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SIMILARITY SOLUTIONS OF THE GENERALIZED
KORTEWEG-DE VRIES EQUATIONS

J. L. Bonal2 AND F. B. WEISSLER?

ABSTRACT. Numerical simulations and group invariance considerations point to the
existence of similarity solutions of the form

_ 1 Zo — & = et —1t)173
U(z,t) = T t)g/sp’/’ ( (t. —t)1/3 ) ()

of the generalized Korteweg-de Vries equation
Ut + UpU;n + Uzzz = 0. (**)

Here, z., t. and c are real parameters,  and t are real variables with ¢t # t., p is a
positive integer and interest is focussed on the case where p > 4 for which solutions
of the initial-value problem for (**) are not known to be always globally defined. It is
shown that smooth solutions of (%) of the form appearing in (*) do indeed exist. Some
detailed properties of the function i appearing in () are also obtained.

1. Introduction. Numerical simulation by high-speed computers of solutions of

the generalized Korteweg-de Vries equation
Ug + UPU; + Uggr =0, (1.1)

where p is a positive integer and subscripts connote partial differentiation, indicate

that for p > 4, the initial-value problem is not necessarily globally well posed for
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2 J. L. BONA AND F. B. WEISSLER

other than small initial data. It is our purpose here to examine one aspect that arises
from attempts to explain this apparent lack of global well-posedness.

Equation (1.1) with p = 1 is the well known Korteweg-de Vries equation (KdV-
equation henceforth) written in scaled variables in a travelling frame of reference, that
arose last century as a model for surface water waves. In more recent times, it has
arisen as a model for waves in a variety of nonlinear dispersive media (cf. Benjamin
1974, Newell 1985). The case p = 2, the so-called modified KdV equation, also arises
in physically interesting situations, for instance in modelling waves in a crystalline
lattice. Larger values of p could arise in principle as indicated in Benjamin et al.
(1972, §2), though this eventuality seems unlikely in practice. However, models of the

form

Ug+UPU, — LU, =0 (1.1a)

where L is a Fourier multiplier operator with symbol v(§), say, and p = 1 or 2
come to the fore in a wide range of physically interesting situations. The operator L
given by ﬁ(f) = 7({)17(5) is related to the linearized dispersion relation governing
infinitesimal waves in the system in question, as explained by Benjamin et al. (1972,
§2). In applications, <y is often not a polynomial (see Abdelouhab et al. 1989), and in
such cases L is a non-local operator and various aspects of the analysis of (1.1a) are
more challenging. Many of the dispersion relations v that come up in practice have
v(€) ~ |€]P as €] — oo for some § < 2. In attempting to understand more fully the
interaction between nonlinearity and dispersion, it has been tempting in regard to
many theoretical aspects to shift attention from (1.1a) where the nonlinearity is fixed
(p = 1, say) and the dispersion 7 varies from problem to problem, to (1.1) where the
dispersion is fixed (3 = 2) and represented by a local operator and the nonlinearity
has variable strength depending on p. The expectation, which is borne out in some
respects (see .Bona et al. 1987 for example), is that intuition gleaned from the study

of (1.1) will aid in comprehending (1.1a).
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The mathematical context in which our results acquire interest is now explained.
Kato (1975, 1979, 1983) has shown that for all positive integers p, the initial-value

problem for (1.1) wherein one specifies
U(z,0) = Uo(z) (1.2)

for z € R, say, is locally well posed provided Uy is smooth enough and decays suitably
to zero at +£00. That is, corresponding to any such Uy, there is a T > 0 depending
on Uy and a solution U of (1.1) satisfying (1.2) which is defined at least for (z,t) €
R x (=T,T). Kato further showed, as did Schechter (1978) and Strauss (1974), that
T = +oco if p < 4 or if p > 4 and Uy is small in appropriate senses (if p = 4, Up not too
large in Lp-norm while if p > 4, Up not too large in H'-norm suffices). It remains open
whether or not (1.1)-(1.2) is globally well posed for p > 4 and initial data unrestricted
in size, though one sees easily that a solution of (1.1)~(1.2) may be extended to the
unbounded range 0 < t < +oo if for some g > p/2, its Lg-norm remains bounded on
bounded temporal intervals (cf. Albert et al. 1988). In particular, a solution remains

smooth and various Sobolev-space norms remain bounded on bounded time intervals

These observations together with what appear to be related questions connected
with the instability of the solitary-wave solutions of (1.1) (see Bona et al. 1987, Pego
& Weinstein 1993) led to the initiation of detailed numerical simulations of solutions
of (1.1)-(1.2), (sec Bona et al. 1986). These experiments, which featured high-order
numerical schemes with weak stability limitations and having adaptive refinement in
both the spatial and the temporal variable, show clear signs that the Loo-norm of
certain solutions of (1.1) corresponding to order-one-sized initial data do not remain
bounded, but instead become infinite in finite time. More refined numerical studies
(Bona et al. 1995, 1996) have indicated that the blow-up of solutions has a similarity

form, namely

. ] L —:It—c(t*_t)u’S )
Uz.t) = (t. — 1)2/3;9@ ( EDUE + bounded term, (1.3)
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where z,, t. and c are real parameters and the similarity profile ¥ is a smooth function
which tends to zero at too.

Assuming there is a solution of (1.1) having the form exhibited in (1.3) and ignoring
the bounded remainder, it is readily determined that U would have to satisfy the
ordinary differential equation |

2 1
g Py — —3—5\11— g(z+c)\lf’ =0, (1.4)

where z connotes the similarity variable

Lo — &L
z = m —C (15)

and the primes denote differentiation with respect to z. If welet s =z+c and define

©(s) to be ¥(s —c¢), then ¢ would satisfy the equation

1

2
114} ! R - / — 0 1,6
"+ P ¥ " 3% (1.6)

if ¥ is a solution of (1.4). Up to signs that reflect the choice of the independent and
dependent variables, this equation has appeared a couple of times in the literature

(cf. Blaha et al. 1989). It corresponds to the scaling law
u — APy, T — AZ, t— A3t

for the generalized KdV equation (1.1).

In the body of this paper, attention will be given to showing that (1.6) does indeed
possess solutions that approach zero at infinity. Section 2 concentrates on the special
case p = 4 where the analysis i1s more transparent and the results more detailed. The
approach used for the case p =4 is suggestive of the analysis developed in Section 3
that successfully treats the general case p > 4. The principal results of our study are
enunciated here to provide a focus for the technical developments to follow in Sections

2 and 3.
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Main Theorem. (The case p = 4) There ezists an infinite family of non-trivial,

C® -solutions ¢ of (1.6) with p = 4, defined on the entire real axis and having the

following properties:

(i) @(s) > 0 for s > 0 and

 a—1/2,-25%/2/3V3 2 1
(p(S) = CS / [ s / (1— W+O<ST/E>> (17)

as s — +o0o, where ¢ is a positive constant, and

(ii) there ezist real constants a and b, not both zero, such that

1=t e () s () v ()] 09

as s = —o0o. In particular, p(s) has an infinite number of zeroes on (=00, 0].

(The case p > 4) Let p > 4 be an integer. For every k > 0, there exists a positive,

C>_solution ¥ of (1.6) defined on all of R, having the following properties:

(i)

(o) — oI+ g (25 ~3/
P(s) = ks 34+”’exp( 3\/§><1+O(5 32)) (1.9)

as s — +00, and

(iv) there exist real numbers a, b, c, with a # 0, such that

W(s) =a(=s)" "+ (=) {bcos< e +esin (=
40 <|S|—<2/p)—<a/z))

as § — —0O0.

2. Similarity Solutions: the Case p = 4. Consideration is given here to
providing solutions of (1.6) in case p = 4, for which value the equation takes the
special form

0"'(s) - %SW'(S) = %90(8) + o(s)*e'(s) = 0. (2.1)
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It is our intention to prove (2.1) has solutions and to provide rigorous error bounds
on their asymptotics for large values of the independent variable.

We begin the analysis with a few simple observations that set the stage for the more
exacting work to follow. The main reason the case p = 4 is significantly simpler to
understand than the cases where p > 4 is that solutions of (2.1) satisfy the additional

relation

d 1" 1 "2 I 2 1 6
= - i =0 2.2
o {‘P‘P 2(90) GS‘P +690 ( )

obtained by multiplying (2.1) by ¢. Attention will focus upon solutions of (2.1) that
decay to zero at infinity. By imposing this condition in a form strong enough that
the quantity in braces in (2.2) tends to zero at one end or the other of the real axis,

one infers that the solutions of (2.1) of interest here satisfy

1 ]
(¢)? = g8’ + o’ =0 (2.3)

On the other hand, a smooth solution of (2.3) that has only isolated zeroes is also
a solution of (2.1). Solutions of (2.3) have a special property which will be useful

presently.

Lemma 2.1. Suppose ¢ to be a non-trivial, C3-solution of (2.1) and (2.8) on a real
interval I. Then either o(s) > 0 for all s € I or ¢(s) < 0 for all s € I. Moreover, ¢

has isolated zeroes in I.

Proof. Suppose @(so) = 0 for some so € 1. Since ©"(s0) is finite, equation (2.3)
implies that ¢'(so) = 0 also. If ¢"(s0) = 0 as well, then the standard uniqueness
result applied to the initial-value problem for (2.1) shows that ¢ = 0 on I, contrary
to our hypothesis. Thus if ¢ is a non-trivial solution of (2.1) satisfying (2.3), then
¢(s9) = 0 implies ¢'(s9) = 0 and ©"(s0) # 0. In consequence, ¢ cannot change signs
on I.

If the zeroes of ¢ accumulate at so, say, then ¢, ¢’ and ¢ all vanish at sg, and 1t

is again adduced that ¢ =0, a contradiction. (I
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An effective change of the dependent variable is now introduced, following the lead
of Blaha et al. (1989) and, independently, Ghidaglia and Jaffard’. Notice that if ¢ is
a solution of (2.1) or (2.3), so is —¢. Because of this and Lemma 2.1, we might as well
restrict attention to non-negative solutions of (2.1)-(2.3). If ¢ is any such solution,
define v by v2(s) = ¢(s). Equation (2.3) for ¢ implies v to satisfy the equation

1 1
"
v'(s) 12$v(s)-{--—12v

(s)° = 0. (2.4)
Conversely, if v is a non-trivial solution of (2.4), then by the usual local existence
and uniqueness theory, v has isolated zeroes and v2(s) satisfies (2.3) and hence (2.1).
Attention is now focussed upon equation (2.4). In particular, consider the following

initial-value problem for (2.4):

1 1
v — —sv+—v=0 for s > 0,
20712 (2.5)

v(0) = o, v'(0) = 5,
where o > 0. In the next few lemmas, a shooting argument is used to show that
appropriate choices of o and § lead to solutions of (2.5) that are positive for s > 0

and which decay to zero as s ten oo. After this point is established, it will be
shown that this solution of the initial-value problem (2.4) can be extended to —oo
and that it decays to the zero state there as well, thus providing a solution of (2.1)
that leads to a similarity solution in the form (1.3) of the partial differential equation

(1.1) for the case p = 4.

Lemma 2.2. For any § and for any o > 0, the solution va g of the initial-value

problem in (2.5) exists on the entire positive real azis Rt = [0, 00).

Proof. It suffices to show that v(s) and v'(s) remain bounded on any bounded interval

[0, A, say. To this end, remark that if

! 2 1 1 2
F(s) = Fap(s) = zv (3)2‘— —sv(s)” + mv(s) . (2.6)

tPrivate Communication.
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then

F'(s) = —514'0(3)2 <.

Therefore, for 0 < s < A, it is seen that

1, A 1 0 Lo 1 g
X (3)2——'t)(s)2~i—1—2—01)(3)1 < F(s) < F(0) = 2ﬁ + a .

This inequality in turn shows immediately that v(s) and v'(s) are bounded for s €
[0, A]. O

Remark 2.3. The functional F displayed in (2.6) will reappear several times in the

subsequent developments.

It is convenient to define

1 _
Z(S) — Za,ﬁ(s) = a Ua,ﬁ(a 48),

where v, g is the solution on R+ of (2.5) whose existence is guaranteed by Lemma

2.2. Then z, g satisfies the initial-value problem

1 1
1" . 9] =
Z'"(s) — W&z(s) + 1—22(3) =0, A
p (2.7
z(0) =1, Z'(0) = 5
Lemma 2.4. There erists an ¢ > 0 such that if & >0 and (3 are given with
1
18l <€ and —s <€ (2.8)

ad 12012
then v, g takes negative values on R*.

Proof. Let w(s) denote the solution of the initial-value problem obtained from (2.7)
by dropping the variable-coefficient term and making the second initial condition

homogeneous, namely
1
w"(s) + —w(s)® =0,
(5) + s u(s) | o)

w(0) = 1, w'(0) = 0.
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Equation (2.9) can be integrated once, and phase-plane analysis then confirms w to
be a periodic function taking both positive and negative values. Let § be a value
where w(3) < 0. Because solutions vary continuously with respect to the initial data

and the coefficients, there is an € > 0 such that if

18] 1
o~ <€ and a2 < €,
then z4 () is still negative. Thus vap(3/a*) < 0 and the result is proved. O

Corollary 2.5. For any 8 € R, there 15 an ap = ag(B) > 0 such that if & > oo, then

the solution v g of (2.5) assumes negative values on R*.

Lemma 2.6. Let v be a non-trivial solution of (2.5) and let F be the assoctated

functional defined in (2.6). If so > 0 is such that F(so) < 0, then v(s) # 0 for all

s > 8g.

Proof. Since F is decreasing, F(s) < 0 for all s > so. On the other hand, if v(s) =0,
then v'(s) # 0 since v is non-trivial. Hence F(s) = 3v'(s)? > 0, which is precluded if

S__>_So. O

Lemma 2.7. There exists an c; > 0 such that if 0 < a < o, then (1) v(s) =
Vo 0(8) > 0 for all s > 0, and (ii) there is an s1 > 0 independent of a € (0, 1] for

which F(s1) = Fa0(s1) <0, where F 1s the functional associated to v as in (2.6).

Proof. Fix an @ > 0 and let v = va 0. Since v"(s) = 5v(s)[s — v(s)8]. it follows that
v"(s) < 0 as long as v®(s) > s > 0. Because v'(0) = 0, it is also true that v'(s) < 0 as
long as v®(s) > s. Thus v is decreasing at least until s > v&(s). Let sg be the smallest
positive value for which so = v®(so). Since v"(s) < 0 on [0, 50) and v'(0) = 0, we
have v'(sq) < 0. It follows from the foregoing that

1 [

=1/, [v2(s) — su(s)]ds

—v'(sg) = — /Oso v"(s)ds

< - /SO v¥(s)ds < i50019 = —1—'1)8(50)a9 < —l—a”
= gy " 12 12 =12
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and .

1
v(s0) = @ —I—f v'(s)ds > o + sov’(s0) = & — 1—2—30a17
0

1 g 17 1 25 o
=—q - — >a— — = 1-— ;
@ = 75V (so)o’ 2 @ T e! 12

Hence one has 1 g 1
F(So) = 51)’(30)2 — ézSO'v(So)z + mU(SO

_1/ 2 1 1 10
= 5¥/(%0) (24 120>1KS°)

34 24 10
< —l—alo 1- = 3
— 288 30 12

It is clear from the last inequality that there is an oy such that if 0 < @ < «a; then

)10

F(sg) < 0. Of course, the value of sq depends on a. Then, for « in the interval
(0, 1], we see that v(s) = Ua,0(s) > 0 for 0 < s < 5o and that F(sg) < 0. Lemma 2.6
then implies that v(s) > 0 for all s > so and (i) is shown to be valid. For part (ii),

choose s; = a?. Then for 0 < a < a1, we have
so = so(c) = v(s0)® < a® <ol
In consequence, since F' is decreasing,
F(s1) = F(af) < F(s0) <0,

and s; is independent of & in (0, 1] O

Corollary 2.8. Let oy be as in the last lemma. There ezists a Bo > 0 such that if

18] < Bo and a € a1, 1], then Vg p(s) > 0 for all s 2 0.

Proof. 1t is known that if %al < a < ai, then vy o(s) > 0 for all s > 0 and there is an
sy > 0 for which F,o(s1) < 0. Appealing again to standard continuous-dependence
results, there is inferred the existence of a constant By > 0 such that if %al < a<ar,
then vy g(s) > 0 for all s € 0, s1] and 18| < Bo, and Fq p(s1) < 0 for the same range

of (a, B). Resorting to Lemma 2.6 thus assures the advertised conclusion. O
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We now fix a value of 3 with || < 8o, where o is as in the last corollary. For this

fixed value of (3, define

A= {a>0:vap(s) >0 for all 5 >0}

and

B ={a>0:u,p(s) <0 for some s > 0}.

Corollary 2.5 implies B to be non-empty while Corollary 2.8 implies A is likewise
non-empty. Since (2.5) is second-order, if v(s) = 0, then v'(s) # 0 if v is non-trivial,
which is certainly the case if & > 0. It follows that AU B = (0,00). By continuous
dependence, B is an open set and so A is closed. Moreover, B contains the entire
interval [ao, 00), where g = ao() as in Corollary 2.5. Let @z = sup{a : @ € A} and
set v = vy, g. The value oy lies in A since A is closed, whence v(s) > 0 for s > 0.

Also, s + € lies in B for any € > 0. Let F(s) = Fa, g(s)-
Lemma 2.9. With the notation above, F(s) > 0 for all s > 0.

Proof. If not, then since F is strictly decreasing it would follow that there is a point
3 such that F(3) < 0. By continuous dependence again, there is an € > 0 such that if
la — arg| < ¢, then vq g(s) > 0 for 0 < s <5 and F,p(3) <0. It follows from Lemma
2.6 that if |a@ — ara| < €, then v g(s) > 0 for all s > 0. Thisis a contradiction because

there are such values of o that lie in B. O

Corollary 2.10. If F = Fa, 5 and v = Ua, g, then lim F(s) = Foo > 0 and v €
§— 00

L2(0,00).

Proof. Since F is decreasing and non-negative, it has a non-negative limit at oc. Also,

F(s) = = 750°(6),

SO

/r v2(s)ds = —12/r F/(s)ds = 12(F(0) — F(r)) < 12F(0),
0 0

whence v € L2(0, 00). ' O
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Lemma 2.11. With v as in the last result, there exists an $1 2 0 such that v'(s) <0

for all s > s1. If B <0, then v'(s) <0 for all s 2 0.

Proof. Since F(s) > 0 for all s > 0, it follows that

Hence if v(s)® < 5s, v'(s) # 0. Thus if there is an s with v(s1)® < 5sy and v'(s1) <0,
then v'(s) < O for all s > s1. Such an s, must exist, for if not then for all s > s
either v(s)® > 5sor v'(s) 2 0. Asv >0 everywhere, such a function could not lie in
L2(0,00).

If 8 <0, then v'(0) <0 and

Thus v”(0) < 0 and so v'(s) < 0 as long as s < v(s)®. At the first value § where
3 = v(3)8, we still have v(3)® < 5% and v'(5) < 0. It was just argued that for such an

v
5,v/(s) <0 for s > 5. O

Corollary 2.12. With v as above, lim sv?(s) = 0, and in particular, v(s) = 0 as
§—00

§ — 00.
Proof. This follows since v > 0 is eventually decreasing and lies in L2(0, 00). O

Corollary 2.13. With the notation presently in force, we have lim v'(s) = 0 and

lim F(s) = 0.

§—00

Proof. Since v(s) — 0 and F(s) = Fo a5 s = +00, it follows that

lim v'(s)? = 2Fw.

5§— 00

If F., # 0, then because v'(s) is eventually negative, we would have v'(s) = —L

where L2 = 2F.., L > 0. This is impossible if v(s) — 0 as s — oo. O
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We continue to assume v = vo, 3 Where o and 3 are fixed as delineated previously.
Similarly, it is assumed that F = F,, g. A detailed asymptotic analysis of v(s) is now
undertaken regarding its behavior as s becomes unboundedly large. At this point, it
is known that F(s) > 0 for s > 0, that F(s) — 0 as s — +00, and that v(s), v'(s) = 0
as § — +00.

Since F'(s) = —v(s)?/24, it follows that

/ 2 SU(S)E ’U(S)m 1 / 2
- _ T d
) 12 60 12 J, ur) i

or, what is the same,

Ur(é‘)? _ 1 v(s)g 1 00
su(s)? 12 60s " 1231)(5)2/5 o(r)*dr. (2.10)

The second term on the right-hand side of the last formula tends to zero as s — +00,

and consequently
v'(s)? S 1

11sr£1>£fs v(s)?2 — 12°

In particular,

o
by 2%

as! (.0
\2)

liminf —
§—00 v(s)

= +OO,
and it therefore follows by an application of 1'Hopital’s rule that the last term in

(2.10) vanishes in the limit as s approaches +oo. It is thus concluded that

. v'(s)? 1
lim — = —,
s—+ooé.'?r(s)2 12

which is identical to
!
lim — () _ 1
smoosi2u(s)  24/3

since v'(s) < 0 and v(s) > 0 for s near +-co. Another application of I'Hépital’s rule

(2.11)

together with (2.11) shows that

o [:}0 v(r)2dr

s—00 §7 12y (5)?

= /3. (2.12)
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Now rewrite (2.10) in the form

A/2,00\2  ¢3/2 1/2,,( \8 1/2 00
sY2'(s)* s st/%u(s) L E / o(r)dr.
v(s)? 12 60 12v(s)? J,

The first term on the right-hand side tends to zero because of Corollary 2.12, for

example, and so (2.12) then implies that
sl/zv’(s)z 33/2 \/g

) 12 12 (2.13)
Define
1/2.:0{ a\2
(s) = 125_1](15)(;—)— — 3% V3, (2.14)

so that 6(s) — 0 as s — oo according to (2.13), and then rewrite (2.14) as

v (5)% = su(s)’ (1 + V3 + 9_(8—)> ;

12 33/2 83/2

Since v'(s) < 0 for large values of s and v(s) > 0, the last formula implies

1/2
—v'(s) = v(s) (%—\/5 + 211—8 + 8128)> , (2.15)

where 0;(s) also tends to zero as s tends to infinity. Returning to (2.12), the use of

’Hépital’s rule and the results in hand yield

'/ [ v(r)?dr
v(s)?

§—00

lim s3/2 { - \/5} = —-3. (2.16)'

Formula (2.10) implies that

(a2 1/2 8 1/2 oo
a2 V() L} _ s v(s) s / 24
: Lv(s)2 12 60 * 12v(s)? J, i g

The first term on the right-hand side of the last equation tends to zero as s tends to
infinity, while the second term tends to v/3/12 on account of (2.12). One is thus led

to consider the weighted difference

3o (V) L _ V3
sv(s)? 12 12’
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which, according to (2.16), converges to — as s becomes unboundedly large. Let

6,(s) be defined by

B2 (s) = 125°/ [33/2 (% —~ %) - g} + 3, (2.17)

so that 02(s) tends to zero as s tends to infinity. Solving (2.17) for v'(s)? leads to the

formula,

(o = 2 {1 -5 92(3’}.

12 $r7 B8 8

Again solving for v’ and recalling that v'(s) < 0 for s large, there obtains

, i V3 3 8
_u(s):“’—z%/)_és—)[urggwng 38(33)},

where 63(s) tends to zero as s tends to infinity. The last formula may be rewritten as

d s3/2 o'(s) M1 V3 03(s)
— 1 2 tlogst/t| = s = :
T ogv(s) + 373 + logs ] 2(5) + W + 1 = 452 52

(2.18)

Since the right-hand side of (2.18) is integrable over the interval [1, 00), say, it follows
that
33/2
logv(s) + —= +logs

3v3

as s — +oo, where k is a finite real constant. Indeed, since 83(s) tends to zero at

V4 5k

infinity,

53/2

1 1
1/4 _ . _
logv(s)+3\/§+logs =Kk 2\/533/2+0(83/2>

as s — 4+00. Exponentiating this relation leads to the conclusion that
v(s) = s~ a3V (1 - b + 0 = (2.19)
2\/353/2 53/2 ’
as § — +oo, where ¢ = ¥ > 0.

Attention is now turned to the behavior of solutions of the initial-value problem

(2.5) as the independent variable s tends to —oo. To study this issue, it is convenient
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to set w(s) = v(—s) and consider the behavior of w as s — +o0. Of course, w satisfies

the initial-value problem

1 il
w’ () + —ﬁsw(s) + —w(s)® =0,

12 (2.20)

w(0) = o, w'(0) = 8.

For s > 0, define the functional G in analogy with the F of (2.6) to be
G(s) = L' ()2 4+ Sw(s)? + w5 (2.21)
2 24 120
If w solves (2.20), then
1
/ 2
= = > 0.
G/(s) = 57ls) 2 0,

so (' is increasing on [0, 00). Moreover, observe that

, 1 Lsw(s)? 1
00 = 5wl = ;5 <

from which it follows that for any so > 0;

<

for all s > so. Thus G grows at most linearly as s tends to +00. The latter a priort
deduced bound together with standard local existence theory implies (2.20) to possess

a globally defined solution. This state of affairs is worth formalizing.

Lemma 2.14. For any o, € R, there ezists a unique solution w of (2.20) which 1s
defined for all positive values of the independent variable. Moreover, if a and B are
not both zero and G is as defined in (2.21) where w is the solution of (2.20), then G
is positive and strictly increasing on [0,00) and there exists a constant C such that

G(s) < Cs fors 2 1, say. Finally, there are constants Co and Cy such that

w'(s)] < Cis?  and  lw(s) < Co (2.22)
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for s > 1.

Proof. Since G(0) = 1%+ 350, it is strictly positive unless both o and 3 are zero.

Because G'(s) = w(s)? and w has only isolated zeroes, G is strictly increasing. The

two inequalities in (2.22) follow immediately from that fact that G(s) < Cs. O

Guided by formula (2.19), let u be defined by the relation w(s) = s~ 4u(s%/2/3/3).
It follows that
1

o rzu(r)g = 0. (2.23)

u(r) +

3
w(r) + u(r) + 55

We are interested in the asymptotic behavior of w at +o00 which follows readily from

the asymptotic behavior of u at 4-o00. If u solves (2.23) on some interval [a, c0), say,

define
1 2, } 2 2 1 10
H(T) - 51/(7‘) =t 5’(1,(7‘) T 79 72 U('r‘) s 270 r2 U(T‘) :
A calculation reveals that
H'(r)= ———5——u(1')2 - L u(r)lo <0.
36 r3 135 3 .

The following lemma follows immediately from this observation.

Lemma 2.15. Let u solve (2.23) on an interval [a,00). Then u(r) and u'(r) are

bounded as T — +00.

Continuing the analysis of solutions of (2.23) near +oo, write the equation as a

system, viz.

or in matrix form

LN (8 ) - (ow) e
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. The variation of constants formula then leads to the representation

(4 =20 (203) = [ 70 (i)

T(t) = < cost sim)

—sint cost

where

and 0 < 7y < r2. The latter is equivalent to

Ti-r) (“E%) ST (“E%) - / T (f(p,?mp))) s

Lemma 2.16. With notation as above, the limit

: u(r) _ (@
Jim T(-) (z(r)> = (b) (2.25)
Proof. Since T(—r) is a unitary matrix, it follows that

T(=p) <f(p,%(p))) . Kf(pﬁi(/ﬁ))‘ (2.26)

C C
< ;§(|U(P)| + lu(p)®) < o

since u is bounded from the results of Lemma 2.15. (The norm of a vector in R? is

exists.

the standard Euclidean norm.) Thus,

AT / T(=o) (f(r).,%(p))) &

exists, and the proof is complete. tJ

Express the vector <Z> in (2.25) as

(5) =70 (469) - [, 7o (stoton ) 2

replace 71 by 7 and apply T(r) to obtain

(ZE:;) = T(r) (Z) + T(r) /roo T(-p) (f(p’(i(p))) dp- (2.27)

Because of the bound expressed in (2.26), the last representation presents a conclusion

which is recorded in the following lemma.
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Lemma 2.17. With the above notation,

as v — +00.

(
(

(0l

Corollary 2.18. If the limiting vector (i) is the zero vector in R?, then

0(r—™) as r — oo for all values m 2 0.

Proof. If (a) e (0 ), Lemma 2.17 implies that

b 0
(5D)|=e(c) o o

This in turn implies that | f(r, u(r))| < C/r3 as v — +oo. Putting this inequality into

the representation (2.27) leads to the conclusion

CHRICIR

It follows that |f(r,u(r))| = 0(1/r*), whence (2.27) implies.

GO)l-o(5) = re

An obvious induction argument may be used to complete the proof. O

It thus transpires that if u is a solution of (2.23) on [0, 00), then there are constants

a,b € R such that

u(r) = acos(r) + bsin(r) +0 (?l)

as r — +o00.

u'(r) = —asin(r) + beos(r) + 0 (l)

T

Translating this into information about w leads to the following result.
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P’foposition 2.19. Let w be any solution of the initial-value problem (2.20). Then

there erist real constants a and b such that

w(s) = s~/ [a cos (%) + bsin (;{%)] +0 (;%)

w'(s) = ;—l\% [—asm <%) beos (%)] i (5"’17>
)

as s — +00. Moreover, a = b =0 if and only if w(s

and

Proof. The only aspect not already covered is the last statement. If w = 0, then
plainly a = b = 0. Suppose w is not identically zero. If a = b = 0, then according to
Corollary 2.18 u(r) and u'(r) decay faster than any inverse power of r. Thus, w(s)
and w'(s) decay faster than any inverse power of 5. It follows that G(s) defined in
(2.21) tends to zero as s tends to infinity. This contradicts Lemma 2.14 unless G = 0.

But then w(s) = w'(s) = 0, whence w = 0. d

This concludes the developments for the case p = 4. All the conclusions stated in
the first part of the Main Theorem, including the asymptotic formulas (1.7) and (1.8)
for o, have been established in the theory set forth in this section.

In the next section, attention is turned to the second part of the Main Theoremn

which corresponds to the case p > 4 in (1.6).

3. Similarity Solutions: the Case p > 4. In this section we study solutions
of equation (1.6) in case p > 4. Roughly speaking, we will show the existence of a
one-parameter family of solutions which are positive and have exponential decay as
s — +00, but decay algebraically with oscillations as s — —00.

The proof in case p > 4 is much more technical than in the case p = 4, because
we have been unable to reduce the problem to the analysis of a second-order equa-
tion. Having to deal directly with the third-order equation (1.6) appears to require

a fundamental change in strategy, since a standard shooting argument is no longer
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feasible. Indeed, the shooting argument used in Section 2 depends on the fact that a
non-trivial solution of equation (2.4) must have non-vanishing derivative at any point
where it equals zero. This is generally false for a third-order equation.

Instead of looking at the initial-value problem associated with (1.6), or some related
equation, at some finite value sg € R, and then studying separately the behavior of
solutions as s — +oo, we directly construct solutions defined in a neighborhood of
+00 which have the correct exponential decay. Then our task is to show that such
solutions can be continued to —oo, and that they have an appropriate asymptotic
behavior as s — —oo.

The study commences as with the case p = 4 by multiplying (1.6) by o, thereby

obtaining a modified version of (2.2), namely

2 p(s) = -2 4 (5%, (3.1)
where , "
[ s 2 p+2

F(s) = ¢/ (s)ls) - L~ o) % (3.2)

Qince a non-trivial solution of (1.6) has only isolated zeroes, it follows that F(s) is
everywhere strictly decreasing. In particular, it follows that ¢ and its derivatives can
not all decay rapidly both as s — +00 and s — —oo, for then lims 400 F'(s) = 0.

Other helpful information follows directly from (3.1) and (3.2).

Lemma 3.1. Let ¢ be a nontrivial solution of (1.6) with p > 4 defined on a suitable
unbounded interval in R.

(a) Iflimy 100 F(s) =0, then ¢ has no zeroes.

(b) If v is not in L%(—00,0), then @ can have at most finitely many zeroes on

(—00,0).

Proof. For part (a) is suffices to remark that if limg_ 00 F(8) = 0, then, since F is

strictly decreasing, F(s) > 0 for all s € R, and that if ¢(s) = 0, then from (3.2)

tThanks go to M. Weinstein for suggesting this approach.
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F(s) < 0. Part (b) follows upon noting that if sm — —o00 is a sequence of zeroes of
¢, then F(sm) < 0. This implies that lims_ —co F(s) < 0, which in turn implies, by
integrating (3.1), that ¢ € L?(—0,0). 0

It follows that a solution which decays exponentially to zero, along with its first
few derivatives, as s — +o0o and which is positive in a neighborhood of +o0o must
remain positive throughout its interval of existence.

Guided by the results for p = 4, we are led to define

af_ «\3/2
o(s) = (—) T (i%—) (3.3)

for s < 0. It transpires that for a certain choice of v, the function u satisfies an
equation which, if terms which should decay more rapidly are discarded, can be
solved explicitly. This enables one to guess the asymptotic state of ¢ as s — —00.
The analogous transformation can be made for s > 0, again allowing one to guess the
precise type of exponential decay the desired solution of (1.6) should have. In both

cases the useful value of v is

3 1
e 4
=T (3.4)

In fact, the line of argument is a little more exacting that just described, but the gist
of an effective proof is encompassed in our remark.

In what follows, the first step is to construct a family of solutions of (1.6) which
are positive and have exponential decay as s — +00. Then, it is shown that these
solutions can be continued “backwards” onto the whole real line and that they respect
certain helpful a priori estimates as s — —00. These estimates are used in the
investigation of the detailed asymptotic structure of this family of solutions as s —
—00.

For the rest of this section, we assume p is an integer greater than 4.

3.1. FEzponential decay as s — +00.

To construct solutions of (1.6) which decay exponentially as s — +00, a change
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of variables is used which is more elaborate than (3.3) and which incorporates more

completely the expected asymptotic behavior. Define the function u by the transfor-

mation
p(s) = s u(r), (3.5)
where v is given in (3.4) and
—233/2>
r =ex 3.6
) ( 3V3 (36)
or, what is the same,
1 233/2
—logr = )
AW

Note that s > 0 corresponds to 0 < r < 1, and that s — 400 as r — 0%. In these
variables, a search is initiated for a solution ¢ of (1.6) such that u(r) = kr + o(r) as
r — 0%, where k is some fixed positive number.

A straightforward, but tedious calculation shows that ¢ is a solution of equation

(1.6) for s > 0 if and only if u is a solution of the following ordinary differential

equation:
rou(r) + (3% + a8 u'(r) + 46“[7“1/(7”) — u(r)]
- =R (57)
Ard(r)  Bu(r)  Cru@yu'(r)  Du()rtt |
(—logr)?  (—logr)? (— logr)r/? (= logr)P+2)/2 = 7
where
1 2
0=5- - 0 (3.8)

and A, B, C, and D are constants depending on p, whose values are determined
explicitly from equation (1.6) and the transformation (3.5) and (3.6). The only one

of the four values which is needed explicitly is

4 8 41
A= — — — + —. 3.
3p?2  3p o 36 (39)
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Note that A > 0 for any p > 4. It is worth remarking that if the transformation
defined by (3.5) and (3.6) is carried out for values of v other than the value in (3.4),
an equation similar to (3.7) will obtain with some different coefficients and the powers
of (—logr) in the last two terms will also be different. The crucial change is that the
terms ru/(r) and —u(r) don’t appear in exactly the combination ru'(r) — u(r), but
rather with different coefficients. In analyzing (3.7), the term featuring ru "(r) — u(r)
is the most delicate to estimate; use will be made of the fact that its derivative is
exactly ru(r).

For a reader actually making the computation leading from (1.6) to (3.7), it seems
easier to reach the correct formula in two stages, letting first @(s) = s~ 72(t) where
A= 5\2/—533/2, obtaining an equation for z, and then setting 2(t) = u(r) where r = e™*
to derive an equation for u. Also, it will be worth retaining the calculations to help
with verifying statement (b) of Proposition 3.4. The first stage of calculation just
suggested will reappear in Subsection 3.3.

Equation (3.7) can be rewritten in the equivalent form

d [ r3u'(r) Aru(r) C ru(r)Pt?
dr { (Clogr)? ' (—logr)®*2 ' p+1(~logr)®+(/2) }
) u(r)

(3.10)

= ("_Tgi,—,)g_ﬁ[u(r) —ru'(r)] + WU(T) +u(r)Pg(r)};
where
L G+2A-B . Cl-logr) +C+(p/2) ~ Dlp+ )
)= A+ =gy O T T (g

Since p > 4, if 0 < R < 1, then f,g € C([0, R)), with f(0) = A and g(0) =0.

Our goal is to construct solutions w of (3.7) on [0, R} with u(0) = 0 and uw(0) =k #
0. The matter is complicated by the fact that such solutions will not be in C?([0, R)).
To prove the cxistence of solutions, we transform (3.10) into an integral equation.
It will not be immediately obvious that the integral equation is equivalent to (3.10),

or even that it makes sense. These facts will be proved in the course of establishing
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existence of appropriate solutions, by the use of a very particular function space.
The integral equation in question, written in a way that is convenient for subsequent

calculations rather than its most compact form, is

r 1 = p-{-l
- A/ u(7) gr — C u(T) .
logr = p+1J, 7(—logT)r/? T

' ( log T)6+2 ’ -—————'—U(U) g ul\o g g T
+ / e (S [ e U +uCorato d bar
T 1 (—log 7)8+3=¢ [T u(o) — ou'(0) o4 dr
+5/0 T(—log‘r)B“E{ 72 /o (~loga)*t } o

[f0<e<2and0< R <1, let Mg be the set of functions u € C'([0,R]) N
C2((0, R)) such that u(0) = 0 and r(—log )24’ (r) is bounded on (0, R]. (Unfortu-

nately, the positive value of ¢ is needed. Without it, this last condition appears too
strong to carry out the contraction-mapping argument to appear below. The reason
for considering € close to 2 is to provide a larger uniqueness class for solutions.) The

space M, g will carry the norm

_ || ||| - . LI\ PR P PN €,
Huill =llluilleg= sup juir)+ sup j7{~i08 )2
0<r<R 0<r<R

Proposition 3.2. If a function u lies in Mc g for some € in (0,2) and R in (0.1),
then all the integrals in (3.11) are absolutely convergent. If, in addition, u is a solution
of (8.11), then u € C'([0,R}) N C3((0,R)]), u(0) = 0, v/(0) = k, and u s a solution
of the differential equation (3.7) on (0, R]. Furthermore,

lirr(l)r(—logr)2 u'(r) = —kA/2,

where A is given by (3.9).

Proposition 3.3. Let k € R and ¢ € (0,2). There exists It € (0,1) such that (3.11)

has a unique solution in M. R.
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Proposition 3.4. Letk € R, k # 0. There exists so > 0 and a nontrivial C3-solution
¢ of (1.6) on the interval (50,00) having the properties:
. _9g3/2 g—3/2 _
(a) o(s)=ks (3/4)+(1/p) exp( :\/5 ) (1 ~ 9—""7\/—5— + o(s 3/2)> as § — 00,

(b) and F(s) — 0 as s — 0.

The uniqueness part of Proposition 3.3 translates into a uniqueness class for the
solutions of (1.6) described in Proposition 3.4. However, translating the condition u €
M. r into a coundition on ¢ using the transformation (3.5) seems rather cumbersome
and would involve ¢ and ¢ as well as . This condition has therefore not been made
explicit.

The rest of this sub-section is devoted to proving these propositions. The line of

reasoning starts with an elementary consequence of I’'Hépital’s rule.

Lemma 3.5. Let a > —1 and b € R. If h is a continuous function on [0, R], then

(—logr)*’ /T a®h(o) o = h(0) |
o (

t—+04 o+l ——10g0)b 7= a+1

Proof. This follows easily from an application of I'Hopital’s rule. O

Attention is now turned to the proof of Proposition 3.2. Denote the four integrals
in (3.11) by I through I4 in the order in which they appear. Suppose that u € M, g,
for some ¢ in (0,2) and R in (0,1). The functions

1 1 1
. d ————
7(—logT)? T(—logT)P/2 an T(—log7)3~¢

are all in L'([0, R]). (Here is where the condition € < 2 is used.) Since u(0) = 0, it
follows that

u(r)] < 7llu'lleo < Tll| ]l (3.12)
for all 7 € (0, R]. One immediately concludes that I; and I, are absolutely convergent

and that
L) < GRu I,

| < GR)|I wlllPF
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where here and below, G denotes a continuous function defined on (0,1) such that
G(p) — 0 as p — 0F. The notation G will not necessarily connote the same
function from line to line. For example, in the estimate for i, we may choose
G(p) = (—logp)~'. As for I3, Lemma 3.5 (with a = 1 and b = 6 +2) and the

estimate (3.12) immediately imply that I3 is absolutely convergent and that

1I5] < GBI w [{II flloo + B” [ [P [lglloo }-

Finally, to estimate I4, note that (u(o) — ou'(0))" = —ou’(0). This plus the facts

that u(0) = 0 and |su’(s)| < (—logs)~**¢||[u ||| imply that

|u(o) — ou'(o) 1 T
(—logj)““ & (—loga)®+! /0 lsa()lds
o (—logo)2= [° 1 (3.13)
== (_ loga)6+3—s o A (__ log 0)2_5 do |H u l”

Two applications of Lemma 3.5, first with a =0 and b =2 — ¢, then with a = 1 and

=6+ 3 — ¢, show that I4 is absolutely convergent and that
14| < G(R) | ulll-

This proves the first part of Proposition 3.2. (So far, Lemma 3.5 has only been used
to show that certain functions are bounded near 0. Also, we have not yet seen why
e > 0 is required.)

Now suppose that v € M, g verifies equation (3.11). It is clear that u € C2((0, R)).
Differentiating (3.11) and subsequently multiplying by r3(—log )%, one obtains an
integrated version of equation (3.10), which immediately implies (3.10). Thus u veri-
fies (3.7).

To prove the last statement in Proposition 3.2, suppose first that € < 1. Calculate

r(— log r)2u” (r) by multiplying the differentiated version of (3.11) by 7(—log r)?. This
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yields
u(r) C 1 u(r)PH!
T p+1(=logr)®/2-2 1

. (—logr)®*? /r( u(o) (o) + u(0)Pg(0))do (3.14)
0

r(—logr)®u"(r) = —A

r? —loga)d+?
) (= logr)?+3—F /' u(o) — ou' (o) }
do ;.
T Flogr)e { r? o (~loga)*T

Since p/2 > 2 and € < 1, it is clear from (3.13) and (3.14) that

0 _ 2,1
r1_1+r51+1~( log r)*u"(r)

B . u(r) . (=logr)s*?® [T o u(o) "
=4 r1—1>%1+ T + Tgrcl;l—f- T2 o (—logo)é*? o [f(0) + ulo)glo)l do
Ak Ak
=A==

where Lemma 3.5 has been applied with a =1 and h(d) = %") [f(o) + u(o)Pg(o)]
If, on the other hand, 1 <& < 2,2 bootstrap argument comes to the fore. Multiply

the differentiated version of (3.11) by r(—log ry3=€=¢' for some small ¢’ > 0. Since

1 < e < 2, it is clear that 3 — ¢ — e/ < 2. It then readily follows that u € Meje'—1,R,

and the previous argument may be applied.

This completes the proof of Proposition 3.2. O

Consideration is given to a proof of Proposition 3.3. Let k € R and € € (0,2) be
fixed. Let R € (0,1) be arbitrary for the moment. Define an iteration on M. r as
follows. If u € M, g, let Yu be the continuous function defined on [0, R] such that
(Tu)(0) = 0 and (Yu)'(r) is given by the right-hand side of equation (3.11). It is
clear from the estimates of I; through I4 obtained while proving Proposition 3.2 that

¥u € CH([0, R}) and
1(F) [loo < [E1+ GRI w1 {1+ {21117, (3.15)

where G is a function of R such that G(R) — 0 as R — 0% (G depends on ¢ in that

it incorporates the estimate of I3).
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Now calculate r(— logr)2~¢(¥u)"(r) by differentiating (3.11) and multiplying the
result by r(—logr)?~¢. This leads to

1 u(r) C 1 u(r)Pt1
(—logr)e r p+1 (—logr)/2)—2+e T

1 {(—105;")6+2 /Or( u) [f(a)+u(0)p9(")]da}

r(—logr)? ¢(Tu)'(r) = —A

+(— log 7)€ T —log a)8+2
_ §43—¢ pr e
g 5 (- logr) / u(o) — ou'(o) do b
—logr T2 o (=logo)s+!
(3.16)
It is clear from formulas (3.12) and (3.13) and Lemma 3.5 that
sup _|r(—logr)?~¢(¥u)"(r)] < G(R)|[[wlll[1 + [[[u|l{?}. (3.17)

0<r<R

By the way, one can now see why € > 0 is necessary. If we had defined the norm
|| - ||| with € = 0, then the first and third terms in (3.16) would lack the factor of
G(R). Indeed, the ¢ = 0 case is the “critical” norm, and proving local existence with
critical norms is delicate, and not always possible.

It is clear from (3.15) and (3.17) that if u € M, g, then also Yu € M. r. Let X,
denote the closed ball of radius p in M. r with respect to the norm [[| - [|[e,r. It
also follows immediately from (3.15) and (3.16) that if |k| < p and if R is sufficiently
small, then ¥ maps X, into itself. It is now routine to show that if R is sufficiently
small, then ¥ is a strict contraction on X ,, which is to say there exists L < 1 such
that

1%u — Toll] < Lillw = o]l

for all u, v € X,. The only additional estimate needed is
[uP Tt — vPTH < (p + 1) max{|ul?, [v|P] [u - v].

Thus, ¥ has a unique fixed point in X.

This completes the proof of Proposition 3.3. O
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Finally, we prove Proposition 3.4. Let ¢ be given by the transformation (3.5), where
u is the solution of (3.7) guaranteed by Propositions 3.2 and 3.3. That F(s) — 0 as
s — 0o follows easily by expressing the derivatives of ¢ in terms of the derivatives of
u and using the known properties of u. To prove the asymptotic formula, consider in

more detail the behavior of u near 0. Taylor’s formula with integral remainder is

T

u(r) = u(0) + ru'(0) + / (r — s)u”(s) ds.

0
This formula is clearly valid if w is C*, and u” is continuous for r > 0 and integrable
at the origin, which is the case here. Also, we know u(0) = 0 and u'(0) = k. By

Proposition 3.2, the second derivative u” has the form

o' (s) = (-1“2—’4 + u(s)) m (3.18)

where p(s) — 0 as s — 0, and so

u(r) = kr + (—%ﬁ + ,u(r)> /Or s—({%gé—%)_? ds.

On the other hand, we have

" r—35§ r 1 4 1
" ds = _ds— | ——— d
/os(—logs)z ds /o (“logs)? /o(—log.«)?- ’

r r
~ —logr +0 ((—103;7‘)2) '

In consequence, it transpires that as r — 0t,

w(r) = kr (1—ﬁc%7)+0<—12gr>>' (3.19)

This last relation can be improved by the following bootstrap argument. Substitut-

ing (3.19) back into the first term on the right side of (3.14), and using € = 0 in (3.13)

and the last term of (3.14), one concludes that u(s) = O(_lo;s) in (3.18). Carrying

this estimate through in the above reasoning leads to the following improvement of

: A 1

(3.19):
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as r — 07. Evidently, with more effort, one could explicitly calculate the subsequent

terms in this development.

Finally, formula (3.20) translates immediately via the transformation (3.5) to the

development given in Proposition 3.4.

3.2, Continuation of the solution and a priori estimates

The purpose of this sub-section is to prove that the solutions constructed in Propo-
sition 3.4 (with & > 0) can be continued as solutions to the entire real line, and to

obtain estimates on their decay as s — —oo. The first result is the following.

Proposition 3.5. Let k > 0 and let ¢ be the C3-solution of (1.6) constructed in

Proposition 8.4. Then the mazimal interval of ezistence of ¢ is the whole real line.

Proof. Recall that by Lemma 3.1, the function ¢ is strictly positive on its maximal

interval of existence. Since it is easier to think of forward continuation of solutions,

set

Equation (1.6) for ¢ is thus equivalent to the equation

" (8) + (e (5) + o) + S (s) = 0 (3.21)

for n.
To prove the proposition, it suffices to show that if 7 is a positive, regular solution
of (3.21) on some interval [sg, s1), where s1 < 0o, then n(s), n'(s), and n'(s) arc

bounded on [sg, s1). Equation (3.21) can be re-written as

d 2 ?}(S)P“} _2-p

"y . _— s
7 [1] (s) + 3psn(s) + —— o

sn'(s)- (3.22)
Multiplying (3.22) by [n”(s) + éz—psn(s) + —"(7%3:—1] and re-writing the resulting right-
hand-side, one obtains

- P~ 2 77,(5)2 4 5?3(3)2 _MF?— ;
[ i p 2 ! (p+1)(p+2) (3.23)
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where
K(s) = 3 Ka(s)? + sKa(s)
and
Kuls) = 1)+ o) + B
Kals) = (p3—p-’2) n’(zs)2 +_32_psngs)2 (p:(f))z’;i 5|

Suppose first that s; > 0 (the simplest case). It is clear from (3.23) that for all

s >0,
K'(s) < 2Kals) < 2K (9), (3.24)

from which it is concluded that K is bounded on [s0,51). Since Ky(s) > 0 for all
s > 0, it follows immediately that n(s), n'(s), and 7' (s) are all bounded on [0, 51)-
Suppose next that s; < 0, and so s < 0 for all s € [sg,s1). It follows from (3.23)

that

K'(s) 2 2 3p 2 (p+1)(+2)]°

= __31)

whence K’ is seen to be bounded below on [sq,s1). Thus, K is also bounded below

p—2 [TI’(S)2 4 |sg|n(s)? n(s)P*?

on [sg, 81), from which it follows that
1 2
—sKy(s) < C+ §K1(S) (3.25)
on [s0,s1). On the other hand, formula (3.22) is the same as

1 2 -D
Kils) = =o' (s),

which integrates to

Kats) - Katoo) = 22 ([ te)ds + sontoo) - sn(s))

3p .

It follows that
Ki(s)2 < C (14 5n(5)2 + 1l oum) - (3.26)
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This estimate, combined with (3.25) and the fact that K> is bounded below on [s0,81),

implies that
5Ka(s)] < C (14 50(s) + s,y

< C (14 1l eore)) (3.27)

2/(p+2)
< C(1+1Ksllpem(oon)

bl

where the constant C might be different from line to line, but is always independent
of s € [s0, $1)-

If s, < 0, it follows immediately that Ky is bounded above on [sg,s1). Thus, 7
and 7' are likewise bounded on [s0, 51). Formula (3.26) then implies that Ki, and
therefore n”/, are bounded on [sg, 51)-

Finally, suppose s; = 0. Formula (3.27) implies that for s € (50, 0),

%
|s]

bl

)2/(P+2)

(14 1K2(s)]) < 7 (1 + [ Kall>(s0.9)

from which it follows that

C
(1 + || KallL>(s0.5)) < 5l

3

2/(p+2)
(1+ | Kal|Loo(s0,5)) )

whence
Jp+2) _ C
(1+ I1Kel mogeo.)” 7 < 7
This last inequality implies that n' is integrable on [so, 0), and so 7 is bounded on that,
interval. It now follows from (3.26) that K (s) is bounded on [s0,0), and therefore so
also are n” and 7'

This concludes the proof of the proposition. O

We now turn to the more delicate matter of finding bounds on 7 and 1’ as s — o0,
From the analysis above, in particular formula (3.24), one concludes immediately that
K(s) is bounded by C(1 + s?) for large s > 0. It follows that 7 is bounded on all
of R. and that |n’| is bounded by C(1 + s1/2) for large s > 0. These estimates arc
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not strong enough to prove the precise asymptotic behavior announced in the Main
Theorem in the Introduction. Indeed, n tends to 0 in an oscillatory fashion, and to
prove this precise behavior, we need first to obtain a decay estimate for n(s) and
sharper bounds on the growth of 7’ (s) as s = 0.

The approach to these issues is to prove a finer version of the estimate (3.24). To

this end, write (3.21) in the equivalent form

a6+ asnte) + W) s (o) o)+ (2-a)nts, @29

where a > 0 is a parameter to be chosen presently. Formula (3.22) corresponds to
o = 2/3p. Multiplying (3.28) by [7"(s) + asn(s) + ﬂj—}::] and further simplifying,

one obtains the following generalization of (3.23):

L (s) = (1&_4 ~ a) n'(s)? | (2(;? 5 2)) asn(s)’

o 3p 2 3p 2
(3.29)
_p+4) )t
+(°“p“) 3 ><p+1><p+2)’
where
_ L, 7?(5)p+l ’
La(e) = & )+ asn(e) + 20
LN, [ asn(s)’ n(s)P+? 2 N ie)l(s
+<3 ) [ 2 T2 +(?’4‘1)(P+2)]+(3P )n()n()-

The analysis of Lq(s) is technically complicated by the term with n(s)n'(s). As a

first step, it follows from (3.29) that for s > 0,

n'(s)? vs1i(s)? n(s)Pt?
L'a(s)SM(a,P)[?(;) += ]2() +GT+]—(1))(;;—+7)]

where

o= (152 -).(252) o025
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Suppose 0 < @ < 1, and let £ > 0 be small. Then it is observed that

(s)2 | asn(s)? n(s)P*? ]

+

! 77/
Ly (s) < (M(a,p) +¢) [ 2 2 (p+1)(p+2)

7'(s)2 | asn(s)’ n(s)P+?
‘E[ 2 T2 T+t

|
< M(a.p) +¢ lLa(s) = (~2— -« n(S)n'(S)] (3.30)
|

s(3-a)
n'(s)?  asn(s)® n(s)P*?
PE[ 2 "2 Tt
. M(a,p) +eLals)

BRI

The last inequality holds for sufficiently large s since IEM is dominated for large

s by € (n'(s)? + sn(s)?), for any fixed € > 0.

The idea now is to choose a so that the coefficient on the right-hand side of (3.30)
is as small as possible. It is helpful to consider separately the cases p > 8 and p < 8.
Suppose first that p > 8. If a > 0 is sufficiently small, then M(a,p) = 2(p — 2)/3p-
In this case, (3.30) implies that for any € > 0, there exists a > 0 such tha£

20-7) , ) Ll

n s

Ly(s) < (
for all sufficiently large s > 0. The following proposition is now a straightforward

consequence of the last estimate.

Proposition 3.6. If p > 8, then for all e > 0,

limsup s!®/P)=¢€ly(s) < oo,
§—00

limsup s{(?/P)~(1/2=¢liy/ (5)] < oo.

§—+00

Suppose next that p < 8, (i.e. p= 15,6, or 7). In this case, a good choice 1s
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This is the value of a for which the first two coefficients on the right-hand side of

(3.29) are equal. This choice of a gives

and so for all € > 0,

L' (s) < (% +e) L“S(s), (3.31)

for s > 0 sufficiently large. We immediately obtain the following proposition.

Proposition 3.7. Ifp=15,6, or 7, then for all e > 0,

lim sup sl/D=¢lp(5) < oo,

§— 00

limsup st~/ ~e|y (s)] < oo

§—X

The estimates for |n'| in Proposition 3.6 can be improved by developing this method

more fully, but the results in hand suffice for the present purposes.

3.3. Precise asymptotics.

We continue as in the previous sub-section with n(s) = @(—s), where ¢ 1s the
solution of (1.6) whose existence is guaranteed by Proposition 3.4 with & > 0. The
function 7 is a positive, regular solution of (3.21) on the whole real line and has the
asymptotic properties described in Propositions 3.6 and 3.7.

For s > 0, define w by

n(s) = s Tw(r), (3.32)

where 7 is given in (3.4) and
233/2

r = v
3

Propositions 3.6 and 3.7 readily translate in terms of w and w' to the following result.
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Proposition 3.8. Ifp > 8, then for alle > 0,

lim sup pl2/P)=(1/2) =€} (4y(7) 4 |w'(r)]) < o0.

T—00

If p=15,6, or 7, then for all e > 0,

limsup r{(2/32)=(1/3)=€) (yy(r) + |w'(r)]) < oo.

r— o0

A calculation shows that 7 is a solution of (3.21) if and only if w is a solution of

the ordinary differential equation

w///(r) +w'(r) — g [u)”(T‘) + W("')] =

Aw'(r)  Buw(r) = Cuw(r)Pw'(r) , Dw(r)**!
2 T YT an rp2)/2

(3.33)

where § is given by (3.8) and A, B, C, and D are constants depending on p, whose val-
ues can be determined explicitly from equation (3.21) and the transformation (3.32).
(These are not the same values as in equation (3.7).) Re-write equation (3.33) as a

first-order semilinear system of equations as foliows:

W'(r) = H(r)W(r) + G(r, W(r)), (3.34)
where,
w(r) 0 1 O 0
W)= w() |, Hry=(0 0 1|, GrnW)= 0 , (3.35)
w'' (1) g -1 % g(r,w,w")
and ;
Aw'  Bw Cuw’w'(r) Dw’*!
, —_ —— —
g(r,w.w') = = + 3 + 72 mersyyrh (3.36)

The following is a straightforward consequence of Proposition 3.8, and will be impor-
tant in proving the asymptotic behavior of solutions of the system (3.34) is governed

by its linear part.
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Lemma 3.9. There exists 3 > 0 such that limsup r(+B8)|g(r, w(r), w'(r))} < oo.

T—00

Now let Q(r, s) be the propagator matrix generated by the family H (r), which is
to say Q(r,r) = I the 3 x 3 identity matrix, for any r > 0, and

—a(er(r, s) = H(r)Q(r, s)- (3.37)
Since Q(r, s)Q(s,r) = I, one also deduces that
%Q(r, s) = —Q(r,s)H(s). (3.38)

If W {(s) is a solution of system (3.34), then
2L Q(r, )W () = Qr, IW'(5) = QL HH W (5) = QU 8)G(s. W (5),
or in integrated form,
Q(r,s)W(s) = W(r) + /"3 Q(r,0)G (o, W(0o))do. (3.39)
It will now be shown that Q(r, s)W (s) conv;rges as s tends to oo. The key fact making
this demostration possible is that Q(r, s) is known explicitly. Indeed, equation (3.33),

but with the right side replaced by zero, can be solved in closed form. Here are the

nine elements Q;;(r, s) of the matrix Q(r, s):

Q11(r,s) = cos(r — s) + 9'5/ £ sin(r — t)dt,
Q2.1(r,s) = —sin(r —s) + / t° cos(r — t)d

)
Q3,1 T,S):—COST—S 6/ t‘ssmr—tdt+( ) ,
s

@
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It is immediate to check that Q(r,s), so-defined, verifies Q(r,r) = I and equation

(3.37). Also, one easily verifies that for any fixed r > 0,

sup |Qi;(r, 8)| < o0,
s>r

for 1 < 4,7 < 3. In other words, the backwards propagators Q(r,s), with s > r, are
bounded as s tends to co. (On the other hand, this is false for the forward propagators
Q(r, s), with r > s, as r tends to co.) This estimate coupled with Lemma 3.9 implies

that for a fixed r € R, the limit

liin /s Q(r,0)G(o,W(0o))do

§—+00 r

exists and, therefore, by (3.39), that

lim Q(r,s)W(s) = L(r)

§—0C

exists in R3. Letting s tend to oo in (3.39) leads to
L(r) - W(r) +/ Q(r,0)G(o,W(o))do.

Replacing W (r) by the expression given in (3.39) leads to the conclusion that

L(r) =Q(r.s)W (s /Qror VG (o, W (0))do,

and so

Q(s,m)L( /Qso (0, W (0))do.

Interchanging the roles of s aud r and replacing s by sg, the last formula may be

re-written as
oo
W(r) = Q(r,s0)L{so) = Qrs0) [ Qlso,0)Glo, W(oNdo.  (3:40)
Successive integrations by parts show that for a fixed s,

.
/ £ sin(r — t)dt = r® + ¢y cos T + cpsinr + O(r®~?) (3.41)
L
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and

/ t® cos(r — t)dt = dycosT + dpsin7 + 5181+ 0(r°?) (3.42)

as r — co. With these relations in hand, it follows from (3.40) that
w(r) =0(r’) and |w'(r)] <O(1)
as r — oo, which in turn gives an improvement of Lemma 3.9, specifically
lg(r, w(r), w'(r)| = O(r ™) (3.43)

as 7 — oo. It now follows from (3.40), (3.41), and (3.42) that for some a, b,and c € R,

w(r) — [ar‘s +bcost +csinr| = O(r’~1),
(3.44)
w'(r) — [aéré“l 4 ccosr — bsinr| = o(r™1),

as 7 — co. The first of these estimates implies that there exist o', b and ¢ such that

233/2 283/2
s) — la's=2/P 4 s~ B/0)+(1/p) <b' cos ( ) + ¢’ sin <——-—>>}
() 3v3 3v3

as s — Q.

To complete the proof of the Main Theorem for p > 4, it remains only to show
that a’ # 0 in the previous formula. Indeed, suppose a = 0. Then ' = ¢ =0,
for if not, then n(s) = p(—s) has infinitely many zeroes, which is impossible since
n(s) > 0 for all real s. The condition o =b =c¢ =0impliesthat a=b=c=01n
(3.44). This means that L(so) = 0 in (3.40). An obvious bootstrap argument applied
to (3.40) and starting with the estimate (3.43) then shows that w(r),w'(r), w" (r) all
decay as r — oo faster than any inverse power of . This in turn implies, by (3.12),
that F(s) — 0 as s — —oo, which is impossible since F(s) = 0 as s — +oo and
F'(s) < 0 (by formula (3.1)). Thus, a’ # 0.

This concludes the proof of the Main Theorem. O
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