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ABSTRACT. We study properties of solitary-wave solutions of three evolution
equations arising in the modeling of internal waves. Our experiments indicate
that broad classes of initial data resolve into solitary waves, but also suggest
that solitary waves do not interact exactly, thus suggesting two of these equa-
tions are not integrable. In the course of our numerical simulations, interesting
meta-stable quasi-periodic structures have also come to light.

1. Introduction. In this paper, consideration is given to long-crested unidirec-
tional waves at the interface of a two-layer system of incompressible inviscid fluids.
The top layer is assumed to be infinitely deep, while the heavier bottom layer has
a finite depth h. Attention is restricted to waves whose wavelength A is large com-
pared to the depth h of the lower layer, and whose amplitude a is small compared
to h. Moreover, the two small quantities % and ¢ are supposed to be of the same
order. Let (z,y,#) connote a standard Cartesian coordinate system with z the
vertical direction and z =0 located at the interface between the two fluids in their
rest position. In this situation, the Benjamin-Ono equation,

U + Ug + Uty — Hitgg =0, (1.1)

was first proposed by Benjamin [5] as an approximate model equation for waves on
the interface whose primary direction of propagation is that of increasing values of z,
which do not vary significantly in the y-direction, and for which the effects of surface
tension, viscosity and molecular diffusion may be safely ignored. As mentioned, « is
proportional to distance in the direction of propagation, ¢ is proportional to elapsed
time and u(z,t) is proportional to the vertical deviation of the interface from its rest
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position at the point z at time t. The operator H is the Hilbert transform applied
in the spatial variable. In the derivation of (1.1), when the variables u, z and t are
non-dimensional and scaled so that the dependent variable and its derivatives are
of order one, (1.1) takes the revealing form

Ut + Ug + EUUT — eHuge = 0(62), (1.2)

where € is of order % = & and the O(€*) connotes terms in the formal approximation
which are of quadratic or higher order in €. The Benjamin-Ono equation obtains
by disregarding all terms of higher order in e. Tt follows in particular that

ug + ug = 0(6), (1.3)

and the small parameter € appearing in the equation shows the dispersive term
Huy, and the nonlinear term uug t0 be corrections of the same order to the ba-
sic uni-directional hyperbolic operator us + Uz = 0. Under the assumption that
differentiation does not alter the e-order of the dependent variable, (1.3) implies
that

Huge + Hugt = O(e),

5o that Huge may be replaced by —Huazt in (1.2) to obtain
ug + Up + EUU T eHug: = O(ez).

Again, disregarding terms of higher order and then rescaling, there appears the
alternative model

Ut + Ug + Uz T Hugz: = 0. (1.4)

This equation will be termed the regularized Benjamin-Ono equation. As shown
above, it is formally equivalent to the Benjamin-Ono equation. A rigorous compar-
ison made in [2] and [10] between solutions of (1.1) and (1.4) corresponding to the
same, small-amplitude, long-wavelength initial data shows the formal expectations
regarding the size of the difference are met in practice over the long time scales
relevant to such models.

For the situation when surface tension cannot be ignored, Benjamin [6] later
derived what is now known as the Benjamin equation

g + Ug + Uz — Hugg — TUges =0- (1.5)

In this equation, T' is & constant proportional to the surface tension at the interface.
In the present paper, the primary focus is on the dynamical properties of the
solitary-wave solutions of (1.1), (1.4) and (1.5). Following remarks in Section 2
about the mathematical theory for the initial-value problems associated to the
evolution equations in view, we study the resolution of an initial wave profile into
solitary waves and the interaction of solitary waves. Our experiments show that all
three of these evolution equations feature resolution into solitary waves in much the
same way as does the Korteweg-deVries equation. Observe that equation (1.5) is a
hybrid between the Korteweg-deVries and the Benjamin-Ono equation. Since both
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of these appear t0 constitute inﬁnite—dimensional integrable systems, the question
naturally arises as to whether or not the same is true for the Benjamin equation.
Section 3 contains some numerical results which indicate & negative answer to this
question. For the regularized Benjamin-Ono equation, previous experience with the
the regularized long wave or BBM equation

ut+um+uum_’ummt=0

suggests that (1.4) is not integrable (cf. [9]). The numerical experiments reported
here are consistent with this supposition. Finally, we observe ai interesting phe-
nomenon, namely what appears to be solutions of the Benjamin equation which at

least over certain time scales consist of two or more leap-frogging solitary waves.

9. Well-Posedness Results. As usual, an initial-value problem

us + Au) = 0,

u(0) = uo,
is well-posed in & Banach space X if corresponding to every ug € X, there is a
T = T(l|luollx) >0 and a unique element u € c([0,T), X) satisfying u(:,0) = vo,
such that for each t € [0,T), A(u) has a suitable sense and the evolution equation is

satisfied at least in & weak sense. Here and below, the symbol C([0, T}, X) denotes
the space of functions which are continuous in time and take values in the Banach

(2.1)

space X. Tt is usually also required that the correspondence uo — u be continuous
from X to C ({0,117, X)- The initial-value problem (2.1) is globally well posed if T
can be taken arbitrarily large. Not only are local and global well-posedness results
a central theoretical issue for evolution equations, but they also play an important
role in obtaining error estimates for numerical approxima.t.ions of solutions. To
describe the situation regarding (1.1), (1.4) and (1.5), we introduce some function
classes. For 1 <p <00 the space Lf = LP(R) is the set of measurable real-valued
functions of & real variable whose pth powers are integrable over R If feLr,its
norm is denoted |f |p- The inner product in 12 is denoted (,)2- For s > 0, the
space H? is the subspace of L2(R) consisting of functions such that

oo
1= [ iy Ierde < v
—00
with the circumflex connoting the Fourier transform. Equivalently,

(1£lle = 1J° Fl2s

where J* = (I = A)3 is the Bessel potential of order s. The space L*°(R) con-
sists of all measurable, essentially bounded functions on R with norm |fleo =
ess sup, | f(@)]- We shall also briefly refer to the spaces (0,7, X) of Borel mea-
surable, essentially bounded functions on [0,T] with values in X. Well-posedness
and smoothing results for X = He® with s 2 % for the initial-value problem associ-
ated to (1.1) were provided by Abdelouhab et. al. [1] , Ponce 17, [18] and Tom
[20]. The Benjamin equation was proven to be well posed in L? by Linares [13].
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These results provide & global theory because of the conservation laws which hold
for these equations.

For the regularized Benjamin-Ono equation, we sketch the proof of well-posedness
of the initial-value problem on the real line. Rewriting (1.4) in the form

(1+H8m)ut +up +UUs T 0

leads to the formally equivalent integral equation

e = K * (u+3u?) (2.2)
where K is given explicitly in terms of its Fourier transform, viz.
. —it
K& =——7"
© =138

Upon integration with respect tot and imposition of the initial condition u(-, 0)=g9,
there appears

u(z,t) = g(z) + /0 {K * (u+ %uz)(m,'r)} dr (2.3)

for z € Rand t > 0. Using the fact that H*(R) is a Banach algebra for s > 1a
contraction argument in the Banach space C ([0,t0), H $) with s > 3 yields a solution
over a limited time interval [0,t0]- The proof shows that to depends on liglls like
an inverse power and that the solution is unique and depends continuously on the
initial data g. Thus the initial-value problem is locally well-posed in H* for any
s> 3. To extend this solution to an arbitrary time interval [0, T, a priori estimates
are needed. The following lemma is useful in deriving the required estimates. (A
discussion of these results may be found in [18.)

Lemma 1. Let 8, So and 81 be non-negative. There ezist constants c1 and ¢
depending only on s, S0 and 81, such that

T (f0) = gl < exf{i el 1777 gl 17 Sla lgleo } (2.4)

e flo < cal T 718 1A (25)
where s = 0so + (1 — 0)s1.

Theorem. Lets 2 $. Ifue c([0,T),H?) is a solution of (1.4) in the sense of
distributions on R X [0,T), then there are constants C and Cs = C(llul-,0ls) such
that

sup l[u(,DllE < C,eCT. (2.6)
o<t<T

For the proof of this theorem, a preliminary lemma is needed.

Lemma 2. Ifu is @ solution of (1.4) in the sense of distributions and u lies in
¢([0,T), H®) for some > L, then for all t € (0,77,

JuC,t)lly = luC, 0)lly- @)
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Proof: Since u € c([o,T),H®) with s > 1, each term in the differential equa-
tion is a tempered distribution. It follows that (2.2) holds for u, and hence that
w e CH([0,T), H®). Let {un}3; be a sequence in C1([0, T}, H®) converging to u
in C1([0,T), H*), and let

F:CY[0,T],H®) = c((o,T,H ™)
be defined by
F(v) = ve + Hogt + Vg + VVa- (2.8)

Since u solves (1.4), F(un) = Dasn — oo in ¢([0,T], H°~") and hence (Uy F(Un)) =
0 as n —+ oo in C([0,T]), where (-,-) connotes H 1_g-% duality. Since un i8 smooth
for each n, it is elementary to compute that

2t Flur)) = 500N

Hence, for each t € [0,T], we have

DI, = im0 + 2 [ {ams P}
0

Taking the limit as n — 00 in the last formula gives the desired result.

Proof of the Theorem: To establish the estimate in the case 8 =
proximate a golution u in the space cr([o,T), H %) by a sequence {un}5Z, taken
from C*([0,T), H™) as above. Then F(ua) = 0 in C([0, T),H¥) and {02un }om1
is bounded in C‘([O,T],H“;’). Consequently, (F(tn), O2un) — 0 28 1 =7 0 in
C([0,T)). On the other hand, since un 18 smooth,

(P (un), Bon) = GO DN + /_Z[E)wun(m,t)]a‘dm. (2.9)

The Sobolev inequality and (2.5) imply there is a positive constant ¢4 such that for
feH?,

[ us@fde = 10,15 < ol IR < callfIf < cal A @10

—00
where ¢4 = cacs and ¢3 18 another Sobolev constant. Using (2.10) in (2.9), integrat-
ing the result with respect to t and adding (2.7) leads to the inequality

(I3 < Tun I + 1050
= Hun(ao)“z.;. + Hamun(ao)nz.;_

+cC4 /: Hun(',O)H%“un(-, S)HZ%dS +2 /Ot (F(’Um), 3gun)ds.

IN

AN

Taking the limit as 7 — yields

unoI < 2lunt O + 20 [ I (211)
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Finally, Gronwall’s lemma implies (2.6) with C' = ¢4 and Cs = 2||un(-,0)||2%. The
general case follows from the the case s = % and an inductive argument. Suppose
the estimate (2.6) holds for some ro 2= S, let s =ro+a, where 0 < a < § and
let 7 =5 — % As before, the solution u can be approximated by a sequence of
smooth functions {u,}%,. Calculations can be made with the u,, and a limiting
argument applied to show that the resulting inequalities actually hold for u. The
limiting argument is just as it, appeared for the case s = %, and so this procedure is
abbreviated by making formal calculations with a solution u as though it had the

requisite smoothness. Consider the combination
(JTu, J"F(u)) = (J7u, JTus + J’"Hu;t) + (Ju, T ug) + (I U, J"(uug))-

Assuming that u is a smooth solution of (1.4), there follows the relation

%(Jru, Trut FHu = —2uud s 4 2T, I () = u7us)
< (JTu,ugJu)a + 2\Jul2 |7 (uuz) — ud "tal2
< (1+2¢) ualool Jul3
< csllullelTTul3
< csllullolIul3,

where (2.4) has been used. Integrate this with respect to ¢ over the interval [0, 1]
where t < T and use the fact that llulls is equivalent to (Ju, J™u + JTHug) along
with the induction hypothesis to write

lfuC, DI < llul, Ol +CsCroecT/0 l[u, Tllsdr (2.12)

From (2.12), the required a priori estimate for ||ulls with s = ro -+ a follows imme-
diately. The induction is thus complete.

Corollary. The initial-value problem for equation (1.4) is globally well-posed in
H*(R) for any 3 2 5.

Remark: It is possible to obtain existence of a weak solution of (1.4) in L*(0, oo, H %)
by a standard limiting procedure. For initial data g € H %, let {gn}32; be a se-
quence of H*-functions converging in H % to g, and let {un}nx, be the associated
globally defined solutions whose existence is guaranteed by the last result. Because
of (2.7), the sequence {un}32, is bounded in L>(0,T,H 3). From (2.2) and the
Sobolev inequality, it follows that {Biun}2, is bounded in L2(0,T,L?). Using a
Cantor diagonalization construction and the Aubin-Lions compactness lemma [14],
a subsequence {un, Y5, may be extracted so that

Upy, = U weak® in L=(0,T, H?), (2.13)
Oytn, — Oru weak* in L*(0,T, L?), (2.14)

Up, — U pointwise almost everywhere in [0,T] xR (2.15)
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Following standard reasoning (cf. [11], [14]), it is inferred that v € c([o,T),L?),
that u(0) = g and that u satisfies (1.4) in a weak sense. Moreover, it can be
arranged via a further diagonalization that the same subsequence converges as in
(2.13)-(2.15) for any value of T > 0. It follows in particular that u € L*(0, 00, H3).

3. Numerical Results. Since the operators appearing in the linear part of the
equations featured here may be interpreted as Fourier multiplier operators, it is
convenient to use a Fourier-Collocation method to effect a spatial discretization.
This forces periodic boundary conditions, hence a large spatial domain is needed
to simulate the problem on the real line. The nonlinear terms are handled pseudo-
spectrally, which is to say they are evaluated in physical space. The details of the
numerical scheme together with a convergence study are given in the Appendix.
Here, we focus on the numerical experiments. For numerical study, we put the
Benjamin equation in the normalized form

ug + Uty + Huge + Uzzz = 0. (3.1)

This form of the equation reverses the sense of time. However, the structure of the
equation is unchanged since the dispersion relation is odd.

Resolution Properties

As a choice of initial waveform, we use a two-parameter family of Gaussian functions
2\2
w(z,0) = Ae~ (%) (3.2)

where A represents the amplitude and A the wavelength. The evolution according
to the Benjamin-Ono and regularized Benjamin-Ono equations is shown in Figures
1 and 3. In these figures, the height u of the wave profile is graphed against the
r-axis at t = 0 and at successive times. In Figure 1, observe that the Gaussian
disintegrates into one solitary wave and an oscillatory tail for both the Benjamin-
Ono and the regularized Benjamin-Ono equation when A = 4. Raising A to 6
results in two solitary waves in both equations; however, the second solitary wave
for the regularized equation in Figure 3 has significantly smaller amplitude than
its Benjamin-Ono counterpart. Increasing A seems to only affect the height and
width of the emerging solitary waves. Figures 2 and 4 show the evolution according
to the Benjamin equation. Three solitary waves emerge if A=2and X =4,
demonstrating that solutions to the Benjamin equation behave quite differently
from correspondingly initiated solutions of the Benjamin-Ono equation. When
)\ = 6, there emerges 2 pair of “orbiting” solitary waves. The evolution of a pair
of such waves may be described as follows. At first, the leading wave is taller than
the trailing wave, so it seems that it should outpace the smaller wave and separate.
However, just before that happens, the leading wave loses height and speed. This
loss is picked up by the trailing wave which now grows taller and faster, thereby
gaining upon the leading wave. It comes to a near interaction, but just before the
trailing wave begins to pass the leading wave, it in turn looses height and speed
and falls behind again. Although not visible in Figure 4, after this near interaction,
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FIGURE 1. Evolution of initial data as in (3.2) with A =2 and A = 4.

the shedding of a small dispersive tail is observed. Increasing ) results in resolution
into a doublet as just described together with more single solitary waves up to
a point where instead of the leading state being a leap-frogging pair, a triplet of
orbiting solitary waves along with the same number of detached single solitary
waves emerges. Increasing X further increases the number of single solitary waves,
but ultimately a quadruple of orbiting solitary waves emerges. It cannot be said
with certainty that these orbiting solitary waves represent a dynamically stable
state of the system. Indeed, we observed that on occasion one of a group of five
or more orbiting solitary waves separated from the rest after some time. It seems
possible that after a long enough time, even the pair of orbiting solitary waves will
separate. In fact, we followed the evolution of a pair of bound solitary waves for a
long time and observed that the maximum separation of the two, occurring when
their amplitudes are identical, increases over time. This strongly suggests that
the two leap-frogging solitary waves represent an intermediate state of the system
which may eventually transform into two separately propagating solitary waves.
This point warrants further numerical and analytical investigation.

Solitary Waves

For the Benjamin-Ono equation, Benjamin [5] found solitary-wave solutions in the
form

4d

for any d > 0. Solitary waves for the regularized equation can be obtained by a
simple rescaling, viz.

baly) = -I—Jr—(ﬂ—_

— (3.4)
Pt
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FIGURE 2. Evolution of initial data as in (3.2) with A =2 and A = 4.
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FIGURE 3. Evolution of initial data as in (3.2) with A =2 and A = 6.

FIGURE 4. Evolution of initial data as in (3.2) with A =2 and A =6.
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These exact solutions were used to test our numerical schemes (see Appendix).
Solitary-wave solutions of the Benjamin equation satisfy the equation

¢+ ¢ +27H' +¢" =0, (3.5)
where

1
iI'= 5%

and ¢ > 0 is the wavespeed. Exact solutions are not currently available. However,
it has been shown (see [3], [4) and [12]) that there exists a family of stable solitary
waves with 0 < v < 1. The extremal y = 0 corresponds to the solitary wave of the
Korteweg-deVries equation. In [3], Albert et. el used a continuation technique
to approximate solutions of (3.5). Tuck and Wiryanto [21] performed numerical
constructions comparing solutions of (3.5) to solutions of the full Euler equations.
In this report, we use a technique favored by Bona and Chen [8] to generate ap-
proximate solitary waves utilizing the time-dependent code. The technique can be
explained as follows. As observed in the last section, certain initial data evolve
into a train of solitary waves. Attention is focused on one of those and the rest
are manually deleted from the solution profile. The stripped profile is not in fact
a solitary wave, and upon evolving further in time it sheds a dispersive tail. After
the tail separates from the solitary wave, it is deleted, the solitary wave translated
to the left and the result used as initial data. This procedure is repeated a number
of times, resulting in due course in a very good approximation to a solitary wave.
To gain some confidence in the approximate solutions generated by this procedure,
a quantitative analysis of their properties is presented in Tables 1 and 2. These
tables feature data related to two approximate solutions of (3.5) with y ~ 0.3551
and vy ~ 0.7267, respectively. These waves were used as initial data in our evolution
code, integrated over the time interval [0,7] with T = 30, and several aspects of
the results monitored to understand just how close the solutions are to true solitary
waves. One question in this direction is how well the approximations resemble the
exact solitary waves in shape. To understand this, we determine the shape error as
follows: integrate the approximate solitary wave to a time T', use a spline interpola-
tion to find the peak, and translate the profile back so that the peak is in its original
position. Then compare the result with the initial waveform in the L°°- and the
L2-norm. As can be seen in Table 1, the error in shape is on the order of 10~3. For
the definition of the L2- and the L®-error, see the Appendix. The maximal error in
height and energy is about 10—%. This calculation was done on the spatial domain
[0, 3200] using N = 8192 Fourier modes and a time step k = 0.004. As a reference,
we repeated the same calculation with an exact solitary wave for the Benjamin-Ono
equation, obtaining similar results. However, choosing the time step and the grid
size smaller, it was possible to decrease the error in the Benjamin-Ono situation,
whereas for the approximate Benjamin solitary waves, this was not possible. In
the latter case, the size of the discrepancy is clearly limited by the error remaining
from the generating procedure.
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FIGURE 7. Close-up of the wave in Figure 6.
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v =0.3551 | v = 0.7267
L | 2.512e-03 | 2.154e-03
L? | 2.837¢-03 | 2.685e-03

TABLE 1. Maximum error in shape up to T' = 30 for approximate
solitary- wave solutions of the Benjamin equation.

Value Error Value Error
Height | 3.948 | 2.063e-04 | 0.595 | 9.862¢-06
Energy | 5.161 | 3.618e-07 | 1.024 | 2.075e-07
Speed | 1.603 | 4.989¢-04 | 0.383 | 2.79-e03
y 0.3551 0.7267

TABLE 2. Maximum error until T' = 30 in height, energy and speed
for approximate solitary waves for the Benjamin equation.

Interaction

The interaction of two solitary-wave solutions of a nonlinear dispersive evolution
equation can give clues about the integrability of the equation. While the Benjamin-
Ono equation is known to be integrable, our experiments indicate that both the
regularized Benjamin-Ono and the Benjamin equation are not integrable. In each
case, the interaction of two solitary waves is shown to leave behind an oscillatory
wavetrain. For the regularized Benjamin-Ono equation, we used as the initial wave
profile a solitary wave of height 1 preceded by a solitary wave of height 6. For the
Benjamin equation we used the two solitary waves shown in Figures 5 and 6. In
each case, the taller wave travels to the right at a higher speed, so it overtakes
the smaller wave in due course. Because of the quadratic decay of the tails, it
was necessary to situate the solitary waves so that the peaks were far from each
other. In the experiments reported here, the peaks were separated by approximately
1600. This brought the overlap down to about 107°. Another difficulty is the
artificial periodicity in the numerical approximation. To minimize this effect, the
experiments were performed on a rather large domain [0, L] with L = 6400. This
was sufficient to have the decaying tail at the endpoints on the order of 10~% and
to follow the evolution of the waves without one of them wrapping around and
reentering at the other end. The two solitary waves coalesced at about ¢ = 1150.
To prepare for the experiment, we tested the setup by letting a single solitary wave
evolve until ¢ = 1200. Since the exact form of solitary waves is known for the
regularized Benjamin-Ono equation, it was possible to determine the error in this
case (see Table 3). A spline interpolation showed that the error in shape is near
machine precision. Similarly, for a single solitary wave evolving to ¢ = 1200, the
error in height is near machine precision, even when using a time step as coarse as
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k Height 1 | Height 6
0.05 4.509e-5 | 2.272¢-1
0.025 | 6.217e-7 | 7.321e-3
0.0125 | 5.957e-7 | 2.454e-4

TABLE 3. L*®-Error for a single solitary-wave solution of the reg-

ularized Benjamin-Ono equation at T=1200.

k = 0.05. For the Benjamin equation, we could only determine the error between
the computed solution and the approximate solitary wave we started with. For
the evolution of a single solitary wave, we obtained an error similar to that shown
in Tables 1 and 2, indicating that our approximate solitary waves are close to
exact solitary-wave solutions and that the numerical scheme is capable of accurately
making long-time integrations.

In Figures 8 and 9 some details of the interaction for the regularized Benjamin-
Ono equation are shown. Note the presence of an oscillatory tail trailing behind the
smaller wave after the interaction. Although not shown here, this tail is strongest
right after the interaction and becomes progressively weaker as it lags behind the
smaller wave and spreads out. To check the accuracy of the numerical solution in
the region of the dispersive tail, we ran calculations with k£ = 0.05 and k = 0.025,
and compared the dispersive tail in these approximations with a calculation using
k = 0.0125. The difference was 1.184e-04 and 3.666¢-06, respectively. This is better
than the factor of 16 guaranteed by the 4**-order convergence of the Runge-Kutta
time-stepping scheme used for the regularized Benjamin-Ono equation.

In the case of the Benjamin equation, an oscillatory tail also appears after the
interaction. Again, the tail lengthens, decays slowly and separates from the solitary
waves. To integrate the Benjamin equation, the time step had to be quite a bit
smaller. Calculations with k = 0.008, k = 0.004 and k£ = 0.002 were made, and then
compared to a solution obtained using k = 0.001. In this case, it was observed that
the difference went down by a factor of 4 which is in accordance with the 2nd_order
convergence of our temporal integration method for the Benjamin equation.

As a reference, we also studied the interaction of two solitary-wave solutions of
the Benjamin-Ono equation using the same scheme. As expected, the interaction is
clean, meaning that no dispersive tail appears after the interaction. The interaction
for the Benjamin-Ono equation was also studied by Thomeé and Vasudeva Murthy
[19] using a finite-difference scheme and by Dougalis and Pelloni {16] using a Fourier
spectral method. In both these works, the interaction was found to be elastic.
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Ono equation. The dashed line shows the initial data, while the
solid line shows the solution profile at ¢ = 700.

4. Appendix. The discrete Fourier transform of a function u on the interval [0, 27]
is given by
N-1

~ 1 —inc;
un:‘—]\_r ZU(ZJ‘)G 7

j=0

where the grid points are chosen to be z; = 277{,1 for0 € j < N and —% <n< —12\—’—1.
The inverse Fourier transform is defined by



16 HENRIK KALISCH AND JERRY L. BONA

This is an exact expression at the grid points since Jackson’s formula gives

N

2
Un(z;)= D we™ =u(z;),

N
2==%2

so that one may think of Uy as the N*P-order trigonometric interpolant of u. To
define the discrete Fourier transform on the interval [0, L], an appropriate scaling
has to be used.

The Benjamin Equation
Approximating the solution u to (3.1) by Un, we obtain the semi-discrete equation
d
dt
where D denotes the Fourier-collocation derivative. The time discretization is
achieved by a Crank-Nicholson scheme for the linear part and an Adams-Bashforth

Uy + 3D(Un?) + HD*(Un) + D*Uy =0,

method for the nonlinear term. We demonstrate the case of the Benjamin-Ono
equation, dropping the subscript N for the sake of clarity. In the case of the Ben-
jamin equation, the third-order dispersive term has to be added. Let k be size of
the time step. Denoting the solution at the n** time level by U™, U™+ is computed
according to

n+l _ 1/ 27 rn+41 H 2rmm
U . Ur _ HD 2+ DU +%(3D(U2)”—D(U2)”‘1).

This scheme has local truncation error of order k2, so that second-order convergence
1

is expected. This expectation is confirmed by the results described in Table 4. The
norm used to calculate the error is the normalized discrete L?-norm

N
1
lullys = 5 2 ()l
i=1

The L2-error is then defined to be
g, = It~ Ullnz
[l 2
The L°°-norm is

llullv,eo = max |u(z:)l,

and the L*-error is
lu = Ul|n,e0

[lall v, 00

We used the exact solitary-wave solution of the Benjamin-Ono equation (3.3) with
d = 0.5 on a domain [0, L], where L = 800. For the calculations shown, 4096 grid
points were used and the solution was integrated to the final time T' = 1. The bene-

Ey =

fit of using a spectral method with the above scheme is that the highest order term
can be evaluated very simply. Since the nonlinear term is treated explicitly, there
is potential nonlinear instability. For the Benjamin equation, this is not a serious
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k L*-error | Ratio
0.1000 | 1.130e-1
0.0500 | 2.434e-2 | 4.64
0.0250 | 5.875e-3 | 4.14
0.0125 | 1.461e-3 | 4.02
0.0063 | 3.655e-4 | 4.00
0.0031 | 9.147e-5 | 4.00
0.0016 | 2.288e-5 | 4.00
0.0008 | 5.724e-6 | 4.00
0.0004 | 1.433e-6 | 3.99
0.0002 | 3.602e-7 | 3.98

TABLE 4. Benjamin-Ono equation; error due to temporal discretization.

N | L%-error Ratio
512 | 1.993e-4
1024 | 6.232e-5 3.20
2048 | 2.541e-6 24.52
4096 | 1.756e-9 | 1446.83
8192 | 3.001e-10 5.85

TABLE 5. Benjamin-Ono equation; error due to spatial discretization.

problem. Since the dispersive smoothing mechanism is weaker for the Benjamin-
Ono equation, one has to choose more grid points and a smaller time step in this
case. However, another advantage of the spectral method is that relatively few
grid points are needed to obtain good spatial accuracy, so that we were able to
numerically simulate the Benjamin-Ono equation without difficulty. Moreover, for
smooth solutions the error due to the spatial discretization decreases exponentially.
To isolate the error introduced by the spatial discretization, we chose a very small
time step k = 0.000001 and did some calculations with varying grid size. We see
exponential convergence in Table 5 until we run into the error due to the temporal
discretization and the algebraic decay of the solution. The calculations shown in
Table 5 are for the setup just described, except the size of the domain was doubled.
Since we integrate for a long time, it is important to know how the error grows in
time. From Figure 2, it is apparent that the error for the Benjamin-Ono equation
grows less than quadratically with T'. As mentioned before, an exact solution of the
Benjamin equation is not available. To test the proposed scheme for the Benjamin
equation, a calculation with time step k = 0.0001 was made. Several runs with
much larger time steps were then made and compared to the simulation with the
very fine time step. In this way an estimate of the temporal convergence rate of
the scheme was obtained. The result is shown in Table 6. The number of modes in
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FIGURE 13. Growth of L*-error.

this calculation was N = 4096, the solution was determined up to T' = 1 and the
initial data was ug = 10c?sech?(c*z).

k L%-error | Ratio
0.100000 | 6.084e-2
0.050000 | 1.440e-2 | 4.22
0.025000 | 3.560e-3 | 4.05
0.012500 | 8.890e-4 | 4.00
0.006250 | 2.224e-4 | 4.00
0.003125 | 5.563e-5 | 4.00

TABLE 6. Benjamin equation; error due to temporal discretization.

The Regularized Benjamin-Ono Equation
To discretize the regularized version of the Benjamin-Ono equation, use is made
of the equivalent formulation (2.2). There are no problems with stability as the
resulting semidiscrete system is not stiff. We therefore use an explicit fourth-order
Runge-Kutta scheme for the time-discretization. The Runge-Kutta algorithm has
the form .
Urtl=U"+ k'é (Fl + %Fz + %F3 + F4) ,

where the I'; are defined by

v =U" F1=F(’U1)

vy =U™ + %kI‘l Iy = F(’Uz)

vy =Un+%k]:‘2 F3=F(’()3)

’U1=Un+ krg I‘4=F(v4)
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k L? —error | Ratio
0.4 2.437e-03
0.2 1.604e-04 | 15.194
0.1 1.008e-05 | 15.917
0.05 6.344e-07 | 15.888
0.025 | 9.091e-08 | 6.978
0.0125 | 8.203e-08 | 1.108

TABLE 7. Regularized Benjamin-Ono ; error due to temporal discretization.

N | L2-error Ratio
1024 | 4.921e-01
2048 | 2.378e-01 2.07
4096 | 2.125e-02 11.19
8192 | 1.968e-04 | 107.69

16384 | 2.431e-08 | 8097.02
32768 | 1.335e-09 1.82

TABLE 8. Regularized Benjamin-Ono equation; error due to spa-
tial discretization.

%ﬁi_/ F is given in terms of the discrete form of the convolution operator K by
FV), = l%'f"%[(f/n + (/‘72/),1) To check the algorithm, we used the exact form
(3.4) of the regularized Benjamin-Ono solitary waves. A representative result for
a wave of height 3 is given in Tables 7 and 8. In this calculation, the solution
was approximated from T = 0 to T = 3.2 and the size of the domain was 6400.
In the computations shown in Table 7, 8192 Fourier modes were used. The 4th-
order convergence of the scheme is apparent up to k = 0.025, when the error
became dominated by the spatial discretization and the artificial periodicity. Table
8 displays the spatial convergence rate for a calculation with k = 0.0125. We
observe exponential convergence before reaching the limit set by the size of the
time step and the artificial periodicity. Similar results obtain for other solitary
waves with heights between 0.5 and 6. For smaller waves, a larger interval has to
be used, while for taller waves, the number of Fourier modes needs to be increased.
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