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Abstract

Evolution equations featuring nonlinearity, dispersion and dissipa-
tion are considered here. For classes of such equations that include the
Korteweg-de Vries-Burgers equation and the BBM-Burgers equation,
the zero dissipation limit is studied. Uniform bounds independent of
the dissipation coefficient are derived and zero dissipation limit results
with optimal convergence rates are established.
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1 Introduction

The incorporation of dissipative effects is often crucial in obtaining good
agreement between experimental observations and the prediction of theo-
retical models describing the propagation of waves in nonlinear dispersive
media (cf. Bona et al. [14] for an example from water-wave theory). To take
account of dissipative mechanisms, a Burgers-type term is often appended
to nonlinearity and dispersion in these models (cf. Johnson [22], [23] for
an early suggestion in this direction). Two such models are the well-known
BBM-Burgers equation

Ut + Uz + WPUG — VUgy — @2 Ugy = 0 (1.1)

and the (generalized) Korteweg-de Vries-Burgers equation (GKdV-Burgers
equation)
Ut + Ug + UPUL — VUgg + Ugge = 0, (1.2)

where u = u(z,t) is a real-valued function of two real variables z and t,
p 2 1is an integer, v > 0 and @ > 0 are real numbers. Numerous numerical
simulations and analytical studies have been carried out to determine the
effect of such a term in these models (cf. [4], [7], [8], [12], [13], [15], [16], [21],
[27], [28], [29]). Laboratory studies show (1.1) with p = 1 and a suitably
chosen value of v has good predictive power in cases where nonlinear effects
are not too strong (e.g. the Stokes number is not too large in a water-wave
context [14]).

It is the purpose of this article to investigate theoretically aspects of the
dissipative effects inherent in these two models when v > 0. Consideration
will also be given to a more general class of models of the form

us + (P(u))z + vMu — (Lu)y = 0, (1.3)

where M and L are Fourier multiplier operators with non-negative symbols
and P is a polynomial, say

p+1

P(u) = Z aguf



with ax € R, k =1,2,---,p (see Bona [5] and Dix [21]). Interest will mainly
focus on the pure initial-value problem (IVP) for these equations wherein

u(z,0) = up(z), is specified for z € R;
however, the initial- and boundary-value problem (IBVP)
u(z, 0) = uo(z), for z € R,

u(0,t) = g(¢), for t € RT,

for the BBM-Burgers equation will also be examined. In this article, particu-
lar interest is directed toward the behavior of solutions in the zero dissipation
limits.

In the limit as v tends to zero, Equations (1.1), (1.2) and (1.3) formally
reduce to the BBM equation, the GKdV equation and a class of equations
of KdV-type in generalized form,

Ug + Ug + UPUL — Uggr = 0,

U + Uz + upum + Uggg = 0,
u; + (P(u))z — (Lu)g = 0,

respectively. This suggests comparing solutions u to one of these equations
with dissipation to the solution v of the corresponding equation without
dissipation. It is expected that for various spatial norms || - |,

lu(t) —v(- D)l =0 (1.4)

as v — 0, uniformly for ¢ > 0. Theory will be developed showing (1.4) is
valid in certain circumstances. Moreover, we will be able to determine the
rate at which |ju(-,t)—v(-, t)|| approaches zero. A crucial step in proving such
convergence results is to obtain v—independent bounds on solutions to the
dissipative equations and very often these are not available in the literature.
Precise statements are provided presently.

The paper is organized as follows. Section 2 contains the relatively
straightforward analysis of the zero-dissipation limits for the IVP and the
IBVP for the BBM-Burgers equation. In Section 3 we establish v-independent
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bounds on solutions to the GKdV-Burgers equation in H* for all integers
k > 0 (The Hilbert space H* = H*(R) is the L?-based Sobolev class of
functions whose derivatives to order k are all square integrable.). This result
is interesting in its own right and crucial in obtaining the zero-dissipation
limit results for the GKdV-Burgers equation in Section 4. The relation (1.4)
is determined to hold in || - ||z+ and the convergence is shown to be O(v)
as v — (0. Section 5 is devoted to the equation of general type depicted in
(1.3). Zero-dissipation limit theory in this section relies upon growth condi-
tions on the symbols of the dispersion and dissipation operators L and M,
respectively.

2 Zero-dissipation limit for the BBM-Burgers
equation

This section is divided into two parts. The first part is devoted to the zero-
dissipation limit for the IVP for the BBM-Burgers equation while the second
part deals with the zero-dissipation limit for the associated IBVP. Consider
first the IVP

Ut + Uy + UPUG — Vilgy — 0P Uggs = 0, (z,t) € R x Rt (2.1)
u(z,0) = ug(z), z €R, (2.2)

where p > 1 is an integer, v > 0 and o > 0. As noted before, upon setting
v =0, Equation (2.1) formally reduces to

Ug + Ug + UPUG — 0P Uy = 0. (2.3)

There is an adequate theory of well-posedness for the IVP (2.1)-(2.2) and
the IVP (2.2)-(2.3) (cf. Bona et al. [2], [3]). For our purpose, it suffices
to have the following proposition, in which C,(I, X) denotes the bounded
continuous mappings u: I — X, I = [0,T] C R*, with its usual norm.

Proposition 2.1 Let ug € H® with s > 1. Then there ezists a unique
solution u to the IVP (2.1)-(2.2) such that, for each T > 0,

u € Gy([0,00); H) N C([0,T); H®) and 8Fu € C([0,T); H?)
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for each k > 0. Furthermore, for each T > 0, the solution map from ug to u
is analytic from H® to C*([0,T}; H®).

The preceding results hold for the IVP (2.2)-(2.8), but in this case fu €
C([0,T); H**Y) for each k >0 and T > 0.

We shall use u and v to denote the solution to the IVP (2.1)-(2.2) and
the IVP (2.2)-(2.3), with initial data ug and v, respectively. The following
lemma provides v—independent bounds and other helpful inequalities for a
solution u to the IVP (2.1)-(2.2).

Lemma 2.2 Assume thatp > 1 and s > 1.

(i) If u is a solution of the IVP (2.1)-(2.2) with uo € H®, then for allt > 0,

t poo
o Dl + o2, Dl + 20 [ [ dods = fualfs + o
0 J—o0o

(2.4)
Ugy € Lz(R x RY), and ||u(-,t)|lze < C(e)]juoll &

where C(a) = max{a?, a~?}.
(ii) Ifv is a solution of the IVP (2.2)-(2.8) with initial data vo € H*, then

lo(, )lm < C@)lvolla, ()l < Cl@)|lvollar (25)

and, if s > 2,

0 Iwoll®,  [00
/ (vﬁ(x,t) + azvim(m,t)> dz < e Lt/ (vgz(a:) + v, (a:))dm
) - 2.6)

o0
(
¢ —p lvolfy,
[ ot 5)lomds < 2V B0l P unlae (= ~1) - 2)
0

Remark. In the proof that follows, and frequently in the rest of the paper,
intermediate calculations are made that use regularity in excess of that as-
sumed on the data and hence in excess of that which the solution possesses.
The final inequalities do not suffer from this defect, however. Such calcula-
tions are easy to justify in the presence of a strong continuous dependence
result. Simply regularize the initial data, make the calculation securely for
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the resulting smooth solution, and then in the fina] inequality pass to the
limit as the regularization weakens to the identity. This standard proce-
dure underlies much of the theory developed here, but we will not constantly
remind the reader of its invocation.

Proof. The formula (2.4) is obtained by multiplying (2.1) by wu, inte-
grating over R x [0,¢] and integrating by parts appropriately. To show that
Uzz € L*(R x RY), multiply (2.1) by s and integrate. To finish (i), it
suffices to remark that

e DlZeo < 2l D)llzallual-, )l < C o) luo] .

The proof of (2.5) is similar. To establish (2.6), multiply (2.3) by v,, and
integrate over R to obtain

&0 oo
% (v2(z,t) + ®v2 (2, 1))dz = 2/ (VpVg50P) (2, t)da
s .
<ICBlEee™ [~ 2D otk ne, @8

which leads to (2.6) after integration over [0,¢]. The inequality (2.7) follows
by combining (2.6) and the estimates

1oz (s 8)llzee < V2lJua(, $)llzl|vsa(, 8)llzz < C(e)voliar v, 8)ll2z,

where the constants depending on o may be different from line to line.

In the following theorem, explicit estimates are established for the differ-
ence between a solution u to the IVP (2.1)-(2.2) and v to the IVP (2.3)-(2.2).
As a consequence of these estimates, u converges to v with the sharp rate of
order v if the initial difference is maintained at order v.

Theorem 2.3 Assume that p > 1 and s > 2. Let u be the solution of the
IVP (2.1)-(2.2) with ug € H® and let v be the solution of the IVP (2.8)-
(2.2) with initial data vy € H®. Then the difference w = u — v satisfies the
inequality

lwliZe + (1 + &®)llwslIZz + o[|wae| 32

< €O (flwgl3 + (1 + 0)llwoal% + 0lwoncllZ2) + PAOB(),  (2.9)
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for allt > 0, where wy = ug — vp,

A(t) = max{l,a2}<t + Jluo|Bt

u|P

Vi
+6vBapmax(luolle, ool Hoo s unle (7 - 1) ).

and ol
B(t) = aluoll 2 lvolle ( o 1)

If we consider a one-parameter family {ug},>o0 of initial data such that
lub — vol|zrz = O(v) as v — 0 (in particular if ug = vo), then for any T >0
andt <T

lw( )32 + (1 + )llws(, IZe + &llwes (-, B)]|z2 = OF7)
as v — 0.
Proof.  The difference w satisfies
Wy + Wg + (WPUg — VPU5) — Vigg — 0PWagy = 0. (2.10)

Multiplying (2.10) by 2(w — wg;) and integrating over R yields

oo

d
& (il + (0 + @)l + o wsa ) +2v [ (2 +ud,)do

-0

=2 /oo (W — Wag)VgzpdT — 2 /oo (W — Wag) (WPwg + (uP — vP)vg)dz. (2.11)

—oo —00

The first term on the right-hand side of (2.11) may be bounded by

o0
lw(-, )Z2 + llwsa (-, )12 + 2”2/ VaodZ.
—00
Using the results of Lemma 2.2, there obtains
o0
[ wtee o] < prmaclualf Tolf st Ol [ v
—o0



oo
, / wuPwgdz
-—00

[0 ¢]
‘/ Wag(uP — vP)vdz| <

o0

1 © 1 e
< 2ol / WPz + |luoll%, / Wi
2 oo 2 v

[

p 2
g mase{ ol ol Hlos o [ i

o0

o0

+8 maluoll ool Hlos (Ol [ i,

o0
(o] o0 1 [o,¢]
‘/ WaguPwydz| < —||u0[| / wfcdz+ 5””0”];11/ wfmdx.
—00 —00 —00

These estimates are combined to give

d
dt

and

Y(t) < A@Q)Y () + B(t) (2.12)
where
Y(t) = lw(, )72 + (1 + ) lws (-, 1) |32 + 2 ||wa| 22, (2.13)

A(e) = ma{1, o~} (1+ [[uolfys + 3p max{ ol ol )l
(2.14)

B(t) = 2 / (@, 1)ds. (2.15)

By Gronwall’s inequality to applied to (2.12), there is derived the upper

bound t
Y(t) < <Y(0) + / B(s)ds) eo Aln)dr
0

which is (2.9) after reintroducing ¥, A and B as in (2.13), (2.14) and (2.15),
respectively, and using the bounds in Lemma 2.2 .

Next, attention is given to the zero-dissipation limit of solutions to the
initial- and boundary-value problem (IBVP)

Ut + Uy + UPUL — Vligy — QP Uggs = 0, (z,t) € Rt x RT, (2.16)

U’(07t) = gl(t)a te R+’ (217)
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u(z,0) = ug(z), z € RY, (2.18)

where p > 1 is an integer, v > 0 and o > 0 and the consistency condition
g1(0) = u(0) is always assumed. Our approach is to compare the solution
u of the IBVP (2.16)-(2.17)-(2.18) with the solution v to the IBVP for the
BBM-equation

vy + Uy + VPU — 0PUgg = 0, (z,t) € R* x RT, (2.19)
v(0,1) = go(2), teR", (2.20)
v(x,0) = vo(z), z € RT, (2.21)

in which g2(0) = vo(0).

The well-posedness of both the IBVP (2.16)-(2.17)-(2.18) and the IBVP
(2.19)-(2.17)-(2.18) has been established by Bona, Bryant and Luo (cf. [6],
[10]). The following result suffices for our purposes.

Proposition 2.4 Let T > 0, 1 < p < 4, uy € CZ(R") N HXR") and
g1 € CY0,T) with g1(0) = w(0) (respectively, vy € CE(R') N H*(R") and
g2 € CY0,T) with g2(0) = vo(0)). Then the IBVP (2.16)-(2.17)-(2.18)
(respectively, the IBVP (2.19)-(2.20)-(2.21)) has a unigque solution u such
that, for any finite T > 0, u € B2'(RT) N C([0,T); H*(R)) (respectively,
v € BE(RY) N C([0,T); H*(R*)). Furthermore, the bound for |\l is
independent of v for small v.

In Proposition 2.4 BE'(R*) stands for the functions u defined on R* x
[0, T] such that 88w are continuous and bounded over Rt x [0, T] for 0 <

i < k and 0 < j < [. The principal zero-dissipation limit result for solutions
to the IBVP (2.16)-(2.17)-(2.18) is as follows.

Theorem 2.5 Let T > 0, 1 < p < 4, ug,vo € CERT)NH*RY) and g1, 92 €
CY0,T) with g1(0) = up(0) and g2(0) = vy(0). Consider the difference

w(z,t) = u(z,t) — v(z,t)

between a solution u to the IBVP (2.16)-(2.17)-(2.18) with data w, and g;
and a solution v to the IBVP (2.19)-(2.20)-(2.21) with data vy and go. Then
for any t € [0, 7],

lwlffz + (1 + ) wsllZ2 + 0 lweeliz:
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< C1(t) ol + (2 + @) el + 02 s ]

+Ca(t)v” + Csllgr ~ galloxor) + Callgr — gallZe omy

where wy = ug — vy, Cy, Cy are functions of t and Cs, Cy are constants, all of
which depend only on «, p, T, ||uol|z2,||vol| &2, ||91||01(O,T) and ||gallcr(0,1)-

As a consequence, if {uf},s0 and {g¥},>0 are families of initial and
boundary data for which |lug ~ vol|gz = O(v) and ||lg1 — ga|lcr oy = OW?),
as v — 0, then

lwllzz + (1 + &) [lws[[Z2 + 0 [lweslF2 = O(?)
as v — 0.
Proof. The difference w = u — v satisfies Equation 2.10 with initial value

up — vo. Upon multiplying this equation by w — wy,, integrating over [0, 00)
and integrating by parts appropriately, there appears

d oo
i (01 + (L @Ol + o2ussle) + 20 [ (0 + 02 )da (222
0

=2 / (W — Weg)VgedT — 2 / (w — Wyz) (UPuy — vPuy)da (2.23)

—wz(0,1) — 20(g1 — g2)us(0,8) + (g1 — g2)? (2.24)
—2(g1 — g2):wz(0,8) — 202(g; — go)we(0, 1). (2.25)

The terms in line (2.23) may be estimated as in the proof of Theorem 2.3
and, due to the bounds for ||u||g2 and ||v||z2 (see Proposition 2.4),

21// (W — Weg)Vgedx — 2/ (W — W) (WPuy — vPu,)dz

0 0

< Gu(®) (ol + 1+ @®lwalifs + o unslls) + 207 [ it (220
0

for 0 <t < T, where C5(t) is a function of ¢ with dependence only on p, «,
”Uo||H2, ”'UO“H2a ||91”01(0,T) and “92”01(0,T)-
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For 0 < t < T, the temporal integrals in lines (2.24) and (2.25) are
estimated as follows:

t t
[t ndr < [ty )lfedr
0 0
t 1 t
< [ sl MilhweeCy Pl < 5 [ (s s + lhneeC )
t
~2v [ (0i(r) = a(r))u0, i < 20Ty = llcom e,
0
t
| @(0) = 0sr)dr < Tlor = slfany
i t
~2 [ (6, - s)ue(0,7)dr < 2= glloram [ ol foslss
0

1 14
<llgr — @llEom +5 [ (lwsllZe + llwsell22)dr,
2 Jo

and
—24? /0 (61 — g2)war 0, £)dr = 262(g1(0) — g2(0))ws (0, 0)

t
~2%(01(9) - 9a0)ws(0,0)+ 20 | (5} — gwadr
0
2 o? [ 2 2
< 20?l9: ~ gllcw(lulln + o) + G [ (sl + wselfa)ar

Integrating equation (2.22) over [0,¢) and combining the outcome with
(2.26) and the last set of estimates for the terms arising from lines (2.24) and
(2.25), the inequality

T(w)(t) < Cs(t) /0 D(w)(r)dr + 22 /0 t /0 " o2, dwdr

+(Cov + C8)llg1 — g2llcr o,y + Collgr — gallZa o,y (2.27)

obtains, where I'(w)(t) = [lw(-, )|} + (1 + &) llws (", D)IIZ2 + 02 ||waa (-, DT
The desired result follows after application of Gronwall’s inequality to (2.27).
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3 v—independent H*-bounds for the GKdV-
Burgers equation

This section focuses on the IVP of the GKdV-Burgers equation
Us + UPUL — Vigg + Ugze = 0, (x,t) € R x R+a (31)

u(z, 0) = uo(z), z € R, (3.2)
where p > 1 and v > 0. The GKdV-Burgers equation and its dissipationless
counterpart

ug + UPUL + Uggy = 0, (z,t) € R x RY, (3.3)
have been the subject of numerous investigations (cf. Bona et al. [8], Kenig
et al. [24], [25]). There is an adequate theory of well-posedness for both the

IVP (3.1)-(3.2) and the IVP (3.3)-(3.2). The following results of Bona et al.
[8] and Kenig et al. [24] serve our purpose nicely.

Proposition 3.1 Let v > 0 and up € H*(R) with s > 2.
(1) If p < 4, then there is a unique global solution u of (8.1)-(5.2) such that
u€ C([0,T]; H®), for everyT >0
and ||u(-, t)||g: is uniformly bounded in t.

(2) Ifp > 4, then there is a Ty = To(||uo||g1) > 0 independent of v > 0, and
a unique solution u € C([0,Tp); H®). If |luo||lm is sufficiently small, Ty
may be taken to be 400 and the solution is global.

Moreover, fort > 0, u(:,t) is an H®(R)-function of its spatial variables and
consequently u s a C®-function in the domain {(z,t) :z € R, 0<t<Tp}
where Ty = oo in case (1) or in case (2) if the data is small. In all the above
cases, the solution u depends continuously on wy in the ezhibited function
classes.

Proposition 3.2 Let p > 1 be an integer and s satisfy

s> 8/4, ifp=1;
s>1/4, if p=2;
s> 1/12, ifp=3;

s> (p—4)/(2p), ifp>4.
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Then for any wy € H°(R) there ezists T = T'(||uol
solution u of the IVP (8.8),(3.2) satisfying

gs) > 0 and a unique

u € C([0,T); H®).

Whenp=1ands>1orp<4 and s > 2 or when ug 28 small enough,
the solution u extends globally in time. In any event, u depends continuously
on ug tn the exhibited function classes.

Remark. The situation for KdV-Burgers is different from that arising
with BBM-Burgers in the following respect. At least for the pure initial-
value problem, the BBM-Burgers equation is globally well-posed regardless of
how large p is. It is otherwise with the (generalized) KdV-Burgers equations
where the indications are that large solutions may blow up in finite time if
p > 4 (see Bona et al. [8], [9] and Bona and Weissler [20]) even when v > 0.

However, bounds on solutions of (3.1)-(3.2) which do not depend upon
v seems not to have been derived. It is the goal of this section to provide
such bounds. More precisely, it will be shown that for each positive integer
k, there is a constant Cj depending only on ||ug|| g+ such that the solution u
to the IVP (3.1)-(3.2) obeys

||u('1t)||H" < Cg

forallt > 0 if p =1 or 2 and for all ¢ in bounded intervals [0,T] if p > 3,
where T' < T*, the existence time for the solution in question. The proof
is made via an induction argument. Attention is concentrated on the cases
k =1and k = 2. When k > 3, the argument simplifies because, with k = 2 in
hand, it follows that u; is bounded, independent of ¢ in the relevant interval.

Theorem 3.3 Let p > 1 and ugp € H(R). Then solutions u to the IVP
(8.1)-(8.2) for the GKdV-Burgers equation have the following properties.

(i) Ifp € [1,4), then there is a constant Cy depending only on p and |luo| m
such that for any t € [0, 00),

[u(, )l < Cr. (3.4)
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(ii) If p > 4, suppose that € = ||ug||z is such that

4
p—4

(1 -|-,LL1,)62""121 <1 and 62(1 + ppef) < (1 = é) (%) ,
p

where pp = 2/(p+1)(p+2). Then for any t € [0, 00), there is a constant
Cy depending only on p and € such that

lu(, t)|| g < Ca.

Remark. These bounds are not only independent of v, but also uniform
with respect to ¢, regardless of the value of p.

Proof. For notational simplicity in the calculations here, references to
the measures dr and dt are omitted when we write integrals. First, recall

that
co t 00 00
/ u2+21/// ui=/ uz. (3.5)
-0 0 —00 -0

Multiplying (3.1) by ugg + u?™/(p+ 1) and integrating on R x [0, ¢] leads to

[ Grges . u”“”'///

:/oouz 2 / p+2
oo D2 S p+1

This formula constitutes the base for our further estimates. Clearly, we have

umu”+1 (3.6)

o0 2+E P
/ Wz, 1) < flu O llul, O < lluollps *llua( OlIZ.  (3.7)

-0

To simplify the presentation, define

€ = |luo|lgr and o(t) = sup luz (-, 8)|z2-
<s<t

Integrating by parts and using (3.5) gives

o8] t o}
Ugg P! = 21// / uPu?
—00 0 J—oo

14
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t 00
< s o)l [ [ a2
0<s<t 0 J—oo

<& sup [lu(, s)|[5 llua(, 8) 175 < €48 sup [lus(, 975 (3.8)
0<s<t 0<s<t

Putting (3.6), (3.7) and (3.8) together yields

t o0
o2(t) — Cao3 (1) + 2v / / W2, < Cy (3.9)
0 -0
for all t > 0, where
Cs = (1 + 42—> €2+121 and Cy= €2 + -2—E2+ZD
(p+1)(p+2) (p+1)(p+2)

depend only on p and e¢. Formula (3.9) suggests a natural trichotomy.

(i) If p € [1,4), then £ < 2 and we can apply Lemma 3.4 below to inequality
(3.9), whereafter the desired result (3.4) follows.

(ii) When p = 4, we insist that € is such that

2 242 .
(1 + m) €Tz <1, ie, C3<1,

and then (3.8) implies 02(t) < (1 — C3)~'C4.

(iii) For p > 4, if € is small enough that

4 4 \r1
a<(i-3) &)™
and since o(t) is a continuous function of ¢, it follows from (3.8) that
o(t) <~v(e), forallt>0,
where 7(¢) is the smallest positive root of
o2(t) — Cso%(t) = Cy.

The proof of Theorem 3.3 is thereby completed.
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Lemma 3.4 Let P,Q and § < 2 be positive numbers. If Y > 0 satisfies
Y2 - PYF <Q,
then Y is bounded by
Y < max {(ZP)Tiﬂ', \/%} .
A simple proof of this lemma is provided in [31].
We now proceed to the case k = 2. A crucial step in establishing the

uniform bound in this case is the derivation of a particular integral identity

valid for smooth solutions of (3.1)-(3.2). This result is the subject of the next
proposition.

Proposition 3.5 Let v > 0 (respectively, v = 0) and uy € H® with s > 2.

Then the associated solution u of the GKdV-Burgers (respectively, GKdV)
equation with initial data wy satisfies the formula

o] ’ t 00
/ [Uim(m,t) — guiu”(x,t)} dz + 21// / ul  dxds
s 0 J-o0
5 2
—/ [ (z,0) - guzu”(x O)J dz

// { (p—1)(p—2)u u”3+2pu3 = 1]da:ds

+3v / / [2u uP——p(p—1)u§uP—2] dzds, (3.10)

for allt > 0 for which it exists.

Proof. We write [ [ for fo J=5 and omit dz and ds for simplicity of reading

and writing. The proof of this proposmon involves two steps. The first step
is to derive the identity

o0
/ w2 (z,1) +2V//uim(m,s)dazds—i—Sp//uzuimu"_l
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—/ x0+p—1p 2// Syup~3 (3.11)

and the second is to establish that

(o9}
/ [u2,(3,t) — ulu(z,1)] +21/// mm-i—.?p//umu uP~?

= [ bate,0) — 2@ + [ [ [300- 00— 2t + |

- +u// [2u u”——pp LuguP™ 2} (3.12)

provided u is the solution of (3.1)-(3.2) with initial data u,.

The purpose of deriving these two identities is to use them jointly, but at the
same time eliminate the troublesome term

2 —1
//ufﬂuzmup )

after which (3.10) follows easily.

For (3.11), differentiate the GKdV-Burgers equation with respect to z,
multiply the result by uss, and integrate over (—oo, 00) x [0, ], so coming to

/_ -(z,t +2u// o / +(,0 +2//umz(u Ug)gze (3.13)

The last term may be treated as follows:

/ / Ugzs(UPUg ) g / / Uggs (UPUgg + pUP™ u2)

// wup_p//uwm(up . ix
=——2—//uzuimup 1 _pp—1 //u UggUP 2
=—%E//umuimu” 1—— p—1 // )otP 2
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=——//umumup 1+ p p—1)(p— 2)//u uf~3, (3.14)

Equation (3.11) follows from (3. 13) and (3.14).

For (3.12), multiply the GKdV-Burgers equation by Uggzs + (WPug), and
integrate over (~o0,00) x [0,¢]. After suitable integrations by parts, we

obtain o
[+ [ [+ [ [wrwm,
- .
o0 .
=/ w2, (z, 0)+V//u_§xu”+p1///umuiu”‘l‘ (3.15)

In (3.15), the two terms

//umuiup“l and f‘/(upuz)zut

need further elucidation. First of all, note that

: 1 _
//umwuiup_lz 5//(u§)muzu" :
1 5., p—1 _
3 fut 22 [ [t
' 2, p—1 p_l 4, p—2
Upgligh? ™ = —=—5— u uP % (3.16)

On the other hand, it is clear that

J Jerwan==3 [ [war=-1 [ [eaen+2 [ [veu,

Use the evolution equation itself to represent u;, so obtaining

//(u”uz)xutz—%/ [u2u? (z,1) — uluP(z,0)]
—_// sut %//uiuwmup_l_g//uiup_lummm (317)
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while the last term in (3.17) can be further expressed as

——// 2P gy, = //umumu” 1y —pp 1 //u Ugg P2
2 ,,p—1 1 5, p—3
=Pp UgUgaU + gp(p - 1)(p - 2) Ugu™ .

In summary, there obtains

//(u”um)wut = —% /_: [u2uf (z,t) — ulu?(z,0)]

——// Sup-l %//uiumu”'l
i [ [uaze + B2ZD0ZD [ [izpms g

Collect the estimates (3.15),(3.16), (3.18) and the desired identity (3.12)
follows.

This completes the proof of Proposition 3.5.

The v—independent bounds in H? are now stated and proved.

Theorem 3.6 Let p > 1 and v > 0 (respectively, v = 0). Assume that the
initial data ug € H? and for p > 4, that ||uol| i is sufficiently small. Then for
allt > 0, the solution u of the GKdV-Burgers (respectively, GKdV) equation
with data uy obeys

L 00
(e, O)ls2 + v f / W2 (z, 5)dzds < Cse®®, (3.19)
0 — 50

for some constants Cs and Cys depending only on p, o and ||uo||g2. Forp=1
or 2, we may take Cg = 0 and thus the bounds are uniform in both t and v.

Proof. The argument is first made for general values of p. Recall the
already established uniform bounds

/ / 2(x, s)dzds + |Ju(-, t)]|%. < lluol|22,
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(3.19) with Cg = 0. The case p = 1 is worked out here, but the case p = 2
is entirely similar. The crux of the matter is to use rather than (3.10), the
more specific identity

/ / U2ee (T, 8) + 6u(z, s)uly (z, 5) +3u2(at,s)ufc(x,s)] dzds
= [ [3u0,0) - 3u(s, 00,0 + (e, 0)]

which holds for H?—solutions of the initial-value problem (3.1)-(3.2). This
relation is obtained by multiplying (3.1) by u3 + 3u2 — 6uug, + 8

& Ugaar,

integrating the result over R x [0,t] and integrating by parts suitably. This
identity implies that

0 1 t poo
g/ ul (z,t)ds + 1/38/ / w2, (z, s)dzds
—00 0 J—co

t [o%e]
< 6vflul-, ) / / u2,(z, 8)dzds + 3, )| g lus (- )22 + Ci,
0 -—00

where C'1; depends only on the H*—norm of the initial data. Because of the
prior results in (3.20), it follows that

[¢%s) t o)
/ ufm(a:, t)dz + 1// / ufm(m, $)dzds < 6(]%3 + 3C$ +Cin = 9073 +Cny
0 0 —00

is bounded, independent of ¢ and v, solely in terms of p, @ and ||ug||g2 only.

Attention is now turned to the inductive step which corresponds to the
cases k > 3.

Theorem 3.7 Let p > 1 and v > 0 (respectively, v = 0). Assume that the
initial data ug € H* with k > 3 and if p > 4, that ||uo||m: s sufficiently small.
Then the solution u of the GKdV-Burgers (respectively, GKdV) equation with
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initial data ug is uniformly bounded in H*. That is, for any T > 0, there
exists a constant Cy depending only on p, o, T and ||ug||g+ for which

t poo
|, )| e + I/f / (0F1u)2dzds < Cy (3.22)
0 J—oo

for allt € [0,T). If p=1 or 2, Cy can be taken to be independent of T'.

Proof. The argument for k = 3 is representative. Multiply the GKdV-
Burgers equation (3.1) by Uszzzee and integrate over (—oo,00) x [0, ]; after
integrations by parts, we have

o o
/ uimm(a"’ t) +2v / / u:zcmmm = / uimz(m7 0) +2 / / LTk P T—
—0 —00

Only the last term needs attention. Integrate by parts further to obtain

//Upumuzzzzmm e _//(upux)zmzumxm

. —p(p - 1)(p - 2) //Up_suiumm =i 7p(p s 1) //up_zuiummuwwz

T 9 _
+4p//up luimumm+ Ep//up 1uzuim'

The last two identities enable us to argue successfully for the bound (3.22)
as in the proof of Theorem 3.6. The argument for arbitrary k is similar.

As in Theorem 3.6, for the cases p = 1 and 2, a more elaborate argument
can be mounted which leads to bounds that are independent of both v and ¢.
The argument relies upon the hierarchy of conservation laws that obtain in
case v = 0. Briefly, for each k = 1,2, - - -, a sufficiently smooth solution of the
KdV-equation (p = 1), or the mKdV-equation (p = 2) satisfies a sequence of
identities of the form

0 0

—1 = —F 23

o k() oz k(u), ( )
where, I, and F} are polynomials in u and the partial derivatives Ol u, which
we write as u(;) for convenience, j = 1,2, ---. In more detail, for KdV, Ij
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depends on u, Ou, - - -, O¥u and Fy depends on u, du, - - -, 85 2y, Moreover,
suitably normalized, I}, has the form

Ix(u) = 2ufk) + auu?,c_l) L alRR (3.24)
which is a finite sum of terms of index k + 2 where the indez of a monomial
Uy U (8:25)

e ' 1 ,
;ai +5 ;ﬂi. (3.26)

The fluxes Fy; have a similar form except that their general term, which is
also of the form (3.25), has index £+3. The formulae in (3.23) are derived by
multiplying the KdV-equation by a factor Ay (u), where A (u) is a polynomial
In u, Ug, -, Uek) composed of monomials of index k + 1. In general, Ap(u)
may be normalized to have the form

Ag(u) = (=1)Fugpy + - - - + auFt, (3.27)

‘These facts follow directly from the original analysis of the KdV- and mKdV-
conservation laws given by Miura et al. [26].

When v > 0, the formula
Ap(u)(us + Uty + Uggg — Vgg) = 0
may be put into the form
Ol (u) — Vg Ag(u) = 0, Fy(u). (3.28)

The second term on the left-hand side of (3.28) may be written as

~VlUpp Ap(U) = — Vg ((—1)’°2u(2k) + 4 auk“)

= 2% [u§k+1, + Qs (u)] + V0, Ga(u), (3.29)
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where Q) is a linear combination of the other monomials of index k+3. Inte-
gration of (3.28) with respect to & over R, and after imposing zero boundary
conditions on u, ug, - -, at 0o, leads to the relation

d o0

) I (u)dz + 1//

o0

Ul 1ydz = 1// Qr(u)dz.

Integration with respect to t over the interval [0, o] then yields

o to oo
/ u%k)(m,to)dx+2u/0/ U%kﬂ)(a:,t)dxdt

-0

- [" o [ Lt iz [ [ Qulute s, (220

where

w1 = Iea(,) - | vl (e t)de

The stage is now set for an induction on k. Assume that (3.22) is valid for
all kK < m and that Cj does not depend on v and ¢. We then use (3.30) to
show that, provided g € H™, then (3.22) is valid for k = m+ 1. As it is
already established that (3.22) is true for k < 2, this will finish the proof. It
suffices to bound the right-hand side of (3.30) for ¥ = m + 1, independent
of v and ¢t. By the induction hypothesis, there is a constant Cy, depending
only on ||g||g= such that

t poo
llu(-,t)||gm < Cp  and 1// / Urmr1) (2, 8)dzds < Cpy (3.31)
0 J—oo

for all v,¢ > 0. It is easy to see that if g € H™, then [ Imy1(g(z))dz
is finite — a fixed constant independent of ¢t and v. Moreover, it is straight-
forward to determine that all the terms in [ Im41(u(=,t))dz except the
top-order term [°C_ uf, ., (z,t)dz are bounded by a suitable power of the
constant Cy, in (3.30) (c.f. Bona-Smith [17], §4). Thus [°C Imi1(u(z,t))dz
is bounded independently of ¢t and v. A similar conclusion may be drawn
about f; [ Qi(u(z,t))dzdt. Indeed, the only terms that might be trouble-

some are
t o] t 0
V/O / uufmﬂ)dmdt and 1//0 / uzu?m)dxdt. (3.32)
—oo —00
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Neither of these gives trouble since ||u(-, ¢)|| g2 is already known to be bounded,
independently of v and ¢ on account of Theorem 3.6, and so ||u(:, )|z and
lluzg (-, )|z are bounded, independently of v and ¢. Thus the terms in (3.32)
are bounded by C1C2 and C,C?_,, respectively. Thus, for k = m + 1, the
right-hand side of (3.30) is seen to be bounded, independently of ¢ > 0 and
v > 0. The inductive step is completed and the derived result follows.

4 Zero-dissipation limit for the GKdV-Burgers
equation

The uniform bounds derived in Section 3 lead directly to the zero-dissipation
limit results for the GKdV-Burgers equation. It is shown in this section that
for each nonnegative integer &, the solution of the IVP (3.1)-(3.2) converges
in H* to the solution of the IVP (3.3)-(3.2) with the sharp rate of order v.
Our approach is again inductive and the focus is on the cases £ = 0 and
k =1, which correspond to the results in L? and H:.

The first result is the zero-dissipation limit in case k = 0.

Theorem 4.1 Let p > 1 be a positive integer. Assume that vy and {uf}vso
lie in H*(R) and consider the difference

w(z,t) = u(z,t) — v(z,t)

between a solution u = u, to the IVP (8.1)-(8.2) with initial data u¥ and a
solution v to the IVP (8.8)-(8.2) with initial data vo. Let Ty be the mazimal
eristence time for v. By Proposition 3.1, the solutions u = u, all exist at
least on the time interval [0,Tp). Then, for any T with 0 < T < Ty and
t €[0,T],

lu(+2) = v 1)l1F2 < € A g — w3,

t 00
+12 / el Crlm)dr / v2,(z, s)dzds (4.1)
0 —00
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where Cy is a function of t with dependence on p, ||uollg: and |jvel|az only.
In particular, if ||uf — vol|zz = O(v) as v — 0, then

[u(:8) —v(, t)llze = OW)
as v — 0, uniformly for t € [0,T).
Proof. The difference w solves the equation
w + (UP — vP)vy + uPWy — VW — VVgg + Weze = 0. (4.2)

Multiplying (4.2) by w and integrating over (—o00,00), we obtain

%%/ w2+1// w2 =I+1I+1IIT (4.3)

where the three terms on the right-hand side may be estimated as follows:

©0 1 o) 1/2 )
L= V/ WVgg S 5/ w2 -+ ?/ 'Ugm, (44)
—00 —o0 —00

oo Pl o
= —/ (uP — vP)vpw = — E / (uP~ vl )w?
—00 j=0 Y~

p—1 00
< S [P oy (-, ) e / o, (4.5)

—0o0

and

1= [T oy =-3 (7)) [ @t

. =

p—1 5
=Y ( p ) P —'% / ” WP~y qpit?
“\i)it2)w
p—1 . oo

PNXNP— ) p=j-1 j 2

< e | A VR TV O 2 oo/ w*. 4.6

<> (2) el Ol [ (45)
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Noticing that .
2 1/2
Vo (e, )l < Nua )32 vas (-, 2) 1

and using the results in Theorem 3.3 and Proposition 3.2, we obtain from
(4.5) and (4.6) that

o0 o0

IT < Cy(t) / w?,  III < Cs(t) / w?, (4.7)

—o0 —00

for some functions Cy and C3 which depend on p, |Jug||g: and ||vo|| gz only.
Combining (4.3), (4.4) and (4.7) gives

d [e.9] [oe] o0 o0
— w? + 21// w2 < 1/2/ V2, + C’4(t)/ w?, (4.8)
dt —00 —00 —oo - —00
where Cy(t) is a function of ¢ which depends only on p, |luol|z: and |jvg| z2.
The desired result (4.1) follows from (4.8).

Remark. It seems likely that the result of Theorem 4.1 actually holds
for any p of the form m/n where m and n have no common prime factors and
n is odd, provided we interpret y'/* as that branch of the n-th root which is
positive for y > 0.

A familiar bootstrap argument allows us to extend the convergence results

to higher values of k. The v—independent H*-bounds play an important role
in obtaining this general result.

Theorem 4.2 Let p > 1 be a positive integer. Assume that {uf},>0 and
vy lie in H® with s > 2 and suppose that there is a constant Cs such that
lluf — vollge < Csv as v — 0. Then for any integer k with 1 < k < s — 2,
the difference u — v between the solution u = u, of the IVP (8.1)-(8.2) with
initial data ug and the solution v of the IVP (8.8)-(8.2) with initial data vy
has the property

lu(,t) = v(, )| < Cov (4.9)

uniformly for 0 <t < T, where Cs s a constant depending only on Cs, p, T,
lluo|| s and ||vo||as and T > 0 is any fized time less than the existence time
Ty for v.
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Proof. The proof of (4.9) is sketched for k = 1. The proof of (4.9) for
k > 2 is similar. Differentiate the equation (4.2) for the difference w = u—v
with respect to z, multiply by w, and integrate over (—oo,00) x [0,] to

obtain
/_:wi(w,t) +2y//wix =/-:wg(:v,0) +2V//va:wzwm

Further integrations by parts show that

[ fowinef fivm=t |

//[(up — V)| wy = p/_/(uf""luz — vP g )ugw, + //(u” — VP Vg Wy
=p//(u”_1 — P H2w, +p//up'1v$w§+//(up — VP) Vg Wy

It is known from Section 3 that the H?-bound on u is independent of v. This
in turn implies v-independent L*®-bounds for v and ug. Thus, the terms
above may be bounded as follows:

(o 0] o0 o0
21// VgpzaWz < 1/2/ vim—l—/ wi
J —o0 —00
// (uPWy) s Wy < —||(uzu” 1 -,t)||Loo//w2

[ [0 =i < S0l | [ ol

k=0

1772
52 u”lkk2 IILW//w—f-w

[LWM@swrmmmm//w
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/] O = Yo, < 3 2 i0) ) [ [ +up)

j=0

Combining these estimates, applying Gronwall’s inequality and using the
zero-dissipation limit result in L? establishes (4.9). This completes the proof
of the theorem.

5 Zero-dissipation limit for the equation with
more general forms of nonlinearity, disper-
sion and dissipation

This section is concerned with the more general IVP

O+ (P(u))z + vMu— (Lu), =0, (z,t) € R x RY, (5.1)
u(z, 0) = uo(z), z € R, (5.2)
where v > 0, P : R — R is of the form
p+1
P(u) = Z axu® for some constants ax, 1 < k < p+1, (5.3)
k=1

and L and M are Fourier multiplier operators defined in terms of the Fourier
transform by

Lu(€) = a(€)a(e),  Mu(6) = BE)a(e), (5.4)

respectively. The symbols o and 3 are even, positive and are presumed to
satisfy the growth conditions

CilE) < al€) < Cylel, (5.5)

Cslé[" < B(€) < Culél°, (5.6)
forsomenumbersC’¢>O,1§i§4,where0<)\§uand0<'y§a.
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The goal of this section is to establish zero-dissipation limits (the limit
as v — 0) of solutions to the IVP (5.1)-(5.2). Guided by what has gone
before, the approach is to compare the solution to the IVP (5.1)-(5.2) with
the solution to the IVP for the corresponding equation without dissipative
effects, namely

0w + (P(v))g — (L) =0, (z,t) € R x RT, (5.7)
v(z,0) = vo(x), z € R (5.8)

The well-posedness of the two initial value problems (5.1)-(5.2) and (5.7)-
(5.8) was developed by Saut [30] (see also Abdelouhab et al. [1]) and the
following propositions will serve our purpose. In what follows D(Ll/ ) c
L*(R) denotes the completion of C§°(R) in the norm induced by the inner
product [-,-] defined by

[, v] = / A(E)P(E)dE + / o(€)AEDE) e

Thus D(L'?) is a Hilbert space and it follows from (5.5) that
H*? c D(IM?*) c HM? (5.9)

Proposition 5.1 Assume that the symbols oo of L and § of M are positive,
even, satisfy (5.5) and (5.6), respectively, and that P is of the form (5.5)
with
Ad+y>0 and p<2(A+~vy—o0).
Ifug € D(LY?), then for any T > 0, there is a solution to the IVP (5.1)-(5.2)
such that
u € C([0, T); D(LM?)) N L*([0, T]; D((LM)'?)).

Proposition 5.2 Assume that the symbol o of the operator L is positive,
even and satisfies (5.5), and that P is of the form (5.8) with 1 < p < 2.
If vg € D(L}?), then for any T > 0, there ewists a v € C([0, T); D(L'/%))
solving the IVP (5.7)-(5.8). Moreover, v is unique and vz € L®(R x (0,T))
if A > 3.

In addition, if vy € H*(R) with s > 3/2, then there is T* = T*(||vo||z)
such that v € L®([0,T*); H*). Moreover, the correspondence between initial
data and the associated solution is an analytic mapping between the displayed
function classes.
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Remark. In Saut’s original paper, solutions were obtained as weak* limits
of solutions of the evolution equation with a strong parabolic regularization.
Consequently, the function class obtained was only L*([0,T]; D(L'/?)). In
(1], a limiting procedure was developed that featured strong convergence,
and hence solutions were inferred to lie in C([0, T']; D(L/?)), and, moreover,
they were inferred to depend continuously on the initial data. Using the
techniques of Zhang (see [33]), the analyticity of the solution map may be

adduced.

'To establish zero-dissipation limit results, we need v-independent bounds
for the solutions to the IVP (5.1)-(5.2) . These are obtained in Theorem 5.3
below, following the developments of Saut [30].

Theorem 5.3 Assume that the symbols o of L and B of M are positive,
even and satisfy (5.5) and (5.6), respectively, and that P is of the form (5.3)
with

A+y>0 and p<2A+vy—o0).

If ug € D(LY/?), then a solution u to the IVP (5.1)-(5.2) with initial data ug
is bounded as follows. For any t > 0,

[ @it ora + | [ @i npdedr < o+ ot
R 0 R

where Cs and Cg are constants depending only on ||uo|| p(z/zy.-

Remark. Asan important consequence of this theorem and the Gagliardo-
Nirenberg inequality, for A > 1, there is inferred to exist a constant C; for
which

1-1 1
[ull zee < Crllull 2™ llell oo,

which shows there is an L®-bound on u which is independent of the dissipa-
tion coefficient v.

Proof of Theorem 5.3. For notational convenience, J will mean the spa-
tial integral ffooo Multiplying (5.1) by u and integrating over R x [0, ¢] yields
the analog

t
[JullZ2 +2V/0 /uMu < [luoll2. (5.10)
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of (3.5). Multiplying (5.1) by P(u)—Lu and integrating by parts over Rx[0, ]

gives /uLu_ . / Aw) + 20 /0 t / (L) (Mu)
- / (uLw)(0) - 2 f Aw)(0) + 2 fo r' f P)Mu,  (5.11)

where A’(u) = P(u) and A(0) = 0. The individual terms in (5.11) are now
estimated. First, notice that

IECE

and since p < 2(A+v—0) < 2], it follows that (k — 1)/A < p/X < 2. Hence,
after applying Young’s inequality to (5.12) and using (5.5), there obtains

o

where C] is as in (5.5).

p+1 / p+1 k+1
Jul* < " ||Hm, (5.12)
Ic+1 - k+1

C 1 =
<O+ Ll < Gt 3 [al@laf (539

For the integral [ P(u)M (u), it suffices to consider the leading order term

/w“Mu=/&ﬁ@wmmasmwmemmm.

The Gagliardo-Nirenberg inequality implies that

12 <
llullzere < Collull e ™ lull oz

However, the term ||uP*?||zo/2 requires a little more effort. The following
standard lemma is helpful.

Lemma 5.4 If f1, fo, -+, fm lie in H?(R) with mp > (m—1)/2, then their
product fifa- -+ fm is in HO(R) for any ¢ < mp— (m —1)/2 and

1 fifa - fmllme < I falleell follae - - - 1| frnll o
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Sincey+A—o0 >0and p < 2('y+)\—a), which is to say,
p+o

T<’)’+/\ 2
there is an s > 0 such that
P22 cp+ns<y+r-7, (5.14)

or what is the same, /2 < (p+ 1)s — p/2. Applying Lemma 5.4 gives
‘ [P | grore < el

and then the Gagliardo-Nirenberg inequality leads to the inequality

lullze < Cuollul;z ™ IIUII;B;_

In summary, we obtain the inequality
Ja(p+1)4or
/ WMl < Culful] 5 (5.15)

From (5.14), the exponent in (5.15) has

2s(p+1)+o0
Y+ A

and thus another application of Young’s inequality yields
g y

[ DR s < Ot 5 [ @(OBORF (510

where C; and Cj are as in (5.5) and (5.6).

<2,

< Cr+

Collecting the estimates (5.11), (5.13) and (5.16) and using the L?~bound
n (5.10), there obtains

[t ora+v [ [ a@slatenpagar < 0+ o
for some constants C and Cs depending on [|ug|| p(z1/2).

These preparatory results set the stage for a proof of the following zero-
dissipation limit result.
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Theorem 5.5 Assume that the symbols o of L and f of M are positive,
even and satisfy (5.5) and (5.6), respectively, and that P is of the form (5.8)
with

A>1, A+y>0 and p<2\+vy—o).

Let ug,vg € D(L?). Consider the difference
w=1u-—"v

between the solution u = u, to the IVP (5.1)-(5.2) with initial data uy and
the solution v to the IVP (5.7)-(5.8) with initial data vo. Then as long as v
has the properties

v E Lz([O,T];D(Ml/Z)), and A(T) = /OT llvg (-, 7)||pedT < 00, (5.17)

for some T > 0, then

el lu(,8) = v, )2 < €924 [jug — wo||22 + Crarte®sA4®)  (5.18)
<t<

where Ci3 and C14 depend only on |[uo|| pcriszy and ||[vol| peziszy-

The condition (5.17) is fulfilled when either A > 3, and then it holds for
all T > 0, or when vy € H® for some s > 3/2 and then it is valid for some
T = T*, where T* is as in Proposition 5.2. If {ug}v>0 is a one-parameter
family of initial data for which |lup — vol|22 = O(v) as v — 0, then it follows
from (5.18) that

sup ”U(,t) - ’U(‘)t)”%ﬂ . O(V)
0<t<T
asv — 0.

Proof. The difference w = u — v is a solution of the equation
8w + P'(w)wg + [P'(u) — P'(v)]vz — (Lw)z + vMw +vMv = 0. (5.19)
Multiplying (5.19) by w and integrating over R leads to

%% / lw|* + /P’(u)www-i— /[P'(u) — P'(v)]wu,
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—/w(Lw)$+1//wM'w+z//'va=0.

Since « is positive and even, L is self-adjoint and so
[witw).=i [ caelarac=o.

For the remaining terms, argue as follows. First,

v [umo <} [s@mr+3 [ solar

/ Pt ij(k + Daps / (w -+ v)*w,

and also

k=0
Pk '
= ZZ(IH' a4 ( )/w""l k=i,
k=1 j=0
? k .
— k\k—j 42, k—j—1 2
= —;;(k + 1)a,k+1 ( j ) m/ ('LU.7+ yd 'Um) w-.

As a consequence of Theorem 5.3, the LZ®-bound on u is independent of the
dissipation coeflicient v. It then follows that

'/P’(u)w'wz < Cl5ll'l)w”Loo‘/w2

Similarly, it is seen that

p+1

‘/[P’(u) wug Zkak/ — oF N,
k=2
pH1 k2
szak/ FI2Ty,) w? 5016||Uw(',t)||L°°/w2~
k=2 j=0
Collecting the above estimates and letting Y'(t) = [ |w(z,t)[?dz, there ap-

pears
Y 4y f W< / BOI + Crallvg | =Y
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The desired result (5.18) now follows from Gronwall’s lemma.

The convergence rate obtained in Theorem 5.5 can be improved if the so-
lution v of the dissipationless equation is smoother, as the following theorem
attests.

Theorem 5.6 In addition to the assumptions made in Theorem 5.5, we fur-
ther assume that vy € D(LY?) N H® with s > max{3/2,0}. Then for any
t < T™,

[u(-,t) — (-, )17 = O(?) (6.20)

where T* is the mazimal ezistence time for v.

Proof. According to Proposition 5.2, the solution v of (5.7)-(5.8) remains
in H® over [0,7*). Thus for any ¢t <T™,

2 [ iz L [ e VP 1
v [wie] <2 [ g@pr+ 1 [P < Sl + 5 [ 1o

Consequently, the following inequality emerges:

%/|w|2d:v+2y/wa§ /|w|2d:c-|— V2||'u||Hs+C’14||vml|Loo/|'w|2d:c,

and this leads to the conclusion (5.20).

2

We illustrate the application of the zero-dissipation limit results obtained
here for the equation in general form in the context of several well-known
wave models. We start with the generalized KdV-Burgers equation

Us + Ug + U UL — VUgg + Ugge = 0.

In this example, the symbols of the operators are a(§) = B(§) = &% The
exponents A\ = y = v = o = 2 satisfy the assumptions of Theorems 5.5 and
56. If p < 2(\+7—0) =4, up € H' and vy € H', then by Theorem 5.5

() = v( )]s = O(v2).

If further vy € H?, then Theorem 5.6 indicates
l|u("t) - 'U("t)”L2 = O(V)’
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where v is the solution of the corresponding equation without the dissipative
term. This reproduces part of the results in Section 4.

Attention is now turned to the version of these types of wave equations
originally proposed by Ott & Sudan [29] and Ostrovsky [28]. They have the
form

v o0
up + uPuy + Uggy + —Dp.. / —HE (5.21)
T oo

and

oo

sqgmn.
ut+upum+umxz+l/u+y g (

\/F wy(y, t)dy = O,

respectively. These two equations with p = 1 describe ion-acoustic waves in
a plasma with Landau damping. The symbols of operators are a(¢) = &2
and B(§) = |¢| for (5.21) and a(€) = £ and B(€) = 1+ +/|¢] for (5.22).

The growth exponents are A = u=2,vy=0 = 1for (5.21)and A\ = u = 2,
v = o = 1/2 for (5.22). These fall within the range of applicability of
Theorems 5.5 and 5.6. That means, if p < 4, ug € H' and vy € H?, then
the solution of (5.21) or (5.22) with initial data ug converges in L? to the
solution of the corresponding equation without dissipation,

(5.22)

v + UpU:c + Ugge = 0, 'U(', 0) = 'UO('):

and the convergence rate is of order v3. If further vy € H?, the estimate for
convergence rate may be improved to order v.
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