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Abstract
Provided v > 0, solutions of the generalized regularized long wave-Burgers equation
up ity + PU)y — vidgy — gy =0 *)

that begin with finite energy decay to zero as ¢ becomes unboundedly large. Consideration is given here to the case where
P vanishes at least cubically at the origin. In this case, solutions of (*) may be decomposed exactly as the sum of a solution
of the corresponding linear equation and a higher-order correction term. An explicit asymptotic form for the L,-norm of
the higher-order correction is presented here. The effect of the nonlinearity is felt only in the higher-order term. A similar
decomposition is given for the generalized Korteweg—de Vries—Burgers equation

Uy + Uy + PU)y — Vitgy + tye = 0. (**)
© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

When quantitative agreement of the predictions of mathematical models for nonlinear, dispersive wave prop-
agation with laboratory experiments or field data is in question, dissipative effects cannot usually be ignored. In
consequence, the detailed study of the long-term balances struck between nonlinearity, dispersion and dissipation
in wave equations has come to the fore as an area worthy of extended study. It is the purpose of this script to add to
the discussion of the large-time asymptotics of solutions of the pure initial-value problem for nonlinear, dispersive,
dissipative wave equations.
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The context of the present discussion is solutions of the initial-value problems for the generalized Korteweg—de
Vries—Burgers (GKdVB) equation

U +uy + P(u)y — vy +uxr =0, xe€R, t>0, (L.1)
and the generalized regularized long wave-Burgers (GRLW-B) equation
Uy +uxy +PU)y — vy — ey =0, xcR, t>0. (1.2)

In Eqgs. (1.1) and (1.2), u = u(x, t) is a real-valued function of the two real variables x and ¢, v a positive number
and the initial datum

ux,0)=fx), xeR (1.3)

will presently be restricted in smoothness and evanescence as x — =£o0. These nonlinear, dispersive, dissipative
wave equations have appeared frequently as models of physical phenomena, particularly when P is quadratic (cf.
[8,12,13]). Indeed, when P (#) = u? and v = 0, these are the classical Korteweg—de Vries equation [17] and the
regularized long-wave equation or BBM equation [2,19], respectively. For theory concerning the equations, with
v =0, see [15,16,23].

Because the parameter v is positive, dissipation acts continuously and so the ‘energy’ of solutions decreases. If
the evolution equation is initiated with a wave profile of finite energy, then it seems obvious, and indeed it is a fact
(see [1,3,6,7,9-11,14,18,20-22]) that the solution corresponding to a given initial disturbance will decrease to zero
as t becomes unboundedly large. For example, if p > 1 and P(u) = cuPt!, then the L, (R)-norm of solutions
tends to zero at the rate /4 as ¢ tends to infinity (see [1,18] for p = 1 and [6,11] for p > 2). For generic initial
data, this rate of decay is optimal. For special initial data whose Fourier transform vanishes at the origin at some
algebraic rate, enhanced decay of the Ly (R)-norm occurs (see [7,11]).

There is a subtle difference between what occurs for the quadratic case P(u) = %uz and for the general,
homogeneous nonlinearity P(u) = cu”*!, p > 2. Dix [11] referred to the latter case as having asymptotically
weak nonlinearity. The rate t~!/% for the decay of the L;(R)-norm is exactly that occurring for the linearized
initial-value problems obtained by dropping the term P (u), in (1.1) or (1.2). However, for the quadratic case, the
limit

s, O 1,

s Dl 14
=00 |[w (-, Dl -

exists and is not equal to 1, in general. Here, u is the solution of (1.1) or (1.2) with P (1) = %uz emanating from an
initial datum f, while w is the solution of the corresponding linear equation with the same starting point. Thus the
effect of the nonlinearity is in evidence at the lowest order in the long-time asymptotics. (The quadratic case has
been further illuminated in the recent paper by Karch [14].) It is otherwise when P (u) = cu”*! with p > 2. In this
case, the limit in (1.4) is equal to 1, and the difference

Gy 1) —w, Oll,m®) (1.5)
tends to zero at a rate higher than t=1/% (see [9-11]). In fact, the quantity in (1.5) also tends to zero at a higher rate
if, instead of w, one forms the difference between u and the solution v of the heat equation with a simple convection

term
ViU — V=0, xeR, >0,

v(x,00=f(x), xeR
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(see [9,101). Thus, neither nonlinearity nor dispersion appears in the lowest-order, long-time asymptotics. To see
these effects, one must look to higher-order aspects of the decay.

The present study concentrates on (1.1) and (1.2) in the case of an asymptotically weak nonlinearity. We decompose
solutions of (1.1) as a sum of the solution of the corresponding linear equation plus a term that decays at higher
order. A quantitative description of the decay of the higher-order term is then obtained, in which the effects of
nonlinearity and dispersion appear clearly. These results are comparable to those obtained for KdV-type equations
with more general classes of dissipation in [10]. However, where the results can be compared, the present theory
requires far less of the initial data than the theory in [10] made by way of renormalization techniques. Moreover,
we are able to remove an annoying slight lack of sharpness in the decay rates appearing in [10].

The paper is organized as follows. In Section 2, the notation is set, earlier theory is reviewed and the results
derived herein stated. In Section 3, a detailed analysis of the GRLW-B equation (1.2) is presented. The final section
contains a sketch of the proof for the GKdVB equation (1.1), emphasizing the points where the reasoning is different
from that exposed in Section 3.

2. Notation and main results

The L,-norm of a function f which is gth-power Lebesgue integrable on R is denoted by | f|, for 1 < g < oo,
and similarly |flooc = [ fllLe- If m > 0 is an integer, H" (R) will be the Sobolev space consisting of those
L, (R)-functions whose first m generalized derivatives lie in Ly (R), equipped with the usual norm

m

IF @y = 1l =D 1Pl

k=0

The Fourier transform f of a function f is defined to be f *&ky=(1y/ V21) f fooo e~ kx fx)dx.

In the theory to follow, assumptions will be imposed that imply existence of globally defined solutions to the
initial-value problems (1.1)~(1.3) and (1.2)—(1.3). More precisely, conditions will be imposed that yield time-
independent bounds on the H I(R)-norm of solutions. For Eq. (1.2), no restriction except smoothness on P is
needed for the veracity of the latter condition. For Eq. (1.1), the assumption that the H I_norm is bounded involves
either a limit on the growth of P or else initial data which is sufficiently small (see [4-6]).

The following theorem is a slight generalization of the theory developed in [6,7], where it was simply assumed
that P(u) = cu”*! for some constant ¢ # 0.

Theorem 2.1. Let v > 0 be fixed. Suppose P is a C®°-function for which there is a constant ¢ > 0 such that
|P(w)| < clw]?*! for values of w near O and some integer p > 2. Suppose initial data f to lie in L1 (R) N H2(R).
In the case of Eq. (1.1), suppose also that || f|l1 < yp, where yp is the ceiling mentioned in [6, Theorem 3.1].
(Initial data that respects the ceiling yp leads to a time-independent bound on ||u(-, t)||1 and so to global solutions,
whereas those that do not may exhibit the formation of singularities in finite time. Of course, yp = +o0 if p < 4.)

Then there is a unique global solution u of (1.1) or (1.2) corresponding to the initial data f, and, moreover, u
depends continuously in C(0, T; H®) on variations of f in H® for s > 2 and any finite value of T . Additionally,
there are constants Cj, 1 < j < 3, depending only on || f||\ and v, such that

G, O < CLA+D774 UG Do < C2+07Y2, Juy( 02 < C3(1+ 174 @2.1)

for all t > 0. Furthermore, one has

0 2
lim (Y2, 0= lim /2w, 03 = Qvr) /2 (f f(x)dx) , (2.2)
t——+o00 t—+0c0 —o0
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where w is the solution of the linearized version of (1.1) or (1.2) in which the nonlinear term is simply dropped. For
1 =0, 1, it is also true that

—((3/2)+1) ;
ol —wyc g <] i 23)
Cnt~ DD (log(1 + 1) ifp =2.

A detailed proof of this result may be made following the general line of argument exposed already in [6,7]. The
difference in development here is that the homogeneous upper bound |P(w)| < c¢|w|?*! is only enforced for w
near zero. The reason one can get by with such local assumptions on the nonlinearity is that, in the presence of the
assumed time-independent H'-bound, the calculations in the proof of Lemma 4.1 and Corollary 4.2 in [6] yield that

lux (-, )]a = 0 ast — +o0.

Because of this, it follows that |u (-, f)|oc — 0 as t — +o00. Hence, for ¢t > T for a suitable choice of T, the values
w = u(x, t) all lie close enough to zero that the inequality | f (w)| < c|w|?*! applies. Hence for t > T, the further
developments in [6, Sections 4, 5] go over without substantive change, thus leading to the advertised conclusions.

The purpose of the present script is to improve upon the foregoing theory. Establishing the following result is our
primary goal.

Main result. Suppose that v > 0 and P(z) = cz”t! for some ¢ > 0 and z near 0, where p > 2. Let initial
data f € L1(R) N H2(R) be given and let u be the solution of (1.1) or (1.2) corresponding to f. (In case (1.1),
suppose f to satisfy the conditions in Theorem 2.1 that imply global H'(R)-bounds.) Let w be the solution of the
corresponding linear equation with initial data f. Then, we have that 4 = w + R, where the remainder R decays
to zero as t — +oo more rapidly that does w. In fact if p > 2, then

3/2 2 ¢* A R g
i . g ————"Tr 14
t_l)linoot [R(-, D3 T B 1 (/0 /;oou (x,7)dx dt) ) 2.4)

For p = 2, suppose P{u) = cu’ for some consiani ¢ and thai xf(x) lies in Ly (R) for Eq. (1.1) or xf{x) and xf' (x)
lie in L(R) if Eq. (1.2) is considered. Then, we have the following conclusions relative to a solution u = u(x, t).

L IEA() = | fy [0 u?(x, ) dx dT| — +o00 as t — +oo, then

3/2 2

g%f@w,r)—w(-,m% SR @.5)

2. If [5°1 /%5 u3(x, ) dx|dt < 00, then one obtains
lim 22u(, ) —w(, 03 = —(— </+Oo/oou3(x, 7)dx dr)z. (2.6)

1> +oo dpBum)!2 \ Jy L=

3. If fooo ffooolu3(x, 7)| dx dv = 400, then the higher-order term is bounded above as follows:
£3/2 . o 6
limsup G ) — e ni5 < P f_ @ 2.7)

Remark. Analogous results hold if it is only presumed that P is smooth and

|P(2)] < clz]’T (2.8)
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for z near 0. The double integral appearing in (2.4) is replaced by

foo/-oo Pu(x, t))dxdr, 2.9
0 —00

and similarly in (2.5)—(2.7).

The proofs of the main results for Eqs. (1.1) and (1.2) are similar. We present the proof for Eq. (1.2) in detail and
then content ourselves with a sketch of the proof for (1.1). The complete proof for solutions of (1.1) is in several
respects easier than that for Eq. (1.2).

The plan of the remainder of the paper is simple. In Section 3, the just mentioned detailed proof of the decay
results for solutions of (1.2) is presented. Section 4 is devoted to sketching the proof for Eq. (1.1) emphasizing the
points where the analysis departs from that in Section 3.

3. The proof of the main theorem for the GRLW-B equation

We begin with some facts about the linear initial-value problem
Wy + Wy — VW — Wy = 0, (3.1a)
w(x, 0) = f(x). (3.1b)

These provide a context for the nonlinear theory to follow. Problem (3.1a)-(3.1b) can be solved by formally taking
the Fourier transform of Eq. (3.1a) with respect to the spatial variable x, thereby deducing that

R vy2t +iyt\
Dy, 1) = exp (~¥) d(y, 0), (32)
+ y-
and so concluding
W, 1) = — /ooex (_”yzt_iytﬂx)f( yd 3.3)
> - /——27_[ e p 1+“3 y y e .

The integral on the right-hand side of (3.3) will be denoted by S(z) f (x). The proof of the following lemma may be
found in [1, Lemma 2.1] (see also [7]).

Lemma 3.1. If f € H'(R) N L{(R), then the solution w of (3.1a) and (3.1b) with initial datum f satisfies:

(a) lim tl/2f

t—00

o0 o0 2
w?(x, )y dx = lim ¢'2[S() (0l = Gvm)~/2 (f f(x)dx> :

—00 =

and

o0 00 2
(b) tlinomot”z/ wf(x,t)dx=(128u3n)—1/2(/ f(x)dx).

We now come to the heart of the matter, which is to determine asymptotically the difference between a solution
of (1.2) and (1.3), and the corresponding solution of (3.1a) and (3.1b).
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Lemma 3.2. Let f be in H*(R) N L (R) and let P be smooth and satisfy (2.8) for z near O, where p > 2. Then the
difference between the solution u of (1.2) and (1.3) and the solution w of (3.1a) and (3.1b), both with initial value
[, has the property

a 379 2 I == :
Jim 2Puc, 1) — w0l = ="y (/0 [mP(u)dxdt) . (3.4)

Proof. Tt is convenient to make the change of variables U (x, ) = u(x +¢,¢) and W(x, ) = w(x + ¢, ¢). Then if
V =U — W, V satisfies the initial-value problem

Vi = vV + Ve — Vo + P(U)x =0, (3.5a)
V(x,0)=0. (3.5b)

This traveling-coordinate change of variables does not affect the value of any of the norms being considered here.
Take the Fourier transform of (3.5a) with respect to the spatial variable x and solve the resulting ordinary
differential equation to reach the integral equation

t e i =-
04,0 - Wy, 0 = —/ 1 iyyz o~ (DN BTy, 1) dr. (36)
0

According to Theorem 2.1, the solution u of Eq. (1.2) respects the inequalities

Dl = CA+D7 ux (0l < €U+ 07 (3.7)
for ¢ > 0, where the constants C depend only on v and the norm of f. Because of (3.7), we see that

UPHLC Dl = P 6 0l < JuG, 015 e, D3 < €+ 072, ©.8)

Since [U(:, #)| — 0 uniformly in x as ¢ — oo, it follows that for ¢+ > T for some sufficiently large T, the values
of U(x, t) lie in the range where (2.8) applies. In consequence of this and of (3.8), it follows that there is a C > 0
independent of ¢+ > 0, such that

PO < C(1+1)~P/?

forallt > 0. Thus, the right-hand side of (3.4) is finite because p > 2. Apply Parseval’s theorem and the substitution
§ = y+/t to (3.6) to obtain

{ 32U ) — CO12 = 32100 — Wi )12
Jim 22U =W DB = lim P06 0 - Wl

2

= lim /2
1= —+o0

2
lim 12 f g
S

(o) S'.'! e-‘{llls"'/{ |+.\""/{!!

: !
Ly —(y =iy A+~ B 17y
e ’ PU)y, v)dt
1+ )’2/0 P

2
2

dy

t
/ e~ (O =)A= B Ty, 1) de
0

2

= lim ds. (3.9)

1=4oof_o (14 52/1)2

t
(uxz—is3/«/7)r/(l+32)/\< u )
e PUY|—. ) dr
/O ﬁ

The strategy is to apply the dominated-convergence theorem to evaluate the right-hand side of (3.9). This requires
a number of relatively straightforward estimates which we include for the reader’s convenience. First remark that
the Loo-norm of the inner integrand with respect to the variable s may be bounded as follows:

(v.rz—is3/ﬁ)r/(f+.fz)/\ ( § )
e PU)| —,1

< Cvel).\‘z‘L'/(l‘-l—Sz)IP((](_y T))'l < Ce\’szf/(f-f—sz)(l + t)—p/z, (310)
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where the constants C do not depend on s, T and ¢. Since p > 2, it follows that

/ e(vs —1s3/J)t/(t+s2)P(U) (__ r) dr| < € /‘ " ) g
0 va 2] (14 T+

2
< Ceuszt/Z(I+s2)/t/ - .+ = : f eV 22/(t+s%) dr
o (L4+n)r2  (141/2)r/2 ],

g C l._,'v.vzl/Z(r—}—sZ) N C(t + S2) eu.v2r,((r+s2}
T 1= (1 4/2)r2 vs2(1 4+ t/2)r/2

2 2

2 I:evszt/2(1+s2) n (1+ s%/p)evet/Cs )(1 _ e—(v.vzr/2(t+x2>))}

i 2 -
vs

(a- e—(v521/2(1+s2)))

With this inequality in hand, one shows that the integrand with respect to the variable s in (3.9) is bounded above
in the following way:

2

e —2957 (1457 210 ! . -
& / e(vs2—1s3/\/f)r/(t+s2)P(U) < S ) ‘L’) dr
(1 4+s52/1)2 0 NG

5 2 2 2 2
C‘s e—2vs” 2/t /1) |:evs2t/2(t+.v2) N (1+s52/t)e” t/(t+s )(1 B e—vs2t/2(f+sz))]

= 2

- (14 s2/1)2 vs?
Cs? e—us2/(l+s2/t) ca— e—vs2/2(l+s2/t))2

<

- A +s2/0? g vs?

C [ A+ sy /21 C(1 — e~V /24 0y2
1 +52 | (14 52/1)2 e

1 (1—- e—us2/2)2
C[1+s2 + 2 3 (3.11)

where the constants C are again independent of s and ¢. Thus the integrand in the last integral in (3.9) is seen to be
bounded above by a fixed L1-function. It follows that we may pass the limit inside the integral with respect to s.
If g(s, t, T) temporarily denotes the integrand in the inner integral on the right-hand side of (3.9), then

IA

! o o0
/g(s,t, T)dr =f g(s,t, T)X[O,t](f)df=/ G(s,t, T)dr,
0 0 0

where x0,,(r) = 1if T < ¢ and x[o,,)(r) = 0if T > t. Because of the uniform estimate (3.10) on G, one shows
that for fixed s,

< C evsiT/(+sh) =p/2 & oSt/ GHs2 -p/2
|G(s,t,T)| <Ce 14+1) <Ce 14+17) .

Note that the function on the right-hand side of the above inequality is an L-function with respect to t since p > 2.
Using this information and the dominated-convergence theorenn, it is inferred that
[o0]

(o0}
im | G, ¢ 1)dt =/ (lim G(s, 1, r)) dr
0 —>o0

t—00 0

provided the latter limit exists. But,

(vs? —is? VD1 L
P 52
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as t — +oo for any fixed s € Rand r € R". Also, U € H!, s0 |U(x,t)| = 0 as |x| = oo, for any ¢t > 0.
Hence for |x| > M for suitably chosen M, which may depend on ¢, the value of U (x, ¢) lies in the range where
(2.8) applies. In consequence, we see that

|P(U)| < clUPH

for x > M, and then it is inferred that P(U) € L;. It follows from the Riemann-Lebesgue lemma that F(F) is
continuous, whence

%/;:P(U(x, 7)) dx.

Combining these ruminations allows us to continue Eq. (3.9) as follows:

00 o0 oo 2
t_liToot3/2|U(-, )y — W, t)|% = /_Oosz e—sz2 ds (J;_/ / P(U(x, t))dx dr>
|
=W/ Sds(/ / P(u(x, f))dxdr)
41_(8”?”” (/ / Pu(x, t))dxdl') .

The lemma is established. [

lim P(U) (% r) =PO)O, 1) =

If p = 2, then the higher-order decay of solutions of (1.2) takes a slightly different form from that just described
in case p > 2. The next lemma is a step toward understanding the case p = 2. For simplicity, the nonlinearity is
specialized to be a pure cubic.

Lemma 3.3. Let f lie in H>(R) N L{(R). Moreover, suppose xf(x) and xf’(x) are members of Lo(R). Let u be the
solution of (1.2) and (1.3) with the nonlinearity P(u) = ci’. If | |J0J u?(x, T)ydx dr| — +00 ast — +00, then
one has

J(; e(m-z—i.-."‘fﬁlr/‘{r--k-tzjg‘j(_\./ﬁ‘ t)dr !tii Elw.'.'-‘—i,w-‘,m/hr/(:-I--.vzlﬁ'i(‘\.f\/',_’ r)dr
= lim -

— = — =1 (3.12)
t>+00  (1/4/2m) fi [ U3 (x, T)dx dr t—+oo Jau30, 7)dr
for any fixed s, where U (x, t) = u(x +t, t) as before.
Proof. First, by using (3.8) with p = 2, it is seen that for any s € Rand ¢t > 0,
1 C
U3 T UG, t 3.13
( 7 ) FI (D3 < Tem (3.13)

Hence for any fixed s, the use of (3.13) shows that

/ t {e<vs2—is3/ﬁ>f/<f+s2>6\3 (i, r) - U3, r)] dr
/2 NG

t P flr4s2) ¢ 29 a5 1 (452
5/ C vt/ g = c / s T/ gy < Cl +,“ )e" '_’ ' [1 _e—vszt/Z(t+s2):|_
/2 1471 1+t/2 \-{I—I—I;’ZJ

t
< C/ e”szr/(’+s2)|U(-, r)|g dr
t/2

(3.14)
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By using (3.14) and the hypothesis that |f(;ff°oou3(x, t)dxdt| = 400 ast — 400, one shows that

. S [es T NP DT (s F, 7) — U0, )] de
1m =
t—+00 fOt U3(0, t)dr

—0. (3.15)

From (3.15) it is concluded that to establish (3.12), one only need to prove

/2 % X gz By
I[:/u e(nx”—l.\“;‘\/IIT,f{r-f-.\")UH{I‘./\/F‘ r)dr
lim : SRS (3.16)
G [oU3(0, 7)dz

For any fixed s, (3.13) and the fact that sin(x) < x for x > 0 implies

t/2 2 2 S"‘T ——— N
e” T/ sin (7 ) U3 (—, 1:) dr
./0 (t+ 52/t NG

E 2 52
- Ceuszr/Z(t-i-sz)/l/z sz : Cls|? e /204 (3.17)
- o P2 +s2/n0+1) 0 T V20 +52/1)
where the constant C is independent of s and . Thus, for any fixed s, one certainly infers
T2 w2 o (1452) i rod .2 TR :
) e sin(s7t/(t + s7)/OU (s /31, T)dT
i o sins / VOU s/t _0. (3.18)
t—>+o0 Jo /U x, 1) dx dr
Since p = 2, the function U satisfies the equation
U; — w0y + Usgx — Ugwt + (cU?), = 0. (3.19)

AsinLemma 4.1 in [6], one straightforwardly shows that xU(x, t) and xU, (x, ¢) lie in Lo(R) for any # > 0. Because
of this, the following calculation makes sense. Multiply (3.19) by 2x2U and then integrate the result by parts over
R x [0, #] to obtain

[o,0] X t o
f x2U2(x,t)dx+/ xzuf(x,t)dx+2u// x2U%(x, ) dx de
0 J—c0

—0 —o0

[e)e] f o0
=2|U<-,t>|%—2|f|%+f xz[fz(x)+(f’(x))2]dx+2v// U2(x, 7) dx do
o] 0 J—00

t o0
+/ f [4xU, (x, T)U, (x, T) — 6xU2(x, 7) + 3exU (x, 7)1 dx dr. (3.20)
0J-—x

The first two terms in the second double integral on the right-hand side of (3.20) can be estimated via Young’s
inequality as

t e}
f / [4xU, (x, T)U, (x, T) — 6xU>(x, 7)1 dx dt
0 J—o0

'T36 16
< f [—|Ux<-, D3+ — U, r>|%} dr
0 v v

v t pooO 9.9
+= x“Uz(x,7)dxdr. (3.21)
2Jo J-co

Asremarked earlier, |U, (-, t)|2 = |ux (-, t)|2. Since Uy = uy+uy, it follows that |U, (-, t) |2 < |ux (-, )2+ u: (-, 1)]2.
If we invert the operator 1 — 82 in Eq. (1.2), subject to zero boundary conditions at &0, there appears a formula
for u,;, namely

= —(1 — 027y 4 c(@?)y — vury) = =K (uy + c@?)y) + vMu,, (3.22)
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where K(z) = % e~ and M(z) = —% sgn(z) e 12!, The fundamental energy-type relationships (3.7) assures that
lu(, D)2, |ux (-, t)]2 and |u(:, t)|oo are bounded, independently of ¢ > 0, in terms of || f||1, and that |u, (-, )| €
L;(0, c0) with a bound that also depends only on v and || f[|;. Since both the convolution kernels K and M lie in
L1 (R), it thus follows from (3.22) that

e, 13 < C, I FIDIux G, 03

Hence, the first integral on the right-hand side of (3.21) is bounded by a constant depending only on v and || f|;.
On the other hand

X

xUz(x, t) = / [2zU(z, 1)U, (z, 1) + U?(z, H)]dz,

[e.e]

s0, by the Cauchy-Schwartz inequality, one has

—R0=XY<00 —00

oo 1/2
sup |xUz<x,r>|52|U(-,t)|z(f xzuﬁ(x,r)dx) + UG DI (3.23)

By using (3.23) and Young’s inequality, the last term in the second double integral on the right-hand side of (3.20)
is bounded above, viz.

t o0 t
// xU%(x, v)dx dt 5/ U2 (x, D olU ¢, 7)|2 de
0 J—0 4}

t ! o0
sc/ |U(-,r)|§dr+3// 22U (x, 1) dx dr, (3.24)
0 2J0 J-oo

where C = C(v, | f|l1). Using (3.21) and (3.24) in (3.20), making further estimates and applying (3.7) again, one
obtains

oo x0 t o0
/ x2U2(x,t)dx+/ szf(x,t)dx-i-v/ / szf(x,t)dxdt
-0 —00 0 J—oo

[o/0] t [o.0]
< C+C[ xz[fz(x)+(f’(x))2]dx+C/f u?(x, t)ydxdr < C(1 +1)/2, (3.25)
—0co 0 J—co

Suppose that # > 7 > 1, say. Then note that (3.25) implies

1 " 1 [ 2 ¢
U(x, 7)dx < — XUx, v)dx < - | XPU%x,1)dx < C— < — (3.26)
x|>¢1/2 Jx|>11/2 tJ-co t 1172

for some constant C depending on v and || f||; as before. The inequality (3.25) can be combined with (3.7) and the
Cauchy—Schwartz inequality to adduce

(] 00 172 0o 1/2
/ |x||U(x,r)|3dxs|U<-,r)|ﬁ(/ x2UZ<x,r)dx> s|U(-,r)|oo|U<-,r>|z(/ xZUZ(x,r)dx>

—c0 ~00

<CA+ 1) V2144 < 01 4 1)y~ 12, (3.27)
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With (3.26) and (3.27) in hand, one shows that

2 3
fr/ [e”s2t/(’+s2) cos (-L> /oo sin (£> U3(x, 1) dx:l dz
0 (t +52)x/; —00 «/;
1z o 2 $9T sX
Vs T/ (s )COS< : ) {f +f } sin (_) U3(x, 7)dxdr
/o (t+sHvt) Upisnrn - Jig<or NG

t/2
< Cevszt/z(t+s2)/ |:|U(., r)|oo/ |U (x, 1;)|2 dx + / %le3(x, 7)| dx] dr
0 |x|>21/2 lx|<t1/2t
t/2 ] .
vs21/2(t4+52) + Is] vs22/2(t+52)
<Ce /(; —————Hﬂ“_l_”wd15C(1+|s|)e , (3.28)

where the constant C is independent of s and ¢. It follows from (3.28) that for any fixed value of s,

20 st 452 aaef ol 2y SO0 i N7 .
e cos(s 7/t + 8 0 sin{sx/ DU (x, t)dx]dr
" L't / WO IV I =0 (3.29)

t—>+00 [ 2 U3, 1) dxdt ’

because of the hypothesis about fot ffooou3 (x, T) dx dt. It also follows from (3.28) that

t/2 3 o0
f [evs2f/(1+s2) cos <_L:__> f [COS (£> = 1] U3(x, ) dx:l dr
0 (r+ .S“']\/F -0 \/;
vs2t/2(t+52) e 2 > ?
<Ce U, T)loo |U(x, t)]“dx + G| — ) xU(x, 1)
0 |x|>1/2 | “/;
<C eus2t/2(t+s2) L+ sl

x|<t1/?
1
< B < o(1 4 sy e" 20D (3.30)
o Y2142

151 4y |
mx T

where G(z) = (cos(z) — 1)/z is a bounded function for z € R. Finally, note that

t/2 3 00
/ l:l:e‘”zr/(’“z) cos ( ST ) - 1} f cos (ix—> U(x, 1) dxil dr
0 (t + s/t —00 NG
12 2 2 vt 2 2
eVs T/(t+s) |:COS< 2 ) _ 1:| + evs T/(t+s5°) _ 1 il U Nt 3d1’
/ [ — [ 1| we, 8
< € /2 / Pl 1 (5,5)] + L) [
o LA+ t t+s2]1+1
2! 2 2 2
C ov52t/2t+57) 3 2 12 C ovs1/20+5%) 3
T . (% + 2 / " dr s BE L 2, (3.31)
1452/t el t)Jo 1+t 1+s%/t NG

where H(y, 5) is a bounded function for y € [0, 1] and any fixed s, and the elementary inequality e* — 1 < xe”

=
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for x > 0 has been used. From (3.16), one concludes that
fot/z[e”“zt/(’ﬂz) cos(s3T/(t + sV [, cos(sx/ /DU (x, T) dx]dt |
fotffoooU3(x, )dxdr
f(f/z[[e”szf/(’+“2) cos(s31/(t + s2)/1) — 11/, cos(sx//HU3 (x, ) dx]dt

= lim
t=+o0 fotf_ooooU3 (x, r)dxdr
o JoPP1e? T+ cos(s3¢ /(1 + s2)/E) [, [cos(sx/ /D) — 1U3 (x, 7) dx] dr ; aE5
m =U. 5
t5+oo fotffoooU3 (x, 7)dxdt

Combining the limits (3.16), (3.18), (3.29) and (3.32), it is determined that

) [:; el =in [\/iye 1+ “2‘(.73(.9,/\/?. r)dr
1m

=00 [U30, ) dr

1
= lim / [T/ ) cos(s32/(t + s2)/1) — isin(s3 T/t + s)vD)]
0

=400

00 t poo -1
x/ [ cos(sx/+/1) + isin(sx/v/DU(x, T) dx]dt (/ / U(x, 7) dx dt)
—00 0 J—0

] Jolevs 4% cos (532 /(2 + s2)/D) [, cos(sx/ /DU x, 7) dx] de
= m =
t—+oo Jo /2 U3 (x, 7) dx dr

The lemma is thereby proved. O

When p = 2, it is not clear whether f0°° i) fooou3 dx dr is a finite or not for general initial data even if xf and xf’
lie in L, (R). But, the quantity | fot f_oooou3(x, ) dx dz| grows no faster than log(1 + 7) as ¢ becomes large. This is
because

I roO
U w3 (x, T) dx
—0Q

< uC, DlooluC, )3 < CU +1)71, (3.33)

from which follows

! o0
/ / ul(x, 7)dx dt
0J-—

In the remainder of this section, decay estimates for p = 2 are established. In some cases, optimal decay rates are
obtained.

< Clog(l +1).

Lemma 3.4. Let f satisfy the conditions in Lemma (3.3). Let u be the solution of Eq. (1.2) with P(u) = cu® and
w be the solution of Eq. (3.1a) and (3.1b), both with initial value f.

L IFA@) = | fy [°2 ud(x, ) dx dr| — 400 ast — 400, then
£3/2 2

U 1) — wi, )2 = ——

lim e
4v(8um)/2

t—>+o0A2(t)

2. If [o°1 %0 u (x, T) dx| dT < oo, then

32 ) ot +00 oo i 2
t—IEI-Poot lu(-, ) —w(, D)5 = B (/0 /;oou (x, 7)dx dr) } (3.35)

(3.34)
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3. If 3 [T 3 (x, T)| dx dT = 400, then

1312 6

lim su

.
5 &2

—u(-, t) —w(,? S 3.36

l—>+rx?{lng(| +f))zl 1) ¢ 0l 384~/ 27507 £

/ Zf(x) dx

Remark 3.5. Notice that if A(¢) as defined above is not bounded as ¢t — oo, whether or not it actually converges to
+oo there, then the hypothesis 3 holds. Notice also that if the quantity appearing in the hypothesis 2 is not bounded,
then the hypothesis 3 holds.

Proof. (1) Itis supposed that xf(x) and xf'(x) lie in L (R). Suppose also that the corresponding solution « of (1.2)
and (1.3) with P («) = cu’ has the property

11 o0
f / u3(x, t)dxdr
0 J—o0

as t — +o00. By applying Parseval’s theorem and Lemma 3.3, one shows that

— 400

3/2 (-, 1) — w[.‘f'}]%
Jo[To P (x, T) dxdr|?

3 NUGHD =W DS

I
—+
8

= lim ¢ g — -
t=too |07 U3 (x, T)dxdr|?
o e I 2 — . 2
= t3/2 _[";cyi/(l -+ y}_‘) e—f[u_-.-—_.l_\_.1}/([+_v ””_TJU“{)J, r)dr
t—-+00 V27 [1U3(0, 7) dt 5
00 (242 [ g~y =iy ) /U= [3(y. 1) d7 |2
t—>+oo o 2 (1 + y»)?| [yU0, ) dz|?
_ 0 o 2g2 e—2|r.\-2/ll+.\'2/nU;; c{|.,--’—i.\~1;ﬁw::+.-3)Eﬁ[s/ﬁ? ) drf?
= lim = ds. (3.37)
t=>+00) oo 27 (1 + s2/02| [LU (0, v) dr |?
Let
I e{|r.\':—i.v",/»/—Hrfff+.\'2}§3[-_\.}/\/i' o)de
0(s,t,7) = =2 ' : (3.38)

JiU3©, 7)dr

The use of the estimates (3.14), (3.17), (3.28), (3.30) and (3.31) in Lemma 3.3 shows that

24 arstrf(t4s?) 2/2(t45%) /1|3 :
(t +s5%)¢ / [1— e—vszt/Z(t-‘rsz)] + g ’ (]‘l s.'.‘.)

6(s,t, —-1|1<C o : = —fi
06,2, 7) '—[ 2(1+1/2) 1452/t \Vi

+(1 + |S|) evs2t/2(t+x2)] . (3.39)
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By using (3.39), one deduces that

§2 a= 2052 [(r4+57) 2 o= 20821 /(t4s7)

—— 0, TP < 22—
(14 52/1)2 86, 1, )" = (1 +s2/1)?

_ Cs2 e—2uszl/(t+s2) (1 + S2/t) e1Js2t/(t+s2)
=TT (1 +52/1)2 2

2
Is]/+/T + 52 2 2
1 Vst [2(t+5)
+[_—1+s2/t +Q+sDh|e

[1+16¢s, ¢, 7) =114

- e—vxzt/Z(t+s2)]

; 242 —us 2 201452032
C__A+5)  owirsdy/arst/n gvjasstyn | €A =™ 12+ )y

<
T 1452 (1 +52/1)? Ca
Ce—|=.1'3;’[l+,e"‘/r} S8 . Cs2(1 4 |S|)2 e—vsz/(l+s2/t)
(1+52/0)4 <7+s >+ (1+s2/6)2

<C i +{I —e "-"‘“’2“"-""/”')~+ 5" 3 5t 4 o2 e~V /(+s2/t) |
- 1452 52 (14826 (L452/1)2

For s < t, the last function in the inequality (3.40) is an L{-function with respect to s. In fact; one has

1 ¢! _e—vs2/2(1+s2/t))2 ( G st g2 > e—vsz/(l+s2/t)

1452 52 (1 +s52/7)3 +(l+.92/1)7-
o (1- e_‘”z/z)z 2
6 | A 2y —(vs2/2)
51+52+ = + (P F 5 F 55 e W),

On the other hand, for s2 > t, it is easily seen that

§2 o= 2vs2/(1+57/1) I Wi (DT 0+ O3 (5 1.2, ©) d |2
1+ 52‘/”2
§ .5‘2 e_—l:v.\'e,f'[I+.\""/f}[j"~;f2 + l.rF/Z CW‘2T/(t+~‘2)|U3(-, D d‘[]2
- (1+s2/1)?
2
- s> e 2vs2t/(t+s%) | gus?t/2(1+s%) / " C dr + ¢ t eVsi /(s 4o
- (l+s2/l‘)2 o 1+t 14(/2) t/2
[ 1og2(1+1) ety (1= e 200072
(1+52/1)2 57

<C

<C log*(1 +5%) (14572 e—v(1+sD/ (120 /sy (L= CRaiateaii
= 1+52  (1+s2/1)? 52
[log?(1 +52) (1 —e"s"/2)2
< C .
- 1+s2 52

(3.40)

(3.41)

(3.42)

The last function in the inequality (3.42) is also an L;-function. By the dominated-convergence theorem, it follows
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from (3.37) and Lemma 3.3 that

i t3/2 [ (-5 1) — w(-, ”I%
t—+00 1“[2‘;:;‘(1 7)dxdr|*

/ ‘2_' 3 2y773 2
C2 /00 [52 e—zmz lim ('fO e(VT " /\/;)T/(H's )U3(S/«/;, T) dtl )} ds

T ) =00 fIU30, 1) de 2
2 2 2
— 00s2 e 2" ds = —-L—.qfoosl/ze_s ds = ——— .
27 oo 2 (20)3/2 4v(8vm)l/2

(2) Assume now that f0+°°| ffooou3(x, 7) dx|dr is finite, whence f0+°° [, U3(x, 7) dx dr is likewise finite. Note
that for any fixed 7, the function U3(y, t) is a continuous function in y since U3 isin L{(R) with respect to the
spatial variable. Hence for s < t1/3 and ¢ large enough, one deduces that for any fixed ,

U3 (% 1:) 030, 1)

Thus for s < ¢!/3 and ¢ large enough, the use of (3.43) shows that

1 —~
< 5|U3(0, 7). (3.43)

2| s /2 0 o)
/ U3 (—,r) dt§2f |U3(O,r)|dr§C/ }f U3(x, 7) dx| dr. (3.44)
0 \/; 0 0 —00
On the other hand, for s > t1/3 inequality (3.33) yields
t/2 = s 1/2 C 3
Ul —,7)|dt < dr < Clog(l+1t) < Clog(l +s7). 3.45
fo ( Vi ) fo T g +1) g( ) (3.45)
Combining the estimates (3.44) and (3.45), one obtains that for any s,
2 o= 2 =
ft/ e(usz—i.s3/ﬁ)r/(:+s2)U3 (i,r> dr < /t/ evszr/(r+s2) U3 (_S_,t> dr
0 NG 0 Vi
vs2/2(14+52/1) 3 Al I e
<Ce" log(1 +s°) + A U’(x,t)dx| dt . (3.46)
—00

Applying (3.33) again yields the upper bound

/I e(usz—isa/«/;)r/(f-l‘sz)ﬁ\:i <i, f)
t/2 ‘/Z

_ /r Cﬂu.\-ﬁrmﬂ?; - C /-r ewzr/wsz) . Clt +5%) evszt/(t+s2) _euszt/Z(t+s2)
“Ji2 47T T 141t/2 /2 e vs2

t
dr S‘/. evsz‘r/(t-i-sz)lU3(‘,T)Ildt
t/2

2 —(vs? /2)
<C (1 + s_t_> evs2/(l+s2/t)¢ (3.47)
5=

for some constant C. The inequalities in (3.46) and (3.47) allow us to further conclude that

2
/te(usz—is3/ﬁ)r/(z+s2)l’}§ (i,r) ar| < /t/ _i_/t vt/ (%) 173 <Lt>
0 NG 0 12 NG

(0.) o0
< Cevsz/2(1+.\‘2/t) |:10g(1 +S3) +/ ‘/ U3(x, 'L') dx dT:| + C(l +S2/t) ev.§2/(1+x
0 —00

dr

—ugt /2

Z/t)l"_'e

5
¥

(3.48)
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On the other hand, (3.48) together with some simple calculations shows that

2 2
5 2w

(1 +82/1)2

2 @=2vs2 /(145 /1)

(1452/1)2

[t e(ux2—is3/~/;)1’/(f+52)ﬁ (i, ‘L’) dr
; Vit

o0 o0
[C eVs?/2(1+s?/1) (10g(1 + %) +/ ‘/ U3(x, 7)dx
0 —00

a)

0 2
2 2 ] == e—l.-_\'-/ﬂ
+C(1 4 5% /1) »/U4s /f>—q—]

3

c +_‘.2']e—l'f'-{-\\'zl;‘{|+$2h}e uf {1482 /1) ( A oo‘ o >2
< = log(1+s +/ / U (x,t)dx| dt
(1 +s2/1)? gl+sh+ | VD
| — Vs /232 C 0 ) 2 ] — —1s2 /242
+cl=e 70 2<1og(1+s3)+/ ‘f U3(x, T)dx dt) W, L s
8 1+s 0 —00 8-
(3.49)

Hence the function obtained in the last inequality in (3.49) may be taken as a dominating function. The use of the
representation (3.6) and the dominated-convergence theorem implies that

: 3/2 ] _ i 2___ . 3/2*' W 2
Jim 2Pt 0) w03 = Tim PRI0C, 0 - W, 0l

0 2.2 t — 2
— lim £ / T / O AONEIT(y, 1y de| dy
t—>+00 —oo (1 4+ ¥52 | Jo
2.2 a—2us? /(1452 2
= lim /-oo G e /te(vsz—is3/«/?)r/(t+s2)5\3 S5 r)drl ds
t—>400f_ o (1 —|~S1/.f')'2 0 «/?
0 t . — s 2
= / 2527 Lim / e s =is?/VDT/(t+57) 173 (—,1:) dr| ds. (3.50)
-0 =400 | Jo NG
For any fixed s and ¢ large enough, one infers that
0PI VT e 173 (% r) < 2" N30, 1)) < C e / " U Ty dx @3.51)
—o0

since UP*1(y, t) is continuous in y by the Riemann-Lebesgue lemma. Let
y g
gls,t, 1) = e(”s2_“3/“/{)t/“+sz)l/ﬁ(s/«/;, 7).

Because ffoooU 3(x, t) dx is an L;-function in 7, it follows from (3.51) and the dominated-convergence theorem
that

t

o0 x
lim g(s,t,r)dr = lim / g(s,t, T)xp0,n(r)dr = / lim g(s,t, T) X0, () dz. (3.52)
0 t—+00 0 0 (=t

t—>—+00
Note also that

e(us2—is3/ﬁ)r/(t+s2) i
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ast — +oo for any fixed s € R and 7 € [0, ¢). It follows from (3.50) and (3.52), and then the Riemann—Lebesgue
lemma that

B/ e 2 e 320 e (2
Jim 55, ) —w(, Dl = lim ¢ UG, —WE Dl

) ) 0 2 ) 5 oo 2

=c2/ ste 2 <f lim g(s,t,r)x[o,,](r)dr> ds=c2/ ste 2V ds (/ U3(0,t)dr>
—00 —ool >t —00 —co

2

, I A 1 oo poo 3 2 CZ +00 poo i
=c e ds | — U’(x,t)dxdt )} = ——— u(x,t)ydxdr | .
/_oos (f‘znfo f_oo L2 ) v (8vm)1/2 </o /_w (o) dx )

(3) By using the estimates (3.14), (3.17), (3.28), (3.30) and (3.31) and then following the derivation appearing in
(3.40)—(3.42), it is straightforward to adduce that

! 2 —_ b
alus™—iske/igr3 (L, 1:) dr —f U3, t)dr
[n Vi 0

52 g 2087/ (%) (t + 52 "1/ (+s?) "
e : —e
(1 +s2/0)° s2(1 +1/2)

20871 f(1457) 2

o
Fo

N (N

—vs2t/2(t+s2)]

3 pe 9 2
I-"|3 e\:.\".’ﬂ[!+.\'“! 219 )
(L4 [s] e 2
Vi(l +s2/t) (oD
B s A1 N2 . i)
s 1 4 “ —pg W 20145 ;"H} i .\h ” .3‘4 3 .\‘7 e—vsz/(H_sz/t)
|1+ 52 (1+s2/0)% (1 457/1)?
I = —LJ.\'1;‘E 2 _ 5
{52 ( es)_ ) + O+ s 4sHe ™ /2], whens? <1,
< = )
= lc 12 1 ..2 1= —g= f242
c og ( t\)+t e, ) . whens? > ¢
| 4 5= 52
l (1—=e—2y2 T
=< l:“ I + 3 +(14+sMe™™ P = d() (3.53)

for some suitable constant C. Note that @ is an L|-function. By hypothesis, ast — 400, f(; f fooo lulP(x, 7)dxdr —
~+00. The use of (3.2) with (2.1) and (2.2), and 1’Hopital’s rule shows that

. f(;ffoooluP(x, 7)dx dr
t—>11-‘1r-100 log(l + t)

[o/0] o0
= lim (1+t)/ ulP(x,)dx = lim (1+t)/ w3 (x, ) dx
t——+00 —00 t—+00 —00

/oof(x)dx

3

1
3.54
4«/§vn ( )
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Hence, by using (3.53) and (3.54), it appears that for ¢ fixed, but large enough
5220t/ | 1 =i VDT D T3 5/, ) i 2
(1+52/1)2 log(1+1)
7 Mgt

_ Pt Te 2D /(14 5202 [1UP (0, T) de?
- (log(1 + t))2
< @) + (/1 + DA +5D%/(1 + s2/1)2) e 22U+ A452/1) 20/A+52 /0 (1 /277

t o]
x// lu*(x, ) dx dv)?(log(1 + 1)) 2
0 J—oo

< P(s) + (3.55)

1452
The function on the right-hand side of (3.55) is in L. Another application of Lebesgue’s dominated-convergence
theorem and (3.54) shows that

3/2 3;3

I | el A N
limsup————|u(-, t) — w(-, ¢ 2 —limsup——— |0 o) —W(,t -
,_>+O<I,)(_logtl+r1)3|( )= w0l ,_>+o£(10g(l+ﬂ)3| .0 = W0l

£3/2 00 2y2 ¢ . y 2
= lim sup / - / e AN/ A3y ryde| dy
1—>+o0 (log(1 + )2/ _oo (1 +¥%)? | /o
) %) S2 e~2vs2 f(; e(vs2—is3/«/f)r/(t+s2)ﬁ(s/\/;, 7)dr 2
= c¢“limsu
s, f_oo (1+52/1)? log(1+1)
0 tﬁ 0,7)dr i
< cz/ s2 o2’ lim sup MJ
-0 t—+oo | log(l+1)
oS 2
< 2 lim sup ‘ (1/¥2m) fy ] Solul(x, 7y dx di‘ [0052 % g
T e | log(1 + 1) | Jooo
o2 oo 6 poo —— o2 1) 6
= (x)dx / sfeT VN ds = ————— / (x)dx [ (3.56)
27 (4+/3vm)? /—oof —0 384/ 2507 —oof

4. Results for GKdVB equation

The proof of the theorem stated in Section 2 for the GKAVB equation (1.1) is quite similar to that just presented in
Section 3 for the GRLW-B equation (1.2). In consequence, we only provide sketches of the proofs for the GKdVB
equation, emphasizing the few points that are different from those appearing in Section 3.

The linearized KdV-Burgers equation is

Wy + Wy — VW + Wiy = O, 4.1)

Let u be the solution of Eq. (1.1) and let w be the solution of the corresponding linear equation (4.1), both with the
same initial value f. After replacing u(x + ¢, 1) by U(x, ) and w(x + ¢, t) by W(x, t), the variable V = U — W
satisfies the equation

Vi = vV + Vo + P(U)x =0, (4.2a)
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with initial condition
V(x,0) =0. (4.2b)

As before, the Ly-norm of u, w and # — w are unaffected by the change to traveling coordinates.
Apply the Fourier transform with respect to the spatial variable x to Eq. (4.2a) and solve the resulting ordinary
differential equation to reach the integral equation

! . A
00y, 8) =Wy 1) = — f iy WD B (y, 7) dr, @3)
0

which is (3.6) except the kernel (y/(y? + 1)) e +iy)/(+y") g replaced by y e 7" Tt is straightforward
to infer the analog of Lemma 3.3 for the GKdVB equation (1.1) by following the line of argument put forward in
Section 3. Indeed, much of the development is easier on account of the exponential rather than algebraic decay of
the kernel. However, in obtaining the analog of inequality (3.20), it is only required that the initial data f be such
that xf(x) lies in L, (R). This is because when the equation

U —vUix + Upiy + C(Us)x =0 (4.4)

is multiplied by 2x%U and integrated over R x [0, ¢], one obtains

o0 t oo
/ x2U2(x,t)dx+2v// x?U2(x, 7)dx dt
0 J-o0

—00

00 1 t o0
=f x2f2(x)dx+2v/ |U(-,r)|§dr—// [6xU%(x, T) — 3exU*(x, 7)1 dx dT 4.5)
00 0 0 J—ox

after integrations by parts. With Lemma 3.3 in hand, the case when p = 2 where | f(f ffoooU 3(x, ) dx dt| = 400

as t — oo and the other cases are easily established. The dominating functions that emerge for the kernel
(—vy? iy —

ye for the cases p > 2 and p = 2 are

2 (1 —e"2)2
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and
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respectively. The results for the GKdVB equation are summarized in the following theorem.

Theorem 4.1. Suppose that the nonlinearity P is smooth and satisfies |P(u)| < clulPt! at least for small values
of u, where p > 2. Suppose that the initial data f lies in HY(R) N L{(R). Let u be the solution of Eq. (1.1) and
w the solution of the corresponding linear equation (4.2a), both with the same initial value f. Then the difference
between u and w has the property

3/2 2 ! [ :
Jim P20 = w0 = e (/0 f_oop(u) dx dr) 4.6)
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for p > 2.If P(u) = cu® and xf(x) lies in Lo(R), the following decay results obtain:
1. IfA(r) = |f0tffooou3(x, 7)dxdz| = +ooast — +oo, then

302 2
im0 —wh 0l = e @)
2. If [0 [%0 u (x, 1) dx| dT < o0, then
lim 22, 0) —w(, 0} = . B (/m/w»ﬁ(x ) dx dr)Q. 4.8)
1= 400 ' ’ 4v@vm)' 2 \Jo  Jos
3. 0F fy7 [2o 1w (x, ©)| dx dT = 400, then the higher-order term is bounded by
372 &2 0 6
i s )~ v nl5 < W [_oof(x)dx (4.9)

5. Conclusion

Detailed aspects of the final decay of solutions of equations featuring nonlinear, dispersive and dissipative effects
have been studied. Attention was given to the case of weak nonlinearities where | P (1)| < c|u|Pt! at least for small
values of u and p > 2. In case p > 2, it is demonstrated that at the lowest order, u decays like the solution w of
the corresponding linear equation in the sense that the L;-norm of the difference u — w decays at a higher rate
than the rate 1 ~1/# corresponding to either quantity |u(-, )|z or [w(-, £)|2 separately. Moreover, we compute exactly
the coefficient lim,_, o,#3/4|u — w|y corresponding to the higher temporal rate of decay. This limit depends on the
quantity

/oo/wP(u)(x, ) dxdr.
0 —00

When p = 2, although the long-time behavior of solutions of (1.1) and (1.2) is the same as the solutions of their
corresponding linear equations, the decay rate in Lj-norm of the difference between solutions of the linear and
nonlinear equations may possibly differ by a logarithmic term from the # =3/ rate that obtains when p > 2.
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