalent

to || - [ly-
Let (P1) denote the variational problem of minimizing J(f) over the set

oo

51 = {f €Y ; fm (@170 f1(2)® + cayefo(z)?] dz = 1},

Proc. R. Soc. Lond. A (1997)
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and let (P2) be the problem of minimizing J(f) over the set

= {f 3 f ol /i (@) + aryal ()] do = 1}-

[&8]

Lemma 4.4. For P\’ef_}ff {fl, f?) € Y: OHEJI&S('f]I,IfQI) €Y dlld‘](l.}.l‘1[f2i) <
J(f1, f2)-

Proof. Define g = (|f1],|f2]). For every p > 0, taking u = p + C and v =

p+ v (C+ A@) in lemma 4.2 allows one to conclude that

@ (oI + A+ A9 x _Z/ JPE x g;)(x) dz

Z [ F(2) (P2 5 £;)(z)ds

e <f, (pI+A+A) ' f)x.
Since ||3]lx = || fllx, it follows that ,
(Flk), Ro(R)F(K))x > (3(k), R,(k)5(k))x, (4.4)

R, (k) = p[f - (I+ %[A 4 A{k)])_IJ.

The eigenvalues of R, are[ )f//(l + (1/p)Ai(k)), i = 1,2, where A (k) and Ay (k)
are the eigenvalues of A+ A(k). From the estlmates (4. 3) for the A ( Y. 5=1,2 3t
follows that the eigenvalues of R, are less than C3(1 + |k|), where C; is independent
of p. Therefore the integrands of the integrals represented in (4.4) are dominated by
the integrable functions

where

Co(1+ RN R + [Fa(k)2),
and ‘
Co(1 + [KN(5 (k)P + |32(R)]),
so the dominated convergence theorem allows passage to the limit in the integrands

as p — 0. This yields
(F(k), (A + AR)FR)) x = (G(k), (A + A(k)F(K)) x,
or J(f) = J(g), which is the desired result. =

The same argument as in the proof of the preceding lemma, together with the
lemma of Riesz cited in the proof of lemma 3.5, yields the following result.

Lemma 4.5. For every f = (f1,f2) €Y, one has (f}, f3) € Y and J(f}, f3) <
J(f1, f2).

Then from lemmas 4.4 and 4.5 and the argument used to prove lemma 3.6, with the
obvious substitution of f_moo (c1v4lg1 | + azv2lge]?) dz for ffzo |g|® dz, one obtains
the following analogue of lemma 3.6.

Lemma 4.6. If fo = (fo1, foz) is a minimizer for problem (P2), then (| fo1|*, | foz|”)
is a minimizer for problem (P1).

Proc. R. Soc. Lond. A (1997)
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Now let {f; = (f1, fi2)}i=12,.. be a minimizing sequence in Y for problem (P2),
and make the definition

y+i
Q;(t) = SUP/ (ar7a(f1(2))° + aya(f2(2))*) da-
yER Jy—t ’

Then, as in §3, @Q;(t) converges to a limit function Q(t) as j — o0 and o =
limg—,0o @;(t) exists in the interval [0,1]. Analogues of lemmas 3.7, 3.8 and 3.9, in
which the H/2-norm is replaced by the ¥ -norm and integrals of | f|* are replaced by
integrals of (c174| f1® + aarel f|3), are easily established by applying the foregoing
arguments to each of the components f; and fa. It then follows that a # 0.

We continue with the numbering of the lemmas in this section so they corre-
spond to their counterparts in the preceding section. The following is an analogue of
lemma 3.10.

Lemma 4.10. There exists a constant ¢ > 0 such that if § € WA (R) and f €Y,
then

1L, 0] fllx < elfloollf

Proof. The matrix B(k) = (A+A(k))/? which is the symbol of L is given exiylicitly
by the formula

X-

by1(k) biz(k) ] 1 [ a1 +S G2 }

H= {bm(k) baz (k) - az ag + S

TV VR
where ); are the eigenvalues of A+ A(k) and

S = V7 + o + 12(C + A0) +aze — 4 det(A + A(k)).

Ly :HY2 = Lais the Fourier multiplier operator with symbol b;;(k), then one
clearly has

[Lllagl [L12>8]
IL,0]f = :
L21,8) [L22,6]
for f € X, whence

L, 01 £1% < Z \(L;, 615513

Therefore it suffices to show that an estimate of the type given in lemma 3.10 holds
for each of the operators L;;. But such an estimate follows from the argument given
in the proof of lemma 3.10 and the fact that, for every integer [ =0,

( l_lk ) [bn—(m ” b,-.j(O)}

Now from lemma 4.10 and the obvious analogues of lemmas 3.11-3.13, one arrives
at the conclusion that a cannot lie in the interval (0,1), and hence o = 1. Further,
the same argument as in the proof of lemma 3.14 then shows that there exists a
sequence of real numbers {y;}j=12... and, for each integer k > 0, a number Ry > 0

sup |k| < 0.

keR
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such that

Ry
1
/ (e1val iz + 45)P + covyal fia(z + y;)F)dz > 1 — T
— Ry

holds for all sufficiently large values of j. Letting (fj;(z); fiz(z)) = ( firlz + y;),
fie(z + y;)), it follows as in §3 that the sequences f;; and fi2 have subsequences
converging, weakly in H/2(R) and strongly in L3 on compact subsets of R, to func-
tions fo; and fyy satisfying ' '

/m (crvalfor(2)* + el foz(2)[*) dw = 1.

oo

Then fo = (fo1, foz) € Y is a solution of the problem (P2), and so by lemma, 4.6, the

function gop € Y defined by go = (go1, go2) = (| fo1]*, | fo2|*) is & solution of (P1).
The Lagrange-multiplier equation satisfied by go is

6J(90) = A 6K (go), (4.5)

where K is defined by K(f) = [* (0178f? + apvof8) dz. The Fréchet derivatives
of J and K at gy are given as maps from ¥ to R by ) .

6J(g0)[h] = 2(Lgo, Lh)x,

K(go)[h] = 3/ (0117493151 + ﬂz’?zgcz;zhz) dz.

oo

In particular, if the components hy. and hy of h are test functions on R, one has
67 (a0) 1B = BlLRg0, M = 2/ (Z2g0)shs + (E2go)shz) da.

Since h; and h; may vary independently over the space C=°(R), (4.5) implies that

(L290)1 = (%)\)051749311 .

L2g0)2 = (3N) 2298,
as distributions on R. Hence, taking ¢ = 3Age; and ¥ = 3\go, yields

Lﬂ(qﬁw W (20"1’)‘4962 1622721/) )
But from the definition of L, one has
12 Y4(C + 11 My + 72 M) —T2vaV
~mulN 12(C + DG+ 1M + 12 M)

whence ¢ and v are seen to be distributional solutions of (4.1). An application of
lemma 4.3 then completes the proof of theorem 4.1.

Remarks. A discussion of the physical meaning of the parameters ; and ~;,
along with a description of the situations in which these parameters are expected
to be positive may be found in Albert et al. (1997). Briefly put, the theorem above
applies to the case in which all the fluid particles in a given vertical column, extending
from one confining surface to the other, move up or down simultaneously. Solitary
waves with more complicated vertical structure, for example the ‘mode-two’ type
waves observed in Davis & Acrivos (1967) and Weidman & Johnson (1982), would in
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general correspond to the case when the coeflicients a; and a4 are of different signs.
The topic of existence of solitary waves in this case will be the subject of a future
report.
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