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NONLINEAR WAVE PHENOMENA

JERRY L. Bonal

These notes are meant as a supplement to a Minicurso offered in the 51° Semindrio
Brasileiro de Analise. The lectures will be concerned with some aspects of theoretical fluid
mechanics, particularly wave propagation. The lectures will be somiewhat discursive, and
the notes aim to fill in some of the more interesting technical details the underly the aral
presentations.

The modelling and analysis are treated in some detail in these notes. The analysis
calls upon methods from modern functional analysis and the theory of partial differential
equations. A general familiarity with these ideas is assumed in the later sections of the
notes.

!Department of Mathematics and Texas Institute for Computational and Applied Mathematics, T'he
University of Texas at Austin, TX 78712
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Chapter 1. Introduction and a Brief Review of the History

Model equations for waves that take account of both nonlinearity and dispersion have
their genesis in the discovery of the solitary wave by John Scott Russell. The story of Scott
Russell’s encounter with the solitary wave in 1834 has been retold many times.

While working as a consultant for a shipping firm on the Edinburgh-Glasgow canal,
Scott Russell witnessed a heavily laden barge drawn by a pair of horses come suddenly
to rest, owing to an obstruction in the canal. This sudden cessation of forward motion
created various disturbances on the water’s surface, including a long-crested wave some 18
inches in elevation that went rolling off down the canal in the direction the barge had been
traveling. Scott Russell gave chase by horse and observed the wave, which was more ot less
uniform in the spanwise direction, propagated with constant speed and without change of
shape. Fascinated, Scott Russell went on to conduct a sef of laboratory experiments on
this phenomenen which he reported in 1841 and 1844 to the British Association {see Scott
Russell 1845). Among other appellations he called such waves solitary waves.

The more theoretically inclined scientists interested in fluid mechanics soon took Scott
Russell to task. The Astronomer Royal, Sir George Airy addressed the issue of whether or
not it was possible to have a steadily propagating wave of permanent form on the surface of
water. He concluded such waves were not possible on the basis of analysis to be described
presently.

Stokes, who was later also accorded the title Sir George, analyzed waves on the surface
of water, concluding on the basis of forthcoming analysis that such wave motion was not
possible.

Despite the mathematical theory, the experimental evidence in favor of solitary waves
was convincing. The issue lay unresolved until the seminal work of Boussinesq in the
1870°s. With the hindsight derived from Boussinesq’s work, one sees clearly that both
Airy and Stokes were on the right track, and both had part of the issue in hand, as will
become apparent in the next section.

Lord Rayleigh also addressed the issue of existence of solitary waves, and concluded in
a long article on waves published in 1876 that there were such motions. He was unaware
of Boussinesq's work, but later commented that the credit for settling the issue of whether
or not there are solitary waves went to Boussinesq.

In 1895, the famous paper of Korteweg and de Vries appeared. These Dutch scientists
were apparently ignorant of the work of Boussinesq, for they refer to Stokes’ much earlier
work, In a clear account which is very readable more than 100 years after it was written,
Korteweg and de Vries lay out the essential modelling and mathematical issues that go
into the 19th century analysis of Scott Russell’s solitary waves.

At the turn of the century. it scems fair to say that Scott Russell was vindicated in his
view that single-crested, traveling waves of clevation exist on the surface of water. It is

worth note that Stokes reversed himself in print regarding whether or not solitary waves
exist.

In the first half of the 20th century, solitary waves and related evolution equations
Yvere not a major topic of scientific conversation. The notion of a solitary wave was used
in a descriptive manner, but it does not appear as a central issue in theoretical discussion
For example, Lamb’s rendering of solitary waves accords Boussinesq a footnote, does nog
me'ntio.n the Korteweg-de Vries equation, but centers around Lord Rayleigh’s devl;lopment
which in retrospect was probably the least interesting approach since he did not derive ar;
evolution equation which could countenance a range of disturbances, but rather pasdsed
directly to a traveling-wave description. 7

The oceanographer Keulegan pioneered the use of the idea of a solitary wave, partic-
ularly solitary internal waves, in geophysical applications. Keulegan with Pattersc;n wrote
.an article in 1941 that reviewed some of Boussinesq’s ideas. As the original was somewhat
inaccessible, this proved to be a very helpful endeavor. |

' The linear heat equation features infinite speed of propagation. In principle, a candle lit
}n Austin, Texas could be detected immediately in Florianopolis with sufﬁcienfly accurate
instruments. In fact, heat does not propagate at infinite speed. Enrico Fermi was looking
for a model for heat conduction that featured finite speed of propagation. With ]()Inl':
Pasta and Stanislaw Ulam, he put forward a discrete spring and mass model suc.h as
one er%counters in elementary physics courses. The difference was the springs were not
Hook.smn7 but instead the restoring force had a quadratic dependence on the extension
G'mnt}' is ignored, and so Newton's laws lead to a coupled system of nonlinear orr!inar\:
(i.lﬁerent'ial equations. Exact solutions were not awvailable, so thev resorted to nunn-‘rir'a:l
simulation using Los Alamos Laboratory’s ENIAC computer. W:hat they found d;d n‘ot
correspond well to heat conduction; it seems this simple mass and spring system features
near recurrence of inijtial states, and not the kind of thermalization one expects. A Los
Alamos report was duly constructed and the issue then lay dormant, Fermi died in the
late 1950’s holding the opinion that these numerical simulations were somehow i
but not knowing exactly why. e
1 A fow 5:ears‘1ar.eT, Gardner and Morikawa studied the stability of a cold collisionless
ifi;ﬁgrssma_s};; :;:‘e:mia puta?.ive qescriprigu Gf_ nuc_lear fusion. Starting from the full
3 3 ic equations, and making simplifying assumptions about the motion
of the plasma, they derived the same equations as had Boussinesq and Kortewes - de Vries
elthough the physical context was different. Their work (‘!EJI'JCE'_lrE(I initially :-- an "\"\"Lf
report, but was published in the permanent literature only m;m_v VERIS ]Htel:, | ‘
At the Plasma Physics Laboratory in Princeton University; Martin Kruskal knew of
_. the work of Gardner and Morikawa. He also knew about theﬂwurk of F{’.I’T.Fl‘i Pasta and
Ularm anfl at & cerfain stage. in collaboration with Norman Zabusky, ho rifx;isiu_;r[ thelr
:;:Id;: (l;\fruscilcjﬂl a:jd .Zab_ulslf)' took # continuum limit of the original discrete svstem. The
‘system of ordinary differential equations goes over to 4 partial difforential equation in this

w




limit, and the equation in question was the Boussinesq-Korteweg-de Vries equation again.
A well-conceived sequence of numerical experiments for the spatially-periodic initial-value
problem was carried out and reported in 1963. These experiments showed some of the same
fascinating properties that Fermi, Pasta and Ulam had seen earlier. The Korteweg-de Vries
equation had now arisen as a description of three, distinct physical systems.

Further study of the Korteweg-de Vries equation led to the inverse-scattering theory for
the initial-value problem. This imaginative leap was first described by Gardner, Greene,
Miura and Kruskal in 1967, and later amplified in a series of papers. Peter Lax made
a fundamental step forward in 1968 by providing a mathematical framework in which to
consider the inverse-scattering theory as it applies to initial-value problems for partial
differential equations.

Shortly afterward, the subject began to assume industrial proportions and it quickly
becomes difficult to trace the developments. Indeed, many areas of mathematics, physics
and mechanics have been influenced by the elaboration and extension of the ideas just
mentioned.

Chapter 2. Derivation of Model Equations for Waves in Dispersive Media

We begin by considering a body of water of finite depth under the influence of gravity,
bounded below by an impermeable surface. Ignoring the effects of viscosity and assuming
the flow is incompressible and irrotational, the fluid motion is taken to be governed by the
Euler equations together with suitable boundary conditions on the rigid surface and on the
water-air interface. After briefly explaining the Euler equations, further approximations
are introduced and analyzed, leading to a set of model equations formally valid for small-
amplitude long wavelength motion.

The Euler equations are written in a right-handed Cartesian coordinate system ox1z2y
with oy pointing in the direction opposite to that of gravity, ox; to the right, and ozy
toward us from the page. Let u(x1, za,y,t) = (u1, u2,v) denote the velocity vector for the
fluid motion. Since the fluid is incompressible and has constant density p, it follows from
conservation of mass that

(2.1) v-u=0.

Conservation of momentum is expressed mathematically by the relation,

du

1
(2.2) —+u-\7u:—EvP—gj,

ot

where P = P(x1,z.7.t) is the pressure, j = (0,0,1) is the unit vector in the direction
opposite gravitation, and ¢ is the gravity constant. The lack of swirl in an irrotational
flow is expressed as the vanishing of the curl of the velocity vector,

(2.3) curlu=9 xu=0.

In consequence, there is a velocity potential ¢ = ¢(z1, x2, v, t) such that

(2.4) u=ve.
Because of (2.3) and V{u-u) = 2(u- V)u+2u x (V x u), conservation of momentum (2.2)
may be rewritten as

fu 1
—E+—Wuqnz—%vP—Gh

(2:9) ot 2

Combining (2.5) with (2.4), we come to the conclusion

0¢p 1 1
v [— —Vo-Vh+ = =
5t 379 Vo Pray] =0,
since Vy = j. The gradient of the quantity in square brackets vanishes in the flow domain,
and assuming the latter is simply connected, it follows that
o4 + Evfp Vé+ 1P
3 T 3 ¢ ;+M—BM
where B(t) is a constant independent of the spatial coordinates (z1,Z2,y). The latter
expression may be written in another form, namely
99 1

1
B T 3u-ut 5P~ R)+y=B(t),

(26) ot 2

where Fy is the pressure in the air near to the surface of the liquid. This quantity will
bet: taken to be constant in the present consideration. Let &(zl,zz, y,t) = d(z1, T2, y,t) —
Jo B(s)ds, and rewrite (2.6) in terms of ¢, viz.

9 + 1v¢3 Vé+ L(P-P

3t T3 ¢+;(— o) + gy =0.

Dropping the tilde from ¢ and rearranging gives

P - P 9 1
(2.7 (USSR g e
) B Bt 2V¢ Vo — gy.

Since ¥ - u = 0, it follows that ¢ satisfies Laplace’s equation

(2.8) Ag=0.
in the flow domain. Thus we are reduced to solving (2.8) with the appropriate boundary

conditions and then the velocity field u and the pressure P may be read off from (2.4) and
(2.7). respectively.
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7]
—u+u Vu_—;VP 97,
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ou 1
—+ = v(

(25) ot

1
‘u)=—-VP - Gk..
0
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(53

V5 57 Vé+ P+gy]_o
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e]
af—i- Vo Vo + P+gy—B()7

where B(t) is a constant independent of the spatial coordinates (z1,z2,y). The latter

expression may be written in another form, namely

(2.6) 6¢+ -u-u+ -

i (P By) + gy = B(t),
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8¢
at+ v(b Vo + - (P Py)+gy=0.

Dropping the tilde from ¢ and rearranging gives

P-P 8 1
S= = 2V6- Vo gy

@7 p Ot

Since Vv - u = 0, it follows that ¢ satisfies Laplace’s equation

(2.8) Ap=0.

in the flow domain. Thus we are reduced to solving (2.8) with the appropriate boundary
conditions and then the velocity field u and the pressure P may be read off from (2.4) and
(2:.7). respectively.



Remark: At first sight this doesn’t look very wavy, and indeed there would be no waves
if it were not for the effects of the free surface, which are discussed next.

Suppose the free surface of the liquid is described by an equation of the form
f(z1,22,9,) = 0.

Since the fluid doesn’t cross this surface, the velocity of the fluid at the surface must be
the velocity of the surface. It is therefore straightforward to ascertain that the normal
velocity of the surface can be reprsented by both

— fe
(£2 + 72, + 123

and
_wyfe, A foi+ufy

(LA

Setting them equal leads to the kinematic boundary condition

(2.9) fi +U1f:cl +u2fz2 +Ufy =0

If the free surface can be described by a single-valued function of (x1,z3) for some time
interval, say,
f(zlv z2,Y, t) = 7](1"1: Z2, t) -9

then the boundary condition (2.9) above becomes

N+ U1y + 2Nz, —V =0,
or what is the same,
(2'10) e+ ¢21 Ny + ¢zznzg = ¢y-
There is also a dynamical condition on the free surface. Since the surface has no mass, and
if surface tension is neglected, the pressure in the water and the air pressure must be equal
on the free surface. Of course a disturbance on the surface imparts some motion to the air.
We argue, because of the small density of air relative to the density of the water, that the
air pressure is not changed significantly, and so may be approximated by its undisturbed

value. Hence the second boundary condition on the free surface is

(2.11) P=P, at y=n(z1,22,1),

where P = P(zy,z5,7,t) is the pressure at the surface. Using (2.7) in conjunction with
\2.11), the Bernoulli condition

1
(2.12) $e+5(Ve) +gn=0 for y=n

is derived. Because the lower, containing boundary is impermeable, the velocity normal
to the bottom must be zero, which is to say, there is no flow through the bottom. If the
bottom profile is y = —ho(z;,z2), then u-n = 0, where n = (hg,,, hog,, 1) is the normal
direction to the bottom; hence

(213) ¢zl h:rl + ¢12hI2 i ¢y =0 at y= —ho(l‘hl'g).

Now it might appear that our system is a little overdetermined since we have AP =
0 inside the flow domain, one boundary condition on the bottom, but two on the free
surface. This is contrary to what we know about elliptic equations. The resolution of this
conondrum lies in the free surface not being prescribed in advance, but instead constituting
part of solution of the problem. So, in summary, assuming the free surface and the bottom
profile can be described as single-valued function of (z1,22,t), the motion of the perfect
liquid may be described by the system:

Ap=0
M+ bz, Nz, + ¢12n12 = ¢y

(2.14) 1 at the free surface y =
¢+ 5 (V) +gn=0 o

¢:r1 hoxl + ¢12 hOI,‘, + ¢y =0

in the flow domain — hy <y < n,

on the bottom y = ~hg(z1.12).

. It is often interesting and sometimes appropriate to specialize to the case of two-
dimensional flow; i.e. motions which are independent of zs, say. Let z denote z; and
suppose additionally that hg is constant, so the bottom is flat and horizontal. Then the
system (2.14) above reduces to

Gz + éyy =0
M+ el = ¢y

in the domain — hy <y < 7.

(2.15) at the free swface y=n.

1, .
e+ 5(02+¢}) +gn=0
¢y =0 on the bottom y = —hy.

L e, . e e, . o -
tqgether with appropriate initial conditions and other boundary conditions if lateral sur-
faces intrude.

9




2.1 The Linearized Euler Equations

If the propagation of infinitesimal waves is considered, then it is warranted to linearize
the equations of motion around the rest state. In this case (2.15) is reduced to

DNp=0 in 0 <y < hg,
(2.16) i b
L on Y = No,
¢t +gn=0
¢y:0 at y=0.

We start by looking for a travelling-wave solution of the form o(z,y,t) =
Substituting this form into (2.16) and simplifying gives

w(y)ei(k:c—wt)_

W' -k =0,
¥'(0) =0,

2

%w(ho) -

(2.17)
’l/)l(ho) = 0

It follows that
¥(y) = ¢ sinh(ky) + d cosh(ky).

Asy'(0)=0,c=0and ¥(y) =d cosh(ky). Applying the second boundary condition leads
to the dispersion relation '

2 Ui Hig) sinh(khg)
= = gk————— = gk tanh(kho).
W= 9y = YR et Khgy — 9F tan (kho)

Thus the frequency w is w(k) = v/ gk tanh{khg), while the phase speed is

o) = ) = iy [k,

Remark: The quantity c(k) is the speed of individual crests. The quantity +/ghg is the
so-called kinematic wave velocity, the velocity of extremely long waves. According to the
lincarized theory. long waves travel faster than short wav elength disturbances.

2.2 The Nonlinear Problem

To make progress in case the waves are not infinitesimally small, further assumptions
are needed. The free surfdace in its undisturbed state will be rélocated to y = 0. Let
4 = supzezs>oln(z.t)| be the maximum amplitude of the contemplated wave motion, {
a typical waveclength in the wave motion, and co = v/ghg the kinematic wave velocity.

Assume that @ << hg and that kg << [. It is natural to non-dimensionalize the variables
to bring these assumptions to the fore: let
’ ’ ’ ;_ ;o l_a ¢
' =lz, Yy =ho(y-1), = o 7= ¢ =9, ¢
Here, the primed variables connote the original coordinates, while the unprimed quantities
are the new dimesionless variables. In the new variables, the system (2.15) becomes

Bzz + dyy =0 in O<y<1l+an,
¢y =0 at y=0,
il .
(2.18) N+ PNz — E¢y =0
at  y=1l+an
1 5 2
N ==¢r =0
1+ 6+ g0kt + 5503
a _hg
wherea—h—oandﬁ—p.

A formal expansion of ¢ in a power series in y is posited:
o0
$(z,y,t) = Y fmla ™
m=0

;From the Laplace equation in (2.18), there follows

0= Bdzz + ¢yy
—5mey +Z m = 2)fmy™
m=0
= 3 (B + (o4 2)(m + Dfsa) 4™
m=0

whence
Bfm=—(m+2)(m+1)fmsa for m>0.

Since ¢y(xz,0) = 0 is specified in the first boundary condition in (2.18), fi(z,t) = 0, and
so by recursion f3 = f5 = fr = -+ = fapy1--- = 0 for all n > 0. If we write f(z,t) for
folz,t), then fo = —%f”, fi= —%f; = i—?f and so forth. Thus, the Laplace equation
together with the boundary condition at the bottom leads to

==

4, 2mM
2 Fam(z, t)y Z(—lmmhﬂwz,t),

m=0 m=0

(2.19) (z.y.t)




Remark: The variable f, is the horizontal velocity of the fluid at the bottom.

Substituting (2.19) into the non-dimensional version of the Euler equations in (2.18);
the kinematic boundary condition on the free surface yields

g 1
@20) n+anclf - 05y )

321‘. 1+ d-rﬂs

[_ﬂ(l"'an)fz::"‘] & fzz:::]"'o(ﬂz) =0.

Ignoring terms quadratic in o and B, this simplifies first to

ne+((1+an)fz)s ~ {é(l + om) frar + %(1 + an)anfm} B+0(8% =0

and then even further to

(2.21) e (14 0 )e = & fave + O(8%, af) =0,

The Bernoulli condition on the free surface gives, after simplifying,

1 1
(2:22) n+fi + §af12 - Eﬂfzzt +0(8% ap) = 0.
Since f; is the horizontal velocity at the bottom, it is a variable with a direct physical
interpretation. Writing w for f, and combining (2.21) and (2.22) gives one version of the
Boussinesq system of equations, namely

7 + (1 + en)wl,; - lﬁwzzz =0,
(2.23) 6

1
we + 7z + Qwwg — §5wm =0.

If « << B, we would be tempted to drop the nonlinear terms and thereby arrive at
the linear system

1
T+ wr — gﬁwza:z =0,
(2.24)

1
Wy + 1Nz — Eﬁwzzt =0.
The behavior of solutions of such linear systems is determined by their dispersion relation.
This is obtained in a straigtforward way by first eliminating n to reach the single equation

1 1
(225) Wyt — Wgy + Eﬁwmxzm - 5/8701,111 =0.

We refer to this as the linear Boussinesq equation. Substituting the form w(z,t) =
woeFE=Y) ingo (2.25) leads to

B

-tk gk‘* - ngkz =0,

S0

- i

14 2k w(k) 1+ 442 %
w? = k2 g and ck)=—=+|—08"__
*) k 1+ £k2

This agrees with the dispersion relation

4 3.4
r.“ tanh(32 k)
V™ a5

for the full, linearized Euler equations to the fourth order in k. But there is g, difficulty
associated with large wavenumbers (small wavelengths), which will be discussed presently.

2.8 One-way Propagation

Here, the Boussinesq system of equations is specialized to the description of waves
propagating just to the right. At the very lowest order where even the terms of order «
and 3 are dropped, there appears a factored version of the one-dimensional wave equation,
viz.

N + Wg = O,
wy + 1y =0,
2.26
(2.26) 7(,0) = £(a),
w(z,0) = g(z),

posed with initial conditons on both 7 and w. The solution of (2.26) is

n(@.t) = 3 [f(z+1)+ flz -]+ 5[g(x +1) ~ g(z — )] and

wz.t) = Slg(z+8) +g(z = )] + S[f(z +1) - flz —1)].

M| = N
BN — DN

As the left-propagating component must vanish, it is required that f = ¢, whence n(z, t) =

flz—1t) = w(z.t). Thus, at the lowest order, we have w = 7 and 7, + 7z = 0.

The next step is to extend the relations just obtained via the linear wave equation
to obtain a model correct to order o and 3 while still maintaining one-way propagation.
Whatever the extensions are that lead to the next order, it seems clear they will involve
terms of order « and 3. It is therefore natural to try the Ansatz w =+ oA + 8B, where




We thus have two separate model equations for unidirectional propagation of long waves
of small amplitude. In fact, more models could be constructed using the observation that
8, = —&; + order(a, ), namely

A= A, 0z, M, ), and B = B(n, 0z, M, -+ - ). Putting this relation into the Boussinesq
system (2.23) results in the pair of equations

1
Th-&—nz+aAz+ﬁBI+a{n[n+aA+ﬁB]}I—gﬁ[n—l—aA—f—ﬁB]mm=0, N lﬁfi =
-~ TTT T
(2.27) M+ aAs + BB: +1s + aln+ aA + BB)(nz + Az + BBxz) 5 ]
1 + 5MMa — —BNzzt
= 56(771::1: + @Azt + BBzat) = 0. (2.32) 7+ N + g il 515 =0.
M + gﬁnm =0
Collecting terms featuring the same power of o and B3 leads to the relations 1
. gﬁﬂm =0

; 1
e + 1 + a(Az + 2mm5) + 8(B; — gﬁzu) = terms of order o?, af, 62,
There are eight different model equations here, without doing anything more complicated

1 e
N+ 1 + (A + 1g) + BB — §nzzt) = terms of order o?, af, 5%, (like changing the dependent variable or allowing convex combinations of the individual
nonlinear and dispersive terms).
or, dropping the terms quadratic in & and 3, Omitting the nonlinear terms yields four possibilities,
Ag+2 By~ “ieas) =0 W lazg

nt+7]1+a( z+ 77711)"'5( z 677:2.‘”) s
(2.28) 1 9 1 — Tzzt -0

N+ Nz T+ a(—A: + 7’)7}1) + ,8(_BI - 577:::::) =0 ( .33&) e e EIB + Naxtt o

. . : o . ] 12 — Tt
This pair of equations can be made consistent by choosing Ap = =300, ov A = —3077,
and B, = Tizf?:” = 31-;,:”\.. or B‘: J—l._,_nﬂ - %nﬂ. Tt is worthwhile noting that from the Trying 1 = ¢i(kz—w) leads to the linearized dispersion relations
lowest-order theory. n, = —n; = 0f0. 6) a5 @. 3 — 0. In consequence, Wwe may Use 7 and
—1, interchangeably in terms whose formal arder is & or 3 without affecting the overall ( k(1— ﬁ k2)
level of the approximation. Thus, at the formal level, 6"
k

1 1 1 1 B2’

(2'29) B= 1—2771:: - Zna:t = gnzz o O(avﬁ) = _gnzt + O(Oéﬁ) (233b) w(k) = 1+ Sk
3 [ 2
, — | £yf1+2B8k2—1]],

as a, 3 — 0. Because B appears in (2.28) multiplied by 5, the dispersive terms in (2.28) Bk { ¥ - Sﬂ ]i\ i
could have either of the forms %nzu or -'%'L:h or, indeed, any convex chmbination of Lsolution of a cubic equation.

theses two forms. Taking only the pure forms 7z, Or —7gze, We come to
i 7 The associated phase speeds are
w="n-— —om2 —+ gﬁnm = terms quadratic in a, 3,

N+ Nz + 5 0MNs + gﬂnzmz = terms quadratic in &, 3. 16
B2’
or (2:33¢) ky=4 11e*
1 1 3 [, [ 2
w=1—- —an? — = PBng + terms quadratic in a. 3. Eﬁ =y 1+ gﬁk2 =11
(2.31) B 3
| solution of a cubic equation.

3 1 :
N+ Nz + 5% — gﬂzzt = terms quadratic in a, 3.




The first two, the third with a + sign and the fourth if the right branch is taken, aii
agree to order k* with the linearized dispersion relation for the full two-dimensional Eules
equations.

Consider the pure initial-value problem posed on R for the above models, namely

B
Nz ~Lu=0, R,t >0,
(2.34) N+ +6 v =0 T e

where L represents one or another of the dispersion operator 83, —920;, 8,02, or —03, at
least for small values of 8 and order-one initial data. This should represent a well posed
problem if one is to take the equation seriously as a model of physical phenomena. For
the moment, attention is given over to the cases where L is 82 or —928,. The other two
cases are interesting because there is apparently insufficient data to initiate the motion
uniquely, but they will not be considered here.

Taking the Fourier transform in the spatial variable z for the linearized Korteweg—de

Vries—equation where L = 92 gives
NP B .34
e +1(§ — 653)77 =0,

whence
. 8
(€, 8) = (&, 0)e™ € EEN,
Computing similarly for the linear regularized long-wave equation (RLW equation or BBM
equation where L = ~§28, leads to

B oy | pn
(1+ 560 +i€n =0,
and so

HEA) = A(E,0)e THEe

For these two models, the frequency dispersion w = w(£) is modelled by £ — g§3 and T
&
w(€

respectively. In terms of the phase speed ¢ = ¢(£) = %, there are the two alternatives
1
@2— RIW - L =04,
c(6) = ;
1- %gﬂ KdV - L =0;0s.

For values of £ in the range |£| < 1, which is apropriate in the present scaling, these two
dispersion relations differ by less than g—é. As for the nonlinear term nn, versus nny, the
conservation laws

3

30”]7): =0,
(2.35) M+ ne+ 9~ 3

— Zany =0,
2a'7'f]t

1o

correspond to the characteristic equations

3
A 14+ Ean,
Eln:constam = 1
1-—- %ar]’

respectively. For values of n with || < %, say, which is consistent with the small-amplitude
presumption in force, these differ by less than 2.

Thus for small values of a and 5, these models appear likely to present nearly iden-
tical onteomes. Nevertheless, there might be a marginal preference for the choices —.
and 7n.. As far as the preference for —fex: GOES, observe that short-wave components for
the linear equation (2.33a) with y... can propagate in the direction of decreasing values
of r with arbitarily large phase velocities (and the group velocity is likewise unbounded),
whereas the 7., term has bounded (and positive) phase velocities (and bounded group ve-
locity). Regarding the nonlingar term, whilst one cannot really distinguish between the two
possibilities in (2.35) for n small. as 7 gets large, the 1n: term has singular characteristics,
whilst 77, just propagates larger amplitude waves faster.

On the basis of these arguments, the model equations

3 B
00 + 2ammy — Enpne =0,
(236) s Nz + 32 anfz gnzzt 0
e+ N+ 207z o §Tzaz = 0,

are singled out for study. The second one is the famous KdV-equation discussed in the
introduction, first derived by Boussinesq in 1871 and later by Korteweg and deVries in
1895.

With these formalities in front of us, the historical perspective presented in Section 1
may be given more precision. The model put forward by Airy in 1845 corresponds to taking
a small and 8 = 0 in'the present notation. Thus, Airy put forward what we would now call
shallow water theory as a model for what Scott Russel observed. In this model. small, but
finite, amplitude effects are contemplated. but finite wavelength effects are lenored. It is a
model that retains validity only for waves of extreme length. Indeed. it is st raightforward
to see that the evalution equation -

3
T+ e + oz =0
does not possess a travelling-wave solution n(x,t) = o(a = ct), ¢ > 0 a positive constant
that has the form of a solitary wave of elevation. Stokes, on the other hand, viewed the
regime in which Scott Russel made his experiemnts as corresponding to infinitesimal waves.




He igﬁored finite-amplitude effects by taking o = 0. However, he kept the effect of finite
wavelength on wave speed by taking 3 small, but non-zero. He thus put forward the model

N+ 7z + %nzzr =0,
in the present notation. Fourier analysis shows that this model also has no solution of
the form 7(z,t) = ¢(z — ct) where ¢ is an even function decaying rapidly to zero at +oo.
There are periodic wavetrains travelling at constant velocity, but a heap of water would
decompose into components travelling at different speeds, and so continously spreading.
Described in terms of the Stokes or Ursell number

[0

§=gr

Airy took this quantity to be infinite, Stokes took it to be zero, whereas the presumption
that corresponds to Scott Rusell’s observations is S ~ 1. In the latter regime, the nonlinear
and dispersive effects come in at the same order, hence the equations in (2.36). In general, S
is a rough measure of the relative importance of nonlinear effects as compared to dispersive
effects, with S small corresponding to a linear system and S large a much more nonlinear
regime.

Once the equations in (2.36) have been obtained, the need for the small parameters
disappears. For mathematical analysis, it is convenient to dispense with «, 8 and the
coeflicients % and é. This may be accomplished by redefining the variables 1, z and ¢, viz.

Wz, Z) = %an(\/éz, \/ét). Dropping the tildes, the dimensionless equations

(2.37) W o TR,
and
(2.38) Nt + N + NNz + Negzs = 0

emerge. The small parameters are not really absent, however; they appear in the imposition
of auxiliary conditions. For example, if it is supposed the waveform is known initially, then
we are concerned with the pure initial-value problem with 7(z,0) given. In the variables
appertaining to (2.36), n(z, 0) is of order one along with its derivatives, whereas in the
variables appearing in (2.37)-(2.38) n(z,0) has the form %ag(\/éx) where g and its first
few derivatives are of order one.

Chapter 3 Mathematical Theory for the Initial-value Problems

heary pertaining to the evolution

i i thematical t
In this chapter, some details of the ma i Sy el e

er 2 is presented. Inclu

i -ard in Chapt ' .
e > the two principal models under discussion.

pertaining to the comparison between

3.1 Theory for the BBM-RLW equation

The discussion of rigorous theory begins with the initial-value problem

for t>0,z€R,

forz € R

M + Ne + Mz — Naxt =0
(3.1)

n(z,0) = g(z);

aiion of some of the mathematics that

an indic : :
that, with all its derivatives, decays to

The following formal calculation gives ind
follows. Suppose 7 is & spiooth solution of (3.1),

i btain
at 4oo. Multiply the equation (3.1) by 7 and integrate over R to obtai

1d [®, 4 2
=—-— +n5)dz
0=/(nm+nnx+n2nz—nnm)dx % /_oo(n
R

iti co. This is
after integration by parts and imposition of zero boundary conditions at =

equivalent to

= 2
N N 2 gt = [ [o(@)?+ g:(3)?) de-
01 [ [t + el ) s = I, O = Dol [
—o0
i ) : OTISET-
Thus the H-norm of solutions is a conserved quantity: the law (3.2) corresponds to cons

vation o (0} ome ms S ilar consetvallio of mass s eXp.‘E‘-."\H,.i",'lt
mentum in som phys1cal systemns 1TniLE ly, Al 1

in the form
(3.3) /_o:o u(z,t)dz = /_0; g{z) dz.
Rewrite (3.1) in the form -
(1- 80 =—(u+u EX
view it as an ordinary differential equation v —" = f, where f = —(u+ tu?),, and solve it

. y va. iation of const nts o by O € alVSlS
T constants Or Fourier an. s
eXp11C1l1y bY HlVeItng the Opera‘cor 1 6 b, T ()

for example, to obtain the formula

ue(z,t) = — /;O:o M(z—v) [uy(ytt) + U(yst)uy(yat)] dy,



where M (z) = Le~1#I. Provided that u is bounded (or at least not exponcniially growieg
as £ — +00,) integration by parts gives the alternative

(3.4 wle, )=~ [~ K=t + 2, 0] 4y,

where 1
K(z) = Esgn(z)e—m.

. Remark: To obtain (3.4), break the integral in the previous equation at y = z and
integrate these two by parts separately, viz.

/_oo e~le=vl /(4 dy = [ ===V 11y dy+/oo e~ f'(y) dy
:aﬂﬂw[m‘[Iﬁﬂﬂ@@+éﬂﬂwf+/mf”ﬂw@

T

:ﬂ@—lfwﬂﬂw@—ﬂm+/mfﬂﬂw@

= /°° sgn(z — y)e 1=V () dy.

A formal integration with respect to time ¢ in (3-4) and application of the fundamental
theorem of calculus yields

u(z,t) — u(z,0) = /O-t /_: K(z-y) [u(y, T)+ %u2(y,7).:l dy dr,

or, since u(z,0) is known,

i - 1 5
(35) u@w=mw+A/;Ku—wﬁmﬂ+5umﬂJ@m
Write (3.5) in the form
(3.6) u = Au,

where 4 is the integral operator defined by the right-hand side of (3.5); that is, if v = v(z,1)
is a bounded continuous funetion, say, then

(3.7) Av(z,t) = g(x) +/0 /_oo K(z—y) {v(y, T)+ %vz(y, T)| dydr.

The initial-value problem (3.1) has thereby been converted into the issue of existence of a
fixed point of the operator A.

At least over a small interva) time, existence of a fixed point follows from the Contrac-
tion Mapping Principle as we now show. For T > 0, let Cr be the Banach space

Cr=CRx[0,T])) = {’U ‘R x[0,7] - R : v is continuous and sup Jv] < +oo} g
ot

normed by [|v||e, = SUD- g o<t [V(2, )] Let Br = {v: |Jvfle, < R} in Cp, where the
constants R > 0 and T > 0 remain to be chosen. For any R > 0, the set By is a closed
subset of the Banach space Cp, so it is certainly a complete metric space.

THEOREM 3.1. Let g be a bounded and continuous function, say, sup |g(x)| < b. Then
thereis T = T'(b) > 0 such that the integral equation (3.5) has a solution in Cy.

Proof. The idea is to show that 4 is & contraction mapping of By into itself for suitable
choices of R and 7. The result then follows from the Contraction Mapping Principle.

Step 1. If v € Cp, then Av e Cr since g and v are bounded and continuous and
K = Li(R). Indeed, we have

(3.8) [4v]le, < sup jg(z)| + T(Ilvlic, + %”U”ér) < oo
zER
since [ |K(2)]dz = 1.
Step 2. If v,w € Cr, then
lAv — Awlle, = s;xtp Q/O /]RK(z -y) [(v —w)+ %(v2 - wz)] dy dT‘

(5.9 < Tl = wliey + 5 (Il +lulien ) - wloy

1
<1+ 5lon + wler)) v - wley.
Step 3. Now suppose v, w € Bg. Then (3.9) implies
[Av — Awllc; < T(1+ R)|lv — w| o,

To apply the Contraction Mapping Principle, first demand that 7" and R are such that

®=T(1+R)=%,

say. Then choose R = 2b where b = Sup.cg (9(z)| and notice this choice means that
1 1
lullcr < |Au - A0jlc, + [ A0)lc, < Ollu—0fjc, +b < gluller +SR<R

ifue Br. Thus Ais a contraction of Br and the result follows. J

Remark: As the initial data gets larger, the interval of existence T obtained by the
above argument gets smaller.

To insure the fixed point v of (3.5) is a solution of the initial-value problem (3.1), the
regularity of v is Lrought into focus.
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ProeposiTiON 3.2. Ifg € C}R) and v isa solution in Cp of the integral t‘-qr.latl:on 1\.51_,.3}.
then u .u and u., are infinitely smooth functions of t, and u solves (3.1) pointwise. rJ ofe

L : 7 " v . _
precisely, 8"u € Cr, Ahuy € Cry Of tzx € COp for all m = 0, lime.q u.(:-:.n = g,:r:{m
Cﬁ{ﬁi}.‘aﬂdl the continuous function i + Uz + Whe — Wawt is identically equal to zero fof
(z,t) eR X (0,7

Proof. This is established by bootstrap-type arguments. Since

t L dyd

u(z,t) =g(z)+/ / K(z—y)(u+ S )dydT

o JR

where K(z) = %sgn(x)e"x‘, then plainly u is differentiable with respect to t and
1, c
U = / K(—y)(ut SU )dy € Cr
R

is a bounded and continuous function. Elementary considerations then imply that us

exists and
we = [ K@= y)(u+ ) dy € Or
R

Vi t i 4 m > 0.
since u, uz € Cr- An inductive argumen leads to the conclusion 8t w € Cr for all 0
)

Now write the integral equation (3.5) as
t oo 1
“r L / / - ) dydr
- —u?)dydr + Kz —y)(u+ su’)ay
e =9@)+ [ [ x-wwr g | ] :
and use Leibnitz rule for the differentiation of integrals to obtain
t poo 1
i ! 1 —le—yl 202 dy dr.
uzzg’+/ {u(m,7)+§u2(r,7)} d'r—/O /_ocae (u+2u)dy T
0

This is plainly in Cr since u € Cy and g € CL(R). Note that u, is expressed in .Ter.ins
of i, so another inductive argument demonstrates that 8f*uz € Cr for m > 0. A simiiar
argument Shows Uzx O exiat and to be given by

t e 1.
(3.10) uzz = g”(x)+/0t fue (e, 7) + u(, T)ual2, 7)] d7+/0 /—oc K(o-y)(utgv) dydr

The right-hand side clearly lies in Cr, and again, as 0] "ug € Cr for m > 0. so also
OMugy € Cr. Using (3.5) in (3.10) gives

t
Uz =G +/ (ug +uug) dT +u — glx).
0

22

. Differentiating the last expression with respect to ¢, there appears

Uggt = Uz + UUg + Ut,

as hoped.

The fact that u(-, ) converges to g as ¢ | 0 is obvious and the proposition is established.

|

Remark: In fact, u is an analytic function of ¢; i.e. wu(z,t) can be expanded as

oo um{x)t™ for suitable functions {%m}m>0, and the series has a positive radius of
convergence.

Note that a solution cannot acquire more spatial regularity than that of the initial
data. Suppose, for example, that g € CF but g ¢ C,’f*'l, and suppose that for some ¢ > 0,
u(z,t) € CF1(R). At this value of ¢,

5(@) =) —/0 /RK(a: ) %uz)(y,s) dyds.

Attimet,u € Cf"'l(R), and since u € CF(R) for all t, so is u+fu®. Hence after convolution
with K, there obtains a function in Céc"'l in the spatial variable. The integration with
respect to t does not change the spatial regularity, and consequently it is adduced that
g€ C'{f“(]R), contrary to assumption.

The issue in front of us now is how to extend the local existence theory to arbitrary
time intervals. The following result will be helpful in pursuit of this goal.

LEMMA 3.3. Letk > 0. Corresponding to given initial data g € CF(R) and some T > 0, let
u be the solution in C constructed via the Contraction Mapping Principle of the integral
equation (3.5). Suppose additionally that for some p < k,

(3.11) a9, P =0 as T — %oo.

Then for any t € [0,T],

(3.12) 8L u(z,t) = 0 as T — Foo, for 0 <! <pandanym > 0.
Proof. This will follow in three steps.

Step 1. First, it is demonstrated that the collection C% of functions in Cr that tend
to zero at infinity is a closed subspace. Clearly it is a linear subspace. If v, € CY and
U, — v in Cr, then v — 0 at +oo. To see this, fix t € [0,T] and write

lo(z, )} < |v(z,t) — va(z, t)] + |vn(z, 1)



Let € > 0 be given and choose a corresponding ng so large that lies in H*(R) for all t € [0,T), and

SUp[0(2,2) — vy (2, )] < 7. I s = gl
z,
Proof. As we already know, u is a classical solution of the partial differential equation.
Multiply (3.1) by w, then integrate with respect to z over [~M, M] and integrate by parts
as in the calculations leading to (3.2). Then integrate with respect to time over [0,z].
Since elements f € H'(R) which also lie in CZ(R) have f and f’ asymptotically null, it
follows from Lemma 3.3 that u and u, are null at infinity. Hence upon taking the limit as
v M — o0, there obtains

Since vp, is known to be null at oo, there exists M such that |vn,(z,1)| < § for [z] > M.
Therfore if |z| > M, |v(z,t)| < ¢, which is to say v — 0 at Foc.

Step 2. Note that if v € C2, then so is Jx e~ 177 ¥ly(y, t) dy and Jx Kz —y)o(y,t) dy.
Let € > 0 be given. For z > &,

£
| [e =y, ayl < = / oy, 1) dy + 2sup [u(y, )|
R —oo y>E€

2 2z, 1)) d =/ (z,0) + v2(z,0)] dz,
Se—z+§sup|v(y7t)’+25up|v(y,t)|. /R[u (Z,t)+uz(:12, )] L ]R[u (I )+U1(I )] 2o
Yt y2€

for all ¢ for which the solution exists. That is to say,

Since v — 0 at +o00, there exists £ such that |v(y,t)| < 7 for y > £. Once £ is fixed, then e DLz gy = gl - O
x can be chosen large enough that the first term is made smaller than %, hence the sum is ’ ®) o ®
smaller than e. A similar argument applies as £ — —oo0. for all ¢ for which the solution exists.

Step 3. Let ui(z,t) = g(z), for 0 < t < T. By assumption, u; is null at +oc. By Step

This last point suffices to establish a global existence theorem.
2, then uy = Aw; is null at +oo and inductively, v, = Au,_1 is null at +oo. Hence by

Step 1, u is asymptotically null, since u, — u in Cr. THEOREM 3.6. Suppose g € H*(R) N CZ(R), then there exists a unique global solution
Now _ u of the initial-value problem (3.1) such that the solution u satisfies 0" 3%u € Cr for all
1 < )
uy = /K(z —y)(u+ —uz)dy T >k07 0 <k <2, and m > 0. Moreover, for all t > 0 and the same range of k and m,
2 O 0zu(z,t) tends to 0 at oo .

is asymptotically null by step 2, and by induction, so too are higher temporal derivatives.

. Proof. As remarked already, if ¢ € CZ N H! then g,g' — 0 at +oo. Hence there exists a
As discovered already,

local solution of the desired type at least on a small interval [0, T}, where T' depends only
t i _ on sup, |g(z)| = b

Uz =g’ +/ / eV (u + 5“2) dydr ""/ {U« i EUZ} dar. To extend this local solution, repeat the contraction-mapping argument using u(z,T')
Lk 0 as new data. Because of uniqueness, this has the effect of extending the range of the
solution. A straightforward induction would get us out to T = oo if sup, |u(z,t)| is
bounded on bounded time intervals. In fact, instead of controlling sup, |u(z,t)| directly,
we control {lu(-, t)|| g1, then use the property sup | f| < || f||z:. The latter inequality follows
because for any f € CX(R)

Since u+ %uz is bounded and asymptotically null, so is fot [u + %uﬂ dr by the Dominated
Convergence Theorem. Thus wu, is asymptotically null by Step 2. Then

Upt = ¢ +ug + Uy, +u—g

T T
2 2
is asymptotically null and so on. A double induction finishes the proof. O fZ(I) = 2/ Fl)fly)dy < / (FP+ 1) dy
(3.13) e P
LEMMA 3.4. Suppose g € CF(R), k > 2 and g € H'(R). Then there exists T > 0 such that < /oo (f2+ f2) = 1F 1%
‘he solution u of the initial-value problem A

Any f € HY(R) is a limit of elements in C®(R), so let {£,}2%; C C.(R) be such that
fn = fin HL; then

{ U T Ug + Ulg — Uggt = 07
u(z,0) = g(=), £ = Fnlloo < llfa = Fmllr =0,




s0 fn is Cauchy in Cy(R), say f, — g in Cp; but g = f pointwise a.e. since f, —

f in H!, which means f, — f a.e. Formula (3.13) then follows for any f € H*(R) and
z € R. It thus transpires that the solution is uniformly bounded on R, independently of ¢.
It may therefore be extended to a globally defined solution.

Remark: What were the crucial ingredients that went into the contraction-mapping
argument? A moment’s reflection reveals that the same argument would work in any
Banach space X = X (R) that is a Banach algebra, so that if f,¢g € X, then fg € X and
there is a universal constant ¢; for which || fgl|x < c1||fllx]|lgllx and for which convolution
with the kernel K is a bounded linear operator on X. In ordinary Sobolev spaces, X
is a Banach algebra if and only if the elements of X are Lo (R)-functions and there is
another universal constant co such that if f € X, then {|f|lc < 2|/ fllx. In this situation,

if Y = C(0,T; X), then
L2
lully < llgllx + TE sex,x0llu + Fully

C
< llgllx + THE s (Iully + 2l )

and
/ 1
lAv — Awlly < T||Kll50x,x) \Ilv —uwlly + §(|IUIIY + lwliy)llv - WIIY>

C1
TIK e, (1 + 5 (lly + wly)) llo = wily-
Let M ={u €Y :|u| < R}. To make the contraction-mapping argument work, it suffices
to choose R and T so that
¢
lgllx + Tl K lsex,x) (R + %RZ) <R and

c
T|K ||lgex,x)(1 + EIR) =6<1

These two conditions hold if R is chosen large enough and T is taken small.
Uniqueness follows straightforwardly because the solution is locally presented as the
fixed point of a contraction mapping. We pass over the details, which are straightforward.

Remark: Uniqueness may also be established via a Gronwall-type argument.

COROLLARY 3.7. Let g € H*(R), for some k > 1. There is a T > 0 and a unique solution
of the integral equation (3.5)

u(z,t) = g(z) + /Ot /00 K(z-vy) <u(y,7’) + %uz(y,7)> dydr

oo

in C(0,T; H*(R)), where K(2) = %sgn(z)e"”. Moreover, 8 lies in C(0,T; H*(R))

for all m > 0.

Proof. H*(®) i d i
oo (R) is & Banach algebra embedded in Cy(R), provided only that & > 1, 50 the

preceding remarks suffice to produce a local well-posedness result in the space C(0, T; H*+1 (R))

for suitab] ; i iati
ably small values of 7', Differentiating the integral equation with respect to ¢ yields
1
up = / K(z— Zy?
A (z—y)(u+ Fu) dy,

h o - _—
;hzei?+iugf (0, T; H¥). It follows straightiorwardly that Kx(u+iu?) € C(0, 1% HF+1)
e Satisﬁic;pg m(tk:tis ':h;.r;:n = SE,»O T; H) a;: ue € C(0,T:H?). The differential equation

TVEryw 3 : : ;
follows easily by induction vywhere @ result concerning higher-order derivatives

HEOREM 3.8 (COH“HUOUS d&’pe L g
THE ﬂdﬂﬂ( on th{.‘ initial dat. =} IIJ'E lﬂﬁﬂ]’ﬂﬂ g = u is
ContInuous flﬂm H & C(O T H I 150 continiious Irom \f: ) Into the assaciated
3 LAtis a
} 1 I b {aE)

1 roof, I-IlIS fE]HOWS dlleCtIy since ¢ i o
l Top y g
ontnuity is a ]UCE‘ erty and he s0l ution is ven
lUC&HR n tlme as the ﬁxed point of a contraction mappm'

8.2. Bore Propagation

nmi;ytl:;a:u&b;e;c;::édi?ts;derabt:on I? giver .t.o an alternative type of initial disturbance.
e ot -ha:e cn.a.- -& bore %s L'..:‘iilrg{'_' of water; often generated By high
o motiﬁﬁs a,stron ! a river emptying into them. There are two general elasses
> bmﬂkjng. kb g ore and qt.he sa—caﬂga:i weak or undular hore, Strong bores
P e :t}. ;.atﬂ} l?e quite stéep. Undular bores are more gradual and do
Baminesq_y{dv'wpepand c]; . \llfl_l' -makeup. .Unclular bares can fall into the regime where
o thlém . - M-ty pe. eruat :ons. an serve as approximate models. If the
posited, then interest will focus on

forzeR, ¢>0.

(312) {ut g + vy — Uzzr = 0,

‘U,(Z} O) = g(z),

where g £ C4(R), 9" € La(B), and glx)—a as z - 4o 9(z) b as =z
A ' 2t . . - — —0OC.
. 12}5“}‘3.111813&2?11 3.1, the local existence, regularity. and global existence of solutions for
de.ml 1d . e 1scj.lsseri. Actually, the local existence and regularity follow from the results
oped in Section 3.1. Change the dependent variable 10 ¢ = u —gin (3.12 piaion
of v, (3.12) becomes S

1
(313) Ut = Ugat + (g +v+ 592 +g9v+ %,L,Z)z =0.
'U(.’l’, O) =0. B
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The initial-value problem (3.13) is equivalent to the integral equation

i 1 1
(3.14) 'u=/ M*(g+v+§gz—{-gv+ilzz)xd'r7
0

or, after integration with respect to t,
t t 0
v= —/ M*(vy+vvy+gvy+g’v)d‘r—/ M« (g +gd')dr
0 0

) — 0 at £=. Consequently,
we C — 0'at Loo.

With local existence settled, a search is initiated for a priori bounds that will allow
the local solution to be extended globally. To this end, multiply (3.13) by v and integrate
over [~ R, R] x [0,]. After suitable integrations by parts and then passing to the limit as
R — o0, (which may be justified since v — 0 at infinity), there follows the relation

where M(z) = 1e~l. Since g’ — 0 at oo, fOtM * (g +9g
an essentially argue as in Lemma 3.4 to conclude that v, vz, Uzt

% /‘O:O[UZ +1llde = /_O:O[UZ(I, 0) + v2(z,0)] dz + /0 /_:[(1 +g)g'v — gvvg] d
(3.15) < (1 + llglloo) /0 "1l dr + lglloo /0 [vlillval dr

¢ C
S—C—//[vz—i-vi]d:c—l——l,
2 Jo Jx 2

where € and C; are constants only dependent on lg'llz, and ligllze- Gronwall’s lemma

yields . .
/ [vz(z,t) + vi(:c,t)] dzx < —C—}(e‘-“ -1),

which is enough to extend the local solution to T = ~+oc by iteration of the contraction-

mapping argument.

3.8. Theory for the Korteweg-de Vries equation.

Without the small parameters, the ‘Boussinesq-KdV-equation can be written in the

form

g + Uz + Uz + Uzzz = 0, forze€R, t2>0,
(3.16)

u(z,0) = g(z).
A shift to travelling coordinates by the change of variables
into the slightly simpler equation

Uy + Uiy + gz = 0, forzreR, t>0,
{ﬂ(x,O) = g(z).

(z,t) = u(z +1,t), turns (3.16)

(3.17)
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"?‘ =

DIopplng the tlldes and regularlzmg the di erential equatlon thele emerges the initial-
e i 5
value pIoblem

(3.18) {Ut“l‘uuz"ru::zr_EUza:t:O forzeR, t>0

wz,0) = g(z),

where € > 0 is fixed for the time being.

. Ilfer.nar{c: The differential equation in (3.18) looks a little peculiar. A more standard

: }%u arization Would.be yt -}—.uz Uz +Ugzt —€Uzzze = 0, SO making the equation parabolic.
e present regularization is motivated by the physics - in particular by the dispersion

relation. Moreover, a certain interesti i
esting question falls out easily if th izati
: / e
appearing above is contemplated. ¢ S

Consider the change of variabl = H B
o g variables v(x,t) = eu(eZ(z - t),e2t). In terms of v, (3.18)

(3.19) { Ve + 0 + VU = gy = 0,

v(z,0) = €g(e%z).

Ftr_):' ﬁtxed positive £, (3.19) is the problem which was dealt with in Section 3.1 Hence
atte TS imi { : ) 5 -
ention turns to the limit ¢ — 0, where one hopes to recover a solution of the Boussinesq-

KdV initial-value problem. Th £ is e
iy e erux of the matter is e-independent bounds on the solutions

A priori bounds

o fecj-cm;ls??f_ the cantinuous t.lapendence result from the last section, we might as well
C :.: in’m ;tanguttiz.d da?.a g€ H :" (). For such initial data, the corresponding soiuticm wis

‘ Foas Rnd u(-,t) € L*(R) along with its partial derivatives of all arders, Moreover
everything in sight goes to 0 at +ac. o

Multiply (3.18) by u, integrate with respect to z over R to obtain

i1 OO0
(uu + %y +
t T UUzrr — euu”t) dxr = 0.
L= :

or after integration by parts,

Hence, we have
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where the restriction ¢ < 1 has been imposed. Independently of € € (0, 1},
(3:20) stz < llglle-

Rewrite (3.18) as

1 _
U + (§u2 + Uzp — €lgt)z =0,

multiply it by %u2 + ugz, — €z and integrate over R to obtain

dat J_o

which is to say

o0 B i 5
/oo (u? - %us)dx = constant =/ (¢" - 39 )dz.

—o0
—00

ich is i the in-
In consequence of this conservation law, which is independent of €, there follows

1 2
w2 < |u\m/u2d$+/ggdl+glg|oo/g dz
R [:3 R R

equality

luallza? + gl + 59l
(3.21) S lglllullza*llusllz2? + +lgllzn + 5ol
d il
3 1 9 3
< Mgz lluzliza + llgllzs + Slgliz-
If A= A(t) = ||luz(-,t)], then (3.24) is rewritten as:

1 1 -
2 3 —A?24+2C*+D
(3.22) A*<CAY+D< A+

initi LIt
here C = [gllf and D = [lgli3: + g% are only dependent on the initial data g
where ' = H!
that
oo e llugll? = A® < 2(Cy + D) = Dy = D (llgll)-

Thus in summary. for all ¢ > 0,

(3.23.) luC- Ol < allglla)-

The next ste S on’ -independe 1 (o) e H4-norm of solutions. This
D o] ain e-ind 2P - bounds hi
| W ont t ourselve: th a
1 € conten u s here with statement of the
turns out to somewha edious and
relevant result. A Proot may be found in the paper of Bona and Sml[h (1915)
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LEMMA 3.8. Let u be a smooth solution
9 € H*(R). Then there exists €0

of regularized equation (3.18) corresponding to
=eo(T, ||g|lgs) such that if o < e < ¢, then

HUHC(O.T;Hi) < a(llgllx),
where q is independent of T.

With an H2 bound in hand, further progress is much easier.

LEMMA 8.9, Lét m > 2 and suppose that ¢ € H™, and that [leel|
independently of ¢ < €0, With & bound dependent only on T and
that w is houn

ded in C(0,T; H™) with a bound dependent only
A llgll gmes.

0, T:Hm—1y is bounded,
€. It is then addiced
on T, e, |lgllzn and

Proof. . Multiply (3.18) by U(am) = 02y, integrate over R and integrate by parts; there

appears
i/(u2 + eu? Jdr =~ [ (u®) .
dt Jg i (m+1) . (m+1)%(m)
= ea/ Utk 14 th( g d
3
(3'32J AoC m—2
+ €1 / (U.qumll T Bim) Z C.ru(r)U(m+1_r) -+ u%m—l)“("ﬁ) dx
00 =2
< lufloo /R u(zm) + C”u(m) flee < cl“'u(m)“2 + C2”u(m)”'
The¥esult in view now follows from a, Gronwall-type estimate. O

With these e-independent bounds in hand,

the limit ¢ | 0 is investigated. There
are two or three way.

he limit. The way chosen here leads to
uld be adopted, using weak compactness

5 to handle the passage to t
sharper regularity results, but an easier method co
arguments in L*°(0, T; H™), for example.

Fix initial data 9 € H®, where s > 3, say, and consider the regularized equation

(P) Ut + Uy + gy — €Uzzy = 0,
‘ u(z,0) = g (),

where g.(¢) = ¢[f5k;g(§). The function ¢ is a ¢

—function, with 0 < ¢ < 1 everywhere,
a(0)

=1, ¢—0ex ponentially rapidly at +o¢, and such that
(E) =1-¢(¢)

has a zero of infinite order at £ = 0. That is, ¢
The following
of € will be useful.,

is very flat at 0 !

lemma detailing how various Sobelev norms of ge behave as a function
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LEMMA 3.10. Let g € H®, s >3 and let g be as above. Then g. € H*® and
“gGHH"H :O(E-%), .7 = 1127"'

lg = gellzgs—s = 0(€8),  §=0,1,2,-+

as e | 0. The first bounds hold uniformly on bounded sets and the second set of bounds

hold uniformly on compact sets. (If o is replaced by O, then the second bound holds

uniformly on bounded sets).
Proof. This is an easy calculation in the Fourier transformed variables. ]

COROLLARY 3.11. Let u be the solution of problem P., where € is in (0,1], Then for each
T>0andm=1,2,---,

i) u, is bounded in C (0,T; H?) independently of € sufficiently small, and

ii) €% u is bounded in c(,T; Ht™) independently of e sufficiently small.

Proof. We know from Lemma 3.8 that, for T > 0 given,

1
luelloormey < C(T €0, [1gelim=, € llgellzs+1).

Hence part (i) is seen to be valid since both [|gellms and ¢ ||g; || 75+ are hounded. For

m > 0, a careful assessment of the energy-type estimates appearing earlier shows that
(3.35) €% wel|gro+m < C(T €0, llgllzrs)-

The result follows from this. O

Remark: The inequality (3.35) just put forward is not completely trivial to derive.
Here is one way it may be ascertained. To make things concrete, consider the case s = 3.
It is known already in this case that, independently of e sufficiently small,

(@) lluc, tellwe < C(T, co, el o, €t llgellzra) < C(Tieo, llglis) for 0 <t = T. As
before, by multiplying by ue(s), and interating by parts, we obtain

(b)
d 2 2 2
i R(ue(4)+€us(5))dx= R(Ue)(s)ue(4) dz

= / Uegliz (g 47 + / Uzgle(3)Ue (4) 4T
R R
< cllighas) / u? gy 4z + {lglme)y / el 4
K V L3

< au(llgllz») /R 24y o+ ea(llglms )
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M . 1
ultiply (b) by €3 and apply Gronwall’s inequality to reach

1

1, "
€Iy + 1+35,,2 t 1 1
/R ( e(a) T € 3ue(s)) dz < e” /R (eag(24) +€1+§g(25)> dr + 28 (et — 1).
C1

BeCE.U.Se UfLemma. 3.9, theri ot
5] Ilgh.t hﬂ_ﬂd Side is b( 11 ded ntinue by 1 1U. lyin,
) -, t Jun: asin (335 g CO ti y .I) y g
the d.lﬂ{ﬂ'eﬂt]ﬂ.’ equatlon by ucun) and ml.-egrat Ing to come to )

()
d
-_ 2 2
dt/]R (uf(s) iEts (6)> dz = /R(uz)(s)ue(s) dz

= [ uul, d
A ezl (5) z"‘/Ruea:zue(Al)ue(S) dZ+/ufoIus(4)ue(5) dz
R

<e 2
= /Ruf ) 92 + cllveqgyllllue) | + cllue g llues)ll,
whence

.d 2
2 2 142, 2 2
_dt/ €S ug gy + eIy dx</ 32 3 H
R( ) E(TS)) < Reaue(s)dx+ce3|)u6(4)||53]]u5(5)][.

Il , R
Gronwall’s Lemma still gives (3.35) in light of Lemma 3.9. In general, write
d 3
2
th (us(k) + eue(k+l)) dx =/Ru?(k+l)ue(k) dzx

< Clliglse) / _ w2y do + Dlgllre) ey ey + E(lglo
< C(llgl)s / _ W dz -+ D(lgle)luel .

Letting k =m + s and multiplying by €% yields

d
(3.37) —/ (e% 2 1+3 2
dt Umts) T €T U )dz<c/ 32 2
R (m+s+1) - = e u(m+s) dz + De “u”(gm-f—s%-l)-

An lndl.l(.'hbe ar, £ Oow nnote Vi nds to 0 as
g g sh s the erm con .
] T {;d D is beni
: urded and even C.
€ l 0. HEI}L(., Gront\all s 1nequahty gives the Hd\r'-.rtlsed result. ’ ‘

COROLLARY 3.12. Hiu. i

. «12. dhu, is bounded in C(0, T; H*—* m N ©

CO.T- g1 ; vdy ) and €% §rtm=3p, oNg g
(0,T; HY), independently of e sufficiently small for m = 1,2.3. 4 . tue is bounded in

Proof. Invert the operator (1 — €82) to reach

- 2y —
Uet = (1 s 601) 1(_Ueuez = uez‘z;)-,
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from which it follows that, independently of € > 0,

luteells—a < Nluells—sluells—2 + lluells

< Juell? + lluells < C,
and similarly,

eF 05T 300ucl| < €% [[Bruclimers-s

<e® (luells+m—alluells+m—2 + lluells+m)

o m=3 m—2 m=(m—34+m—2)
< R lucllsrm + (€75 fuellormoslluclle ™ ) =272

<C+C=<C
ifm<5. O

PROPOSITION 3.13. Let {u.} be the solutions of (P.). Then {u.} is Cauchy in C(0,T; H®),
for g € H*.

Proof. Let 4 = u, and v = ug, where § < ¢, say. It is enough to show that [[u — vz
can be made arbitrarily small, independently of ¢ € [0, T], by choosing € small enough. If
w = u — v, then

1
(3.38) wy + (vw + 51112): + Wegy — OWppt = (€ — 6)Uzze

with w(z,0) = g.(x) — gs(x) = h(z), say. Multiply (3.38) by w(z;) and integrate over R
with respect to z, to get

2 _ 2 2
A(w?j) + 8wy dz = /R(h(j) +0h541)) dz
) 1
_2/ / ((uw =+ 511)2)(]-4_1) - (6 i é)ut‘(j_'_g)) w(j) d$ dT‘
0 JR

Denote VZ(t) = [;(w(;) +8wf;, ) dz. The details are developed for s = 3. First for j =0,

the master relation (3.39) looks like
(3.40)

t
/(w2 +dwl)dr = /(h2 +6h2)dz — 2/ / ((uw)z + wwz — (€ — 6)uzz) wdzdT
E R o Jr

Et
11
S/(h2+6hi)dz+2/ [|uI|oo/w2dz+ce§1//w2} dr.
% 0 R

In consequence, we have

(3.39)

Vi (t) < VE(0) +2 /t[CIVOZ(T) + oS Vp(r)] dr.
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Applying Gronwall’s Lemma gives

)

et 01 < Vot) < Vo(@)es™ + S22 perr _
where o

60 = | [ (0 0% + 815 o
<\llg~gsllm +llg — gel s
< Ced for e<1.

Hence {u.} is indeed Cauchy in C(0,T; L2) and we have the estimate

llue — usl| > < Ces

for 6 < e and ¢ sufficiently small. Next for J =1, (3.39) gives

€
Vf(t)=vzo—2// 1243, ], ‘
17(0) b J 2wz+2uz uJId.'zc—Z/O/]R[uuw—(e_ti)unt]wxdz7

where Jw;|.. [t | oo,

Uz des :
sinali: Hana, [tzz]oo and €2 ”uzzth are all bounded, independently of ¢ sufficiently

3
VE(t) < V2(0) +2 / g t
OSWO2 [ avimarsa [ elul) +edym)
or, by use of Gronwall’s lemma, again,

Vi() < Vi (0)en T 4 ot IWlle@ries (T~ 1)
€1
where

Vi(0) <19~ gella + llg — gsll1 + 6% g ~ gell2 + 8% ||g — gsl|o < Ce3.

As a consequence. we have

(3.41) llws (- )l < Va(t) < Ces.

The relation (3.39) for j = 2 allows us to infer
/R (Wi, + 6wl,,) dx
[ (2 2 ' Lo
_-_/-,-, (hze +6R%..) dr— Q.L ((mu—l—ﬁw"],uw,,, —(e— 5):;5-,““;”) dardr
“t i :
=2/ / (—Et'?cr -+ u.',,_)n."lr — Bl e Wl — W WL ) da dr
Jo b 5 T i r L e~ T

1
= le= d; /- / Weiprt Wep dat dr,
S0 R
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in which we know that, for 0 < t < T, [ug|lwz| < C, [ttag| < O, tzzell < C, tiazmll <
Ce}, ||wg)l < Ced, Jw| < Ce3, where the C's are constants dependent only on T and on

llgll zra. Thus it transpires that
) 1
(wl, + ewl ;) dr < /(hil +6RZ,,) do + 2/ /(ngI + Ce3 |wqz|) dz
R Iz TIT — 5 0 R
t
426 [ Nselussese] a2
0

t 1
< / (R, + 6h2,.,) do + 2 / (Cllwsall? + Cet [waz) de,
“Jr 0

where 5 .
V20) = [ (2, + 8 do < O
0

in consequence, .
V2() < 06 +20 [ V() + bvatrlan,
0

from which it follows that

1
(3.42) |waa (- )| < Va(t) < Ces for 0<t<T.

To finish, take j = 3 in the master relation (3.39) and derive
t L2 =1((E= dx dr.
Ve.z(t) = V32(0) 15 2/0 /R ((’U/LU + —2-’(1) )xrzzwzzx (E 5)uzzzm:tw:cx::>

1t is known that

r;l!ll' Q

|,|u:::cz:a:zt H S

and so

" 13
2(6 - 5)/ / UgzzzrtWrzz dz < 2605_% / sz:z“ dr
0 JR t N
< 20 / Va(7) dT.
[¢]

The other term under the integral is estimated as follows:

ot 1
2/ / [(’U/U) + _wz)z::a:a:wa:a:z] dz dr
0 JR 2

t
= 2/ / (; (uz + wx)wizz - 4wzu:cz:rw:czr o 6uzzwz:th:ca: - U:z::z::rwwzzx> d:r dT
0 JR
' 2 R S o |
< 2C/ (“wzn“ + || wezz || (65 + €8 + € be:)) dr
0

< 20/; (V}f(r) +e%V3(T)) dr.
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Since we know alread)_r that
VO = [ (Wt 5h2,r) o = o),
—oo
as € — 0 it follows that
| V0 <o)+ [ V(1) + Vi ar.
Applying Gronwall’s lemma gives

[wezs (5 O S Va(1) <0(1)  aselo.

Summing the preceding estimates on ||w|), [[w ||, |wzz| and |[weees || leads to

lw(, )llas =o(1)  aselO,
uniformly on 0 < ¢ < T.
COROLLARY 3.14. {8iuc}esq is Cauchy in C(0,T; H5™3).

THEOREM 3.15. Let g € H® &> 3. Then there exists unique solution u which lies in
C(0,T; H*) for all T > 0, to the KdV-equation posed with initial data g.

Proof. Uniqueness is a simple Gronwall estimate. Existence is likewise easy. Let {u.} be
associated solutions of problem {P.}. Then, because of Proposition 3.1 and Corollary 3.14,
there exists v that, for each T > 0, lies in C(0,T; H®) and is such that

Ue — U in C(0,T;H®),

Byue — v in  C(0,T; H™9),

0z (u2) — 0z (u?) in C(0,T;H°7Y),

Opzruc — Oprol in C(0,T; H*™3),

eéﬁzatue is bounded in  C(0,T; H*™%),
S0, €920, — 0 in  C(0,T; H™3).

We'd like to know that v = u,. If ¢ € C§°(R x [0, 7)), then

T T
/ /ue¢tdird7'_*/ /uzz)tdzd'r ase|0.
o Jm o Jr

On the other hand.

T T T
/ /uecﬁtdrde—// (c")tue)qbdzd’r—o/ /v¢dacd7' ase |0,
0 Jz % Jo o Jr
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showing that t is weakly differentiable and that u, = v. Since v & (0, T: H*—3), it follows'
that u is strongly differentiable and that w & C (0, T; H*~%). This establishes the existence
and unigueness. The continuous dependence of the solution on initial data follows using
the fact that the bounds leading to the conclusion that the net {1} is Canchy are in fact
uniform on compact subsets of H*. O

o .
ver what time scales are 7 and £ close together? By "close together”, we shall mean that

"I](.’E,t) - f(fl’,t)l < Coa.

Order « is the resolution of either n or &,
couldn’t tell the two apart.

Let 17.(3:, t) ES gan Qo ay b — 3 (o3 53
data becomes zon(y/§2, /§t), and 9(z,t) = 50€( /%, \/Tt). Note that the initial

so this result would mean that practically we
The method of proof used for existence of smooth solutions of KAV has an interesting
implication. Consider again the regime that is of physical interest — namely small waves
with long wavelength.
In dimensionless, but unscaled variables, where u and its derivatives are all of order 1,
the initial-value problems considered heretofore have the form

3 o
5a(e) = Sag(y/2 ).
The new variables 4 and 7, satisfy

3 1
M + 7z + 50MNe — 5 BNaat = O(e?, a8, 5%),

2 Gy + g + Uiy — figgy = 0,

3 1 o= - -
(343) T Uy Nz + Eanﬂx + gﬁnII-’C = O(az’ a,B, Bz)a (3.45) U+ Ug + Vg + Vgzz = 07
n,0) = 9(x), (z,0) = 5(2,0) = ga(z),

and i —7 & i
we want |Z — ) < Ca? as o | 0. In this formulation, the small parameter is hidden

in the initial data. It is easier to fi i
5 ollow the evolution if we magni i
with the wave. To this end, let S e

where the Stokes number S = % = %2 Inherent in keeping both the o and 3 terms on an
equal footing is that S« 1.
S, Now, over what time scales is it expected that the model will be valid? Consider

nt+n:: =, 77(33’0) =g(l‘). U(Z‘,t) =a_1ﬂ(a_%x+a—%t7 a—%t)

k]

The solution of this equation is and

n(z,t) = g(z —t) + et. v(z,t) = o 'i(a" 3z + o~ 3t 0" By).

B0 . S It i i
Thus the long-term effect of a small perturbation is, in general. to grow linearly in time. 15 easy to verify that

Hence presuming § « 1, the effect of the smiall nonlinear term and small dispersive term
is to grow, over a time-scale of order % - 33 to order 1. Thus these terns can have &
significant effect on the shape of the wave profile on a time-scale of order é Equally, the
neglected terms of order a2 «~ 3%, can make an order-one contribution on a tihe seaile of

order & «~ L. Thus we have the following situation:
o B

Ut + Uz +F lhrzr — QUZgy = 0,
Ut + e =+ Ve =00,
u(z, U) = 1"(.12,0_] = Q(I)

This is the problem just investigated. It is known that, as &

: . 0 .
information than that is needed. Setting w 10, u v, but more precise

1 . =u — v as before -
when ¢ «» =, nonlinear and dispersive effects van affect the basic wave profile; » 80 that u = w + v, then

when t —é: neglected effects can have accumulated to the order of the basic wave,
so the model may no longer be reliable. .

Now let’s consider the following pair of problems: take o = 3, S =1, and consider the
pair of initial-value problems

Wy + WWr + Werg — EWrgt = QUggs — (vw)e
w(z,0) = 0.

The next step is to estitiate {228 i
I . £ | =IL'“L2 for 7=0,1,2,---. Sharp bound .

s ) via detailed aspects of the KdV-equation to be explained now. ’ b
N+ 0z + 50Nz — =BNzet = 0.
2 6
3 1
gt + EI + 5&&51 & 6,‘3&111 e 07

n(z,0) = &(z,0) = g(z), an order-one initial profile.

couel;:irmﬂ;a otia_e aln H “‘-solutlc:m of‘ the Kd\-’—eguation. Such solutions satisfy an infinite
" H.* pi\o ynemn'ﬂ conservation laws. These polynomial invariants lead to boinds on

:z?orma of solutions that are independent of time, depending only on the H*
of the initial data. These bounds are the key to the following result. ! b

(3.44)

-1orm
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THEOREM 3.16. Let g S H 5 where k > 0. Let o > 0 and let il and E be the unique

. £ )
e e + Mg + 0NNz — ONzgt = 0

e & +&+ by + arzz = 0

1 1 'I](I ) bl &(l‘ ) =] g(.’l')y respectl e]y The ther: I r-one constants
with initial value ,() ,0 €. tiv 'hen ere are orde

C; and Dj,j =0, 1,2--- such that

744, 3
Gy = Elle < Cjasti(att),

2+3 (.3
" lIngs) — €8yl < Dja?*E(adt)

I or0<t< a2 The constants (6 and D; are not dependent ona foraina
at least for “ j i

bounded domain [0, ag).

Thi M , we expect
‘er ti ales of order t v a~ 1. Moreover

j nds hold over time-sca ; i b

Comnjecture. These If:““-h'j-ch case the two models will generically hav.e (i::reer.gBm o
an . e 15 4 . 4

the bounds . : espéf order o~ F. Numerical evidence 51:1:;[30:15 this mn]:}-;t gy

I e . y -2 dat
- bOth“ F‘: lnin diseounting the models beyond ¢ «~ a™=, for reasons
must be carei

later.
3.4 The Quarter-Plane Problem

e p Vi T arel ot alwa_\.'s as useful
The pure initial-value problems that have been reated so far, aren
: 1 1

asa model pr Ob}BI]l. as init lﬂ.l-b Ilii '\’ﬁl (8] le to be tr el e.m.l¥. he fact is
. pre s b treate pres .
1 OUNGAry ue b . . Thse f (i
h 5y lnltla-l"vﬁlue pfobll.’lﬂ is Of't.&‘.}l not Weu'blllted to Compﬂ-rzsﬁn W lth or PIEdlCElDII
that the pure

e o i ' is as follows, In a channel, a disturbance
An often encountered experimental set-up is as fo bou, mibemen

. channsl,

i ated at one end, which subsequently propagates c%ccvm the e
- f’fe o the chanﬁel the distirbance is recorded n.sl1t ]:,asse;;mjtzar il e
p‘_:;:t' :‘;10 - ve will look like further downstream from this dmac.l o g i
i ] arise as models,

di a3 where KdV-type equations i e
o pthl}’gialna)ﬁﬁiion leads naturally to initial- and bm;icelar} ~value pro

ractical configura i

::cﬁuﬁam equations studied heretofore, and so to problems

3 1,
e+ Nz + 20z — Eﬁna:zt =0,

3 1 B
5t + 51 + §a££:r + gﬁézrz =0,
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n(z, to) = £(z, to) = f(z), for >z,
£(zo,t) = n{zo,t) = g(t), for t>t¢,.

(Henceforth, and withaut lass of genarality, take oy = t5 =0, and seale ot the 13 and

the fa.) Inquiry is made as to whether or not sither of these comprises a well-posed

mathematioal problem. Tt is not quite obvious that this is the case since the equations are,

respectively, second- and third-order in the space variable and so in principle require not

Just ane, but two or three spatial boundary conditions to single out a unique solution.
We begin the detailed discussion with the initial-boundary-value problem

Ut + Up + Uy ~ Uy, = 0,

(3.46) u(z,0) = f(z), u(0,1) = g(1), for z.t>0,

for the BBM-RLW equation, where the cansistency condition f (0} = g(0) is imposed at
the outset. This is an mitial-boundary-valye problom posed in a quarter plane. It will be
shown to be well posed by methods very similar to those used to study the pure inittal-value
problem in Section 3.1 Since the ide is the same and the details not so very different,
we content outselves with a sketch of the development. Start by writing the differential
equation as

1,
(1- 63.2-)Ut = =0 (u+ EU_)

and regard this as an ordinary differential equation in the spatial variable . Solving for
U, there obtains

L e L g 1, N
(3-47) w(z,t) = —5/0 el ' 58§(u+5u )df—'rE/ e‘“**)ﬁg(’u#— Su)dE+g' (e,
2 8 2

where use has been made of the fagt that u,(0, t)

=g¢'(t). A formal integration by parts
followed by integration over [0, ¢] yields

@48) wle) = f60)+ (o0 -gt0)e . [ | Kt + L yjacar
with K(l‘, f) B % sgn(I = f)e‘lr—s‘\‘ + %e—(ﬂ-'-h‘)‘

LEvma 8.17. Let f g Gy(E) and 9 £ C(0.T). Then there axists S with0 < § <€ T
depending only on Ifllc, and ||gllow sy and a unique solution uw € C,(B+ x [0.7]) of
(3.48) corresponding to f and g. Moreover. u depends continionsly in Co(l™ % [0.71) on
variations of f and g within their function classes,

Proof. Write (3.48) as u = Ay = 9(z) + e%(g(t) - 910]) + B(u) say. View this as a
mapping of the space C(0. 5; Co(R™)) into itself. We argue that, by taking R large and S
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small, A is seen to be a contraction mapping of the closed ball Bgr(0) C C(0,5;Cp(R™))

into itself. The crucial estimate is
| Au — Avllco,s:00) = [1Bu — Bvllc(o,5i64)-

1
<5 (1+ 3 llcwsin + Ioleasioo] ) I —vlecen
which is easily deduced using the fact that sup, 5 [ 1K (2, €)| d€ = 1. Thus we have that

1
| Aullco.5:00) < I fllos + 2llgllcco,m + Sllulle,sic (1 + 5”“”0(0,5;0.,)):

since

lAullco,sicy) < AU — AO)llcro,sic0) + 14O llc(o,5:64)-
We may now proceed as before to let a = || fllc, + 2llgllc(o,7), choose R = 2a and S =
m. It then follows that A : Br(0) — Br(0) and that

1
[ Au — Avliceo,s;00) < Hllu— vlle(o,5505)-

for u,v € Br(0). The lemma is proved. U
PROPOSITION 3.18. Suppose f € CZ(R*) and g € C'(0,T), then any solution of the
integral equation (3.48) has

8idlw € C(0,T; Cy) for0<+<1,0<j5 <2

Moreover, u is a classical solution of the problem (3.46).

Proof. This follows as in the proof of Proposition 3.2. O

COROLLARY 3.19. If f € C}(R¥) and g € C*(0,T), k > 1,1 > 2, then any solution u of
the integral equation in C(0,T; Cy) has

didlu € C(0,T; Cy(RT)) for0<i<k,0<j<l

LEMMA 3.20. Let f € Cl andg € C*(0,T),1 > 2, k > 1 and suppose f, f’, ...f® are pull
at +oc for some p with 0 < p < I. Ifu € C(0,T; Cy) is the solution of the integral equation
corresopnding to f and g, then 8}0Lu is null at o0, for 0 < i < k,0 < j < p, uniformly

for0<t<T.

Proof. This follows just as the analogous result did for the pure initial-value problem. 0

Lemn i (
- i:f:- ?;.21]. If_f € CJ(RT) N HYR") and g € CY(0,T), then the classical solution of
itial-value problem that exists on [0, S] for S small enough satisfies the inequality

o0 B 1 t 00
/0 [u (z,t)+ui(z,t)]dz+ Z/o u2,(0,7) dTSC/O [f2(z)+f12(x)] dz + C(),

where ¢ is a constant and C(t) depends only on g and 9’ on [0,7).

Pf() f, ] . at i{l iy 1 W 00 VAL h alo
of, W IIE i !Cu.l ’o rm&lh as i Lhe SO]T.] 10T Was 1nﬁn1tely SIM h and TS ed 1 ng
valives at oo, hese maCh.LuatJons are ea. 4 j -
with a.].l It.s. deIl . fav =} I sil USllﬁed pecause of the
Il?gu]anty ]Ieﬂ_ly aim\e and Ehe continuous dependence result n Lemma 3.17. Mulnpl?

(3.46) by w and it i
& egrate over B+ " . .
some manipulations, with respect to the spatial variable ¢ to reach, after

ld [~ 1

g 2 2 1 oo

2 dt/o u”dr — 5!] (t) - gga(t) +g(t)uzt(0,t) + lﬁ widr = 0

2dt f, “ ;
or
d [~

3.49 e 2 2
( ) dt/o (u +’U,I) dz :g2(t) +g3(t) _g(t)uzt(O\t).

Ihe term Uzt(o 1:) 1S tIOUbIEDT]l
3 { ﬁ'ﬂd the nex calculatluns are aimed a get 1ng control of
it. I'vIulI.lply (346) by u a.nd Im.egrsi{e OVer ..1:.. to reach

1 [ 1
3.50 = 3 a3 1 4 oo
(3.50) S /0 U dz = 20°(1) = 79%(1) + 6P (e (0,1) + 2 /0 Wity dz = 0,

a relation that does not look i i
el Ok especially useful. Multiply (3.46) by ug, and integrate over

(3.51) o AP N
@, Uzd$=—2/0 WUz dT + ¢ ()% — u2,(0, 1).

Form the combination (3-49) - (3.50) + (3.51) to come to

E/m<uz+2u2—1u3) dz + u2,(0,t) = ¢'(t)? 1s
(3.52) dt Jo ®7 3 =(0,8) =9'(1)° - 26°(1)

= 39O+ P 0un0.0) + 6%(0) + 20%(0) — 9B (0,).

Young’s inequality allows us to write an inequality based (3.52) of the form

(3.53) @y L L
dt 0 T gu I+§un(0,t)=B(t)

i
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where B connotes a polynomial in g and ¢'. Elementary inequalities imply that

/ B de < ul, Bl

0

integrate (3.48) with respect to t over [0, 7] and use the result to continue the last inequality.

After a few elementary manipulations, we arrive at

[ wans (nu(-,omip ] 0,525 [ tg(s)%}% - [ R ds>
0

t
1/t g
<1l + 3 [ oea0,60 s+ Cllolomy = [ Rle)ds

3
2

(3.54)

for an absolute constant C, where R = g%+ ¢° and u(-,0) = f. If (3.53) is integrated over
[0,¢], there appears

t i1 =) [e] 1 5
oo(112—&—2112)d:c+l/ um(O,s)zdsz—/ -uadx+/ (f2+2fz2—§f )dz
0 ’ 2 Jo 3Jo - 0
t o0 A
+[[Bassvy [T utdes Culstion + Calalingay
0 0

where C; and C, are constants and V = fooo fPr2fi- % f3 is bounded si.nce f starts life
in H'. If (3.54) is used in the last inequality, the desired result emerges directly. O

This H*(R*)-bound is enough to pass to a global solution by way of itera’cing'th:i
contraction mapping argument. The results of continuous dependence may. now be derive
much as before, as well as further regularity results. The details are ommitted.

As far as the same initial-boundary-value problem for the KdV-equatior.l is conceme(‘i,
similar results may be derived, but the details are considerably morfe comphcat.ed and W;ln
only be hinted at here. First note that, formally, the solution is .umquely specified by 1': e
initial data f and boundary data g. For if « and v are two solutions and w = u — v, then

1
wy + we + 5[(u + v)wlg + Weer = 0,

(3.55) w(z,0) =0, w(0,t)=0.

Multiply (3.53) by w and integrate over R* to obtain

1d

2
- “dr =
24t Jor ¥

1
! ; A Nwwg d
§(u+v)w2180+wwu|8°—/g+ WopWer AT 2/R+(u+1) =

1 1 | 2 _l 2|00
:—Z(u_}_'u)wzigo+Z/E+(uz—+-’bx)w dzx 2wz|0 5
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d
_/ w2(x:t)d1+wﬁ(07t) < [u,:—i-vl[oo/ w?.
&t Jor .

Assuming u, and v, are bounded, then Gronwall’s lemma implies w = 0, whence u = v.

Remark: Notice that the sign of the term Uzzy Was important in the last calculation.
This aspect can be more completely understood by consideration of the linearized problem

Ut + U — Uggr = 07
(3.56)

u(z,0) = f(z), u(0,t) =g(t),

which features a changed sign in front of the dispersive term u,,,. As will become apparent
presently, uniqueness of solutions is no longer true, even if the solution is assumed to be
smooth and rapidly decaying to 0 at +oo. To see this. let w be a solution of (3.56) with zero
initial and zero boundary conditions. Let v = Lu denote the Laplace transform of u with
respect to . Then v(z, s) satisfies the one-parameter family of boundary-value problems

U+ U — Upee =0, v(0,8) = Lu(0,-) =0

4

where s > 0. To solve this constant-coefficient problem, compute the characteristic equation

™ -r—s5=0,

and let 7,71, 72 be its roots. Then the general solution is
a(s)e™ + b(s)e™ + c(s)e™=.

InSpwvuon of the cubic characteristic equation reveals that one root is positive, say r > 0.
and the other two r; and r, have negative real parts.

Imposing the condiftion that v and irs derivatives tend to zero at +a0 Amounts to asking
that as)e™ +h(sje = +o(s)e™* decay af r — +ac. Sincer > 0 and Re{r,} <lOlorj=1,2
this simply means that a(s) = 0, The condition #(0.5) = 0 implies that b(s) + ¢(s) = 0,
or b(s) = —e(¢). Henee a non-zero solition is olifained as iz 8) = his)e"® —e=%) for

‘suitable choices of b, For example, one could choose bis) with com pact support in [0, sy,

say; and then have a smooth non-trivial solution p = £-4¢ of (3.56).

Recent wark on the quarter-plane problem for the KdV-equation has brought this
theory into the range of the developments for the pure initial-value problem. These will
be mentioned in the lectures. but details are beyond the stope of these presentations.
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Chapter 4. Stabilty of Solitary ‘Waves

Scott Russell’s original experiments showed the solitary wave to be a very stable aspect
of surface wave motiot, Similar observations of other physical systems in more racent
times have confirmed that when such waves exist, they appear o he very persistent.
\Moreover, the inverse-scattering theory for the KdV-equation and certain other model
aquations shows that the solitary waves play a distinguished role in the long-time em‘!m.*.i?n
of general disturbances. Namely, it can be shown on the basis of this theory that initial
disturbances break up info a sequence of solitary waves that propagate ahead and leave
sehind a dispersive tail in their wake.

T. B. Benjamin in 1§72 was the first to address the theoretical issue of the stahbility of
solitary waves. His original theory, which was worked out for the KdV-equation and the
BBM-equation, has since been refined and generalized in various ways by many _authqrs.
A set of results in this domain will be sketched here. The setting will be a general class of
one-dimensional waves equations of KdV-BBM type, namely
(4.1) up + ug + f(u)s — Lug =0,
where f : R — R is a super-linear C*°(R)-function, typically a polynomial, with f 0 =0
and L is the dispersion operator defined as a Fourier-multiplier, viz.

F{Lu(§)} = o) F{u(€)}

where F connotes the Fourier transform with respect to the spatial variable. The symbol a
of L is typically real-valued and even. Suppose ¢ = ¢ = ¢(x— (C+1)t) is a solitary-wave
solution of (4.1). Then it satisfies the ordinary differential equation

—Co' +(f(9)) — (Lg)' =0,

or

(C+L)p= (o)

where C > 0 and C+1 is the velocity of wave propagation. A strong form of zero bound.a.t‘-y
conditions at infinity has been applied to evaluate the constant of integration inherent in
getting to the last formula.

We start by explaining what we mean by the term “stability”. If initial data 1 for
(4.1) is close to a solitary wave ¢, then it might be expected that the solution u of (TMJ
eorresponding to 1 is close to @ for all time, Le. for any small e > 0 given, thgm is &
5 > U such that if [|¢'— @l < & then [lu(-.t) — oel-— Ct)|| < ¢ for all time. A result of
this strength is generally not true becanse the principal speeds of propagation of de and
« may be different. More precisely, suppose we let 1 = #p where D # C. If D'— C,
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then ¢p — ¢¢ in any of our favorite norms. On the other hand, in this case u is known
explicitly to be

u(z,t) = ¢plz — (D + 1)),
and hence

lu—¢cll = llgp — ¢cll

converges to a positive constant as ¢ — oo, no matter how close D is to C. Indeed, if

D +# C, then
Jim [¢c(e = (€ +1)t) - $(z — (D+ D) = ll6c]l + 4o

Thus, the strong form of stability just put forward is too mich to hope for in the present
‘tontext. Indeed, the fundamental reason the result fajls arises frequiently when stability of
mation is contemplated — small differences in velocity can eventnally move two neighhor‘;ing
states very far apart. “
One way around this difficulty is to give up knowing where the solution is in exchange
for knowing its shape very well. This idea leads to a new measure of distance. Consider a
Banach space X = X(R) of functions defined on R endowed with a translation-invariant
orm | - ||x. Let f and g be elements in X = X(R) and define

d(f,9) = ggxft ) = g9(-+v)lix.

This »distance” is the closest approach of f and g under the translation group in R.

'LEMMA 4.1. The mappin

_ g d defined above is a pseuodo-metric if the norm in the Banach
space X = X (R) )

is invariant under translation; d is a metric on the quotient space X /7.

In terms of the pseudo-metric, another notion of stabilit

5 y of solitary waves may be
defined. Y

EFINITION 4.2. A solitary-wave solution ¢c of (4.1) is said to be stable if for any given

> U, there is a & > 0 such that if || — ¢¢|| < 6. then infyeg l[u(-,t) — ¢ (- +y)|l < € for
it > 0.

{ If we move to a travelling frame of reference in (4.1) by letting 4(z.t) = u(z + t.1),
en (4.1) with its initial condition may be written as

{Ut""f(u)z—Luz:O,
u(z,0) = ¥(z),

i the tilde was immediately dropped for clarity.
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LEMM~ 4.3. Let u be a suitably smooth solution of (4.2) that is null at co. Then the func-
tionals [~ u(z,t)dz, V(u) = [*°_ w?(z,t)dz and M(u) = 2 [3ulu(z, t) — F(u)(z)] de

U
=]

are time independent, where F'(x) = f(z) and F(0) = 0.

PROOF. This is easily established by multiplying (4.1) by 1, w and f(u) — Lu, respectively,
and then integrating with respect to x over R. Use is made of the fact that the dispersion
operator L is self-adjoint since its symbol « is real and even.

Intermediate hypothesis: For the time being, it is assumed that ¢ is a fixed solitary-wave
solution of (4.1) and that ¢ is slightly perturbed initial data. It is assumed additionally
that V(¢) = V(+). This restriction will be removed later.

Define A(u) = M(u) 4+ CV (u), h(z,t) = u(z + a,t) — ¢(z — Ct), where C is the phase
speed of the solitary wave ¢ = ¢ we are interested in. Then ¢ satisfies equation
(4.3) (C+L)g = f(¢).
Let T(u) = A(u) — A(#). Because of the time-invariance of M and V, we may think of T

as a real-valued map of the initial data 1. Using the Taylor expansion, we may express T’
as

T(9) = A) = A(@) = A8+ 1) = A(9) = N($)h + 3 (A"()h, 1) + O[],

or, in more concrete terms,

W= [36rnmern-rern- [foo+rw+ S form-S [
:/hL¢+/th—/f(¢)h+%f’(d))h2+0/¢h+%/h2+0(||h||3).

as [|h|| — 0. Equation (4.3) together with the self-adjointness of L implies A’(¢) =0, and
consequently

mlAll? + allk)|® > A(w) - A(¢) = T(y) — % (A7 (¢)h, h) + O(|I1%).
If A” is positive definite, then
ml|Rl? + allk|® > A(u) - A(8) = T(3) > MAl> — bl 1%,

for all t. As T() does not depend upon t, this means that if at ¢ = 0, [lAl| 1 is small, then
A will remain small for all ¢ > 0.

Define £ = Lo = A"(¢) = L+ C — f'(#). Thus the sclf-adjoint, unbounded operator
on Ly(R). Notice that £(¢') = 0 since (L + C)¢' — f/(¢)¢' = 0 from (4.3). Hence £ has
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Proof. Step 1.
7 < 0, then there exists a sequence {@n} C X such that for n > L (qn,®) = (qu.¢') =

2er0 as an eigenvalue with o' as a carresponding eigenfunction. Therefore £ is not strictly
positive definite. Moreover, by cansidering (L{Aw), Au) and observing the behavior of this
quantity as A varies, it is often easy to see that £ — A/ (#) is not bounded below, and
hence is not positive definite.

Denote by ¢ = j—g. Differentiate (4.3) with respect to C to derive

(L+C)—fe)p+¢=0,

which is to say,
L£(9) = —¢.

In consequence,
s ; 1d
(£4).6) =-6.6) = —3 L(6,0)

It is convenient at this point to posit a set of assumptions about the operator £ that
allow a stability-theory to go forward. It then becomes an interesting objective to find
conditions on f and L that imply these assumptions to be valid.

Assumptions on L
(i) 35(¢,4) > 0.

(ii) The spectrum of £ is composed of a single negative eigenvalue —v, say, and 0
together with the interval [C,+o0).

(iii) 0 is a simple eigenvalue.

(iv) —v is a simple eigenvalue.

(v) a(€) > pl¢] at least for €[ large for some p > 0.
Let X be the Hilbert space

X = {feLz:/<1+a<5>)4f<5>|2d§<oc}.

Then the dispersion operator I, may be viewed as a bounded linear opeator from X to X*.

LEMMA 4.4, Let V be the subspace of X of those functions such that 0 = (¢, ¢') = (¢, ¢)
and let

n=inf{< LY >y eV, |y =1}
Then, n > 0.

Certainly 7 is not —occ since the spectrum of £ is bounded below. If
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0, (gn,qn) = 1 and < Lgn,¢n >— 11 < 0 as n — oo. Without loss of generality, it may be
supposed that the ¢, are infinitely smooth. Remark that

0< (Lantn) = | OGO dE = (Lansan) ~ Clansa) + [ rodwa

Thus it is seen that the sequence {¢,} is bounded in X, and so there exists a subsequence
{gny}, still called {g.}, such that,

Gr. — g« weakly in X.
Because of assumption (v), a(€) > u|€| for some x> 0, s0 X C H2(R) C Ly, for all finite
values of p > 1. Thus, {q,} is bounded in H 3 (—M, M) for any finite number M, and so
by a Cantor diagolization, there is a further subsequence of {g,} that converges strongly in
Ly(—M, M) and Ly(—M, M). for any finite M, and, by a second Cantor diagonalization,
pointwise almost everywhere. Thus we may suppose that

gn — ¢« weakly in X and g, — G in L2 10c(R).N L j0c(R) and pointwise a.e. in R.

It is asserted that ¢, = G. To see this, let p € D(R) = C§°(R) and compute as follows:

/oo [qﬂ(z) - G(I)]p(ﬂ?) dz < ”p”L'z”qn - G”Lz(supp(p))‘

—00

It follows that g, — G in the sense of distributions D’. But weak convergence in X implies
convergence in D’. Therefore G = g.. Moreover, it now follows that ¢2 — ¢2 in D', in Ly joc
and weakly in L,(R) for all finite p > 1. For example, if p € D(R), then

/ [gn(z)? — 0:(2)%]p(2) dz < [|pllLe l1gn = @x | o (supp(e)) 19n + Gl Lo (suppie))-

With this information in hand. we return to the primary issue under consideration and
remark that because of the weak convergence in X,

0= lim (¢,¢n) = (¢,¢:) and 0= lim (¢,¢n) = (¢',0:).
n—oo n—o0
The lower semi-continuity of semi-norms with respect to weak convergence implies that
(Lga, ¢») < liminf,_, o (Lgn, ¢n) and

“q*“2 (Ger go) < liminf, 0o (gn, gn) = 1.
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We also need that lim, o (f'(¢),¢2) = (f'(¢),¢2). This follows, for example, because
as mentioned already, the sequence {g2} can be assumed to converge weakly in Ly(R) to
42. Since f'(4) lies in Lo(R), the convergence result follows. An outcome of the foregoing
musings is that

02n= lim (£4n,gn) = (LGn; n) + C(dn, 4n) — (F'(¢), 42)
> (Luq) +C— / (@) da
>c- / F (O de,

because (Lg.,q.) > 0. Since C > 0, the last inequality implies that q. # 0. Let f, =

TaeT
be a normalized version of ¢, so that -

1
(Lfa b)) = _Z(L:Q*v 9.) <0.
flgull
Making use of assumption (i), we know from our ealier computations that
(£.9) <.

Suppose the simple tiegative eigenvalue v of £ has a corresponding eigenfunction & under
assumption (iii) &' spans the eigenspace associated to the eigenvalue 0. Demmpase &-as
b= aX L b + Fy, and substitute this representation into the inequality (£d, d) < 0 to

obtain
0 > (L(aX +b¢' + Py),aX + bg' + By)

=a*(LX, X) + 6% (L, ¢') + (LPy, Py)
=—vd®||X|? + (LPy, Py),

whence
(LPy, Po) < va?.

Remember (Lf., f.) <0 and f. is orthogonal to ¢" and ¢. Therefore, f. has a representa-
tion in the form f. = ¢X + P, which means

0= (¢, fu) = —(Lg, f.) = —acv + (CPy, P).
In consequence of this equation, it is seen that

(Lfey fo) = —cPv + (LP, P)

> —C21/+ (KP:POIJ-
(LFy, Fy)
y =
spzha fr:cﬁu_, —0
a=y

This contradiction proves the lemma. [
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_OROLLARY 4.5. There is a positive constant n such that (Ly,y) > n|ly||* for any y € X
that is orthogonal to both ¢ and ¢..

The issue of stability in view here is orbital stability. As the orbit of a solitary-wave
solution ¢(x — Ct) of uz + f(u)z — Lugy = 0 is just the set of all translates of the initial
profile. So to prove the solitary wave is stable, it is necessary to show that given € > 0,
there is a § > 0 such that

lo—9llx <6 = velde={z:d(z,¢) <€}

LEMMA 4.6. There exist ¢ > 0, C > 0 and a unique C'-mapping o : U, — R such that
foru e U,

() (u( + ), ¢2) =0,
(i) @ (u(- + 1)) = afr) = alu) - 7,
(1“) a,(u) o e G:(I'J'.))

T ul)bea(z — alu)) da’

Proof. Consider the functional

G : Ly x R — R defined by
o
G(u,a)=/

Simple considerations indicate that

u(z + )¢ (z) dz.

G(U, O‘)l(u:zf),a:O) =0

and

oG oo
%'(u:@a.—-o) :/

— o0

Usle + Q)6a(z) delmpamey = | a(a)da £ 0.
—oc
The Implicit-Function Theorem implies there is a neighbourhood Be(¢) and a unique C*
functional & : B.(¢) — R satisfying
i) (u( + a), ‘bz) =05

ii) by translation invariance, u(- + a(u}) = u(- +r + (a(u) — r)) = 7u(- + alu) — r),
and by uniqueness, a(u) —r = a(7-(u)).

By a change of variables, property (i) can be rewritten as

o0
o= [
-0

u(z)o(z — a(uw)) dz.
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Differentiating this latter relation with respect to u leads to

o

0 = ¢ (- — a(u)) — o' (u) / u(2)82¢(z — a(v)) dz,

—o0

and therefore

¢z (- — a(v)) ‘
I u(@) sz (z — au)) de

o' (u) =

The proof is complete. [J

LEMMA 4.7. Let ¢ = ¢¢ be a fixed solitary-wave solution of (4.1). Then there exist
constants M > 0 and € > 0 such that

Alw) — A($) 2 Milu(- + o), t) - ¢II°
for all u € U, such that |lullz, = [|#llz,-

Proof. Let hlz,t)= ulz + alulz.t)).t) — ¢(z). Because of the properties of the mapping
o, h is orthogonal to ¢-. The solution u can be written in form 4 = (1 + a)d + y where
a is determined uniquely by the requirement that y is orthogonal to both ¢- and @. By
translation invariance and Taylor’s Theorem,

V() = V(u( + o) = V(¢) +2(¢ h) + %,

from which there is adduced 1
a(6,9) = 5 IBI,
and so @ = O(|[R||?) as h — 0. Applying Taylor’s Theorem to A, we derive that
Alw) = Aul- + a(u))
(8) + 5(£h, 1) + o(IRI

A
A(9) + 3 (L(ag+ 1), 00 +4) +of A1)
A

> A() +0(a?) + Olaliyl)) + nllyl® + o(lAII*)-

On the other hand,
lyll = Ik — agll > k]l - all¢ll = Il - O(IAI*) 2 %Ilhll
for h small enough. In consequence,
Aw) > A(6) + TR + o[BI

n
2 A(@) + JIAl”
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for ||h|| small, and thus if we choose M = n/4, then
Aw) — A(9) = M|R{%.

This is the advertised result. O
Since we are laboring under the presumption that V(u) = V (@), this last result means

thes E(u) - E(¢) > C|lhi?

for ||kl small.

THEOREM 4.8. The solitary wave ¢ = ¢¢ is stable if and only if m"(C) > 0, where
m(C) = E(¢c) + CV(dc).
Proof. We only establish the sufficiency of the condition m(C) > 0 for stability. The

argument for the other direction is a little more involved.

Let {t} be any sequence such that

in{{“d;n —¢(-+98)f =0 asn— o0
s€

initi = sse the solitar
Let uy, be the solution of (4.1) with initial vahue Yp. n = 1,2.---. Suppusef e }}l
wave in question not to be stable. Then there is an € > 0 dnd a sequence of times b
h that wa(-.t,) € @U.forn=1,2,+-- . Asboth E and V' are continuous and translation
such that uz(-.tn - o2
invariant,

B(un(- ) = B(Wa) = B(g) and V(ua(-,tn)) = V(¥n) = V().

s is ilgily
Next, choose w, € Us. so that V(wn) = V(g) and ||wn — un(-,tn)||’—+ 0. This 15;;'::::8
arranged by letting w, = Apun(: —t,) and choosing XA so that V(Antn) = V(6). Becaus
g A

of Lemma 4.7, it is seen that
Milwn — ¢( — c(w))lI* = Mwn(- + a(w,)) = 6l* < E(wn) — E(¢) =0
as n — oo. It follows that
un(-.tn) = (- = a(wn))l =0

i i e ¢ 3 g H. evell
as n — oo. This contradicts the fact that w,(-.t,) lies at distance at least € from @

when translations are taken account. The result follows. O
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