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Abstract

Consider a body of water of finite depth under the influence of gravity, bounded below by a
flat, impermeable surface. If viscous and surface tension effects are ignored, and assuming that
the flow is incompressible and irrotational, the fluid motion is governed by the Euler equations
together with suitable boundary conditions on the rigid surfaces and on the air-water interface.
In special regimes, the Euler equations admit of simpler, approximate models that describe
pretty well the fluid response to a disturbance. In situations where the wavelength is long and
the amplitude is small relative to the undisturbed depth, and if the Stokes number is of order
one, then various model equations have been derived. Two of the most standard are the KdV-
equation

Uy + Uy + Utly + U = 0 ' (0.1)
and the RLW-equation ‘
Up + Uy + Uty — Uy = 0. (0.2)

Bona, Pritchard and Scott showed that solutions of these two evolution equations agree to the
neglected order of approximation over a long time scale, if the initial disturbance in question
is genuinely of small-amplitude and long-wavelength. The same formal argument that allows
one to infer (0.2) from (0.1) in small-amplitude, long-wavelength regimes also produces a third
equation, namely

U + Ur + Ullx + ey = 0.
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Kruskal, in a wide-ranging discussion of modelling considerations, pointed to this equation as
an example that might not accurately describe water waves. Its status has remained unresolved.

It is our purpose here to show that the initial-value problem for the latter equation is indeed
well posed. Moreover, we show that for small-amplitude, long waves, solutions of this model
also agree to the neglected order with solutions of either (0.1) or (0.2) provided the initial data
is properly imposed.

Keywords: Nonlinear dispersive waves; Korteweg-de Vries equation; Regularized long-wave
equation; Comparisons of model equations; Small-amplitude long-wavelength wave motion

1. Introduction

The Korteweg-de Vries equation has been derived as a model for the uni-directional
propagation of nonlinear, dispersive waves in an impressive array of physical situations
[1,3,10,13,16]. In most cases when it is derived from more complex systems, the
Korteweg-de Vries equation (KdV-equation henceforth) appears in the form

Uy + Uy + Eutdy + Oty = 0, v (L.1)

in dimensionless variables, scaled so that the dependent variable u = u(x,¢) and its
derivatives are order-one. The small positive parameters ¢ and J are related to a
small-amplitude and a long-wavelength assumption, respectively. The right-hand side
of (1.1) is not actually zero in general, but instead is comprised of terms of order
¢2, 62 and & which are neglected in the KdV-approximation. A further restriction is
that the Stokes number, S = ¢/d is of order-one, a presumption that formally implies
the small nonlinear and dispersive effects to be balanced. It also means that the error
terms all have the same, even smaller order of magnitude.

It was observed by Peregrine [12] and Benjamin et al. [4] that whenever (1.1) can
be formally justified as a model, the lowest-order relation

Uy + uy = O(e, 6)

may be used to alter the higher-order terms without formal loss of accuracy. This point
was pursued in the last-quoted references with regard to the dispersive term .. Thus
if we write

Uyex = —Uxxt + 0<83 5), (12)
then, formally,
Othyy = — Oty + O(e5, 0%).

This leads to the regularized long-wave (RLW henceforth) version of the KdV-equation,
namely

Uy + Uy + 800y — OV, = 0. (1.3)

It was established by Bona et al. [7] (see also [2, 8]) that if the initial-value problem
for (1.1) and (1.3) is posed with the same, smooth, order-one, initial data

u(x,0)=0v(x,0)= f(x), x€R, | (1.4)
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then

's‘up lu(x, ) — v(x,t)| < Ce’t
xER

for 0 <t < ¢!, where C is a constant dependent only on the initial data f, but which
is independent of ¢ > 0 and # €[0,e~!]. This result is interpreted as indicating that the
solutions of the two initial-value problems agree to the neglected order. More precisely,
formal analysis and numerical simulations indicate that nonlinear and dispersive effects
may accumulate to have an order-one effect on the solution, which is itself order-one
in the present scaling, on a time interval of length ¢! [2,7, 8, 14]. Thus nonlinear and
dispersive effects may alter both u and v significantly by time ¢!, but at this same
time, # and v are only order-¢ apart. On the other hand, the neglected terms of order &2,
¢6 and 6% can, on the time interval ¢~!, make an order-¢ contribution to the solutions.
Thus u and v are seem to agree to the order of resolution of either equation, on the
long time scale &~ 1.

This result appears to settle the theoretical issue of which of the two evolution
equations (1.1) and (1.3) provides a better model. The conclusion one draws from the
forgoing is that they have equal predictive power, though when one uses such a model
in a practical situation, other facts may come to the fore which would favor one model
over the other (see the discussion in [4, Section 21).

Kruskal [11] pointed out that there is no reason why the general reasoning used to
derive (1.3) from (1.1) could not be applied again, thereby leading to the model

Uy + Uy + U, -+ Oty = 0. (1.5a)

This somewhat odd-looking differential equation is second-order in time, and therefore
appears to require two initial data, say

u(x,0)= f(x) .and u(x,0)=g(x) (1.5b)

to have a chance of determining a unique solution. This seems problematic when
considering (1.5) as providing an approximation to uni-directional waves in a nonlinear,
dispersive medium since it is generally expected that only a single initial profile is
needed to initiate such motion. Bona [5,6] suggested that if small-amplitude, long
waves are in question, so that u and its derivatives are order one, then one could use
the lowest-order relation u; + u, = 0 to provide the additional initial condition

g(x) = us(x,0) = ~ux(x,0) = — f'(x). (1.6)

The conjecture was that (1.5) with (1.4) and (1.6) leads to a well-posed initial-value
problem whose solutions are close to those of (1.1) or (1.3) with initial value (1.4).

It is our purpose here to investigate this possibility. It will turn out that the general
idea leading to the additional initial data (1.6) is well conceived, but the details are
a little more subtle. Indeed, it transpires that the initial data imposed upon u; needs
higher-order correction so that solutions of (1.5) resemble those of (1.1) or (1.3) over
longer time scales (see Theorem 4.1). An interesting feature of the analysis is that
a term that is formally small at a certain order turns out not to be negligible at this
order. ' L ' B :
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It is sometimes convenient in analyzing (1.1) and (1.5) to rescale the dependent and
independent variables so that the small-amplitude, long-wavelength assumptions appear
applied to the initial disturbance, while the differential equations feature only order-one
~ coefficients. Thus, if we make transforms U(x, t) = eu(6'x, 6'2¢) in the KdV-equation

(1.1) and V(x,¢) = eu(5*x, 6'/2¢) in (1.5), then,

Uy + Uy + UUy + Upe =0, (1.7)
Vi+ Vi + VV; + Vi =0, | (1.8)
Ux,0)=V(x,0)=2f(6"%x),  ¥(x,0)=ed?g(6"x).

It must be kept in mind, however, that when written in this form, the time scale over
which nonlinear and dispersive effects may accumulate to have an order-one relative
effect is now e¢~>? and the time scale during which the neglected effects can have an
order-one relative effect on U and V is ¢~

The plan of the paper is as follows. Section 2 is concerned with the easier, re-
lated question of comparing solutions of the linearized equations (Egs. (1.1), (1.3) and
(1.5) without the uu,-term). The analysis in this case is straightforward, but the result
is illuminating. The nonlinear initial-value problem (1.5) is shown to be well-posed in
Section 3. In Section 4, we effect a comparison between suitably initiated solutions
of (1.5) and those of (1.1) when the data is genuinely of order one. Ideas from both
Sections 2 and 3 prove useful in this comparison.

Throughout, standard notation is used: thus

x>
L=L@®={fR=r [ |70a<oo)
— 0
for 1 < p < oo, with the usual modification when p = co. The standard norm on L,
is denoted |- |,. For m > 0, H™ is the usual Sobolev space of L,-functions whose

derivatives up to order m also lie in L. The norm of a function f€H™ is || f|% =
[ A+ )" f /(k)|? dk, where f is the Fourier transform of f, defined by

ﬂm=ﬁwxm=7i[_amﬂﬂ@j

If m =0, the norm in A" is that of I,. We will systematically use an unadorned
norm for L. Thus, for f €Ly, |f]l = ||fllo = |f|2- Another standard class of spaces
intervening in our analysis is

C(0,T; H™) = {the continuous functions f: [0,T] — H™},
where 7 > 0 and m is a non-negative integer, equipped with the norm

[/ lcco, 7;my = max || £C8)|lm-

0<t<T

2. Analytic comparison of the linearized equations

It is helpful to begin With the associated linearized :initial-value problems corre-
sponding to (1.7) and (1.8). The analysis in this case is simple, but the results are not
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without interest. Moreover, the conclusion points the way to a proper understanding of
the nonlinear problem. Thus, in this section, consideration is given to the initial-value
problems:

U + Uy + U =0,

U(x,0) = f(x) = eF(¢"?x), .1
and

Vi+ Vi + Ve =0,

V(x,0) = f(x) = eF(e"x),

Vi(x,0) = g(x), (2.2)

for x € R and ¢ > 0. Suppose that £, the Fourier transform of F, has bounded support
[— M, M] for some positive number /. While it is not necessary to obtain interesting
conclusions, the assumption of bounded support makes the analytical issues especially
transparent. For the time being, we leave g independent of f.

Taking the Fourier transform in the spatial variable x in both (2.1) and (2.2) and
solving the resulting ordinary differential equations leads to

Uk 1) = e~ #0F f() (2.3)
and
R r_Leir_z _ r“eirﬂ._t . ieir_t _iairst i
Vikt)=——H: JE)+ —————4g(k)
_ eSO +i60) o =7 — 168 s
ry —r_ Fo—T_
_ A+ VI+4) + 20k 5, (Z14 V] +4K%) ] — 2ikg ;. 04)
21+ 4k2 2V/1 + 4k? S
where
1+ V1 +4k? 1 — /1 +4k?
re=ril)=——p—— ad ro=r(k)=——p—

Denote by 4 the function

(—1 4+ 1+ 4k2) f (k) — 2ikd(k)
2+/1 + 4k2 '

Then ¥ may be expressed as

A(k) =

I}(k’t):"{f'(k)_A(k)}ei(l—\/1+4k2)/2kt +A(k)€i(1+\/1+4k2‘)/2h. _ (2.5)
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Since f(k)=e"/2F(e~'/k), the support of £ is [—e'2M,e/2M]. If ¢ > 0 is sufficiently
small, the quantities 74 and 4 can be expressed via a Taylor series which is convergent
for k € [—&'>M, e'/2M], namely,

1 — 1+ 4K2 |
r_=h+=ek+k3—4k5+4k7+---,*
2k
. 1+ V1 +4k2  1T4+R2—k* +4k8 —4k8 + ...
+ = - s
2k k

(K2 — k* + 4kS — 4k® + -} f(k) — ikg(k)
V1 + 4i2 ’

it _ (0 —V1+4k2) 2kt —i(k—k +4k5 =)t
e "=e¢ =e ,

A(k) =

elr+! — ei(1+\/1+4k2 )2kt _ ei((l+k2—k4+4k6—4k8+---)/k)z

Remark. From the exact forms (2.4) or (2.5), it is apparent that the solution of (2.2)
has two dispersive branches. The branch corresponding to r— is near to the KdV-
dispersion for small value of k, whereas the branch corresponding to r.. features very
high-frequency oscillation for k near to 0.

Subtract (2.3) from (2.5) to reach the formula
V(k,t)— Ulk,t)

:{eir_t . e—i/c(l—-lcz)t}j?(k) _A(k)eir_t +A(k)ei7'+t

:{ei(—k+k3—4/€5+~~~)t _ ei(—k+k3)t}f'\(k) _ A(k)eir_t +A(k)eil‘+t

:{ei(—4/c5+-'-)t . l}e—i(/c—k3)tf(k) _A(k)eir_t -i—A(k)ei”t. (26)
It follows readily that as £ — 0,
V(kt) = Uk, 0)] < O 0)| £ (k)| + 2| A (k). (2.7)

Two possibilities are distinguished.

(1) If 4 =0, which is the same as asking that

. {—1 + /1 +4k2];}

g= 2ik (2:8)

then, the oscillatory branch e'+ =¢!(/h)+00) i5 of no consequence and it follows that

o0

P(.0) = U0l S/ |U(-,t) = V(. 0)| dk

— o0

EREye ?

. I

_8|/2M . o 4 .
e O
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M
< / Ci |kt ?|F (e~ k)| dk
—2M -
< Ce"?t

for sufficiently small values of ¢ in (0,1), where C and C1 are constants dependent
only on F. It follows immediately that

|V (-,t) — U(:,1)|co = max
xER

O e 0

= /_ )~ Uk 1)) ok
| S .

;—\72_;|V(-,t)—U(-,t)|1

< Ce'?t

and, similarly, that

o0 1/2
V(.0 —-UCnl= ( / P(8) — 0(-,r>|2dk> < Ce'¥4t

-0
Moreover, for j,m >0, (2.6) and (2.7) imply there are constants Cy,; such that
om0V (k, 1) — 0L Uk, 1)| < Co ;5T 1| (K|
— Cm,jks_l-m_'_jt |81/2F(8—1/2k)|.’
whence,
|6m0IV (-, 2) — OrOLU(,0)|| < CmJS(13/4)+(m/2)+(j/2)t

for t > 0. This means that models (2.1) and (2.2) agree to the neglected order, at least
for 0 <t < g 32,

(2) If 4 # 0, consider two sub-cases.

Case I: g=—f" as in (1.6). In this case, A(k) = O(k*) |/ (k)| as k — 0, so

1V (k, ) — Uk, )| < (O(K>t) + O(k*))| f (k)

and therefore

1 [ 5
V(1) = U(, 1)|oo = max E/ [P (k,¢) — Uk, 1)] dk‘

-

< CE(e¥%1) + C&,

R 1/2
”V(c,l‘) - U(.’z‘)” < (/ lkst + 2k4| 181/2ﬁ(8_1/2k)|2 dk)

-0

=[O0 + PO,
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‘and, similarly, for j > 0,

: o) ‘ 1/2
1247 — 8JU]| = ( | iawren - (ik)fm,mzdk)

—o0

< AU (g32p) 4 M+,

where the C; are constants only dependent on F and j. These results are the same
as those that obtain when comparing the KdV-equation and the RLW-equation (see
[7]). However, if we take the derivative of U and ¥ with respect to ¢, an interesting
phenomenon becomes apparent which is different from the situation arising when com-
paring the KdV- and RLW-equations. From (2.6) and (2.7) again, it is straightforward
to calculate that

8V (kt) — 8,0 (k1)
=[ir_{f(k) — A(k)}e"~" +ir, A(k)e"] — [ — i(k — B*)] f (k)e k=2
= — i(k — B ){el"H T+ _ 1 e=il=) gy
H(—4ES 4 - el WU Py iy (kY 4 ir, A(K )

SO .
10:V (e, 8) — 8,U (K, £)] < (4k5¢ + 4k [* + |k]° + k)| 7))

= (4kS¢ + 5|k)® + kPP )e 2| F (e k).

In consequence, it transpires that

1
0 UL t) =0, V()] <
lt( ) t( )I \/2—7'C

16:V (. 2) = a.UC,0)|| < Ce*(e%t) + C&24,
and for j > 0,

”ataJ{V _ 3t5){U|| < Cj8(9/4)+(j/2)(83/2t) + Cj8(9/4)+(j/2).

10:U(C,t) — 8,V (-, 1), < CeP(%¢) + Ce%2,

More generally, for any j,m > 0, we see that
”a;nai V(, f) i a;naj U(, t)“ S Cj,m&'(13/l4)+(j/2)+(nz/2)l + Cj,mg(l 1/4)+(j/2)—(m/2)

= G e UMD (B02py 4 ) (VAHRI=m/2),

Thus it becomes clear that for Eq. (2.2), the oscillatory branch plays a non-trivial
role when time-derivatives are compared. On the natural, long time interval [0, e™%/2]
over which nonlinear and dispersive effects are expected to make an order-one relative
contribution, spatial derivatives d{u and d{v of the solution u and v of (1.1) and (1.5),
respectively, agree to the neglected order. This is not the case for the difference between
temporal derivatives. Moreover, the lack of coherence between u; and v, say, may be
traced to the initial condition applied to v,(-,0).
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Case II: Guided by the results in Case I, adjust the initial value for g so that g =
— f"—f"". In this case, A(k)=0(k®), and calculations similar to those above show that -

18730V (1) = BT, )] < C e3PPI o ) ISAHGDI~n(2),
= G e /OHUPIOR (320) 4 Cy ((15/4)+(j/2)~(m/2)

Thus 704V is within the neglected order of dm3JU for m < 2, and therefore, one is
md1ﬁerent between the two linear models at least on the time interval [0, e 2].

Remark. We learn from the foregoing analysis that the proper imposition of initial
conditions on Eq. (1.5) is crucial for a satisfactory comparison theory. The initial
data vi(x,0) = — f'(x) = —¥2F'(¢"?x) suggested in (1.6) is not accurate enough to
obtain the anticipated results. -

3. Well-posedness for the nonlinear problem

Attention is now turned to the nonlinear problem. For suitably restricted initial data
f and g, consider the initial-value problem for (1.8), namely

Uy + U + U0x + Uy = O)

U(x, O)zf(X), vt(x,0)=g(x). ’ (31)
Applying the Fourier transform in the spatial variable x, there appears

A A

A o en 1k
ikDy + 0; + 1k = —%v * D,

or, what is the same,

D —{—1 + = 113*A
= ——0%0
it k 2 )

where v * w connotes the convolution of v and w. If 7 and r_ are defined as before,
then the latter equation may be rewritten as

(8; — ir )@ — ir_)o(k,t) = =15 %,

8(k,0) = f(k), B:(k,0) = g(k).

This second-order, ordinary differential equation can be changed to an integral equation
by twice solving a first-order, ordinary differential equation, viz.

(8 — ir- )bk, 1) = (G(k) — ir— f (k)" — % / t 7 (k, s)e+ =) ds,
0

t
ﬁ(k’ t) — fA(k)eir_t _ / eil‘_(t—S)(g‘(k) . ir__f'\(k))eir_,_s ds
0

t : S
- / S / e+ (k, 1) de ds
2 0 : Jo : ’ .
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vy eir_t . ],__eir+t 1r+t eu ~t
- kY + —4(k
— 0+ i)
= / / ir_ (Z—S)ell+(s ‘E) (k T) dsdr
_ ’,.+eir_t — ei’.l.t 1r+t elr_t .
B B 1A
1

t
iry(t—1) _ ir_(f—=t)1.3 4.
[e e Jv? dt
0

2i(ry —7_)
= {f (&) — A()}e"~" + A(k)e™"

1 1 !

—. irs(1=1) _ gir—(t=1) 1;5 dr
2U(ry —7r=) Jo [ ]

=f(k)eil'_t_A(k)eir_t+A(k)eir+t

t
/ [eir+(t—z) . eir_(z—z)];} dr,
0

where A(k) is as it was in Section 2.

1
_Ei(r_i_ —r_)

Theorem 3.1. (1) For any initial data f,g € H™ with integer m > 1, there is a positive
number T which only depends on f and g such that the initial-value problem (3.1)
has a unique solution in CY(0, T; H™). (2) If there is a Sfunction g€ H™ such that
g =g, then the solutzon v lies in CZ(O T; H™). (3) Furthermore, if there are f,j€ H™

such that f=f, §'=g, then ve C3(0, T; H™), and so on.

Proof. We intend to apply the contraction-mapping principle to prove this theorem.
Define an operator &/ on C(0, T; H™) by

ell t ],._ell+l 11+t ell tA
Aok t) =" /G ”T_?_)g“‘)
1

g

- ir (t—t) _ Lire(t—1)1.2 k dz.

T [ T = G

Let X = Bg(0) be the closed ball of radius R >0 about the origin in C(0, T; H™),
where R, T > 0 are constants to be determined. Then X is a complete metric space
because it is a closed subset of C(0, T; H™). If we can find R and T such that
maps X into X contractively, then the proof will be essentially complete. To this end,

we need a few estimates: for all £,
iryt eir+t _ eir__t

(ry —r_)

7y er-t —y_e
<1

f— 3

<1

—_ 2

ry —Fr—
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s0
0] < |f1+191;
where 0(k,t) = 0, whence

28| cco,r;mmy < NS llm + gl
For any u,ve X, t €[0,T], and k£ € R, we have

Suk,t) — Av(k, 1)

11 iy ¥ SN
T2 - ro) /0 [ (79 — " 0"ILA(k 1) — v* (k)] d

"= "INF{(u+ v)(u — v)}(k ) dv,

I3
— ___k__ / [eir.,_(t~r) .
241 44k Jo

so that ‘ _
Au(k, 1) — Av(k, 1)| < L / |F {(u + v)(u — v)}(k,7)| dr.
2 0

It follows that for u,v€X, and ¢t €[0, T],
|lfu(-,1) — o, 1)|[5

=/°° (1 + K" |[du(k, t) — Av(k, t)|* dk
o0 ot 2
< —411/_00(1 + K" (/O Iﬁ"{(u+v)(u—v)}(k,r)|df> dk

__l ! ! o 2N | g u—
_4/0 /0 /_00(1+k) |7 {(+ ) — )}k 7))

X | F{(u+ v)(u — 0)}(k,s)| dk drds

< % /0 /0 1+ 0)( = )¢, D)l + ) = 0 5)|m dr s
; 2
| =211 </0 | + v)( = )T |m dT)

1 ! 2
<y (/ cm(|ullcco, 7 5my + 10l co, 5 mmy)|[uC-s 7)) — U(-,’E)Hmd'c>
0

< RPT?|lu— U||2C(o, T; Hm)s

where ¢, = max{||fg|lm : f>9E€H™| fllm=4g|lm =1} On the other hand, if u€X,
then

| ull co, 1. mmy < || 28| cgo, 7 1y + |21 — 26| co, 7 20m)
<N fllm + gllm + enRT [[ullcco, 7;2m),.
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50, if 2||.20]|cco, r;my < 2{||fllm + llgllm} = R and T = 1/2c,R, then the mapping </
is seen to be contractive from X to X. The contraction-mapping theorem assures that
there exists a unique solution v € C(0, T'; H™) to problem (3.1). To prove v;(-,1) e H™,
consider the defining relation for v, namely :

) r elr_t . r_e”+’ . eu.,_t _ eir_t
Bk, £) = = S+ ———
e — 7o (ry —r_)

1 1 £ :
- irp(t—1) _ Jir—(t—1)7.,2 k. )Yd
ST | T - e s
and take the derivative with respect to ¢ of both sides of this identity to reach the
formula

4(k)

V_t _ alrgt +611T! r elr_t

B t) =irr_— " i) +
Fy —F- (ry —r-)

g(k)

1 L i
_5_(r+ — )/0 [r+e”+(t‘f) —r_e”-(‘"’)]vz(k,r)dr
ir—t _ pirgt ] gt ir—t
=i f) + =y
g —7r_ (ro —r2)
1

1
20— / [rae"™ 7 — = (k1) du.
- = 0

Since |r4/(ry —r-)| < 1, and v€ C(0, T; H™), it follows from the preceding equation
that

5,068)] < |FO0)] + 6k + /O 2k )| dr,

and, hence, that

10 )l < 17 + gl + / enlloC, )2 de.

Thus, v, € C(0, T; H™), and part (1) of the theorem is proved.

If 7 g(y)dy=g€H™, which is to say, (1+k2)"*(1/k)§ € L,, then differentiating
U; leads to
2 Lirpt ;,.2 eil‘._l

. roel+t — p_eir=t 72 2 A
kt)=— k k
Ou(k, 1) 1 fk)+1 AT g(k)
17 irgt _ » ir—t __
oD T Bk o)
2 e —r_
1 ir_t
2@_7_ (l+e ** — r_e™")2ov(k ¢ — 1) dr.
Because
2 2
=< <1+ H
Py — 7~ re —r k
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and
veCY0, T; H™),
it follows as above that
vy € C(0, T; H™),
and part (2) is proved. Part (3) may be established in the same way. [

Proposition 3.2. Let v be a solution of (3.1) corresponding to f,g€H L where g is
such that there is a § € H' with §'=g. Then the following functionals are independent

of t:
/_o:o v(x,t)dx=/_o;f(x)dx,

/ [0 (x,2) = 20x(x, )i (x, )] dx = /_ [f*(x) — 2" (x)g(x)] dx,

and
o0

/ ” {vz(x,t)-f-v,z(x,t)—}-%vz’(x,t)jl dx = /

—00 -0

P+ 2@+ 31 00| 6

Proof. These follow from multiplying the equation in (3.1) by ¢(x) = 1,0, and v+
%vz + vy, Tespectively, and integrating the result over a bounded spatial interval [a, b],
say. Integrating by parts, integrating over [0, 7], and taking the limit as a — —oo, b—o0
leads to the advertised result because the boundary values appearing after integration ‘
by parts in space are uniformly bounded and tend pointwise to zero at Zoo. )

Now we return to the case of small initial data. The analysis' of the linearized
problems in Section 2 indicates one should impose initial data in the following manner:
Uy + Uy + 00y + Uy =0,
u(x,0) = eF(e"*x),
bi(x, 0) = —¢¥2F(6"%x) — A{F"'(¢'*x) + FF'(¢"%x)}. (3:2)
Using the idea put forward in [9] (see also [15]), define # by the change of variables
v(x, 1) = en(e*(x — 1), &),
or, what is the same,
n(x, 1) = e~ Lo(e™ Vx4 672, e721).
Writing (3.2) in terms of # gives
Mt + Me + Moe — 28N + &1 = 0,
n(x,0)=F(x), #n{x,0)=—F"(x)—FF'(x). (3.2a)

This formulation looks promising because it appears formally as a perturbed KdV-
equation. Of course, 7. and &ny, might not be order-one quantities, in which case
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the formalism would be misleading. Indeed, because ﬁ¢1npora1 derivatives can feature
inverse powers of e, this point is potentially important. T aking the Fourier transform
of (3.2a) with respect to the spatial variable x and simplifying yields

e N

Ak, 0)=F(k), nk0)=ik>Fk)— %Eﬁ(k). (3.2b)

The system in (3.2b) is an initial-value problem for a one-parameter family of non-
linear ordinary differential equations. As before, these may be rewritten as an integral
equation, viz.

/1+ei;“—’ — ekt git+l _ pid_t A ik —
Sk ) = Flk) + ————= iFPF(k) - =F?
Ak, 1) P (k) + =) {1 F(k) 7 (k)}
b / l [eit0=0) _ gii-t=ny L a0 o] g (3.3)
(s =22 Jy R |
where
1426k + 1+ 4ek? 1+ 2ek? — 2k + ...
2’+ e 3 == s
262k &k (3.4)
2 7} ' '
po= 12K 232;{1 T e —4ek> + - - -

(The series in (3.4) are uniformly convergent if, for example, [k| <M and 0 <e < 1
is sufficiently small.) Substituting (3.4) into (3.3) gives

(e = V() + (2P 1, O = KE(E) + (HDFE) .,

k1) = P T — A

1 f . I
124(t~1) _ A (t=1)7 | _ 2
+—F+ ~70) /0 [e e ] [ ———28217 (k,v:)} dt

(1 4 26k% + VT + 4ek? — 262k4)E (k) + e2k2F2(k) .,
= ell t

21 + 4dek?
(1 + 2ek? — /T + 4ek? — 2682k)E (k) + 82k2ﬁ(k)eil+t
241 + 4dek?
+ ik /l [ei/1+(t—r) _ eu_(t—r)] n?(k,7)dr (3.5a)
2V 1 +4ek? Jy ’ ,

and this is formally of the form

ﬁ(k,f): {(1 - 483k6 € O(S4k8))ﬁ(k) + % (82k2 _283k4 -+ 0(84](6)) ﬁ(k)}eil_g
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+V{(483k6 -+ O(g4k8))ﬁ(k) — %(82]62 _ 283k4 + 0(84](6));5(]()}60“"1

ik ‘o |
oV 1+ 4o / [e+0=) — A== (1) dr, (3:5b)
0 .

as ¢ — 0.

Theorem 3.2. Let F € H™3 for m>3/2. Then there exists a positive number T
of order at least €/? such that (3.2a) has a unique solution ne C(0, T; H™) N
CH0, T; H™Y)N C*(0, T; H™2). Furthermore, 3(-,t) and n«(-,t) are of order one,
and ny(-,t) is of order ¢! for t€[0, T1.

Proof. The contraction-mapping principle will be applied. Fix T > 0 and define a
mapping & on C(0, T'; H™) by

(1 + 26k2 + /T F dek? — 262kHE (k) + 22 F2(k)
el/u_t

Ik, t) =
(k) 21 + 4k2
(14268 — V1T 4ek2 — 282K (k) + I F2(k) O
24/1 + 4ek?
+ ik / ! '[eil+(t—1) _ ei)._(t-—‘c)] n?(k, 1) dr.
2/ 1 +4ek? Jy : ,

For R,T > 0, let X be the closed ball
X =Xpr={heC, T; H"): |A(-,t)||n <R, for 0 <t < T}

in C(0, T; H™). We plan to choose R and T so that </ is a contraction mapping of
X to itself.
First, notice that at the zero-function 6(x,¢) =0

(1 + 26k? -+ /T T 462 — 282k E (k) + 2R F2 (k) el

A0k, t) =
1) 21 + 4ek?
(126K — VT Aek? — 287K (k) + K2 F2(k) it
2+/1 + 4ek? ’
whence
|20k, 1)| < (1 + ek* + &7 k) [F (k)| + 37 k|| F2(k)),
and thus

|26]lm < C(IF [[m+3):
where C(||F|lms3) is a constant only dependent on ||F|43. Second, for any 7, €X,

— — k| /’ % =
In(k,t) — LEk )| < —— 2(k, 1) — E(k,v)| dt
|In(k, ) k1) i ), In?(k, ) — E4(k, 7))

1 /t ~ ~
< — \n?(k,7) — E(k,7)| dT,
2612 Jq - | ‘
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so,

. o 12
|l n(-2) — LEC)||m = </ (1 + kz)m[&iﬂ(k,t).— szf(k,t)|2 dk)

< 22*;”/2 /0 ”77(, T) + f(':f)Hm“’?('ﬂ) - é('af)“m dr

< cuRe™Ptlln — Ellcio, 7 mmy.
Taking the maximum over ¢ € [0, 7] of both sides of this inequality gives
le2n — &l co, 7. 1my < enRTE™ 2|0 — Eflcgo, 7 my,
and therefore
I nllco,7; my < |6l co, 73 1y + |2 — 0| o, 1my
< CUIFImt3) + S_I/ZCmRTH”“C(O, T;H™)-

Hence, if we let R = 2||0||c,r:5m) < 2C(|F|||ms3) and T = ¢'?/4¢,,R, then the
mapping &/ is a contraction from X to X. It follows there is a fixed point of .o/ in
X which is the unique solution # of (3.2a) in X. To prove the stated properties of #,
and 7y, use is made of the identity

ik, t) = Ak, 1). (3.6)

The right-hand side of (3.6) is plainly differentiable with respect to ¢. Hence so is the
left-hand side, and

A,k t) = (k1))

—u (1 + 2ek? + /1 + 4ek? — 262k F (k) + 82k2ﬁ(k)eil_t

241 + 4ek?
. (L2082 — VT A — 28K )F() + 2P
o+ 24/1 + 4ek?
. {ﬁ(k)e“~+’ + / l e ok, t — r)dr}
23/T + 4ek2 0 ’
+ _ ik {_ﬁ(k)eil—f — /l e =2, (k, ¢ — r)dr} (3.7)
21 + 4gk? 0 s ’ '

whence

. 1 — Y L
|7,k )| < (3]kP +,v8”2k4)lF(k)| + E(Ik} + &P FA(k)| + %/o (-, )| de
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and, thus,

| Lo o
11 Ol < COUF i) + 575 [ It = 2 b

t
Cm—1|MllC(0, T; H™
< U llss) + Z2IEEED [ ), e
Gronwall’s lemma then yields

[7:C D)l m—1 < C(HFHm+3)ecm—lllln(vf)l|C<o,T;H'">8_1/2f, (3.8) -

The quantity ||#]/co,7;gmy is order of one, so if ¢ is order of &!/2, then #; is also of
order one. Since 7, exists and lies in C(0,T; H™ 1), it follows from (3.7) that 7, also
exists, and, moreover,

Hak 1) = (LK, 1))a

(1 + 26k2 + /T + 4ek? — 282kE (k) + 2k*F2 (k) |
= --)‘,2 el);_t
- 21 + 4ek?

| g2 (L 267 — VIF A — 22K () + PIPFAE)
* 2v/1 + 4ek?

ik =S ;
+———— J i F2 (k)™ + 27k, 0)e
WEwr 48k2{ +F2(k) 1:(k, 0)

v -
P / elﬂ+f<ng+w<k,z_f))dr}
0

ik

+ Wrwri {i/l_ﬁ(k)e”‘-t — 207k, 0)e*-?

t —~
_2 / &= (7 — Tl — mdr} .
0

Collecting terms in e*~* and e'*+, respectively, (for simplicity, suppose that the support
of F is finite, so we can make use of the Taylor expansion) yields

e = (kB (k) + LE*F2(k) — FF™ — ikFF2F" + O(e) el
+ {—Ai 48K5F + (A — S3)F(k) + O(1)

k)b-i— /3 + 1k 2(_ﬁ/// _ﬁ/)} ei/:..;.t

- =t F
NI+ A4ck2 21+ 4ck?
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ik L ]
T / e‘“(nzwtnmz(kt—r))dz}
V14 4dek? Jo ! ’ »

ik Lo
- 7o, e’“““"?—Wk,r—o)dz}

(1 426k — &2k

L

=O0(1)e"~" + {

(1 4 2ek? — 2k*)?

(28 — 28°K°) 2

2¢4k?
k(1 + 2ek? — k%) — } .
- F240(1) p e
2e2k+/1 + 4ek? 1)
ik t AL (t—t) _ JiA_(t=1)\.2
+m i [(e — e ik T)

+ (el =) | eil-(z-r))]n/r,jt(k, 7)dr.

Simplifying the above gives

. 4k4 R .
Ay = O(1)e*" + {_TF + O(l)} s

T t . s
i / (=9 _ =03k 1) de

ik 6 . L
Y AT / (MU= 4 ==y k7)) dx,
0

as ¢ — 0. It follows readily that

1
H"]:t('at)”m~—-2 < C(”F”m-%-B)E

1 /t 5 1 t
+—== ‘77 ('aT)Hl _1d’L' + == / ||77’7 (':t - T)Hm-—2 dr.
81/2 0 [ t n 81/2 0 13

Because # and 7, are order-one, at least on the time interval [0,&!/?], Gronwall’s
principle brings out the inequality

g™

”ntt(': t)“m—z S C(IIF|Im+3 )S_Ie s

or

—l/.’.t

lenaCs )llm—2 < CUF|m3)e"

The theorem is p'foved. O.
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Remark. By now, it becomes clear that the difference and similarity between system
(3.1) and the KdV-equation is somewhat subtle. From our analysis, it is seen that
formal order-one quantities are not necessarily order-one in fact.

Corollary 3.3. Under the assumptions in Theorem 3.2, the initial-value problem (3.2)
has a solution in C*(0,To; H™) for some Ty > e='/C||F||me3, where the constant C
is independent of ¢ and F, and for 0 < t < min{T,, O(¢7>?)}, we have the following
estimates:

o ()| < EjelP+G4)
sup [vgy)(x, )] < Njel/H+!
x€R |
or j=1,2,..., where E; and N; are order-one constants only dependent on F and j.
J } ] p ]

Proof. This is simply a reinterpretation of Theorem 3.2 in the dependent variable v
instead of the variable . O

4. Comparison to the KdV-equation

According to the view put forward in the previous sections, the initial-value problem
for (1.8) needs to be imposed in the form

Vs + Uy + U0y + Vg =0,
u(x, 0) = eF(¢"%x), (4.1)
vt(x, 0) — _83/2F/(81/2x) . 85/2(F”,(81/2x> +F(81/ZX)FI(8]/2.X)),

to model small-amplitude long waves at the same level of approximation as does the
KdV-equation. To compare the new equation (4.1) with KdV, as in (3.22), define

u(x, 1) = ef(e"*(x — 1), 1),

(4.2)
v(x, 1) = en(e(x — 1), &),

or
Ent) = e u(e x4 673 67320,
n(x, 1) = e o(e™2x 4+ 67321, 673/%p).
Then, problems (4.1) and (4.2) take the form
Me + Mix + Nuox — 280z + &7 = 0,
&+ 88 + & =0, (4.3)
n(x,0) =&(x,0) =F(x), n(x,0)=—F"(x)— F(x)F'(x).
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Set w=1n— ¢, so that n=w + &. Straightforward calculation shows that w satisfies the
initial-value problem |

Wr + WWy + Wy — 28Wxxt = _(éw)x + 28£.vxt - Szﬂxtt:

w(x,0)=0, wi(x,0)=0. ;
Multiply (4.4) by 2w, then integrate over R with respect to x: simple estimates lead
to the inequality

d oo o0
% / (w? +2ew?)dx = / (—(EW)y + 280 — &1 )2w dx

(4.4)

o0
= / —fxwz +2(ely — 2327’1xxt w

— 0

< | &loo Wl + 26128 — ertaael| [[w]]- (4.5)
Integrating (4.5) over [0, 7] yields

t
wC, )] + 2elwi (o)l < /0 (Eeloolw(-, I + 28l|2E0x — enall [Iw(-, )] d.
As we have already derived that ||en|l, = O(1) at least for 0 < ¢ < Ty, where Ty is
as in Corollary 3.3, we may apply a variation of Gronwall’s lemma to come to
Sllzéxxt - 877xtt”
|xloo

Define w) to be 5§w, for k=0,1,2,..., and note wy)=w. Suppose it is true that for
0<t< T,

w0l < Cret, (4.7)

for all integers from 0 to n— 1. To estimate ||w(y) (-, 7)||, multiply (4.3) by (—1)"2wn)(x, )
and integrate the result over R with respect to x, to obtain

d
5 / (W) (6, 1) 4 26w, 4 1) (%, 1)) dx

IwC Dl <

(elleo? — 1) < Cet. (4.6)

== (-1 [ mman( )5 = (17" [ CEwemn (1)
—i—(-—l)ns /(Zéxxt - gnxtt)w(zn)(xat)dx
= /(wa )(n)W(n)(xa t) dx — /(éw)(n+l )W(n.)(xo t) dx

+ /(zéxxt - 87’]xtt)(lz)w(n)(x>t)dx

- n
n .
- Z ( ; ) / (j)W(n+1—j)W(n)(x,r)dx é.
— \J |

. f=0~.. ' :
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!

~ (n+1 '
_Z ( ; ) /éjW(n-H—j)W(n)(xst)dx L
o

+e / (2018 (n42) — E07M(n1) YWy (%, 1) dx
|7/2]

1
—5 [0+ 3
=0

[(n+1)/2] .
s ( J.) gty a5 1)) A
=0

n 2 .
<] ) W(2j—1)w(n-—j+1)(x= t)

+e [ 08— oy o 1) 8

< Cn”W(n)("t)Hz + Cngllw(n)(':t)ua | (4.8)

where |s] is the biggest integer which is less than or equal to s. Applying Gronwall’s
inequality again leads to

W ()] < Caet, (4.9)

for 0 <t < Ty. Thus inequality (4.9) is true for all n = O, 1,...,m. These ruminations
are recorded in the following theorem.

Theorem 4.1. Let F € H™ where m > 0. Let ¢ > 0 and let u be the solution of the
initial-value problem (1.1) for the KdV-equation with initial data F and let v be the
solution of the initial-value problem (3.2). Then there exists an & > 0 and order-one
constants C; such that if 0 < e < &, then for 0 <j < m,

u(-,£) — v(- )| < Ce(21),
g jy(-52) — v (1) < CieTHTUM (),
for 0 <t <min{e%2,To}, where T, is as in Corollary 3.3.

(4.10)

Proof. To obtain the result (4.10), we need only use the fact thatl
u(x,t) = eé(e¥?(x — 1), &%) and v(x, ) = en(e"?(x — 1), &*t).
Substituting these relationships into (4.9) gives (4.10). O

Appendix

In 1871, Boussinesq derived the original system of equations

h: + (uh), =0,
1 B
Uy + utly + ghy + ’ghohxtt =0, ( )
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for the two-way propagation of long-crested surface water waves in a channel that
bears his name. Here, the variables are dimensional, A 5;’is the undisturbed water depth,
h=h(x,t) is the depth of water at the point in the channel corresponding to x at time
t, g is the gravitational constant and u = u(x,t) is the horizontal velocity of the free
surface corresponding to x at time z. If the dispersive term k., is dropped in (B),
the resulting system is valid for waves of extreme length and are commonly called
the shallow-water equations (cf. Whitham [16] formula (13.92)). As is well known,
the characteristic velocities of this hyperbolic system are u + +/gh and the Riemann
invariants are u % 2+/gh. If attention is focussed upon waves moving only to the nght
say, these therefore satisfy

u = 2+/g(hy + 1) — 2+/gho, (R)

where 7 = h — hg is the deviation of the free surface from its rest position at the point
x at time ¢ (see again, Whitham [16] formula (13.80)).

Rescale the independent variables x and ¢ by A and A/+/gho, respectively, and the
dependent variables # and u by a and +/ghq, respectively, where a is the maximum
amplitude of the wavefield being modelled and A is a typical wavelength. The Boussi-
nesq system and the relation (R) both subsist on a small-amplitude assumption wherein
the dimensionless parameter o = a/hg is taken to be small. Rewrite % as

h=hy+ hoom', (A1)

and the velocity u in the form
o o?
u=2\/gho(+/1+an —1)=2+/ghg <§77' - §77I2> +0()
o o
= a/gho(n = ™)+ 0@*) = on/gho (i — 21, (A2)

as o — 0. Substitute these consequences of a small-amplitude assumption and unidi-
rectionality into the second equation in (B) and remove the prime to obtain

/e (1= 317) Y5 4 /ity (1= 57) (n - 57)

gho
PA3

Dividing both sides of the last equation by aghg/A y1e1ds

1 1
+agh017x)L -+ 3ho Nxtt v O(Of3)-

-5+ 37) (1= ), 4+ L ona =0

Denote h3//% by f. Then the last equation may be rewritten as
e — 217111 + o + 1 + ﬁ’?xn = 0(e?),

or, what is the same,

oo 1
(1 - 577) Me =+ 1+ ot + 2 P = O(a).



