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DECAY AND ANALYTICITY OF SOLITARY WAVES

By Jerry L. BONA and Yi A. LI

’

ApsTRACT. — Considered here are detailed aspects of solitury-wave solutions of nonlinear evolution equations
including the Euler equations for the propagation of gravity waves on the surface of an ideal, incompressible,
inviscid fluid. Two properties will occupy our attention. The first, described already in an carlier paper, concerns
the regulurity of these rravelling waves. In the context of certain classes of model equations for long waves in
nonlinear dispersive media, we showed that solitary waves are obtained as the restriction to the real axis of functions
analytic in a strip of the form (z1—a < () < a} in the complex plane, In this direction, the scope of our
previous discussion of model equations is broudened considerably, Moreover, it is also shown that solitary-wave
solutions of the full Buler equations have the properties that the free surface is given by the restriction to the
real axis of a function analytic in a strip in the complex plane and the velocity potential is the restriction (o the
flow domain of a function that is analytic in an open set in complex 2-space C%. The second issuc considered
is the asymptotic decay of solitary waves to a quiescent state away from their principal clevation. A theorem
pertaining to the evanescence of solutions of certain types of one-dimensional convolution equations is formulated
and proved, showing that decay is related to the smoothness of the Fourier wansform of the convolution kernel
k. as well as the nonlinearity present in the equation. 1L is demonstrated that if the Fourier transform k € H®
for some s > 1/2, the rate of decay of a solution is at least as fast as that of the kernel ki itsell, This result
is tised lo establish asymptotic properties of solitary-wave solutions of a broad class of model equations, and of
solitary-wave solutions of the Tull Buler equations.

Risume., — Senl traités, dans cel article, quelques aspects détaillés des ondes solitaires solutions d’équations
d"évolutions non linéaires, incluant les équations d'Euler pour la propagation des ondes gravitationnelles 2 la
surface d’un fluide idéal, incompressible et non visqueux, Deux propri¢iés ont attiré notre attention. La premiére,
déja décrite dans un article antérieur concerne la régularité de ces ondes de translations. Dans le cadre de certaines
classes d’équations madélisant Jes onides longues dans un milieu non linduire et dispersif, nous avons montré que
les ondes solitaires s’obtiennent comme la restriction 2 I'axe réel de fonctions analyligues dans une bande de la
forme {z: —a < ¥(z) < a} du plan complexe. Dans celte perspective, ["étendue de notre précédente discussion
sur les équations modeles est considérablement élargie. En outre, il est aussi montré que les ondes solitaires
solutions des équations d’Euler completes ont les propriéiés que la surface libre est donnée par la restriction 4
l'axe téel d'une fonction analytique dans une bande du plan complexe et gue le potentiel des vitesses est la
restiction au domaine du fluide d'une fonction analytique dans un ouverl d'un espace i deux dimensions sur €.
La seconde propriété considérée est la décroissunce asymptotique des ondes solitalres vers un ¢iat au repos éloigné
de leur maximum principal, Un (héorame concernant 1'évanescence des solutions de certains types d’équations
de convolution unidimensionnelles est énoncé el prouvé, montrant gue la décroissance est liée a la régularité de
la transformée de Fourier du noyau I de convelution ainsi qu'a la non linéarité de 1'équation. 11 est démontré
que si la transformée de Fourier & appartient & H?° pour § = 1/2, le laux de décroissance de la solution est au
moins aussi rapide que celui du noyau. L résultat est utilisé pour stablir des propriétés asymptotiques des ondes
solitaires solutions d’une large classe d'équations modéles, et en particulier pour les ondes solitaires solutions
des équations d’Euler complétes.
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378 J. L. BONA AND Y. A. 1)
1. Introduction

This paper is concerned with two aspects of solitary waves that are a reflection of their
natural appearance as smooth, steadily propagating disturbances of elevation or depression,
asymptotically approaching a constant level on either side of their crests, These attributes
of the real phenomenon find mathematical expression in regularity theory and decay
results for solitary-wave solutions of nonlinear wave equations, It is our purpose here to
investigate these mathematical properties in the context of model equations of Korteweg-de
Vries-type, regularized Inng-wave-type and nonlinear Schr{idinger—lype. as well as for the
time-dependent Euler equations for the propagation of gravity waves on the surface of
an inviscid, incompressible fluid.

This program was begun in our earlier paper [14] where we considered model equations
of Korteweg-de Vries-type (KdV-type)

(1.1) Ut + uy + uPy, — (Mu), = 0,
regularized long~wave—type (RLW-type)

(1.2) U + Uy +uPuy + (Mu), = 0,
and Schrédinger-type

(1.3) e — Mu + |ufPy = 0,

Here, p is a positive integer, 1 = u(x,t) is a function of the two real variables » and ¢
and subscripts connote partial differentiation. The dependent variable v often represents a
displacement or a velocity in physical contexts,  is usuvally related to the spatial variable
in the primary direction of propagation, while ¢ is typically proportional to elapsed time.
The operator M which results from modelling dispersion is a Fourier multiplier operator
defined by

(1.4) Mo(€) = a(€)i(e),

where a circumflex surmounting a function of the spatial variable denotes that function’s
Fourier transform and the symbol « is measurable and even, so that M maps real-valued
functions to other real-valued functions, A solitary-wave solution of (L.1) or (1.2) is a
travelling-wave solution w(x —ct) of the evolution equation, where ¢ is a positive constant
and ¢ is an even function, usually but not always of one sign, and tending to zero at
+o0, Solitary-wave solutions of (1.3) have the form ci““r,b(;ir: — 0t) where ¢ has the same
general form as outlined for . The existence of solitary-wave solutions for (L.1), (1.2) and
(1.3) corresponding to a broad range of symbols, and including more general nonlinearities
than these appearing above, has been studied by Albert et al. [1], Benjamin er al. [5]
and Weinstein [22], It is demonstrated in these Papers that functions ¢ or ¢ representing
solitary waves are infinitely differentiable and, along with all their derivatives, members
of Ly and L,. In [14], it was shown on the basis of quite reasonable assumplions on ¢

TOME 76 — 1997 _ N° 5



DECAY AND ANALYTICITY OF SOLITARY WAVES 379

that such solitary waves ¢ or ¢ are in fact the restriction to the real axis of other functions
®, say, that are holomorphic in a strip of the form

(1.5) {2: —00 < Y(2) < 00}

in the complex plane C, where g > 0 depends on the solitary wave in question.

In the present study, model equations of the form (1.1)-(1.3) will be considered in which
the nonlinearity is considerably generalized to those having the form

(1.1-1.2a) F(u), = F'(u)ug
in (1.1) and (1.2) and the form
(1.3a) F(lu))u

in (1.3), where F : R — R is a suitably smooth real-valued function of a real variable.
Complementing the analyticity results to be derived in this setting, it will be shown that
the regularity of the function k(£) = 1/(1 + «(€)) determines how fast the solitary-wave
solutions of these model equations decay at infinity. Precisely, if k € H* for some s > 1 /2,
then the corresponding solitary-wave solution decays to zero at foo at least as rapidly
as does 1/|z|°. Moreover, if k has an analytic extension to a strip of the form displayed
in (1.5) for some oy > 0 and satisfies the condition

(1.6) _— / V(€ + in)[2dE < oo

jnl<eo J—oo

for any o with 0 < ¢ < oo, then the corresponding solitary-wave solution decays
exponentially at the same order as does k.

The discussion centered on the model equations (1.1)-(1.3) illustrates in bold relief the
importance played by dispersion. Both the result of analyticity and that of decay of solitary
waves depend strongly on the presence of dispersion in the form of a symbol « that
grows appropriately at too. Of course, the nonlinearity is also important, especially for
the existence of such travelling waves.

Perhaps the best known of the model equations (1.1)—(1.3) is the Korteweg-de Vries
equation

(1.7) Ug + Uy + Ulg + Ugzy =0

itself. Its solitary-wave solutions ¢(z — ct), ¢ > 1, have the exact form

(1.8) we(z) = 3Csec? (‘/—az)

2

where C = ¢ — 1 and z = z — ct. They exemplify the properties of analyticity and decay
under discussion here. Indeed, the function ¢, in (1.8) extends to a function analytic
in the strip (1.5) with oy = 7/ V/C and ¢, decays exponentially with the asymptotic
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380 J. L. BONA AND Y. A, LI

form 3Ce=VClel 44 |22] — oo. These aspects of ., which are obvious from its explicit
form, will be seen to follow from our general theory. In this case «(£) = £2, so that
k(&) = (C 4+ £2)~1. Thus i; extends analytically to a strip of the form in (1.5), / satisfies
(1.6) there and k(x) = 2\}6(3“/6"”' decays exponentially,

The KdV equation (1.7) has been derived as a model for quite a number of physical
situations, but it arose first as a physical model in [6] and in [L1] where it was put forward
as a model derived from the Euler equations for the propagation of two-dimensional small-
amplitude, long-wavelength, water waves in a channel. In the present context, it is natural
to inquire whether or not the properties of analyticity and decay that are apparent for the
solitary-wave solutions (1.8) of the KdV equation (1.7) are shared with the solitary-wave
solutions of the full, two-dimensional Euler equations.

Extensive studies have been carried out of solitary-wave solutions of the full Euler
equations for two-dimensional motions on the surface of an incompressible, inviscid and
irrotational flow in a horizontal channel in the absence of surface tension effects. To form
the problem, let 2 be the flow region and let the coordinate axes be chosen to move at
the constant speed ¢ > 0 with the wave so that the y-axis passes through the crest and the
flow is steady in this frame of reference. Also, let ¢(x,y) be the velocity potential and
¢(,y) the stream function associated with the flow, both defined on the closure of the
flow domain 2. The flow is normalized so that the horizontal bottom 7 = 0 is the stream
line 9(x,y) = 0, the free surface is the stream line (a2, y) = 1, and the solitary-wave
profile is y = H(x) for & € R, where H(z) is an even function, monotone decreasing
on R*. Thus Q = {(w,y) : 2 € R,0 < y < H(z)}. The equations for the problem as
just formulated are as follows:

1 1
3+t oy =5 +gh for y=H(x),

(1.9) buHys — ¢y =0 for y= H(x),
Ai=0 inQ
¢y =0 for y=0,

where A is the depth of the undisturbed fluid so that H(x) — h as © — 400 and g is
the gravity constant. Conventionally, the consideration of equations (1.9) begins with a
change of independent variables from 2 and ¥y to ¢ and 4. The advantage of viewing
v = x(p,9) and y = y(¢p,4)) is that they are formally harmonic functions defined on
the known strip D = {(¢,4) : —00 < ¢ < 00,0 < 9 < 1} and continuous up to the
horizontal boundaries of D. Thus questions of existence and so on are reduced to problems
defined on a fixed domain.

The existence theory of solitary waves for the problem (1.9) has been developed over
a period of more than four decades. In 1947, Lavrentiev [12] proved the existence of
small-amplitude solitary waves as the limit of periodic wavetrains. Friedrichs and Hyers
[8] proved the existence of solitary waves under the condition that the Froude number
F, defined by F? = ¢2/gh, is greater than, but close (o one. Noticing the relation
between the existence of solitary waves and the value of the Froude number, Keady and
Pritchard [10] proved that solitary waves which are symmetric about their crest and strictly
decreasing away from the crest are only possible when F' > 1 and H () > h for all «.
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¥y

Fig. 1. The solitary wave.

McLeod [17] derived the same result and showed that the total mass of the fluid is finite,
ie. [Z (H(z) — h)dz < oo. Amick and Toland |3] completed the proof of the existence
of solitary waves for any Froude number F' in the range (1, F.), where F, is the Froude
number associated with the so-called wave of greatest height. They also showed that
the solitary-wave profile H(z) is real-analytic. In another paper [2], they demonstrated
that (1.9) has a family of periodic solutions which converge to a solitary-wave solution.
Afterwards, Craig and Sternberg [7] resolved the question of whether or not (1.9) has
solitary-wave solutions which are not symmetric or not monotone. They proved by using
the method of moving planes that when the Froude number F' > 1, any solitary-wave
solution of (1.9) has an elevation which is symmetric and monotone on either side of its
crest with H(x) > h for all z. Thus, a necessary and sufficient condition for there to be a
solitary wave on the surface of an ideal fluid in a channel has been obtained, namely that the
Froude number F lies in the range (1, F..), or what is the same, its wave speed c is greater
than the linear, nondispersive, long-wave speed v/gh and bounded above appropriately.
Later, Benjamin, Bona and Bose [5] used topological methods to verify the existence of
solitary waves for F' € (1, ). In their paper, the following equation was derived:

(1.10) ot = = [ oL

| + 3 [ sinw(r)dr

where § = —w is the angle between the free surface of the solitary wave and the T-axis,
and the constant y and the function k& are defined by

)
Y= % and k(¢) =4/—1In <coth M),
U s 4

respectively, where g is the speed of the solitary wave at its crest. They showed that there
is a solution of (1.10) which is an odd function on the real line and nonnegative on (0, 00).

Our contribution to the theory of solitary-wave solutions of the two-dimensional Euler
equations is to show that such solutions are the restriction of functions analytic in a
strip in one or two complex dimensions, depending on which dependent variable is
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382 J. L. BONA AND Y. A. LI

being considered. To accomplish this, we will rely upon the integral equation ( 1.10). The
exponential decay of the solitary wave, discussed already in [3] and [7], will also follow
as a corollary of our general approach.

It is worth noting some of the numerical approximations of solitary-wave solutions of
the Euler equations (Longuet-Higgins and Fenton [15], [16], and Hunter and Vanden-
Broeck [9]) that have informed our collective view, especially of large-amplitude waves.

The outline of this paper is as follows. After introducing some notation in Section 2, a
theory of decay properties of solitary-wave solutions of model equations is presented in
Section 3. In Section 4, interest is concentrated on analyticity of solitary-wave solutions
of model equations of the form (1.1)-(1.3) with general forms of nonlinearity and of the
full Euler equations. The text finishes with a short conclusion and an appendix containing
a proof of a technical point.

2. Notation

For any complex number z € C, the real part and the imaginary part ot z are denoted
by Rz and 3z, respectively.

By L, = L,(R) for p in the range 1 < p < co, we mean the standard class of pth-power
Lebesgue-integrable functions on the real line R with the usual modification if p = 0.
The standard norm of a function f € L, will be denoted by || f ||,. The inner product of
two functions f and g in L,, denoted by (f,g), is the integral

13V v dd
where the overbar connotes complex conjugation.

The space of all infinitely differentiable functions with compact support in R is denoted
by C* = C*(R).

The Fourier transform of a measurable function ¢ defined on R is written q3 and is
defined to be

n 1 ~ e
36) = o= /  Ha)eed,

The inverse Fourier transform of ¢, denoted by ¢3 is defined as

1 I * —ix
) = —= /_ Qe

For any s € R, the Sobolev space H® = H*(R) consists of all functions f which are

tempered distributions such that || f||¢s) = (ffooo(l + |C|2)S|f(C)|2dC)E < o00o. The space

H® is the intersection H® = (| H*.
sER
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DECAY AND ANALYTICITY OF SOLITARY WAVES 383

The convolution of two functions f and g defined on R is written f x g, and f o g is
the frequently appearing, related integral

(fog)(z) = /—00 ft—z)g(t)de.

By a solitary-wave solution of (1.1) or (1.2) for a given, general nonlinearity F(u), and

a dispersion symbol «, we shall mean a function ¢ : R — R such that ¢ is a continuous

function with | llim @(z) = 0, and such that for some positive constant ¢ > 1, o(z — ct)
T|—o0

defines a weak solution of (1.1) or (1.2) in the sense that

(o, ((c— DI+ M)g') - (F(p),g) =0
or

(¢, ((c = DI +eM)g") = (F(p),g") =0
for any g € C>°(R), where the inner product is that of Lo. A similar definition will be
adopted later for solutions of (1.3). As already mentioned, the existence of such solutions
for a wide range of symbols « and certain classes of nonlinearities /' has been dealt
with in the recent works of Albert ef al. [1], Amick and Toland [4], Benjamin et al. [5],
and Weinstein [22].

For any z € R, the greatest integer less than or equal to z is denoted by |z].

3. Decay properties of solitary waves

In this section, we begin with a study of solutions to a class of nonlinear convolution
equations of the form

(3.0.1) f=kxG(f),

where f is an unknown function, k is a given integral kernel satisfying certain decay
conditions to be specified presently, and G = G(u) is a measurable function, bounded on
bounded sets, and satisfying the growth condition |G (u)| < M|u|" for all small values of
|u| and some constants M > 0 and 7 > 1. The results obtained in the discussion of (3.0.1)
will be applied to solitary-wave solutions of the model equations (1.1), (1.2) and (1.3) with
general nonlinearity F', as well as to those of the full Euler equations.

3.1. Decay of solutions to the convolution equation (3.0.1)

The following preliminary lemma states inequalities which will find use in establishing
the ensuing main theorem.

LEMMA 3.1.1. — Let | and m be constants satisfying 0 < | < m — 1. Then there is a
constant B > 0 depending only on | and m such that the inequalities

I /°° ¢! y < Blal
= it :
o (I+e)m(l+]|z— th)m T (L4e ||

0 4 el
[ / lt] < Bl
oo (L et (1 + Jz — 2] (1 efar])™
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384 J. L. BONA AND Y. A. LI

hold for any € with 0 < ¢ < 1 and any real 2 with |z| > 1, while the inequalities

= dt B
11l = < :
/0 A+ety™(I+ |z —t)™ = (1 +efz])m’
0 dt B
IV = <
/_oo T+ et + o —thm = (1 + efa)m

are valid for the same range of € and any z € R.

Proof. — First, consider the case when z > 1. Write the integral I as

x M = ’{',
I= dt dt = I + I,.
/0 (J -+ (:If-)m(]_ + a— f.)”" +/z (1 - E'l',)""(.l i _'.f.')”‘ 1t 1

Since

e . 1 | _« + bl
(I4et)(14w—t) = 1+etex | 1+et 14+z—t |

=141 T em 1 2”";1.'!
I < - _ @t —
P (1 -+ e+ ex)m /0 [(l +et)™ i (14 2— !,)”‘:l = (m— 1)1+ ex)™

whereas, I can be estimated straightforwardly by

_ 1 = (y+a) dy
I €
42 (L4 ea)m _A (14 y)m

2 @t /-m dyy _ z!
T (Ate) Jo L+y)yt T (m—-1-1D)({1 +ex)"

It follows from these estimates of I; and I, that there is a constant B independent of
both € and z in the ranges being considered such that
Bla|'
3.1.1 S =2
G = [+ dap

When z < —1, [t + 2| < t — x for any ¢t > 0. Therefore, it transpires that

oo 1
!S/ _ﬁ di
o (L4 et)™(1+ |t+ x[)m

Since —a > 1, it follows from the above argument that (3.1.1) still holds for < —1 and
0 < e < 1. The inequalities for I7, [1] and I'V may be obtained in a similar way. O

THeOREM 3.1.2. — Suppose that [ € L., with |Iim f(#) = 0 is a solution of the

=00

convolution equation

f@=[ " ke - )W) dt,

where the measurable function G satisfies |G(u)| < |u|" for any u € R and some constant
7 > 1 and the kernel k is also a measurable function satisfying the condition k € H* Sfor
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DECAY AND ANALYTICITY OF SOLITARY WAVES 385

some s > 3. Then f € L1 N Ly and there exists a constant | with 0 < | < s such that
|z|'f(z) € L2 N Lo

Proof. — If s < o0, choose an [ > 0 such that s > I+ 2, otherwise choose any constant
I > 0 and another number, still denoted by s for the sake of convenience, with s > | +1 5
It follows from Lemma 3.1.1 that the inequality

(3.12) /°° 12 di . _ Bla”
o o (L+et)s(1+ o —t])2 — (1+¢z])

holds for some constant B and any z and € with |z| > 1 and 0 < ¢ < 1, where B is
independent of both these variables.

Define h. by he(z) = ﬁqlwf(a:) for z € R. Since f € L., he(z) € Lo, and because
r > 1 and ) ]_un f(z) =0, for any § > 0, there is a constant [NV > 1 such that

| — o

(3.1.3) If@) ™ <8,

for almost all |z| > N. Choose § < ———————— and let N be such that (3.1.3) holds for
gatl [31/2 ||“1 ")

the chosen value of §. Then using the Schwarz lncquahty leads to the following estimate:

e [ @l s [ DG ol [ e - 06U @) de e

T+ efa)* J o

1 z
< [Tl ([ a1 - ke - opa)
& |c,u (1)) [2t >%
X (/_oo (14 | —#])2 d
" o NEOR g eGP\
<2t ([ wre) ([ oiem [ areoam )
Applying Fubini’s theorem and the inequalities (3.1.2) and (3.1.3) to (3.1.4) yields
(3.1.5) (/m |h€(x)|2dw) ’
N
=) =) o
S| 2 & da:
<2l [ 0600 [ arapaar—E )
= 23Bl ]2: —N [e'e) G ) “|2f d %
< (L1 /_oo +/N |G(f(1))] e ¢
2l [ esor [ b gl
() N N (1 +ex)2s(1+ |t —x|)?
< 26 B[k [ T :
” |(}-J / | 1+6|t|)25
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A N (| N 3
s 20kl ( [ 160@npar [T Gl N do
—N -0 (I - |J|)

N oo N 2
=2S5B§Hk||<s><</ +/N )Ihe(t)lzdt>

1
2

+2° M|Ik]|s) (/_N IG(f(t))Izdt> )

1
where M = ( _°°°° %) *. A similar computation yields the inequality

(3.1.6) (/__ lhe(x)|2da;) 3235B%||IE||(S)(</__ +/N°°>|he(t)|2dt>

1

2

. N
+ 2 Mk ( | IG(f(t))I?dt)

Adding inequalities (3.1.5) and (3.1.6) leads to the estimate

(/_;N |h€(:v)|2d:c> 4 (/Noo |h5(x)|2da:)%
< 2*+16B% ||| ((/_;N +/N°°> |h€(t)|2dt)

N 1
+ 27 M|lkll (/ |G(f’(t))|2dt) :
-N

1
2

[N

or, because of the restriction on §,
1

(3.1.7) (/_;N IhE(m)lzdx> % + (/Nw |h5(m)|2dx)%

221 M|k, N
< Blo ([ \aapra) -
1—25+t1§Bx ”k”(s) -N

Let € — 0 and apply Fatou’s Lemma to (3.1.7) to obtain

z 1

</_;N lxlzllf(‘”)lzdm> E ! (/Noo wzl|f(:v)|2dx) 5

1
2

PEMMo_( [ 6(s 0 pa
T 1-2%16B3 ||k|l) \J/-n ‘ ’
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which implies (1 + |z|')f(z) € Ly or, what is the same, f € H'. Since f(r) and
1/(1 + €|z|)® both lie in Lo, it follows that for any e > 0, f(z)/(1 + elz|)® € L. To
show that f € L,, one may estimate the following integral by using Fubini’s theorem, the
Schwarz inequality, Lemma 3.1.1 and Inequality (3.1.2):

i [TUOE " e [

1

< ["reton( [ e le - ive - oz )

* dm 3
. (/N (14 | —¢])%(1 + t—?r::)'h’d) dt

s|| 1. 3 ~ W
< 2|kl B / (1+€lt])

e d’f sis 1 N
< 2|85} (/ [ ) O 4208 [ 16O

Arguing similarly leads to

-N |f(37)|dx i e lf(t)|dt
(3.1.9) /Oo ez = < 2°||k|| ()6 B* (/ / )W_

+ 2|k B / G

It follows from (3.1.8) and (3.1.9) that

-N oo lf(t)ldt 2.-=+.I.||f'_” B N
(/—oo +/N )(l-i-e'tl) = [ 2""'1“:{-”[9}(‘!}3 [ l (f( ))ldt

Using Fatou’s lemma as ¢ — 0 gives

a -)H-'ni-n( B}
</ /)'f — 90| ]| (8B / GlFEnld,

and hence f € Lj.

To show |«|' f() € Loo, multiply both sides of the equation f =kxG(f) by |z|' and
apply the inequality |z|' < B(|jz — t|' + |t|") with 8 = max{1,2'~'} to obtain the estimate

(3.1.10) [2'|f(z)] < B / " lo—t k(e —t)G(f(2))| di+B / k(z— )| 1G(F(2)] dt.

Since k, |z|'k, G(f) and |z|'G(f) all lie in Lo, it follows that the right-hand side of (3.1.10)
is the convolution of Lo-functions, and therefore is a bounded function. O
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Remark. — It is clear that Theorem 3.1.2 still holds if |G/(u)| is bounded on any bounded
subset of R and the inequality |G(u)| < M|u|", where M > 0 and r > 1, is valid for
sufficiently small values of w. These conditions combined with the fact that f e Ly
imply that (1 + |2])'G(f(z)) € L, if and only if |z|'G(f(z)) is square integrable on
(=00, =N]U [N, 00) for some constant N > 0. The just mentioned conditions on the
function G are also sufficient to obtain the other results in this section. For the sake of
simplicity and without real loss of generality, we shall continue to assume |G (w)] < Jul”
to hold for any « € R throughout Section 3.

Interest is now focussed on finding the largest number / > 0 such that |z|' f(z) € Lo.
Corollary 3.1.3, Corollary 3.1.4, Theorem 3.1.5 and Theorem 3.1.6 are concerned with this
issue. The outcome of our analysis is that [ > s, which is to say that f decays to zero
at infinity at least at the same rate as does k.

CoroLLARY 3.1.3. — Under the conditions of Theorem 3.1.2, f € H*, and || f(z) € Lo,
where v is any cornstant with 0 < v < s if s < 0o and v is any positive number if s = co.

Proof. — Let | and s be defined as in the proof of Theorem 3.1.2, and let
vi = min{s,rl}. Then, replace I by 14 in (3.1.10) and consider the resulting inequality.
Since |z|"k(x) € Ly and G(f) € L4, it follows from Young’s inequality that the first
integral on the right-hand side of the modified version of (3.1.10) is an L,-function. Because
|[G(fE)[E| < (|f(t)||1f|"_l)(|f(1‘)||t|v_1)"1 and f(t)|t|> € Ly N Leo, it is deduced that
G(f()It|" € L. When combined with Young’s inequality and the fact that k € L, the
latter point implies that the second integral on the right-hand side of (3.1.10) is also an
Lo-function. Hence, it is seen that f(z)|z["* € L. If 1y = rl < s, one may use the above
argument to show that f(z)[z|"* € L for v, = min{s,r{}. Then repeating this argument
at most finitely many times leads to the conclusion f € H*. If k € H, then | > 0 can be
chosen as any positive number, and thus f € H*. O

CoroLLARY 3.1.4. — Suppuse thai the funcrions | and G satisfy the conditions in Theorem
3.1.2 and that there is a constant oy > 0 such that the integral kernel k satisfies the
inequality -
| k@ s < oo,

for any o with 0 < 0 < 0g. Then e°\®l f(z) € Ly N Lo, for any o € [0, 09).

Proof. — Since k € H*, it follows from Corollary 3.1.3 that |z|* f(z) € L1 N Lo, for
any s > 0. We shall first obtain bounds for ||(-)"f(-)||, for any integer n > 0, where ()
connotes the function h(z) = x, and then use them to show that [ decays exponentially.

Fix a constant ¢ with 0 < ¢ < ¢y and let

My = wax{[[()1F O oo, 1G]},

M, = </ |k (z)|?e?le] d:v> , and

oo

K = max {gllflh- JSIOLO S 10270 4, 4M1M2\/E}‘
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Clearly we have

| 42K
(3.1.11) e s LR

for [ = 0,1,2. Induction is now used to show that (3.1.11) holds for all integers [ > 0.
Suppose that there is an integer n > 2 such that (3.1.11) is valid for any integer [ with
0 <! <mn When! =n+1, one may estimate the L;-norm of 2"+t f(x) by Young’s
inequality as follows:

(3.1.12) [[OkairiO]
= [|()"H (ke * G(F (D)l

n+1l

- Z::(n j 1) R0 * (O GEO)I

el n : A
<3 ("7 OO

J

Applying the Schwarz inequality and the definition of M3 to [1() =9k (-)||1 yields

(31.13) ORI

< (/ lk(m)l2e-2clm'ldx) (/ lez(n+1—j)6_zc|m| d.’L’)

21—+ 2 — 24)! - N
n+2-2 o o, (Pt =0
(2,_.]_!(::4-1-';}+1 Cn+1—j+1/2

< V2M,

For any § with 1 < § < n + 1, estimate the other terms on the right-hand side of (3.1.12)
using the quantity M; defined above:

(3.1.14) REEGONT
= [ ket @)

S/_"" ]x‘3—1|f(:v)|(|x\7i—1lf(m)Dr_l "
<M /°° 2P~ (@) dz = My||()7 2 FO)lla.
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Now applying (3.1.13), (3.1.14), the induction hypothesis and the definition of K to (3.1.12)
gives

O™ £ Ol
n+1 .
(n+1) Y in+1 (R4d—gi .
< MMy S+ 2MM 3 (T ) e 1 Ol
_ o=
n+1 y . '
(n+1)! N n+1 (m+1-N'G+ 1)K/
S 2My M, <m"1'f_z 0 Z j e Hl—5+1/2 cl
Jj=1
2M; M(n + 1)! (n+2)K™3 — (n + 3)K"*+2 — K2 4 2K
= 14172 1+ (K —1)2
<t B K2 2 i 1 = (n+ 3)1K"+2
- et (n+2)(n+3) n+2/- crt2 ’

This completes the inductive step and it is thereby concluded that Inequality (3.1.11) holds
for all integers | > 1.

Applying (3.1.11) shows that

| 1@l ias
o0 lll fove) .
<S5 [ wli@le
=0 =~ vV~
V(I + 2K 2
< Zﬂ( c’)+1 = Z(l+1)(l+2)VlKl+l/cl+1_

-0
Hence, if 0 < Gt ST e

1 N
N U

£

J
To finish the proof, let vy = sup {I/ >0: 7 |f(z)|e’*ldz < oo} and observe the
following inequality:

(3.1.15) (@)l < / " k(o - e 16 (1)) et

< [ @ = =g ol
If 0 < v < min{wy, 00}, then f(z)e"!*l € Ly, which results from (3.1.15) and the facts
f(z)e’l®l e L,, f(z) € Lo and k(z)e*!™ € Ly. In consequence, we have f(z)e’!*l € L.
Assume vy < oq and choose a constant ¥ > 0 such that 2 < v < min{vp, ﬂrl} It follows
that k(z)e™!*l € L, and f(z)e*!*l € L; N Lo, Replacing v by rv in (3.1.15), the right-
hand side of the inequality is seen to be the convolution of the L, -functions k(z)em™!*l
and (|f(z)le!®)", via.

F@Ie < [ frio - gl ol (1ol a
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and thus f(z)e™® € Ly N Ly which is contrary to the definition of 1. Hence, vy > oo,
which is to say that f decays at least at the same order as does k. O

In the next two theorems, sufficient conditions are formulated implying a solution f of
the equation f = k * G(f) decays to zero at infinity at the same order as k.

THEOREM 3.1.5. — Suppose that f = kxG(f), where f, k and G satisfy the assumptions in

Theorem 3.1.2. Suppose also there is a constant m > 1 such that | |lin:i1: |z|"k(z) = Cy,
where Cy, C_ € C and the adornments L correspond to limits at 400 and —ox,

respectively. Then it follows that

i el f(@) = Cs [ GU)

Proof. — The identity ' llirn ™ f(z) = Cy [T G(f(t))dt is verified. The limit at —oo
may be proved in the same way.

First, it is shown that for any [ with 0 < I < m, |z|'f(z) — 0 as |z| — oo, and
then this fact is used to verify the advertised conclusion. Choose any Iy > 0 such that
m—1/2 < l; < min{m,r(m — 1/2)}. It follows from the hypothesis on k and Corollary
3.1.3 that |z|" k(z) — 0 and |z|"|G(f(z))| < (IF(@®)|[]*/m)" — Oas || — co. Moreover,
we know that k, G(f) € L1 N L. Applying these facts to the inequality

|z |£ ()] < ﬁ/_oo |z — 1] k(= — )G(f ()] dt + ﬁ/_oo k(2 — ||t IG(f ()] dt

shows that the right-hand side goes to 0 as |z| — oo, and thus |z|" f(z) — 0, as
|| — oo. Note that we can take 3 = min{1,2"7*}. If {; < m, then choose an I, with
I, < ly < min{m, 17} and repeat the above argument to get |z|’2 f(z) — 0, as |z| — oc.
Continuing this argument a finite number of times leads to the desired conclusion.

Since lim |z|™k(z) = Cy, there are constants No > 0 and A > 0 such that

|| —o0

|z|™|k(z)| < A and |k(z)] < A when |z| > No. For any € > 0, there is an N > Np
such that

/:IG(f(w))ldx<e, /N°°1G<f<x>>|2dw<e2, | el <e

oo

s —-N
/ Ik(z)| d < ¢, / k(z)|dz < &, and [(IGUFE)] < e

N —00

for any |t| > N. Additionally, it may be assumed that lz™k(z — t) — C4| < € for any
t € (~N,N) and any z > N + No. Then the estimate

fepm -0y [ G dt]

N
<|[ ke - -caum)d +

c. ( / ;N + [ m) G(f (1)) dt
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o [ | o=tk - e+ | e - oateiima

x—Np z+Ng SO,
+27n—1< _|_/ _|_/ )]m—ﬂmlk(&?—t)G(f(t))’dt
N z—Ny T+ Ny

+277 [k - el
N
< G +21C4] 4+ 2™3A + 2™ NG k]| + 2™|[K||:]e

holds when z is sufficiently large. Since ¢ is arbitrary, it follows that

Oy
xnl

fz) ~

Note. — In Theorqm 3.1.5, the condition m > 1 is needed for the existence of a constant
s > 1/2 such that £ € H*, so that Theorem 3.1.2 applies to the discussion.

In the next theorem, we shall consider the case wherein k decays exponentially,

/°° G(f(t)) dt, as z — +oo0. |

(e o]

Tueorem 3.1.6. — Suppose f = k « G(f), where k and G satisfy the hypotheses in
Thearem 3.1.2. Suppose also that Jor some oy > 0,

lim ellg(z) = Cy.

z—too

Then the function f satisfies the relations sup e”°lel| f(z)| < oo and
zER

(e o]

lim e Pf() = Co | e G(f(0) a
— 00

where, as before, C, C_ and + correspond to the limits at +oo and —oo, respectively.

Proof. — It follows from Corollary 3.1.4 that f(z)e*!#l € I, N L. The inequality
G @Nle < (I7(a)e )

then implies that |G(f(z))le”*l € Ly N L. The remainder of the proof follows the
argument in the proof of the last theorem. [

Remark. — 1t follows from Theorem 3.1.2 that the integral kernel £ also has a smoothing
effect on its solutions. Any solution f satisfying f € L., and I llim f(z) = 0 must be

a continuous and bounded function on R, even though k() itself may not be bounded
and continuous. This point will come to the fore for the Benjamin-Ono equation and the
full Euler equations. (The proposition becomes obvious upon noting f is the convolution
of the L-functions k(z) and G(f(x)).)

One question not considered in this paper is the case when the integral kernel k of
Equation (3.0.1) decays to zero at infinity like 1/|z|™ for some real number m with
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0 < m < 1. Under this assumption, the argument used in this paper may not be effective,
since k is not in H® for some s > 1 /2 and k is not in L;. One example in hand indicates
that the solution of Equation (3.0.1) may not decay as fast as the kernel k. We expect to
discuss this issue at a later stage using L,-based Sobolev spaces for values of p other than 2.

We now turn to the application of these results about convolution equations of the form
displayed in (3.0.1) to the solitary waves that are our primary focus. As will become
apparent momentarily, the solitary-wave solutions of the model equations in (1.1), (1.2) or
(1.3) may be realized as solutions of convolution equations as in (3.0.1). The same is also
true of solitary-wave solutions of the Euler equations as seen already in (1.10).

3.2. Decay of solitary-wave solutions

We begin the discussion with the KdV-type equations in (1.1). Assume that for some
¢ > 1, u(z,t) = o(z — ct) is a solitary-wave solution of the equation

g + Uy + F'(0)y — Mug = 0.
Under conditions to be stated precisely in Theorem 3.2.1, one concludes that ¢ is a
solution of the convolution equation ¢ = \/%kc * F'(p), where the Fourier transform k.
of k, is given explicitly as k.(€) = 1/(c — 1+ a(£)) and a(€) > 0 is the symbol of the
dispersion operator M. We shall show next that for any ¢ > 1, k. € H* if and only if

k=ky=1/(1+ &) € H® for some s > 1/2. Therefore, without loss of generality, it will
only be required to discuss the case ¢ = 2 in the proof of Theorem 3.2.1.

Suppose that k(&) = 1/(1 + «(£)) € H® for some s > 1/2. It then follows from
standard Sobolev-embedding results and an elementary application of the Cauchy-Schwarz
inequality that i € Ly, k € Cy(R) and k(£) — 0 as |¢] — oo. Of course, ke Ly as well

Moreover, for any ¢ > 1, the quantity - 'f:“m is bounded above by B = max{l, —

and hence the same properties just stated for k accrue to k.. For any ¢ € R, it follows
from Plancherel’s theorem that

N ~ 2 i 1 1
||kc('+t)—kc(')”2—/_oo col+al+t) c—1+alf)

:/ |kc(a:)|2|e”“”—1|2d:z;:/ he(@)Pl2sin 2 [da.

On the other hand, a different calculation shows that

Ee(- + 1) — k()12
_ /L (1 + a(€ + 1)2(1 + a(€))?
e lc=1+a(+1t)(e—1+ a(€))?

o 1 1
< B4/ : =
B 4oo’l+”{€ +4) L+ aff)

In consequence, we see that

(3.2.1) / (@)

2

dg

2

1 1 e

T+a(E+t) 1+a(f)

2 oo
d¢ = B4/ |k(x)|?|2 sin t—;—lzdm.

2

dzx.

o0

dx— ke (-4+1) =k ()]12 < 34/ k()]

— 00

t
2sm— 2sin—Z

JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES



394 J. L. BONA AND Y. A. LI
If s < 1, multiply both sides of (3.2.1) by 1/[¢|*2*, integrate the resulting inequality with
respect to £ over the real line R and use Fubini’s theorem to obtain

2

& > gin® &2 oo % gin? &2
/oo |kc(m)|2da:/oo W dt < B4/Oo |/c(:v)]2d:c/oo |t]1—+228 dt.

Changing variables in the integrals then yields

oo 0 a2 Y =) 00 Lin2 Y
gin® ¥ . sin” ¥
IO s TR e ==

It follows that

/ [0/ k() Pde < B* / 2% k() da,

and thus k., € H*. If s = 1, multiplying both sides of (3.2.1) by 1/t and using Fatou’s
lemma as ¢t — O yields

/ |2 o) Pdz < B / 2 (=) Pda.

—00 -

It follows that k, € H'. If s > 1, one may apply a similar technique to derivatives of k,

and lAs, that is to say, lAc’C, % s ooy lAcgn) and k(" to show that k. € H*, where n is the integer
such that |s| < n < s. Vice versa, k. € H* also leads to k € H®.

Now we are ready to discuss decay properties of solitary-wave solutions to the model
equations under consideration.

TueoreM 3.2.1. — Let ¢ > 1 be given and suppose that the function ¢ satisfies the
conditions 1) llim ¢(z) = 0 and ¢ € Lo, and 2) u(z,t) = @(x — ct) is a weak solution
of the KdV-type equation

(3.2.2) U + Uy + F(u)y — Mug, =0

in the sense that

(@, [(c = DI+ M]g') — (F(p),g') =0

Jorany g € C°. Suppose the symbol o of the dispersion operator M satisfies the smoothness
condition k = 1/(1+ &) € H® for some s > 1/2, the operator M maps C° into L, and
there are constants B > 0 and r > 1 such that the function F satisfies the inequality
|F(y)| < Bly|" at least for small values of |y|. Moreover, it is assumed that F' exists and
is bounded on any bounded subset of R. Then ¢ is a classical solution of the equation

¢+ Mo = F(p)
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and ¢ € H®. Furthermore, if there is a go > 0 such that k satisfies the condition
/ |k(z)|?e2 "l dz < oo,
for any o with 0 < o < og, then @(z)e’V® € Lo, for any o € [0, 0).

Proof. — As discussed above, it is sufficient to consider the case ¢ = 2. Choose a ¢y € C°
such that 9(z) > 0, suppyp C (—1,1), and [ 4p(z)dz = 1. Let Yo (x) = Le(2),
s = Vo * p and F(p)s = F(p) x 1), For any g € C, it follows from the hypotheses
on ¢ and the fact (1, o g)) € C that

(0,90 0 (I + M)g') = (F(0) 950 g)
= (¢, (I + M)(9s 0 9)') = (F(0), (o0 9)') = 0.

The notation v o w is that introduced at the end of Section 2. On the other hand, it is
also seen that

(¢, oo (L + M)g') = (F(¢), o © 9)
= (o, (I + M)¥;) 0 g) + (F (), %5 0 9)
= —(((I+ M)P.) * ¢, g) + (¥, x F(), g)-

It follows that

(I + MW,) *p, g) — (W, x Fp), g) =0

for any g € C2°, and thus

(3.2.3) (I + M)y,)* o — Y, x F(p) =0,

at least almost everywhere. Convolving both sides of (3.2.3) with k and using the fact
that =k xg = (I + M)™1g leads to

1
3.24 " xp= —kx * F(p).
(3.2.4) Yok ==k ¥ (¥)
Since 1, * ¢ — 0 and k * ¢, * F(yp) — 0 as |z| — oo, integrating both sides of (3.2.4)
from —oo to x Yyields

1

Yo * p(x) = \/2—7;16 * o * F(i0)(2),
or, what is the same,
1
Yo = \/ﬂk * F(p)g.

Because lim0 v, = @ and l'm%J F(p)s = F(i), it transpires upon taking the limit as o — 0
of both sides of the above identity that ¢ = \/—12_—7?19 * F(p).
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Then it follows from Corollary 3.1.3 that © € H° and F(p) € L; N Ly and hence
it is concluded that My = F(p) — ¢ € L,. Since F and @ are continuous, also as a
consequence of Corollary 3.1.3, it must be that My = F(p) — ¢ is continuous, and thus
¢ is a classical solution of ¢ + My = F(p). The other results are a direct consequence of
Corollary 3.1.4. O

The discussion of solitary-wave solutions of RLW-type equations and Schrodinger-
type equations follows lines sufficiently similar to those just enunciated that we content
ourselves with summary statements of the outcome.

THEOREM 3.2.2. — Suppose that the function (@ satisfies the conditions 1) ¢ € L., and

I llim o(x) = 0, and 2) for some constant ¢ > 1, u(z,t) = (z — ct) is a weak solution
I|—c0

of the RLW-type equation
Ut + Uy + F(u), + Mu, =0,
in the sense that
(o, (e = DI+ eM)g') - (F(p), ') =0

Jor any g € O, Suppose the symbol « of the dispersion operator M satisfies the
smoothness condition k = 1/(1 + a) € H* for some s > 1/2, the operator M maps Cx
into Ly, and there are constants B > 0 and r > 1 such that the function F' satisfies the
inequality |F(y)| < Bly|" at least for small values of lyl. Moreover, it is assumed that
F' exists and is bounded on any bounded subset of R. Then ¢ is a classical solution of
the equation

((c= DI+ cM)p = F(p)
and $ € H®. Furthermore, if IAc(ﬁ) is an analytic function on the strip
{z € C:(Sz2] < a0}

in the complex plane and

sup /oo IIAc(E—l- in)|2dé < oo

Inl<o J —oco

Jor any o with 0 < o < oy, then
sup [¢(z)]e”* < oo
z€ER

Jor the same range of o.

THEOREM 3.2.3. — Suppose that the real-valued Sunction ¢ satisfies the conditions 1)
¢ € Ly andl llim ¢(z) =0, and 2) for some Q > 0, u(z, t) = e"¥¢(z) is a weak solution

of the Schridinger-type equation
wy — Mu+ F(lu))u =0
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(or for some w > 0%, u(z,t) = ei02/24+ (=300 (1 — Ot) is a weak solution of the
Schridinger-type equation) in the sense that for any g € Cg°,

(¢, (U + M)g) — (F(|6))¢, 9) = 0,
(¢, ((w — 6%/2)I + M)g) — (¢,i89") — (F(|¢]), 9) = 0),

where the symbol o > 0 of the dispersion operator satisfies the condition E=1/1+a)c
H?* (respectively, the symbol a(§—0/ 2) of the dispersion operator M satisfies the conditions
a(€) = €24 B(€) with B(€) > 0 and k = 1/(1+ (£ —0/2)+6¢) € H*) for some s > 1/2.
Suppose also that the dispersion operator M (respectively, M) maps C® to Ly, and that
the function F is bounded on bounded sets and satisfies the inequality |F (y)| < Bly|" for
all sufficiently small y € R for some constants B > 0 and r > 1. Then ¢ is a classical
solution of the equation

QI + M) = F(|4])6

(respectively, the equation

((w — 0%/2)I + M)$ + i8¢’ = F(|¢])9)

and qg € H?. Furthermore, if there is a o > 0 such that k satisfies the condition

/ |k(z)|?e?1*ldz < oo

— o0
for any o with 0 < g < 0y, then @(m)e”'ml € L for the same range of values of o.

Remark. — When considering the analyticity of solitary-wave solutions of model equations
(1.1), (1.2) and (1.3) in [14], it was assumed that the solitary-wave solution ¢, its derivative
¢ and M were all elements of Ly. As a matter of fact, if the dispersion operator M
satisfies the conditions in Theorems 3.2.1, 3.2.2 and 3.2.3 with the growth condition

a(€) > Al¢|™ for some constants A > 0 and m > 1, then it is inevitable that ¢, ' and
M are Lo-functions. Indeed, it was shown that @, My € L, in Theorem 3.2.1, and then
¢’ € Ly is simply a consequence of the growth condition a(§) > A[¢|™ with m > 1. A
considerable number of KdV-type equations, RLW-type equations and Schrddinger-type
equations fall under the aegis of this assumption. For example, if the symbol «(&) takes
the form a(€) = 3N | ax|€|™ for some constants aj > 0, 75 > 1 and an integer N > 0,
then M maps C* to Ly and k = 1/(1 + a) € H* for some s > 1/2. (Indeed, any
symbol o which is locally absolutely continuous and such that, along with its derivative,
is everywhere bounded by a polynomial has the property of mapping CZ° to L;. This
follows since M qS = a¢ and the right-hand side plainly lies in H" if ¢ € C°.) The
model equations corresponding to such symbols include the Benjamin-Ono equationsand
the KdV equation (1.7). ;

It is worthwhile comparing the results of our theory for the decay of solitary waves with
exact results in some cases where the solitary wave is known explicitly. We start by applying
Theorems 3.1.5 and 3.2.1 to solitary-wave solutions of the the Benjamin-Ono equation

U + Ug + 2uy — Hug, =0,
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where H is the Hilbert transform defined by H (p(T =41 f * 2 gt For this case, the

ooa:t

solitary wave ¢ solves the integral equation ¢ = k * ©? and decays at exactly the

same rate as the integral kernel k., where k,(¢) = 1 / (¢ — 1+ [€]). The reason is that k,
can be expressed as the integral

2 [ '.’;r.'_:"'l-”
ko(z) = \/i/ 4
(2) T Jo (c—1)2 442 v
and consequently

" 2 1
lim 22%k.(z) = li [ " —\/j—:L.
|m|li>noo ‘ |m[1i>noo / (c—1)2+ n? /a2 " 7 (c—1)2

It follows from Theorem 3.1.5 that

L =
(3.2.5) ’7:1|11>I}x>m o (z) = \/_/ ©*(z) dz = W/_Oocp (z)dzx.

Since the solitary-wave solutions of the Benjamin-Ono equation may be written in closed
form as

2(c—1)
(P(‘/'E) e ﬁ (C . 1)2$2,
simple calculations show that
2 o0
llllm 2% (z) = o and / ©*(z) dz = 27 (c — 1).
x| —o00 C — _—

Thus in this case, (3.2.5) is directly verified. Notice that k. can also be expressed as

kol inf{e —1)° x°j+ / (c—l)‘a:‘+nj “"dn,

ke(w) = —

1
V2
showing clearly that it has a logarithmic singularity at = = 0. However, the solitary-wave
solution ¢ is analytic in the strip {z € C: |$2| < 1/(c — 1)} due to the algebraic decay
property of k. and the growth condition on 1/k, = ¢ — 1 + €].

Consider now the example of solitary-wave solutions of the generalized KdV equation
Ut + Uy + upum + Uppr = 0)

where p is a positive number. It follows from Corollary 3.1.4 that any solitary-wave
solution w(z — ct) with ¢ > 1 decays exponentially since ¢ satisfies the equation
= —\/ﬁlCc*(pPH/(p_y 1), where K. (z) = \/_ ‘/_” " a kernel whose Fourier transform
is )&C(ﬁ) =1/(c— 1+ £&%). Applying Theorem 3.1.6 leads to the conclusion

— 1 —_— =
(326) lim e/ lp(z) = i) ke K )/ il

1 +ve—1t, p+1
= e t) dt.
2\/r'—ﬁl(;.'.)+])/_oo o)
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Since these solitary-wave solutions have the exact form

@z — \./<7+1><p+z><c— D h/<__v2—1m,>

2

it is easy to see that

lim eV T=lp(z) = {/2(p + D(p+2)(c - 1)

Je]—oo

and
/ eVe TPt (t) dt = / eTVETttP T (1) dt

_ 2+ D(p+2) (- DIHYT

Ve—1(p+2)

Equation (3.2.6) is again confirmed.

Attention is turned to solitary-wave solutions of the full, two-dimensional Euler equations.
It was shown in the work of Friedrichs and Hyers [8] that when the Froude number
F = ¢/+/gh is greater than but close to one, solitary-wave solutions of the Euler equations
exist and are near in function space to solitary-wave solutions of the KdV equation as
expressed in (1.8) or (3.2.7) with p = 1. As mentioned above, the KdV-solitary waves
certainly decay exponentially away from their crest. Craig and Sternberg [7] have discussed
the exponential decay property of the function y(€,n) mentioned in the introduction
corresponding to a solitary-wave solution of the Euler equations without the restriction
that the Froude number lic near 1. Here, we shall apply Theorem 3.1.2 and Corollaries
3.1.3 and 3.1.4 to the solitary-wave solutions w(¢) of Equation (1.10) to show that w(¢)
decays exponentially. From this it also follows that the Fourier transform & of w has an
analytic extension to a strip in the complex plane.

Henceforth, the following notation will be adopted from the paper of Benjamin et al. [5]
(see (1.10)):

vsinw(¢)
143y [ sin w(r)dr

F’yw(qs) =

THEOREM 3.2.4. — Let w(¢) be a solitary-wave solution of Equation (1.10) which satisfies
the conditions:

w(p) = —w(—¢) for any ¢ €R and 0< w(@) < = for any ¢ >0.

2o

Then there exists a constant vy, such that

sup |w(e)|e”?! < co
¢€ER

for any v with v < uy.
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Proof. — In the next section, we shall prove that if w satisfies the hypotheses of this
theorem, then w, sinw and Fow all lie in Ly N Ly. Tt will then follow that w(eP) is a
continuous function on R with ] _I]'un w(¢) = 0 since the integral kernel & in (1.10) is in

U] fem o a]

both L, and L,, and llljm k(¢p) = 0.

143~y II”" sin w(t)dt 1+3’y‘[0 sinw(t)dt
p=1/F? <1 (see [5]), we rewrite the ri ght-hand side of Equation (1.10) as & * Fw=
k* pw + k * G,w, where

Noticing that as |¢| — oo,

W, where

Y(sinw — w)
1+ 3y [ sinw(t)dt
3w II(XI) sinw(t)dt
(14 3y fnj sinw(t)dt)(1 + 3y [~ sinw(t)dt) ’

(328) Gyw=Fuw—w=

Then taking the Fourier transform of both sides of Equation (1.10) yields & = ufccb—f-/%@,
or, solving for o,

A koo sinh —
w= ~Gyw = ———6—_—G7w(§).
1— uk € cosh & — pusinh &
Since p < 1, the meromorphic function z (_‘.:.HI%‘ITLE has countably many poles located at

points § = in where the real numbers 7 # () satisfy the relation 7 = y tann. An application
of the residue theorem shows that its inverse Fourier transform can be expressed as

h($) = ‘/ﬁz Lan g, e_""|¢|,

ny tanmn, +pu — 1

——
t— 1

for any |¢| > 0, where {n,}32, comprise the poles of A on the positive imaginary axis,
numbered so that 1, < n,,, for n = 1,2,3, ... Therefore, w satisfies the following,
equivalent integral equation:

1

(3.2.9) “($) = 7=

hx G w(g).
Since

|G w| < v]sinw — w| + 372|w|/ sinw(t) dt,
6]

[o0)
|sinw — w| < w? and JJl{im / sinw(t)dt = 0,
e Je)

with a slight modification in the proof of Theorem 3.1.2 and Corollary 3.1.4, one may
deduce that

w(g)e?l € L, N C(R),
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for any v with 0 < v < m, where 7, > 0 is the solution closest to the origin of the
equation 7 = ptann. It also follows from Theorem 3.1.6 that

tan ¥
lim e"l?lw(¢) = ol / et G w(t) dt,
$—too mptanmg +p—1 J_
which implies that vy > 71. O

One consequence of Theorem 3.2.4 is the analyticity of the Fourier transforms @, sin w,
Fyw and G w stated in the following corollary.

COROLLARY 3.2.5. — Under the conditions of Theorem 3.2.4, the Fourier transforms @,
sinw, FLw and Gw of the functions w, sinw, F,w and Gw, respectively, have analytic
extensions to the strip {€ +1in,|n| < v}

Proof. — Because w(¢)e’?! € L1(R) N Loo(R), w(¢)e’!?! € Ly(R) for any 0 < v < vp.
Moreover, |sinw| < |w|, [Fyw] < |yw| and |G,w| < |Fyw) + p|w]. The conclusion follows
from the Paley-Wiener Theorem [19]. : O

Remark. — One may also use Craig and Sternberg’s method to show this decay property
of solitary-wave solutions to the full Euler equations. The results are here obtained as an
easy corollary to our general theory about decay of solutions of convolution equations
of the form f = k * G(f).

The decay property of solitary-wave solutions to the Euler equations demonstrates the
important role played by the nonlinearity, and in particular by the inequality

(3.2.10) ' |G(u)| < Mul"

for some r > 1, which is satisfied by the convolution equations under consideration.
Notice that a solitary-wave solution w of the Euler equations satisfies both Equations (1.10)
and (3.2.8). It follows from Craig and Sternberg’s result [7] that w decays exactly at the
same order el as the kernel h in (3.2.8), with 0 < m; < m/2, but apparently more
slowly than the kernel & in (1.10), whose decay has the asymptotic form e~m#1/2 In
Equation (1.10), the nonlinear term F,w satisfies the inequality |F,w| < 7|w|, while the
nonlinear term Gw in Equation (3.2.8) possesses the property |G w| < M|w|? for some
constant M > 0 for sufficiently small values of w. Thus the super-linear condition (3.2.10)
is needed, together with the decay condition imposed on the kernel k, in order that
solutions of f = k * G(f) evanesce at infinity at least as rapidly as the kernel. Without
Inequality (3.2.10), the results obtained in this section may not be valid. An additional
matter worth mention is that larger values of 7 > 1 in (3.2.10) do not necessarily imply a
higher order of decay in the face of a fixed integral kernel k. Solitary-wave solutions of
the generalized KdV equations provide a clear example. They all decay at the same order
regardless of the value of p > 0 appearing in the equation.
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4. Analyticity of solitary waves

This section is devoted to extending the result on analyticity of solitary-wave solutions
developed in [14] so that the outcome will not only apply to more general model equations,
but also to Equation (1.10) (repeated here for convenience)

ysinw(t) it

1 oo
(4.0.1) w(@)= 7= [ ko9

1 + 3y ]{: sinw(7)dr

for solitary-wave solutions of the full, two dimensional Euler equations. For the Euler
equations, once the free-surface variable is known to be given by a function which is
the restriction of an analytic function in a strip, it is natural to ask about the analyticity
properties of the velocity potential ¢ and the stream function . These will be seen to
have an analytic extension to an open set in 2-dimensional complex space C2. As a
simple consequence, it will be ascertained that all the streamlines are the restrictions of
analytic functions.

4.1. Regularity of solutions to nonlinear convolution equations

In [14], solitary-wave solutions of model equations of the form depicted in (1.1), (1.2)
and (1.3) were shown to be the restriction to the real axis of functions analytic in a strip
in the complex plane. This was accomplished under the assumption of a homogeneous
nonlinearity f(u), for (1.1) or (1.2) and f(lu])u for (1.3), where f(z) = 2PT1, say, with
p a positive integer. The general aim here is to extend the range of this result to include a
much broader class of analytic nonlinearities. This will be accomplished by reconsidering
the associated nonlinear convolution equations f = k * G(f).

The following three technical lemmas prepare the way for the further study of these

e arod
convolution cquaiiois.

LEMMA 4.1.1. - Let f and g be infinitely differentiable functions defined on some open
interval I € R. For x € I, denote by y the value 9(x). For any integer n > 2, we have

d" f(g(x)) _

— o, (n) g1
da Y f(y)
n f‘{ﬁ}(g} (s,n) n (i o ‘
2. : . =)y (i=iz) g e
; s Z Jise sy Js—25 Js—1 4 y Yy
where )
y® = 9()
dzk
(s,n) n-l  g1-1 Js—g—1js—2—1
D I VRS 33
n=s-lja=s=2  j,_p=2j._1=1
and

o ) ()8 ()
jla Ty js—2> js—l jl j2 _js—l
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The proof of Lemma 4.1.1 is tedious, but straightforward. A sketch is provided in the

Appendix. The notations 3™ and " defined in Lemma 4.1.1 will

: . jla"'ijn—2: jH—l
be used throughout this section.

LemMMA 4.1.2. — For any integer n > 2 and any integer s with 2 < s < n, we have that

(sym) n Nm—gi—l(s i \ji—da—
(4.1.1) Z (jl . )("_Jl) =Gy = gyt

i) js—l
n—s—1
I IR NP FECES D MR T snin
(Js—2 Jo—1) Js—1 (n—s)! .
Proof. — First remark that the identity (see [20, p. 23])
— (m N j—1 m—j—1 _ 1 1 m—1
ST M+ My +m—1) =(=+-)@+y+m)
izo \J z Yy
of Abel implies that
m—1 - ' (m+m)m_1
(4.1.2) Z (j )(g; + ) m =)™ = I + (m—1)(z+m)™?
§=0

for any m > 1 and any = # O.

Consider the left-hand side of (4.1.1) for s = 2 and an integer n > 2. Let r = j—=1
and then apply (4.1.2) to obtain:

j=1
n—2 . 1
_ - 1 e\n2—7 r—1
_nTE:()( ) )(n 1—r) (L+7)

2nlpn

(n —2)!

n

= n[n"_2 +(n— 2)n"_3] =

An induction on s is used to complete the proof. Suppose that there exists an integer s
with s > 2, such that the equality

js—3—1js—2-1

J1=s—1 Ja—2=2js-1=1

oo+ (Joma —J 1)js—2—js_1—1(j l)js—l'—l _ ﬂ:a_l
s— s— 8— U - ‘;)T
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holds for any integer ! satisfying s < I, Let r = s + 1 and apply the induction hypothesis
to the left-hand side of (4.1.1) for an integer n with n > s+ 1 to adduce

n—1 Ji—1 Js—1—1 .
n . R N X Ny — g1
413) S (™ (= jm-i ( ) = L
413 3 (7 )omgya 3 > (0 )6
J1=8 Ja=s—1 Js=1
alE (}Q 1= j8)13_1—35—1jgs-—1
J1—s8—1

= E (:: > (n —jl)"—jl_l%

ji=a

Letting j = j; — s and applying (4.1.2) to (4.1.3) yields

sl "ttt _ ’ |

=0
sl nns1 - (s + 1)nlpn—s-2 _
(n— s)! (n—s—1)!

T + (n - 8 - l)n"_sf—z

It is thereby proved that identity (4.1.1) holds for all integers n and s with 2 < s <, [
LemMma 4.1.3. — The identity

o E s

w4 =12 '
ton-2)(@+n-1)"2+(n-1)(z+n—1)"2
holds for any integer n > 2 and any number x > 0.

Proof, — 1t follows from another version of Abel’s identities [20], namely

i(”(“jy—l(%" =wip=e = (i + 1j_y>(iv+y+n)"‘2

7=0
- (+y+n)"""  (n-1)(z+y+n)"?
s y(l+y)
that
n—2
Z(”)(x +5) Ny +n—j)ni? = (l ;o )(w +y+n)"?
=\ z 14+y/
+ (+y+n)""' (n-1)(z+y+n)"2 (4! _n(z+n-1)"2
v y(1+y) y? 1+y
where y is any real number with —1 < y < 0. Taking the limit of both sides of the above
identity as y — —1 leads to (4.1.4). O
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The way is cleared for a discussion of regularity of solutions to nonlinear convolution
equations, which is the subject of the next theorem. To establish the result in view, the
radius of convergence r of the Taylor series expansion of the solution f to the given
convolution equation is estimated at every point z € R. It will be demonstrated that there
is a constant oo > 0, independent of x, such that r > oo, which implies f to have an
analytic extension to the strip {z € C : [z| < oo}

THEOREM 4.1.4. — Suppose that f is a solution of the convolution equation f=kxG(f)
such that f € Ly N Lo, and | ilim f(z) = 0. If the Fourier transform k of the integral

kernel k satisfies the decay condition |E(€)] < A1/(1 + Az|é|™) for some constants As,
Ay > 0 and m > 1, and G(z) is an entire function defined on the complex plane C with
G(0) = O, then there exists a constant oo > 0 such that f has an analytic extension to
the strip {z € C : |Sz] < oo}

Proof. — Since G(z) is analytic at the origin with G(0) = 0, there is a constant M>0
such that |G(z)| < M|z| for all z with |z| sufficiently small. This fact together with the
hypothesis f € Ly N Loo implies that G(f) € Lz N Leo.

Next, it is shown that f, G(f) € H™. It follows from the Plancherel theorem that
for any g € C>(R),

(4.15) (1) = (£.9) = B GNP = |  HOGT)(©)ies e,

Because of the decay condition satisfied by lAc, there is a constant Az such that ‘fl%(ﬁ)' < As,
and thus

(0 < 4s [ [ETD©a)]e < 45T Jalla = ANGD NNl

This implies that f’ exists in the sense of distribution, and that f/ € Lo(R), or what is
the same f € H'(R), with || f'|l2 < Asl|G(F)ll2-

Because f' € L, and '"E:Q = G'(f(z))f'(z), we have (G(f))" € Ly also. Thus
(4.1.5) and the Parseval theorem imply that
[ =kx(G(f).

It follows that f, G(f) € H* and f', (G(f))" € Lo

To prove that f, G(f) € H™, one may argue inductively. Suppose that there is an
integer m > 1 such that f, G(f) € H™, and

(4.1.6) fO =kx(@UNHY,

for all integers j with 0 < j < m. Then for any g € C and for j = m, (4.1.6) and
the Plancherel theorem lead to the relation

(F™, ¢') = (k* (G())™, ¢
— (kG5 = / HE)GT))™ (€)iEGENde.
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Use the inequality |€k(¢)| < Aj again to obtain the norm estimate:

(57, 0)] < 4 [ @l @Fhee|ae

s@@i@@%%=&wwmmwm-

This means that f(™+1) exists in the sense of distribution and f) € Ly(R) with
1Fem+D0l2 < Agl[(G(£))™).

Now compute (G(f))™ by applying Lemma 4.1.1 thusly:

d"G(f(:v)} . p(n) v
Qg =G

= G® (s,n) ) £Gii—i )
+ (I)Z ( n >f(n—11)f(11—12) . f(]s—l)

! jl:"'a js—2a js—l

(4.1.7)

U
I\

8

for any integer n > 3. Formula (4.1.7) applied when 7 = m, + 1 shows that (G(f))m+D)
may be expressed in terms of derivatives of G and f with orders not greater than
m + 1. Hence the induction hypotheses, the boundedness of U which follows from
IO < &)l (G(f))D||; for any integer j with 0 < J < m and the fact fim+D) ¢ [,
lead to the conclusion (G(f))™+1) ¢ L,. By induction, we adduce that fand G(f) € H®
and that the following two relations hold for any integer m > 1,

(4.1.8) F =k (G and £y < A(G() ™D,

Next we estimate the Ly-norm of (G(f))(™ for n = 1,2,-+- Since f is a continuous
and bounded function defined on R, its range R(f) is a bounded subset of R and
hence of C. Let  be a closed Jordan curve whose interior contains R(f) for which
d = dist(y, R(f)) = '1111’;]5-: |61 — f(z)] > [|k]||2. Let My = réngh{lG(f)]} The Cauchy

formula for the nth derivative, applied to the entire function G at a point f(z) implies
!
G™(f(2)) = o / €= flm)t
S Wy
and this leads to the estimate

GO @) Ml _ M

(4.1.9) n! T 2mdntl T gntl?

valid for any = € R, where |y| represents the length of .

We aim now to derive Ly-bounds to supplement the L-bounds in (4.1.9). To this end,
define two constants:

a1 = max {[(G(1) ™I}
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and

a = max {al, As My [323 = J,;(ljf—( ﬂiE]IEzJJLkIlQ] }

It is obvious that
(4.1.10) IGUN™Mlz < a™n™

for n = 1,2, with this definition of a. We claim (4.1.10) is valid for all positive integers.
To use 1nduct10n suppose n > 2 to be such that (4.1.10) holds for any integer m with
1 < m < n. Estimating ||(G(f))("+1)Hz by applying (4.1.7), (4.1.8), (4.1.9), the induction
hypothesis and Lemma 4.1.2 results in the inequality

@iy e, < 252w,
n+1

(s;n+1) n+1 b leiy - -
+st+12 <j1,'-~,js_1>“f( +1-j )Hznf(a d2) ... pUs=1)||

_ AsM 1 Ay M| [k|l5 ! o om :
oy, 3 AT, )
-H(G(f))(""“ @) - |@ne-|,

AMs oy N ALK g~ (n+ (neit)
<2 DI > ("5 )@,

Ji=s—1
(s=1.31) J1 Ji—do(; _ 4 Yii—d2—1
Z (j2a”'ajs-1)a (Jl .72)
.. ,ajs—2—js—l(js—2 . js—l)] s—2—Js fl—la‘] —1( )J s—1—1
 AMy oy S AsMo|lE[lT g~ (nt+d
-2 a1 +Z e+ Z j1
8=2 j1=s—1
a3 (s = 1)ja 14~ y
. G (n—71)
e (Nl
AsMa ooy N AsMolkl5 (s 1) (o (nt Din
< Sty SR O]
n4 1\ @R g et
+h§:1( Iy ) i — s+ 1) (n J1) .

Let j; — s+ 1 = j and use Lemma 4.1.3 to deduce

"o\ Al i
(4112) > ( , (.———(n—al) i

jimeet Vil J1— S -+ J_)I

n—s

S+2 . - ‘ o
n—s+2'z( >(J+S_1)j n—s+2—j—-1) I
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(n4+ 1)1 [pnee —a41 —s+1
== Wy A n . 1\"—*
(n—s+2)! s—17 " (n+1)

+(n=s+2)(n—s)n" 14 (n—s+ l)n"_sJ.

It follows from (4.1.11) and (4.1.12) and the definition of ¢ that

1G],

AsMya™ (5 — 1)[f[2 e
s [n +EH IGO0+ 113 (}*.f,‘f?fﬂ

<

n n+1 — : :‘J—l
A3J(‘14220 [fn,’n—l + (2 + HG(f)”z)(n + l)nn—l Zz _(_;C;—B[_]i““z_J

< (n+ 0P Ao+ (24 G g3 | < ™+ 1

d = [|kl2)?

.- Thus Inequality(4.1.10)-holds-for-any-inte ger- n—>1.
For any z € R and any integer n > 2, (4.1.8) yields

@) =2

| owseme dt\

<2ALPll e < 243 G [ty

S 2143012”,—1‘(,,?‘”T 1)!;—2”?7 ~1

2

and

g z\ | cen@saye o

2| lee|| < 2atm=i(n+ 1y

(Gt

In consequence, it is seen that

" lf(n)(m}[ . \/§A3an—l/2nn_1
\/T S n! n:; ae

DRI Muu_
- n!

and

(G(f(x

!

— (e,
n—+o0

It follows from the above two inequalities that f and G/(f) have Taylor series expansions
about any point z € R with radius of convergence R > ﬁ a quantity which is independent
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of the point z. Therefore, there exists a constant oo > 1/ae for which f and G(f) have
analytic extensions to the strip

Sy ={z€C: |82 < 0o} O

One interesting consequence of Theorem 4.1.4 is that the analytic extensions of f and
G(f) are also Ly-functions in S,,. This leads in turn to the conclusion stated in the next
corollary, that the Fourier transforms of f and G(f) decay exponentially at infinity.

COROLLARY 4.1.5. — The Fourier transforms f and GT(?) of f and G(f) satisfy the
inequalities

/—00 ’f(t)‘Qez"'tldt < 00,
/°° ’C?(?)(t)rez“ltldt < 00,

—Oo0

respectively, for any p with 0 < p < L

ae

Proof. — Let z = & + iy be any point satisfying |y| < p with 0 < p < 1/ae. Then the
Taylor expansion of f at 29 = x is

© £(n)(g (n)
Z):an'( )(z—x)" Zf ()(Z)

n=0

([ e+ |2dx) oy ( / |7 (z)| dw)l

n=0

(|, (1)
ZH!' |E: |n<Z]|f ”_ ur

The above inequality and the Paley-Wiener theory [19, Theorem IV] imply that

/:: ’f(t)‘zez”ltldt < 0.

and thus

is valid for any p with 0 < p < .

ae’

The other inequality may be verified similarly. -

Remark. — In adducing analyticity of f in Theorem 4.1.4, we have actually used only
two properties of G: (i) G(0) = 0, and (ii) G is an analytic function on an open set
U containing the range R(f) of the solution f for which G is continuous up to the
boundary U of U and

dist (OU, R(f)) = inf 12 = f(@)] > Ikl

z€dU

This observation allows one to extend Theorem 4.1.4 in the following way.
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COROLLARY 4.1.6. — Suppose that f is a solution of the convolution equation f=kxG(f)
such that f € Ly N Lo, and lllm f(z) = 0. If the Fourier transform k of the integral

kernel k satisfies the decay condition |k(£)| < A;/(1 + Ay |€|™) for some constants A,
Ay > 0andm > 1, and G is an infinitely differentiable function whose domain contains the
range R(f) of f, having all of its derivatives bounded on R(f) and satisfying the condition
G(0) = 0, then f, G(f) € H*™. In addition, if G is an analytic function on an open set U
containing R(f), G is continuous up to the boundary U of U and

dist (0U, R(f)) = inf |2~ f()| > ||k|2,

z€QU

then there exists a constant oy > 0 such that f and G(f) both have analytic extensions
to the strip {z € C : |S2]| < ap}.

It is worth summarizing the overall view of solutions of the nonlinear convolution
equation f = k x G(f) gleaned from the preceding development.

THEOREM 4.1.7. — Suppose that f is a solution of the convolution equation

f(z) = (k* G(f))(z)

such that f € Lo, and I Ilim f(z) = 0. Suppose also the measurable function G satisfies the

condition |G(u)| < Mlu|" for some constants M > 0 and r > 1 and all sufficiently small
values of |u| and the integral kernel k satisfies the condition k € H* Sor some s > 1/2.
Then f is a bounded and continuous function with (1 + |z|)* f (x) € Lyn Ly,

Furthermore, under the condition that the Fourier transform k of k is an analytlc Sfunction
on the strip {z € C : |Sz| < ao} satisfying

sup / |E(€ + in)[2d€ < oo
Inl<o J -
Jor any o with 0 < o < 0¢, then e"mf(z) € Lo for all such values of o.

In addition, fG =G (z) is an analytic function, satisfying the property (ii) in the last
Remark, and |k(£)] < A1/(1 + Az|€|™), where A1, Ay > 0 and m > 1 are constants,
then f and G(f) have analytic extensions F and G(F) defined on a horizontal strip
{2z € C: [Sz| < vy} for some constant vy > 0 with F and G(F) satisfying the inequalities

sup/ |F(z + iy)|* dz < oo,

lyl<v

sup / |G(F(z + iy))|? dz < oo,

lyl<v

for any v with 0 < v < vy, respectively.

As pointed out in Theorems 3.2.1, 3.2.2 and 3.2.3, solitary-wave solutions of the evolution
equations under consideration can be expressed as solutions of convolution equations of the
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form ¢ = k * G(y). Therefore, the conclusions of Theorem 4.1.7 apply to these solutions
when k and G satisfy the hypotheses of the theorem.

In the next subsection, it will be demonstrated that solitary-wave solutions of the Euler
equations fall into this category as well.

It was proved by Amick and Toland [3] that solitary-wave solutions of the full Euler
equations are real analytic functions, but the issue of how far solutions could be extended
into the complex plane was not addressed. To cast light on this question, one might adopt
the method Lewy used in his work [13], which is connected to the problem of local
extension of a harmonic function satisfying certain boundary conditions. However, it will
be seen in the next subsection that the technique just developed can also be used to tackle
the issue of analyticity of these solitary-wave solutions.

4.2. Analyticity of solutions w(¢) to Equation (4.0.1)

In the work of Benjamin et al. [5], it was shown that Equation (4.0.1) has solitary-wave
solutions w(¢) which are odd functions on R and non-negative for ¢ > 0. Moreover,
because |w(¢)| is bounded by the Lp-function |k * (1/¢)[, w(¢) < m/3 for any ¢ > 0
and lim w(¢) = 0. Here, we intend to show in Theorem 4.2.2 that a solution w of

| —ro
Equation (4.0.1) is necessarily an element of L; N Lo, as long as w is an odd function and
0 < w < 7/2 on the interval (0,00). We will then be able to conclude that w satisfies the
conditions imposed on the solutions in Theorem 4.1.4.

We begin by exposing a few basic properties of the kernel k.

LEMMA 4.2.1. — The function k(¢) = 4/ 2 In { coth ™9 has the following properties:
T 4
. .‘ng-l 7"1‘.’"'

22 XK e
1. k() = - z_:o T for any |¢p| > 0 and

2. k(¢)ef!? € Li(R) N Ly(R) for any 6 with 0 < 6 < g

Proof. — The Taylor series expansion

1+ 0 gpntl
1 S -
n(l—m) Z‘zn+1

n=0

is valid for any z € (—=1,1). Take z = e~"1#/2 to obtain the first property. The second
property is a direct consequence of the first. (|

TueoreM 4.2.2. — Suppose that the measurable function w(¢) is a solution of
Equation (4.0.1) and that it satisfies the conditions:

w(p) = —w(—¢) for almost every $ €R and 0 < w(P) < for almost every ¢ > 0.

|3

Then sinw(¢), w(¢) and Fyw(¢) € L1 N Ly.
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Proof. — Assume that sinw(¢) ¢ L;. Then for any fixed number e satisfying
0 < € < 1/2v¢, there exists an A > 0 such that

B 1
(4.2.1) /(; sinw(r)dr > 30

for any M > A, where & = [° k(t)dt + 1/2.
Since k(¢) is even, Equation (4.0.1) can be expressed as

1 o= ysinw(p — t)
= k d
R / ¢ + 3y [ sinw(r)dr '
/ K(t ysinw(¢ + t)
\/ om 1 + 3y f0¢+t sinw(7)dr

dt=1+1I,

say. Consider the integral

" ey —d ' e *ysmw((,b-i- He~
[Te™""d¢ = k t)dt/ —do,
/i = \/;?r 0 ( Ja 1+ *‘”o “sinw(r)dr 2

where § is any constant in the range 0 < § < T 5 for which [° k(t) cosh(6t) dt < & It
follows from (4.2.1) and the hypotheses on w that

(4.2.2) / ITe %*dg < ey / k(t)dt / w(¢ + t)e *?dg
A 0 J A )
= efy/ k(t)dt/ w(T)e 8t gr
0 J A+t
< e*y/ k(t)eétdt/ w(T)e " dr.
0 A

Now consider the integral

co 00 =] 0 - —b6¢
/ Tettdg = 1 / k(t)dt / "’Sln“ff_“bt A
A V2 Jo A 143y [, sinw(r)dr

Let n = ¢ — t and use (4.2.1) to obtain

(4.2.3) /ooje—5¢d¢ - / k(t)e —6tdt/ vsinw(n)e=®"
& ' A-

¢ 14+ 3y I” sin w(r)dr

S =6n
27r / (e ( a-t) 143y [, s1nw(7')d7' g

<ey / k(t)e*4at / wlmedn + [ th(t)as
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It follows from (4.0.1), (4.2.2), (4.2.3) and the inequality f0°° k(t)cosh(6t) dt < ¢ that

0o - B [ ) oo 7
/A w(d)e d¢—/A Ie d(b-l-/A IIe™%d¢
2 k h 6td —4¢q k(t)d
< e’y/o (t) cosh 6t t/A w(d)e qb-l—’y/o tk(t)dt
< 2evC w(p)e %d k(t)d
<27/A (#) ¢>+7/0 th(t)dt,

whence
—Sbgp < — 1 .
/A w(@ed < T /0 th(t)dt

Applying Fatou’s lemma yields

| wtos = [ timint wgedg

A

<timinf [ w(g)e®? <-_l_/"” ’ .
= 11611_}31[4 w(p)e d¢_1—2e'yé ; tk(t)dt < oo

The hypotheses on w and the above inequality imply w € Li(R).

However, since [sinw| < |w|, it follows that sinw € L;(R), a contradiction. Hence the
assumption is false and sinw € Li(R).

Because both k(¢) and sinw(¢) belong to Ly, Young’s inequality implies:
lwlly < Ik * Fywlly < 7llk [ sinwllls < vllkfl: |l sinwls.

This means that w € Li(R). Because w satisfies the convolution equation (4.0.1), it is
plainly continuous. Consequently, both sin w and w belong to Ly(R). Using the inequality
| w(e)| < |ysinw(e)| then yields Fow € LinN Ls. O

A consequence of Theorem 4.2.2 is that w, sinw and Fyw are all H > _functions, as was
pointed out in the work of Amick and Toland [3], and Benjamin et al. [5]. Appropriate
estimation of norms of sinw and Fyw will allow us to conclude the three functions w, sin w
and F,w have analytic extensions to a strip in the complex plane. Since the verification
of the relevant estimates closely follows the style of the proof of Theorem 4.1.4, it will
only be outlined.

THEOREM 4.2.3. — Suppose that w is a solution of Equation (4.0.1) satisfying the conditions

in Theorem 4.2.2. Then w, sinw and F,w all lie in H®(R). Furthermore, there exists a
constant o > 0, such that all three functions have analytic extensions to the strip

S,={w=¢+ipeC: |¢Y| <o}
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Proof. — Using the fact that the Fourier transform k of k in Equation (4.0.1) satisfies the
inequality |¢k(¢)| = |tanh ¢ | < 1, one obtains formally the estimate

(v, )] = / Z B(&) (Fyw)m) (€)ig F(€)de < / Z ||| (Frwym )| e

< ALl ()l = (| £[l2ll(Fyw)™ |,

for any f € Cg° and any integer m > 1. This implies immediately that
a2 ol < e
2 2

for all m > 1. Note also that formally,

(4.2.5) (sinw)™ :% = w™ cosw + (w')™sin (w + n71r)
+§ Eiill(u).‘.t:!jr— %TT_)Z(”-“)(‘E n,J31>g;(" 3 (=i2) . L em1)
and
(4.2.6) (Fo)™ = y(sinw)™ — 3 Z_?:l (7:) (sinw) 0= (Fw)(r—9)
2. 3 _

14 3y [1;“ sin w(t)dt

for any integer » > 1. Since it is known from Theorem 4.2.2 that F,w € Ly, it follows
from (4.2.4) that w € H*. It then follows from (4.2.5) that sinw € H, and afterward
from (4.2.6) that F,w € H'. Continuing this argument inductively leads to the conclusion
that w, sinw and F,w all lie in H*,

Define the two positive quantities:

)| 2 . n) (| ToFT
ar = max{(sinw)™ T, | (Fw)PF, (sinw)® |5,

and
1
o = max{as, 3+ 0+ (Bl — 1),2(7 + [Fyl), et .

Then the inequalities

[|(sinw)™ ||, < a?n—1pn-1,
(4.2.7) H(F}.w)("J”z < a,z"n"_l,

H(Sil’l w)(.;.,.}”w S a2n+1nn—1,
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hold for n = 1,2. Arguing by induction in a way similar to that used in evaluating
I(G(£))™)||2 in the proof of Theorem 4.1.4, and making use of the relation

(4.2.8) wi™ =k (Fyw)™

for m > 0 together with (4.2.4), Lemma 4.1.2 and the expressions (4.2.5) and (4.2.6) for
(sinw)™ and (F,w)™, respectively, one determines that (4.2.7) holds for all integers
n > 1.

The inequalities in (4.2.7) together with (4.2.8) show that the functions w, sinw and
F,w all have Taylor series expansions about any point ¢ € R with radius of convergence
not less than 1/a’e. This implies the desired conclusion. O

An immediate consequence of Theorem 4.2.3 is the exponential decay property of the
Fourier transforms of the functions w, sinw and Flw.

COROLLARY 4.2.4. — The Fourier transforms @, Fya'; and sinw of w, Fyw and sinw
satisfy the inequalities

/ l@())?e?H8dt < oo,

—o0

o 2
/ ‘Fww(t)’ Mt dt < oo,

/00 isﬁl\w(t)

— o

2
e dt < oo,

respectively, for any p with 0 < p < e

Proof. — This follows from the Paley-Wiener theory as in the proof of Corollary 4.1.5. [J

Thus far, we have discussed analyticity of the solution w(¢) to Equation (4.0.1). Notice
that w(¢) is actually the boundary value of the harmonic function w(¢,) at the top of
the region {(¢,%) : —0co < ¢ < 00,0 < ¢ < 1} of its definition. The value —w(¢,?)
represents the angle between the streamline indexed by the value ¢ and the positive
real axis at the correspondingly transformed point (¢,) in the flow region. In addition,
w(¢,¢) can be expressed as the integral

(42.9) o) = = [ ke -t )Pt

where .
K1) = 1 I t'.ush%"—‘l + sin % 7
\ 27 t‘.l)Hllﬂ._?"- — sin %

whose Fourier symbol is k(£, 1)) = 220 Thys it is natural to speculate that w(¢,v
£ coshé p

possesses analyticity properties similar to those of its boundary value w(#). As a matter of
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fact, one conclusion that can be easily drawn by applying the argument in Theorem 4.2.3
to w(¢,p) is that it has a continuous extension to the infinite rectangular cylinder

{(w1,9) 1 —00 < Rwy < o0, [Swy| <o, 0< 9 <1}

in such a way that the extension is a holomorphic function with respect to w; and it is
a C°°-function with respect to both w; and 1. In the next section, it will be shown that
w(¢, 1)) and its complex conjugate can in fact be extended to functions holomorphic with
respect to two complex variables.

4.3. Analytic extension of the function w(¢,))

To show analyticity of w(¢, %) and its complex conjugate In q(¢,) in the next theorem,
advantage is taken of both analyticity and the exponential decay property of the function
Fyw(¢) which is the derivative with respect to ¢ of the boundary value at 9 = 1 of the
function In g(¢, 9), where q(¢,) is the speed of the flow normalized so that q(d, ) — 1
as |¢| — oo (see [5]).

THEOREM 4.3.1. — Suppose that w(¢) is a solution of Equation (4.0.1), satisfying the
conditions in Theorem 4.2.2. Then the corresponding harmonic function w($, ) has an
extension as a holomorphic function w(wy,w,) defined on the open set

D, = {(wi,ws) : [Swi|+ |Rwg| < 1+ p},

in C?, where the constant p is defined by

o 2
(4.3.1) p = max {0‘ > 0;/ 1F,Yw(§) el de < oo}.

Proof. — For any constant v with 0 < v < p, let D, = {(w1,w2) € C? : [Swy |+ |Rws| <
1 4+ v}. We shall show that the integral

(43.2) ol w) = —= [ ke wa) (e

defines a holomorphic function on the open set D,. For any point (wy,w,) =
(¢ + 41,9 + in) € D,, the following estimate is valid:

(4.3.3) (€, wa) Eyw(&)el]
_|eosyé sinhyp + isingé coshpé —— €]
- ¢ cosh il
< 3e(I1=1+imDie]

3

F’yw(g) | — 3e(|§w1|—1+|§73102|)|5|

Fr(e) ‘

Because F/LYZ) is an analytic function by Corollary 3.2.5 and Fﬁ(o) = 0, there is an
M > 0, such that

Fu®)| o

(4.3.4)
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for €] < 1. It follows from (4.3.1), (4.3.3), (4.3.4) and the definition of D, that

& 1
/ (€, wa) Fyw(E)|eIdg < 2M / oIl ge+
=il

—00

+3/ | Fom()]e1-1+rDIel gg
j61>1

1
< 2M/ e<1+">'f'd5+3/ |Fw(€)|e’¥ld¢ < oo.
-1 €]1>1

Therefore, w(wy,w;) is a well defined and bounded function on D,. For any point
(w1, ws) € D,, there is a § > 0 such that if |Aw,| < 6, then |Rwa |+ |RAwe |+ |Sw | -1 <
|Rws| + 6 + |Swy| — 1 < v. For such a § and such values of Awy, the inequality

]Aﬂ(f, wa + Awsy) — k(fa ws)
A’U}z

1 oy : _ :
/ cosh (wa + OAWQ){LM‘ < e(IRual+RAw[~Die]
0 cosh § :

(4.3.5)

L ok
/0 a—wz(é',’UJQ + 0AU)2)d9

implies that

(4.3.6) Fra)e ¢

fC(f, wy + Awsg) — l%(f,wz)
A’LUZ

< e(lﬁw2|+5+|9m|—1)|€||ﬁ7\w(§)|_

Because v < p, it follows from (4.3.1) that the right-hand side of (4.3.6) is integrable over
R with respect to £. An application of the Dominated-Convergence Theorem then yields

% J(&, wa+ Aws) — k(€ )

. — —swn€
AB;’I}—)O — 00 A'HJE wa(g)e dé.
* 8];; FA —iw
= /;00 5;2—(5, ’U)2)nyw(€)e lfdg.

The last computation shows simultaneously that w(ws,ws) is complex differentiable

with respect to w- and that its partial derivative 2w ¢ pounded on D,. Similarly, usin
P p Fep y g

a
the estimate
- :'u-.{(f,—r'ﬂ.u'.!: —1 ) ‘

(4.3.7) }5’5(& ws) P (€) - iAW, €

< 26<|Sw1|+|A9w1|+mwz|—1>|s|‘m@)‘

and the Dominated-Convergence Theorem again shows that w(wq,wz) is also complex
differentiable with respect to w; with .—(,;97“’1 bounded on D,,.
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Thus, w(wy, ws) is an analytic function on D,. Because D, is the union of such open sets
D,, it follows that w(w:,w,) is a holomorphic function of w; and wy on D,. Moreover,
(4.2.9) and (4.3.2) show that w(w1,ws) is an extension of w(¢, ). a

Now consider the complex conjugate In q(¢, ) of w(¢, 1)), expressed in the form of
the inverse Fourier transform

)  cosh e — .
(439 () = 2= [ L ge s

That In g is indeed the conjugate of w follows upon checking that the right-hand side of
(4.3.8), call it g, and w(¢, 1)) satisfy the Cauchy-Riemann equations:

dg  Ow dg 0w

o oy’ 9
This means that g(¢, ) = In q(¢, 1)) + const. Since |4>1|im Ing(¢, ) = l¢l|im g(g, ) =0,
9(¢, %) = Inq(¢,9).

Like w(é,), Ing(¢,4) also has an analytic extension to a holomorphic function,
denoted by In g(wy, ws), of two complex variables in D,, a fact which may be proved by
an argument similar to that used in the proof of Theorem 4.3.1.

Tueorem 4.3.2. — Suppose that w(@) is a solution of Equation (4.0.1), satisfying the
conditions in Theorem 4.2.2. Then, the complex conjugate In q(p, %) of the harmonic
Junction w(¢, 1) can be extended as a holomorphic function expressed by the integral

i ™ coshwyé =— p
[ — =2 'Lwlﬁd
\/?/m fooshg T8l

(4.3.9) In g(wy, we) =

defined on the open set D,

Remarks. — It is worth noting that the two holomorphic functions w(wy,wz) and
In g(w1,ws) preserve complex versions of the Cauchy-Riemann equations, viz.

Olng  Ow coshwy & —

1 * .
- —twi§
Oown dws 21 [m cosh € (e dc,

Olng  Ow 4 /°°
dwy  Owi 21 J_o cosh€

In addition, by studying the integrals in (4.3.2) and (4.3.8), one may also obtain
exponential decay properties of the two harmonic functions w(g, %) and In g(¢, ). Take
the function w(¢, ) for example. For any ¢ € [0, 1], it follows from Corollary 3.2.5 that

—

ﬂ—;ﬂ“gﬁ‘.?w(ﬁ) is a holomorphic function of ¢ defined on the strip {£ € C : IS€| < m}, and

(4.3.10)
sinh wy€ —

Fw(€)e ™1éde,

2

e sinh (& +ip)  — .
: —F d¢ < o0,
o /_oo|(e+-f:n)m-mh(£+m) 7l )| df < o0
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for any po with O < pg < 1. The Paley-Wiener theorem implies that

/wwwwwwww<m

for any o with 0 < o < 71. In consequence, the convolution equation (4.2.9) implies
w(p,)e’!?l € Lo, for any fixed ¢ € [-1,1].

Recall that if w = f(z) is the conformal mapping of the fluid region Q to the strip
D = {(¢,¢) : —00 < ¢ < 00,0 < ¢ < 1}, then

(4.3.11) dz _ Pl _cosw iSinw
. dw Cq(¢7¢) cq cq

oz Qy Oy Oz

g ——

o6 V1o oy 'ou

Therefore, an analytic extension of the inverse function z = f~'(w) of w = f () can
be inferred from that of w and Ing.

THEOREM 4.3.3. — The function z = (¢, ) + (¢, ) defined on D can be extended to
a holomorphic function of two complex variables in the open set D,,.

Proof. — Let g1(w1,ws) = "“f‘("IE'J”T“)l and gg(wy,we) = %‘%J where g(wy,ws)
is defined as q(wy,wp) = ew1wa) Since S8 = _siwy,, — Laeq,  and 78 =
c"csq“’ Way, — Si‘;;" Qw, > it follows from the definition of ¢ and (4.3.10) that

Qw, = AN Q)w, = —qWwy, and gy, = (N Quw, = qWu,

Lodgy . sinw cosw _ us . - - .
and thus, 5+ = iy F o = B, Because D, is a simply-connected domain,

it is adduced from Cauchy’s theorem [18] that there is a holomorphic function X (w;,ws),

uniquely determined up to an additive constant and defined on D, such that g—i = ¢, and
ax

S = 92 Similarly, the relation :;%‘ = % which is also verified by using (4.3.10),
implies the existence (see [18] again) of a holomorphic function Y (wy, w2), unique up to
some additive constant, defined on D, and such that % = —go and :ﬂu = g;. Because of
(4.3.11), we see that g; and go are analytic extensions of the partial derivatives of (¢, %)
and y(, ). It follows that X (w;,w;) and Y (wy,ws) can be chosen in such a way that

they are analytic extensions of x and y. O

To obtain an analytic extension of the conformal mapping w = f(z), we shall apply the
Open-Mapping Theorem. The use of the open-mapping result requires some estimates for
related functions. The next theorem deals with this issue.

THEOREM 4.3.4. — Provided that o = max lw($)| < m/2, there exists a constant p > 0

HE

for which the functions

1

sw(wy,wa)
b 1
cos w(wy, wa)

tan w(wy, ws), e
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the first-order derivatives of w and the second-order derivatives of the functions X and Y
are all bounded holomorphic functions on the open set:

Sp = {(wr,w) € C: [Swi| < g, [Swa| < p, [Rws| < 1 + u}.

Proof. — Tt follows from the proof of Theorem 4.3.1 that w, Inq and their partial
derivatives are all bounded holomorphic functions on the set D, — {(wy,ws) € C? :
[Swi| + |[Rws| < 1+ v} for any v with 0 < v < p. Then the functions ewlwiwa) g
and the second-order derivatives of X and Y, expressed in terms of sinw, cosw, q and
first order derivatives of w, are also bounded functions on D,. Fix a v € (0,p), and let
M be a simultaneous upper bound for all of these functions on D,. To finish the proof,
we show that there is a p with 0 < p < /2 such that | cosw(wi,ws)| has a positive
lower bound on §,.

Let € be a positive number such that when |z| < ¢, | sin z|+2|sin’ /2| < (1 —sina)/2,
where a < £ by hypothesis. It follows from the definition of M that the inequality

(4.3.12) |Aw| = |w(wy, wy) — w(g,¥)| < Mlwy — ¢| + Mlwy — 9| < €

is valid if ¢ = Rwy, [Swi| < min{v/2,e/2M}, [R(w, — $)| < min{v/2,e/4M} and
|Swa| < ¢/4M, where 4 € [~1,1] and Aw = w(wi,ws) — w(¢, ). Having so chosen
€, one then infers the existence of a positive constant # < v/2 such that (4.3.12) holds
for any (wy,w,) € S, by choosing ¢ = Rw, and ¢ € [~1,1] satisfying the identity
[Rws — 1| = nei[ng . |Rwg — 7). Then it transpires that:

(4.3.13) [sinw(wy, ws) — sinw(e, )| = |sin Aw cosw(¢, 1) + (cos Aw — 1)sinw(¢, )|
< |sin Aw| + 2|sin? %l < (1 -sina)/2.

Because w(¢, 1) is a harmonic function on the closure Dy of the domain
Dy ={(#,%) : —c0o < ¢ < 00,-1 < ¢ < 1}

and since o = max lw(p)| = max lw(¢,~1)[ and lim w(e,h) = 0 for any ¢ € [-1,1],
dig el

|| —c0
it follows from the Maximum Principle that the inequality |w(¢, )| < o holds on Dj.
This result and (4.3.13) lead to the inequality |sinw(wy,ws)] < (1 + sine)/2 for any
(w1, w2) € Sy. Then |cos® w(wy, ws)| > 1 — |sin? w(wy,we)| > 1 — (1+sina)?/4 >0
holds for any (uy,w,) & 8, O
With the above preparation, we begin investigating the analylicity of the velocity potential

) . : A X
and-the stream function by studying the holomorphic mapping (5, | : D, — C2. Because
the Jacobian of the mapping y )1

le sz
Yo, Yu

o ouf

_sine cosw

e |

det = det

CRE W R w 1
2
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on D, is a locally homeomorphic mapping, and therefore it maps D, to an open

X
¥
subset of C2. Our results in the next subsection will follow from this property and the fact

that (‘;f )

4.4. The velocity potential ¢ and the stream function

is a conformal mapping of D; onto the closed set

Dy

Q= {(2,y): —c0o <z < 00,—H(z) <y < H(z)}.

As mentioned already, Benjamin et al. [5] proved the existence of a solitary-wave
solution w of (4.0.1) such that:

(4.41) w(p) = —w(—¢) for any R, and 0 < w(g) < @/3 forany ¢ € [0, c0).
Using these properties, we shall prove that the corresponding holomorphic mapping
(Y - is a homeomorphism of D; onto €.

THEOREM 4.4.1. — Let w be a solution of (4.0.1) satisfying the conditions of (4.4.1). Then
the holomorphic mapping ‘;( corresponding to w is a homeomorphism of D1 onto Q.

Proof. — It follows from Theorem 4.3.1, Theorem 4.3.2 and the maximum principle that
w and Ing can be extended to harmonic functions which are complex conjugate to each
other on D; with the symmetry properties

In Q(¢a 1/)) =ln q(_¢a 1/’)» In Q(QS,TIJ) =In q(¢7 _’(/))a
W(¢,¢) - _w(—¢a¢)7 W(‘ﬁﬂ/’) = —W(¢, _’l)b)a

for any (¢,%) € D; and, moreover, mMaX 4By lw(, )| < 3

(4.4.2)

Choose any constant N > 0, construct the closed path l in Dy as

[={lg| <N, p=1}U{p=-N,[¥| <1U{l¢| < N,9=-1JU{¢ =N,y <1}

and let D, be the interior of . Fix a point of the form (—N, 1)) € I. Then for any point
(N,4) € I, consider

N cosw(s) " v ginw(—N, ¢
(AX) = (X(N, $) — X(—N, ¢0)> _ (o syt ds + I, A dt
AY Y(N,9) = Y (=N, %) Joo A '

cg(—N,1)
If o # o, AY # 0 since cosw(¢, ) > 0 on Dy If o) = 9o, AX # 0, for the same reason.

In a similar way, one may show by using (4.4.2) that ; is an one-to-one mapping

(
of [ onto a closed path T. Then it is a conformal mapping of D; onto the interior of I.

Since N is arbitrary, this leads to the desired conclusion. O
In Theorem 4.4.2, use will be made of the norm |Z] = /|z1|* + |22]* for any
7 = (z1,22) € C? Denote the ball of radius r with the center (z10,220) by
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422 J. L. BONA AND Y. A, LI
B((#10,220),7) = {(21,22) : |(21,22) — (210,220)] < r}. The technique of the next
proof is adapted from that appearing in Theorem 10.30 of Rudin’s text [21].

THeoREM 4.4.2. — Let w be a solitary-wave solution of (4.0.1) satisfying the conditions
of (4.4.1). Then the corresponding velocity potential ¢ and the stream Sunction 1 defined
on § both have analytic extensions as holomorphic functions on the open set

Qo = {(21,22) € C*: —c0 <z =Ry < 00, |$21| < @, |R2s| < H(z) + a, |S2| < a}

for some constant a > 0.

Proof. — Using the fact verified in Theorem 4.3.4 that the second-order derivatives of
X and Y are bounded on Sy, it is seen that corresponding to € = 1 /2c, there is a § with
0 < & < p such that for any (¢,%) € Dy, if (wy,ws), (wig, wao) € B((#,%),6), then

(4.4.3) }(X(wh’wz) —X(’wlo,wzo)) =5/ s (w1 —w10>{ < l (Zl:wlo)',
2 — Wao

Y (w1, w2) — Y (w10, wa) We — Wy /|~ 2¢

where

J Xy, X,
(¢,9) — le sz " ¢)-

c is the steady speed of the flow at infinity and § is independent of the choice of

(¢,9) € D;. Since
T (wl — Wi \| _ 1 w1 —w10> > l (wl —w10>
(@%) Wa — Wag cqlepynp) [ \wa — wag c|\wz2 —wy /|’

it follows from (4.4.3) and the Schwarz inequality that

(4.4.4) '(X(wl’“@) - X(wlo,w20)>'

Y(wl,wz) - Y(wm,wzo)
W1 — Wio _ i
Wg — Wag 2c

W1 — Wio w1 — Wyo
Wo — Wag Wy — Wyo

Thus by the Open-Mapping Theorem (cf. [18]), )t ) is a one-to-one mapping of the ball

1
B E
c

1
2¢

B((¢,4),6) onto an open set V, whose inverse is also a holomorphic mapping denoted
D>

by (i) Let z = X(¢,4), and y = Y (¢, 4). We shall show that there is an @ > 0
independent of (¢,4) for which B((z,y),a) C V.

Let (b1,b2) € B((,%),6) be any point such that |(b1,bs) — (¢,%)| < 6/2. Then
B((b1,b2),8/2) C B((#,4),6) and for any (w1, ws) € OB((b1,bs),6/2), it follows from
(4.4.4) that

(4.4.5) '(ggxzzg :})f ((2’11 1?22)) )l > §/4c.

TOME 76 — 1997 — N° 5



DECAY AND ANALYTICITY OF SOLITARY WAVES 423

Let (A1, \2) € B({(X(b1,b2),Y (b1,b2)),6/8¢c). Then (4.4.5) and the choice of (A3 2)
yield the estimate

LS

min
(w1,w2)E€BB((b1,b2),6/2) Y (w1, w2) —As )|~ 8¢

X (by,b2) — A1

Y(b17 b2) - /\2

- i . X—-M

The last two facts and the Minimum-Value Principle imply that the mapping v )
— Az

has a zero in the ball B((by,b2),6/2), which is to say (A1, A2) € V. Since (Ag, M) is
an arbitrary point in the ball B((X(b1,b2),Y (b1,b2)),6/8¢c), it follows immediately that
B((X (b1, b2),Y (b1,b2)),6/8¢c) C V. Thus it is concluded that B((z,y),6/8c) C V.
Hence, for any point (7, %), the velocity potential ¢ and the stream function 1 both have
analytic extensions to holomorphic functions ® and ¥ defined on the ball B((z, ), 6/8c).
It follows from uniqueness of analytic extensions that ¢ and ¢ can be extended as
analytic functions to the set |J B((z,y),0/8c). Therefore, if the constant a is
z,y)ED;
chosen as a = §/16¢, say, then(Qo) c U B((z,vy),6/8c), which leads to the desired

_ (z,y)€D1
conclusion. O

On the other hand,

6
&’

Remark. — The analytic extensions ®, ¥ of ¢ and 4 also satisfy the Cauchy-Riemann
equations, a fact which may be verified as follows. At any point (210, 220) € o, it follows
from Theorem 4.4.2 that there is a neighbourhood V' of (210, 220) and a neighbourhood

U of (w0, wz0) = (®(210, 220), ¥ (210, 220)) such that <(I> is a conformal mapping of

Y
V onto U. Differentiating the equations

21 = X (wy,w2),

Z9g = Y(wl, ’11)2)

with respect to z; and z, respectively, on V, where wy = ®(21,22) and wy = ¥(21, 22),

leads to the relations

Xy X, o, \ (1 Xuw, Xu, d.,\ (0}

},fm 1 Yw; \IIZ]_ N 0 ' le Y’U_)2 \I]zz - 1 .
Solving these equations shows that ®,, = ¢?¢*Y,,, ©,, = —2¢*Xy,, U, = —c*¢*Y,,
and ¥,, = c%¢?X,,,. The result now follows since X and Y satisfy the Cauchy-Riemann
equations (see Theorem 4.3.3).

An immediate consequence of the last Remark is that the mapping f = o+ i

can be extended to a holomorphic function of one complex variable on the domain

Q. = {(z,9) : —00 < z < 00,—a — H(z) <y < H(z) + a} in the complex plane.
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424 J. L. BONA AND Y. A, LI

COROLLARY 4.4.3. — Under the conditions of Theorem 4.4.2, the conformal mapping
w = f(z) = ¢(z) + W)(2) defined for z in the flow domain ! has an analytic extension to
the open set U, = {z =z +iy: -0 <z < o0,~a — H(z) <y < H(z)+ a}.

Proof. — The restriction F(z,y) of the holomorphic function F' (21,22) = ®(21,20) +
i¥(21,22) to the open set , has its real part ®(x,y) and its imaginary part ¥(z,y)
satisfying Cauchy-Riemann equations as verified in the preceding Remark. It follows that
the restriction of F'(z1,2;) to §,, as an extension of f(z), is an analytic function of
z=x 4ty on Q,. O

The last part of this section is focussed on analytic extensions of the functions which
are determined by the streamlines in the domain D;.

THEOREM 4.4.4. — For any number X € [-1,1], there exists a constant p > 0 such that
the streamline V(x,y) = X for (z,y) € Dy defines a function y = Hy(x) which has an
analytic extension to the strip {z € C : |Sz| < p}. In particular, when X = 1, this extension
is that previously obtained for the solitary-wave profile H = H;.

Proof. — Tt follows from Theorem 4.4.1 and Theorem 4.4.2 that the holomorphic
mapping i/( is a homeomorphism of the line {-co < ¢ < oo, 1 = A} onto

the streamline 4 (z,y) = ), and at each point (x,v) on the stream line, 1 has an
analytic extension as a holomorphic function WU(z1,22) of two complex variables in a
neighbourhood of (zg, o). Since 1, = ¢, = cqcosw # 0 on the domain Dy, applying the
Implicit-Function Theorem leads to the conclusion that there is a neighbourhood V;, C C
of zo on which there is a unique holomorphic function H A(z) satisfying the equation
U (%, Hx(2)) = X and the condition H) (o) = yo. Here, we want to show that there is a
constant p > 0 independent of the choice of (z,%,) on the streamline, such that the disk
D(zo,p) = {#z € C: |z — | < p} C V;. This fact implies the stated conclusion.

The latter point may be proved by using Theorem 4.3.4 and Theorem 4.4.2. Notice that
at each point (zg,yo) on the stream line, H, (%) satisfies the equation

Hy(z)=yo + /z tanﬂ((I)(t,H,\(t)),\I/(t,HA(t)))dt

Lo

on Vp, where § = —w. When using a fixed-point theorem to show existence and uniqueness
of the solution ), in a disk D(z, p) about g, if the radius p depends only on bounds
for the function tanf(®,¥), the first order partial derivatives of tan g(P,¥) and the
neighbourhood of (i, yo) where the analytic extensions ® and ¥ of ¢ and 1 are defined,
then the desired result follows. It was proved in Theorem 4.4.2 that ® and ¥ are defined in
a neighbourhood of (z, o) that contains the ball B((z, Y0),6/8¢) with § independent of

$ maps B((zo, o), 6/8c) into the ball B((¢y, A), §)

contained in S,, where the functions mentioned above are all bounded as proved in
Theorem 4.3.4. Therefore, the choice of p can also be made independently of (z,y,) and
the theorem is established. O

the choice of (zg,yq) € D;, and
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DECAY AND ANALYTICITY OF SOLITARY WAVES 425
5. Conclusion

Two aspects of solitary-wave solutions of nonlinear evolution equations have been
considered here, namely the way they decay to a quiescent state away from their crest and
their regularity. These properties have been studied by viewing the relevant solitary wave
as a solution of a nonlinear convolution equation.

The regularity results show that solitary-wave solutions of nonlinear evolution equations
are generally real-analytic functions that are the restriction to the real axis of functions
holomorphic in a strip in the complex plane centered about the real axis. The theory
obtained here broadens considerably the range of convolution equations for which this
conclusion is valid. One consequence is that the dependent variables corresponding to
solitary-wave solutions of the two-dimensional Euler equations for gravity waves in a
channel are shown to be the restriction of analytic functions.

The decay of solitary-wave solutions is seen to depend very strongly on the dispersion
relation appearing in the particular evolution equation. Our theory for this aspect appears
to be sharp in its application, at least in some cases. Again, in addition to model equations,
the two-dimensional Euler equations for surface water waves fall within the purview of
our general results.

Because the solitary-solutions of the Euler equations are the restriction of analytic
functions, it might be hoped that the same qualitative feature will be inherited by their
good approximations, which is to say solitary-wave solutions of approximate evolution
equations. Indeed, model equations like the KdV-equation are derived from the Euler
equations by making a formal Taylor expansion of the solution with regard to certain
naturally arising small parameters (cf. [23]). The coefficients of this expansion are functions
of the physical variables, and since their sum is an analytic function of these variables, it
would be surprising if the individual coefficients were not likewise analytic. Our theory
shows that for solitary-wave solutions, at least the lowest-order coefficients do indeed
possess this property. It would be interesting to extend the work of Friedrichs and Hyers
[8] showing that Euler-equation solitary waves are, for Froude numbers close to one, well
approximated by the KdV-equation solitary waves. We have in mind a result showing
that these two solitary-wave solutions, when viewed as analytic functions on a strip in
C, become close as F' nears 1.

Appendix

Derivatives of composite functions

Proof of Lemma 4.1.1. — Induction will be used to verify the following identity, which
is valid for any integer n > 2:

d" f(g(x) _

di

(A1) y™ f'(y)

=~ [ (y) o) n (n—31),,(j1—d2) (Jo1)
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426 J. L. BONA AND Y. A. LI

where y = g(z), y® = g®(z) and

n-—1 J1—1 Ja—3—1js_2—1

e 00 22, B pat Y

J1=9—1j3=9—2 Js—2=2j,_1=1

When n = 2,3, the right-hand sides of (A1) are

v ') + @) " (v)
and

2
fl/ y 3 — ,
v )+ LS () gy 4y pery)
2 oV
=y f (W) + &) FO () + 39"y 1" (),

respectively. Thus (A1) holds for n = 2,3 by inspection. Suppose that there is an integer

n = 3 such that Equality (A1) holds. Taking the derivative with respect to x of both sides
of Equality (A1), we have:

d" L f g
(az) 4 JU) =y (y) + y ™y’ £ (y)

dantl

n f““’(;y (s,m) n y i |
+Z—-‘F_)ylz i y( Jl)y(]l 72) ...y(.’ls—1)

§=2 1Js-1

— [ (y) o) n (n=31)g (G132} . .. Gia-1))’
+z—; sl Z j17"'7js—1 (y ) yjl J y] )

To simplify the right-hand side of (A2), first consider the following expression for an s
with 2 < s < 7,

(s,n) n S s . i . .
(A3) e (i. = 1>y< M yli1=32) . (ylisma=ie-1)y Ge-1)y

Ja—g—1js2—1 . .
S IRED VD Ol IR e

Ji=s—1 Ja—2=2 js_1=1
, (]a—Z ]a—l)y(Js—1+1)

Ji—a—14,2-1

w Z s Z (Jl 9 l>y<n—jl)y<j1—jz),.,

ji=s—1 Jn—2=2j._
.. y(js—2+1—ja—l)y(js—l)

B E BB (e

J1=s—-1 Jo~2=27.
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. y(js—2+1_js—1)y(js—l)

n—1 Js—3—1js—2—1 3 .
n 1 Js—2 ), (n—71),,(j1—32)
Z Z Z (]1) (Jz) (Js—l)y Y

ji=s—1 Js—2=273s-1=1

n—1 Js—3_1 js—2 . 0
-3 o Z Z 7}) J,l)...(ﬂs—_ﬁl i)y i) .
. n J2 Js—1

. (]s-—2+1 Js—l) (Js—1)+

- =1 Ja—a—1 ,
-2 Z Z Z < )( )...<2s—3)y(n—jl>y(j1—jz>,,,
- .71 Js—2
j1=9—1 ja=s—-2 o=
) y(]s—B Js—Q)y(J.s—Q)y .

When s = 2, formula (A3) yields
= /n N " (n+1 NG

(A4) Z (j ) (y(n—J)y(J)> = z ( ; )y(n+1—a)y(y) — 24/ y™.
j=1 j=1

Therefore, the following identity holds for [ = s — 2:

Jia-1 G-l Js—2—1 n _
(A5) Z A S e O (jl,-'-,js_l)y(n_h)”'

Ji=s—1 fr=s—1jiy1=s—1-1 Js—1=1

y(jt-l—jl) (y(jl—jl+1) e y(js—z—js—l)y(js—1)>/

ji=s—1 fi=8—1jiy1=s—1-1 Ja—i1=1

(jl-l) (13 () (g
Ji Jir1 Jise Jo—1

y(jl—l—‘jt) (Ji+1—di41) (jl+1—jl+2) o5 y(js—1)+

—(s-10) Z [il ﬂi “'jsil(jl-"ﬁjsﬂ).

j1=s—1 ji=s—=ljip1=9—1-2 Js—2=1
y(n—jl)y(jl—jz) R y(js—s—js—z)y(j..—ﬂy/‘

Suppose that there is an integer [ with 1 < 1 < s — 2 such that (A5) holds. Then use
(AS) to simplify the following expression:

n—1 Ji—2—1 js—2—1 -
) ) ) (n—j1),,(d1—32) ...
S e B (g

J1=s—1 Ji—1=s—1+1 Js—1=1

JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES



428 J. L. BONA AND Y. A. LI

. (y(jz—l—jt) (Gi—=d141) , |, y(j5—2—js—1) (js—l))l

| Jr-1—1 Ja

(n—j1),Gr=32) , ..
Z Z Z (Jla ,le 7js—l)y hyj i

Ji=s—1 Ji=a—1 Ja
,y(Jl—1+1—Jl) (Je .7!+1) y(Ja—Z Js—l)y(j.s—l)

—1 Ji—z- dt=1 qi—1 Ja=ar1 n )
+ E TN E E E e E i e
) ) . Wi
J1=s8—1 Ji—1=s—14+1 fi=a—I+1 J[+1 s—l—1 Ja—1 =i

_ ( Ji-1 ) ( i ) (jl+1) <j8—2>y(n—jl)'. .
Ji—=1) \Jir1 ) \Jis2 Js—1

- y(jt—1+1—jt)y(jt—jz+1) by ,y(js—Z_js—l)y(js—1)+

=1 Ji—1-=1 Ji=1 Jamn—1

-0 2 B % ()
ji=s—1 Gi=a—l i =n—1—2 Gl J1, yJs—2
y(" 1) (Jl —j2) , (Js 3—Js—2) (Js 2) /
n—1 Ji—2—1 Jic1 Ji—1 Js—2—1 n
=y« Y ¥ ¥V .y (“)

Ji=s—1 Ji—1=s8-1+1 Jr=s8-1 j[+1=8*l;1 Ja i_l
. <jl—1 + 1) ( Ji ) (jz+1) _ (Js 2>y(n o
Ji Jit1 Ji42 Js—1
. y(jt—l-l-l—»jt)y(jt —J't+1)y(jt+1—]'t+2) L y(.‘ls—z—ja—1)y(js_1)
n—1 Ji—1—1 qi—1 Js—3—1 =
—(s=1+1 5 . .
SRR YD SR SN (RN

Jr=s—1 Ji=s=I=1 jppy=s=1-2 Ja—2=1 1Jo~2

- y(n—j1)y(jl—j2) p y(js—3_js—2)y(js—2)y/.

Continuing this procedure for descending integers [ from | = s — 2 to [ = 1 allows one
to conclude

(A6) e (jl s ) (g9 yUea ey Gy
Js 2~ 1
Z Z ( . n + 1 )y(n+1—jl)y(j1—j2) _—
J1yt oy Js—1

Ji=s—1 Ja—1=1
e y(JS—-2—jA—1)y(js—1)+

- J1—-1 Je—3—1

=g Z Z Z <J1, s Z)y(n—jl)y(jl—jg) al

J1=8-2 jo=s-3 Js—2=1
y(Js —3—Fs— 2) (13—2) !

_Z(”‘“)( "+1 >y(n+1—jl>,,.y(j,_g—js_;)y(js_l)Jr
j .71’ ;.7.9—1
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(s—1,n) n =P o= i
— 8 } . 1) g (Je—s—ds—2) g (Fam2) gy
SO (7 g Ty

Substituting (A4) and (A6) into (A2) leads to

d'”«+1f g z n n),/’
_ﬁﬂ—) =y () + y ™y )+

n+1
+ e AT . . n—ji) i (Js—z)_l_
; (“_l)T Z J1y s Js—2 k y
n f(S) (y) ( (s,n+1) ( n + 1 ) R .
+ Y \Z . . n J) ... (.7371)_1_
; s! Z J1y s ds—1 4 4
(s—1,n) n . )
(n—j1) (Fs—2) 4/
-8 . . 1
Z (jla"'a]s—?)y y J)
1) o s SO oD (1 (nt1=i1) . .,y Gem1)
=y + Y Y y v yldmn),
3=2

S jl)"',js—l

Therefore, (A1) holds for any integer n > 2 by induction. ]
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