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A NON-HOMOGENEOUS BOUNDARY-VALUE PROBLEM
FOR THE KORTEWEG-DE VRIES EQUATION
IN A QUARTER PLANE

JERRY L. BONA, S. M. SUN, AND BING-YU ZHANG

ApsTrAacT. The Korteweg-de Vries equation was first derived by Boussinesq
and Korteweg and de Vries as a model for long-crested simall-amplitude long
wawves propagating on the surface of water. The same partial differential e~
tion has since arisen as a model for unidirectional propagation of waves in
a variety of physical systems. In mathematical studies, consideration has
heen given principally to pure initial-value problems where the wave profile
is imagined to be determined everywhere at a given instant of time and Chi
corresponding solution models the further wave motion. The practical, quan-
titative use of the Korteweg-de Vries equation and its relatives does not al WaYS
involve the pure initial-value problem. Insfead, initial-bonndary-value prob-
lems often come to the fore. A natural example arises when modeling the effect
in a channel of a wave maker mounted al one end, or in modeling near-shore
zone maotions generated by waves propagating from deep water. Indeed. the
initial-boundary-value problem

Nt + Nz + MMz + Nezx =0, for z, t > 0,
(0.1)

n(mv O) = ¢'(1}), 7](01 t) . h(t)a
studied here arises naturally as a model whenever waves determined at an
entry point propagate into a patch of a medium for which disturbances are
governed approximately by the Korteweg-de Vries equation. The present essay
improves upon earlier work on (0.1) by making use of modern methods for the
study of nonlinear dispersive wave equations. Speaking technically, local well-

3

posedness is obtained for initial data ¢ in the class H 5(RY) for s > 3 and

boundary data h in H, 1(01:' o)/ 3(R+), whereas global well-posedness is shown
T8

to hold for ¢ € H*(RY), h € 1,)'" (RT) when 1 < s < 3, and for ¢ €

loe
H*(R*), h € HUTV®(RY) when s > 3. In addition, it is shown that the
correspondence that associates to initial data ¢ and boundary data h the
unique solution u of (0.1) is analytic. This implies, for example, that solutions
may be approximated arbitrarily well by solving a finite number of linear
problems.
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1. INTRODUCTION

This paper is concerned with the wave maker problem for the classical Korteweg-
de Vries equation. In this conception, it is imagined that water at rest in a channel is
set in motion by a wave maker mounted at one end of the channel. If the frequency
and amplitude of the wave maker oscillations are appropriately restricted, this will
generate small-amplitude long waves that propagate down the channel, and thus
will be brought into being motion that corresponds more or less exactly to the
Korteweg-de Vries regime. Indeed, the amplitude of the wave maker is related to
the amplitude of the generated waves, while the frequency of the wave maker is
related inversely to the wavelength. In this situation, the most convenient and
accurate measurements that can be made are to monitor the free surface at fixed
points down the channel from the wave maker. This scheme has been followed
in a number of experimental works (cf. Zabusky and Galvin [62], Hammack [32],
Hammack and Segur [33] and Bona, Pritchard and Scott [7]). Such a physical
configuration is naturally modeled by the initial-boundary-value problem

N + N + Mg + Naze =0, forz, 1 >0,

(1.1)
77(3370) =0, 77(0775) = h(t),

where 2 is proportional to distance along the channel with z = 0 corresponding to
the point closest to the wave maker where measurements are taken, t is proportional
to elapsed time with ¢ = 0 being the initial time when the water surface is quiescent
and the wave maker is activated, and n(z,t) is proportional to the deviation of the
free surface at the point z down the channel at time ¢ (see [7, 10] for more detailed
commentary on this modeling stance). For each relevant time 2, the value h(t) is
the measured deviation of the free surface from its rest position at the point z =0
at time . The function h acts as the driving force for the mathematical problem
(1.1).

Several points are worth noting about the modeling inherent in (1.1). First, the
perfect fluid assumption that leads to the Korteweg-de Vries equation has not been
relaxed. Dissipative effects need to be taken into account in any practical use of
this model, but they are ignored in the present analysis. Second, the channel has
been assumed to extend infinitely away from the wave maker. This corresponds to
ignoring wave reflection from the end of the channel or from a beach. In practice,
this will mean either that the beach is very gently sloping so that little energy does
in fact come back, or, in a channel, the experiment takes place over a time scale such
that the wave motion does not reach the end of the channel. In any event, if there is
significant reflected wave motion moving back toward the wave maker, this model is
inappropriate, as one of its hallmarks is unidirectionality of propagation. (To take
account of two-way propagation at the KdV level of approximation, a Boussinesq
system of equations would be needed as in [3, 4] for example.) Furthermore, notice
that the usual caveat where one removes the term 7, from the equation by changing
to traveling coordinates is not available without a real price in the quarter-plane
problem. A change of variables where one lets v(z,t) = n(x + t,t) does indeed
dispense with the offending term in the evolution equation, but the boundary con-
dition must now be applied in the form v(—t,t) = h(t) for t > 0. Thus the boundary
condition is applied at a changing spatial point and the problem is posed in the
peculiar domain {(z,t) : t > 0,z 4+t > 0}, rather than a quarter plane. The gain
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in simplicity of the equation does not appear to justify the difficulty caused by
the application of a boundary condition at a moving point, and therefore we have
elected to stay in laboratory coordinates as expressed in (1.1). If one drops the
term 7, arbitrarily, the resulting initial-boundary-value problem may be treated by
a considerably simplified version of the analysis that is developed here for (1.1).
Analogous considerations apply to other physical situations modeled approxi-
mately by the Korteweg-de Vries equation, and lead also to the problem (1.1).
The problem (1.1) has received attention in the past, and a satisfactory theory
exists corresponding to physically relevant smoothness assumptions on the initial
and boundary data (cf. [6, 10, 11, 22, 23]). In fact, the problem is usually posed
with allowance made for a more general initial configuration, thus in the form

M+ Nz + MMz + Nege =0, for z, 1 >0,
(1.2)
n(z,0) = ¢(z), n(0,t) = h(t).

Naturally, the consistency condition ¢(0) = h(0) is imposed on the auxiliary data.
Global well-posedness results for strong solutions up to the boundary were estab-
lished in [10, 11] for suitably smooth ¢ and h that satisfy certain compatibility
conditions. Included in the theory is the continuity of the mapping that associates
to given initial- and boundary-data the corresponding solution of (1.2). Faminskii,
in a wide-ranging paper [23], deals with the initial-boundary-value problem (1.2)
for a generalization of the KdV equation somewhat like that appearing later in
Craig, Kappeler and Strauss [20]. He puts forward a theory of well-posedness for
generalized solutions set in weighted H'-Sobolev classes. Moreover, he obtains ex-
tra interior regularity in case the initial data decays suitably rapidly at +oco0. The
program of Fokas, Its and Pelloni [24, 25, 26, 27] whereby the inverse-scattering
transform on R is adapted to RT also deserves notice. This method yields very
interesting and helpful formal long-time asymptotics, and it seems likely it will also
be useful in further, detailed studies of the nonlinear problem. We also point to
related work on the periodic- and two-point-boundary-value problem for the KdV
equation posed on a finite interval (see [15], [49], [56], [63], [18]).

By contrast, the mathematical theory pertaining to the pure initial-value prob-
lem for the KdV equation posed on the whole real line R or on a finite interval
with periodic boundary conditions is considerably more advanced. Before recent
developments, the problem

(1.3) Nt +MMx + Naze =0, 0(z,0) = ¢(z),

posed for € R or over a finite interval with periodic boundary conditions, was
known to be locally well-posed in the space H*(R) of square-integrable functions
whose first s derivatives are also square integrable, for s > 3/2 and globally well-
posed in the same space if s > 2 (see [9, 35, 36, 37, 38]). Various types of weak
solutions were also known to exist. These results were obtained by studying a
corresponding regularized equation, by applying general abstract semigroup theory
and by other methods of nonlinear functional analysis [9, 21, 34, 35, 51, 53, 58|. As
remarked already by Saut and Temam [52], solving the initial-value problem (1.3)
cannot result in the solution being more regular in the H®-spaces than it is initially,
because the equation is time reversible. Thus, there is no smoothing associated with
solving the initial-value problem (1.3) of the sort that obtains when one solves the
linear heat equation or Burger’s equation, for example.
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There is, however, more subtle smoothing associated with the initial-value prob-
lem (1.3). One of the early expressions of this fact appears in the papers of Cohen
[16, 17] and, later, Sachs {50]. These works made use of the inverse-scattering rep-
resentation of solutions. The outcome is a set of results showing that decay of
initial data at +oo translates into a local smoothing of the solution beyond that
which it has initially. Starting late in the 1970’s, those smoothing properties were
investigated by techniques other than the inverse-scattering representation of solu-
tions. Kato [37, 38] and independently, Kruzhkov and Faminskii [45, 46] realized
among other things that solutions of (1.3) whose initial data lies in H*(R) not only
lie in C(0,T; H*(R)), but also in L2(0,T; Hi"*(R)). This property, now known as
Kato-smoothing, stimulated an extensive investigation of various smoothing prop-
erties of the KdV-equation and other dispersive wave equations (see, for example,
(13, 14, 19, 20, 30, 39, 40, 41, 42, 43, 44, 54, 59, 61] and the references therein). In
particular, various Strichartz-type L} — L% estimates were established for the linear
problem

(1'4) ' Nt + Naza = 0, ﬂ(w,o) . ¢(’L),

associated to (1.3) in the work of Kenig-Ponce-Vega [39]-[44] and Bourgain [13, 14].
Those linear estimates made it possible to apply the contraction-mapping principle
to establish directly the well-posedness of the pure initial-value problem (1.3) for
functions ¢ defined on R which either decay to zero at infinity or which are periodic.
Indeed, the problem (1.3) posed on the whole line R was shown to be well-posed in
the space H*(R) for s > 3 by Kenig, Ponce and Vega [41], and in larger spaces by
Bourgain {14] and Kenig, Ponce and Vega [43, 44], culminating in a well-posedness
result set in H*(R) for any s > —3. As for the initial-value problem (1.3) posed
on a periodic domain S, it was proved to be well-posed in H*(S) for s > 0 by
Bourgain {14] and for s > —1/2 by Kenig, Ponce and Vega [44]. (Henceforth, the
abbreviation “IVP” will stand for the often-used phrase “initial-value problem”
while the mnemonic “IBVP” stands for “initial-boundary-value problem”.)

Because of well-posedness, the IVP (1.3) defines a nonlinear map Ky from the
space H® to C([0,T]; H®) (H* stands for H*(R) or H*(S) depending on whether
(1.3) is considered on R or on S). This map was shown to be continuous from
H® to C([0,T]; H?) by Bona and Smith [9] and Kato [36], and Hélder continuous
with exponent 1/2 from the space H5+1/2 to the space L>(0,T; H®) by Saut and
Temam [52]. Much stronger regularity can be established by taking advantage of the
smoothing properties of the equation. Simply as a by-product of their contraction-
principle approach to the IVP (1.3), Kenig, Ponce and Vega [42] obtained that
the map Ky is Lipschitz continuous from the space H* to the space C([0,T]; H®).
Later, based on the previously mentioned works of Kenig, Ponce, Vega, and Bour-
gain, Zhang [64, 65, 66] proved that the map Ky is infinitely Fréchet differentiable
from the space H® to the space C([0,T]; H*) and that for § > 0 sufficiently small,
the formal Taylor series expansion

o0

(1.5) Ku(¢p+v) =)

n=0

) () [0
n!

converges in C([0,7; H*) uniformly for ||¢|ls < J, which is the same as saying
that the map Kp is analytic from the space H® to the space C([0,T]; H*). Here,

Kgl)((b) is the n-th derivative of Ky at ¢, an n-multilinear map from the n-fold
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product of H® with itself to C([0,T]; H®). Consequently, the solution of the IVP
(1.3) may be approximated arbitrarily well on a finite time interval by solving a
finite number of linear problems.

Our purpose in this paper is to bring the theory for the quarter-plane problem
(1.2) at least partly into line with the modern theory for the pure initial-value
problem (1.3) posed on R. The following results will be established in this paper.

The initial-boundary-value problem (1.2) is locally well-posed for initial data ¢ in

the space H*(R™) and boundary data h in the space H, (s+1)/3(R+) satisfying certain

loc
compatibility conditions (see Section 4 ) for s > 3/4, whereas global well-posedness

holds for ¢ € H*(RY), h € H*(RY) when 1 < s < 3 and for ¢ € H*(RT),
h € Hl(j:rl)/s(R“L) when s > 3. Furthermore, the corresponding solution map is
an analytic correspondence between the space of initial- and boundary-data and the
solution space.

The crux of the modern analysis of nonlinear, dispersive evolution equations is
the linear estimates to which reference was made above. For the IBVP (1.2) under
consideration here, the associated linear problem

N + N + Neze =0, forz, £ >0,

(1.6)

77(3370) = ¢($), TI(OJ) . h’(t)>
plays the same central role that the linearized IVP
(17) Tt + Nezz = 0> 77(37, O) o ¢("L‘)’

does in the study of (1.3). Since (1.6) is posed in a quarter plane, the Fourier
transform does not possess the same power it has when the problem is presented on
all of R2. As a potential global solution of (1.6) is defined on a half-line R* in each
of the two independent variables z and ¢, it is not unnatural to think of replacing
the use of the Fourier transform that comes to the fore in the analysis of (1.7) with
the Laplace transform. By taking the Laplace transform with respect to ¢ of both
sides of the equation in (1.6), the IBVP is converted to a one-parameter family of
third-order, boundary-value problems

)\’f](.’lﬁ, )‘) + ﬁw(m’ )‘) ua ﬁmzm(w’ )‘) . ¢($),
(1.8) X

ﬁ(o, )‘) . h()‘)’ 'ﬁ(+00, /\) =0, ﬁz(—f‘OO, )‘) =0,
where % = 7(z, \) denotes the Laplace transform of n = n(z,t) with respect to ¢
and )\ > 0 is the dual variable. The solution of (1.8) is given by

+oo .
Az = [ Glooi Nolao)dzo + & VRO
0
where G(z,xo; \) is the Green’s function associated with (1.8) in the special case
wherein h = 0 and r()) is the solution of
Adr4+r3=0
for which Re r()\) < 0. The solution 7 of (1.6) is then given formally by

1 Footiy +oo R
(1.9) nlz,t)= ———/ et ( G(zm, xo; \)p(zo)dxo + er()‘)mh()\)> dAr
0

27 —oodiy
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for z, t > 0, where v is a fixed, but arbitrary positive constant. At first sight, a
solution formula like this does not appear well suited to analysis by Fourier tech-
niques. However, by carefully choosing the contour over which the outer integral is
computed, we are able to rewrite the representation in (1.9) to obtain the following,
remarkable explicit formula. Define H = H(z,t) by

1 [ .8 . A
Hizt)= 5o [ enim [T o0 4(6)aean

2r )1 0

(

1 08 . it y/3E%—a SOR
by [ et [T ity g)aean
0

2/,
(1.10) <

RS PPV, v 7 S R

g ), e [ ety ey
0 0

]. o .3 . 3;;“—3-! i 9 = . 3 .

+5— [ e brimte = (32 ) / e "W (Y dedy,
\ Yi§ 1 0 '

In terms of H, the solution 7 of (1.6) is, for z, t > 0,

(1.11) n(z,t) = H(z,t) + H(zx, t).

A cursory examination of (1.10)-(1.11) reveals that there are two types of smooth-
ing properties associated with the linear problem (1.6); the smoothing effected upon
n with respect to its initial data ¢ and with regard to its boundary data h. As in
the work on the IVP (1.3), these aspects are the heart of the theory to be developed
here, It will be shown that for h = 0, the solution 7 of (1.6) satisfies the following
estimates: For ¢ € Ly(R1),

(1.12) sip [ 18an(@ O)2dt < Cllélzacae,

0<z<+00o JU

(1'13) sup ”"7(1;) ')”Ht1/3(R+) < C”¢“L2(R+)’

0<z<oo

for ¢ € H'/?(RT),

+00 1/4
(114) </ sSUp lazn(:c,t)|4dt> < C||¢||H1/2(R+)
0 0<z<oa
whereas, for s > 3 and ¢ € H§(R™"),
+o0 1/2
(1.15) " (e OPde) < O+ Dlllnncaey
0 O<t<T

On the other hand, if ¢ = 0 and h € H'/3(R*), the solution 7 of (1.6) will be
shown to satisfy the following inequalities:

(1.16) sup [|n(,, )llL2qm+y < Cllkll gr/3¢+ys
0<t<oo

+oo
(117) ([ s (e 0Pz ) < Cllllomqay
0

0<t<oo
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Foo 1/2
(1.18) sop ([ leun@Pde) < Clbinica
0<z <0 0
(119) 05;1500 Hn(wa ')“Ht1/3(R+) < Cl|h“H1/3(R+),

and if h € HY/?(RY), then

. 1/4
(1.20) </ sup |8zn(:c,t)|dt> < C|hll grre(ry-
0 0<z <00

The estimates (1.12) and (1.18) are sharp versions of the local smoothing effect
of Kato-type. The estimates (1.14) and (1.20) reveal global smoothing effects of
Strichartz-type for the linear problem (1.6). The estimates (1.15) and (1.17) are
half-line versions of Corollary 2.9 in [41]. The estimates (1.13) and (1.19) comprise
sharp trace results.

Armed with these linear estimates, we are able to obtain local well-posedness
results for the IBVP (1.2) via the contraction-mapping principle. In our initial
foray, we approached the linear estimates directly by way of the representation
(1.10)-(1.11). One of the referees remarked that the estimates pertaining to the
solution 1 of (1.6) with k = 0 can be reduced to the problem where ¢ =0 together
with the known results for the initial-value problem

Ug + Ug + Uggz = 0, u(:z:,O) = ¢*(l‘),

for z € R, t > 0, where ¢*(z) is a suitable extension of the initial data ¢ defined on
the half-line R* to the entire real axis. Indeed, by letting v(z,t) = u(z,t) —n(z,t),
one obtains a function defined on R x R¥ satisfying the linear KdV equation and
with v(0,t) = u(0,t) and v(z,0) = 0. In our development, we have taken advantage
of this suggestion, thereby saving quite a few pages of detailed inequalities. On the
other hand, we have kept the derivation of the exact solution (1.10)-(1.11) despite
the fact that we need only a portion of this formula. Exact formulas are often useful
when more detailed aspects of solutions are examined.

Global well-posedness follows from the local theory as soon as corresponding
global a priori estimates are established. In contrast to the pure initial-value prob-
lem (1.3), where the needed global estimates are provided with little effort by the
infinitely many conservation laws possessed by the IVP for the KdV equation,
more protracted analysis is demanded in establishing global a priori estimates for
the IBVP (1.2) because these conservation laws no longer hold.

In [10], using energy estimates, Bona and Winther showed that for any solution
of (1.6) that is appropriately smooth up to the boundary, the following bounds
hold:

sup ||7(, )| (r+y < ar(lldllar @+ + l1Rllz20,1))
0<t<T

and
sup |InC, )|l me(rty < as(8llms(a+) + |hllarsemomn),
0<t<T
fors =3kor3k+1,k=1,2, --- . The functions «; : Rt — RT are continuous

and nondecreasing. It is worth pointing out that in the above estimates, more
regularity of h is required than that needed for the local well-posedness results
indicated above and proved in Theorem 4.9. Moreover, missing from these results
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are direct bounds in H?(R*), H*(R), -+, as well as in H*(R*+) for non-integer
s. An appraisal of the proof in Section 3 of [10] of these inequalities holds out little
hope that such bounds will be forthcoming via direct energy estimates. Compared
with the relative ease with which one obtains « priori estimates for the pure initial-
value problem, the IBVP (1.2) is more difficult because of the non-homogeneous
boundary conditions and, at a more delicate level, the loss of regularity experienced
when one takes the trace of a solution at z = 0.

In this paper we will provide the following global a priori estimates for the IBVP
(1.2): For any T > 0,

5p s Dl < s (Il grey + Wbl 2gge )

for 1 <s<3and

52 e, Ollmsrey < s (Ilaragrey + Il yoga o )
for s > 3. The various smoothing properties of (1.5) described earlier will play a
central role in establishing these estimates. Another key tool is nonlinear interpo-
lation theory as expounded in Tartar [57], and Bona and Scott 8].

Special arguments are also needed in discussing analyticity of the solution map
K associated to the IBVP (1.2) from the space H*(R™) x H*/3(0,T) to the space
C([0,T]; H*(R*)). Because of the compatibility conditions that the initial data &
and the boundary data h have to satisfy, the domain of the solution map Ky is
a linear subspace of H*(R*) x H*/3(0,T) only if s < 7/2. Thus the Taylor series
expansion does not hold in the form depicted in (1.5) when s > 7/2 and more subtle
considerations are needed. In fact, it turns out to be convenient to generalize the
setting to systems of m equations that include the IBVP (1.2) as a special case. In
this setting, an appropriate analyticity theory is formulated and proved, and the
result then interpreted in the KdV setting to achieve an analyticity result for all
s> 3/4.

Finally, we point out that a linear problem related to (1.6), has been studied by
Fokas and Pelloni [24], namely

Gt + Qzzz =0, wZO,t>0,
(1.21)
q(2,0) = q1(z), q(0,t) = qa(t).

They obtained the explicit solution

+oo o) -
(1.22) gq(z,t) = - / e“““‘““st/ eikyql(y)dydk—k/ etk (kY dk,
0

271- —o0 Ll

where the contour L, consists of the directed rays arg(k) = 3w and arg(k) = 5m,
s
vik) = 3k2/ €% 2 g5 (8)ds — wei (wk) — w?§i(w?k), for k€ Ly,
0
with w = e~27%/3 and

Gu(k) = /0 ” evg (y)dy.
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Of course, the term g, is missed from the equation in (1.21). To account for this,
Fokas and Pelloni also considered the linear problem

qt+qza:z:07 xZCt,t>0,
(1.23) 9(z,0) = qi(z), 220,

qlct,t) = q2(t), ¢t 2>0.

Under the Galilean transformation # = £ + c7, t = 7 mentioned in [24], (1.23) is
equivalent to

qt_CQI+QEmm=Oy z2>0,t>0,
(1.24) q(z,0) = g1(z), z >,

q(0,t) = qa(t), t>0.
The explicit solution

(1.25) q(m7t) = i/ e—zkz—ik3t/ ezkyql (y)dydk +/ e—zkm—zk"’ty(k)dk,
0 L

27 J_ oo

for the linear problem (1.23) is presented in [24], where the contour L is the lower
branch of hyperbola 3k% — k? + ¢ = 0, k = kg + ik, in the complex k-plane and
v(k) is defined by v(k) = G(k) + C(k) with
G(k) = (3k* + c)/ (K +ek)s g (5)ds
0
and

32 + 2¢ + 3kk 0
k) = —— —i(k+k)y
Clk) (3k2 + 2¢)(3k* +4) Jo

q1(y)dy

3k2 4 2c+ 3k(k +Kk) [
(3k2 + 20)(3k% + 4) J,

Notice that one cannot take ¢ = —1 in the latter formula, and hence this analysis
does not provide a solution of the standard linear wave maker problem (1.6) as
formulated above.

The plan of the present paper is as follows. Section 2 is devoted to the derivation
of formal solution formulas for linear problems that lead to the results in (1.10)-
(1.11). This is somewhat tedious, but crucial in Section 3 to obtaining the linear
estimates just described. Armed with these linear estimates, local well-posedness
results are set down for auxiliary data in H*(R') x H, l(jjl)/ % provided only that
s > %. At this stage of the development in Section 4, an interesting issue arises
for larger values of s, which was already apparent in the work of Bona, Luo and
Winther [6, 10, 11]. If s is large enough, one needs more than the most obvious
compatibility condition ¢(0) = h(0) to infer existence of appropriately smooth
solutions. Section 5 uses the local well-posedness theory, some a priori estimates,
and nonlinear interpolation to attack global well-posedness in case s > 1. The
last major section provides a theory pertaining to the analyticity of the solution
mapping.

—iky

a1 (y)dy.
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2. SOLUTION FORMULAS FOR LINEAR PROBLEMS

In this section, explicit representation formulas are derived for solutions of initial-
boundary-value problems for the linear KdV equation.
Consideration is first directed to the homogeneous linear problem

Ut + Uy + Ugzy =0, forx, t>0,
(2.1)
u(z,0) = ¢(z), u(0,t) = 0.

By semigroup theory, its solution may be obtained in the form

u(t) = We(t)¢,

where the spatial variable is suppressed and W,(t) is the Cy-semigroup in the space
L?(R™) generated by the operator

Af = __f/// o f/
with the domain
D(A) = {f € H*(R")| f(0) = 0}.

By d’Alembert’s formula, one may use the semigroup W,(t) to formally write the
solution of the inhomogeneous linear problem

Up + Uy + Ugze = f, forz, t >0,
(2.2)
u(z,0) =0, 1(0,t) =0,

in the form
t
(2.3) u(t) = /0 W.(t —7)f(-,7)dr.

The following proposition provides an explicit formula for W,(¢)¢.

Proposition 2.1. For any ¢ € L?2(R"), define

U (0600 = 5 [ " gt /0 " ene-9(6)dédp,

2m

Uf_ (£)b(z) = _% /loo ewst_ime_<?!}'!71./.;?7'3_—:1>m /Oo e—iu£¢(§)d£du

0
and
2

Uf (00@) = 5 [ * guteene,( ): /0 e () dedp

0
Then it follows that

We(t)d(@) = Y (U () + UF 16(a))

Proof. Using the Laplace transform as described earlier, there obtains the formula

ring
u(z,t) = 5 / RO A)p(c)dA,

T =100
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where r > 0 is a given constant and R(A, A) is the resolvent operator of A. If the
function v is defined by v = R(}, A)¢, then v is a solution of

Mv(z) + ' (z) + v () = ¢(x), 0 <z < 4o0,
(2.4)
v(0) =0, v(z),v'(z) —0as z — +oo.

In consequence, the function v has the representation

v(z) = R(A, A)p(z) = /000 G(z, s, M) ¢(s)ds,
where G = G(z, s, \) is the associated Green’s function for (2.4). If we let vy, 72, ¥3
be the three roots of the characteristic equation
(2.5) Ay++93=0, forReX>0,
ordered so that
Rey; <0, Reys >0, Revy3 >0,
then G is given explicitly by

1
G(z,82) = m {(73 — yy)eMETVEE 4 (g — yg)eMETES
+Y (2, 8)(v2 — y3)em =)

+ (1= Y(2,9)) (1= 1)) + (3 = m)em=) |,

where

A = —7)n —73)(r2 = 78)
and
1 if0<s<z,
Y(.'II, S) o=
0 otherwise.
Combining these formulas gives the representation
1 re e oo
(2.6) Wat)$(z) = —— / oM / Gz, s, \)(s)dsd),
278 Jr oo 0
valid for any fixed r > 0. Note that, for fixed values of z and s, G(z, s, \) is analytic
in the right-half plane Re A > 0 and continuous for Re A > 0 except at
2i
A=ve=+——.
But, as A — v, a little analysis shows that
G(z,8,\) ~ O (|)\ - Vi|_1/2> ,

uniformly for z, s > 0. As this singularity is integrable, we may let r — 0 in (2.6),
thereby obtaining

1

Ed 100 A o0
= _iwe /0 G(z, s, \)¢(s)dsd

We(t)¢(z)

I+ 11,



438 JERRY L. BONA, 8. M: SUN, AND BING-YU ZHANG

with
1 Lo pioo o o]
I=—
ot /. e /0 G(x,s,)\)qﬁ(s)dsd)\
and
1 0 S co
II=— € .
omi ) e /0 G(z, s, \)h(s)dsd\
Introduce the notation

A((L‘, /\) = Al(m, )\) + Az(:l‘f, )\),

B(z,\) = /O (2 — 12)en =0 (€ )de

and
O(SC, )\) = Cl(m’ A) + CZV(x) )‘)7
with
@) = [ —mem e
Ax(z, ) = /0 (1 — )€~ B(E) e,
Ci(z,\) = /w(’h ~ 73)e (== g(¢)dg
and ' ‘

oo

Ca(z,\) = / (12 — 12)e™E=8 (&) dE.

T
Then the quantities I and I may be written in the form

0ot At )
I= % A0 [A(z, A) + B(z, ) + C(z, N)]dA

and
1. [0 eM

T 270 J_ooi AN

Consider first the integral I. It is convenient to make the change of variables

I

[A(2,) + B(z,)) + Clz, \)] d.

A =iu® —ip, with 1< p < +o0,

in the equation
P+y+Ar=0.

In termhs of p, the three solutions of the characteristic equation (2.5) are

n —.\/3“2 —4—ip V3R —4—ipu + .
" S T Ew ! ’Yz="——§—, Y3 =i
Notice that

(1) = ~i and - (1) =0.
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In terms of the variable p, the integral I may be rewritten as
oL [
2mi Jy At (p)
where At(u), At (z, 1), B¥(z, ) and C*(z, ) are obtained from A(z, ), A(z, A),
B(z,\) and C(z, \), respectively, by replacing A with ipd — i and v1, 2 and 3
by ~i,v; and 7, respectively.
Similarly, in the analysis of the integral I1, make the change of variables

i(3u® — 1) (A*(z, ) + BY (z, 1) + C* (2, 1)) du,

A =ipd —iu = —ipd +ip, where p>1,
in the equation
fy3 +v+A=0.

The three roots of this characteristic equation are given by

=), wmw =y, v =),

in this case. Thus, it transpires that

1 1 e—i.;;.:’t.+-m! ) 2 _ _ _
e %/m Ay ) (A @+ B @+ C (@, 1)) du,

where

A_(:u') . A+(/‘)a A_(m’.u') = A+(£E,[J,),

B~ (zx,p) = Bt(z,p), C™ (z,u)=Ct(z,u).
It is now proposed that

— oo ipt—ipt
Uy ()p(x) = 2% /1 %_:Z%i(w — 1)BT (z, p)dp
1 1 —ipPt+iut
(2.7) t o5 [roo _A_—(T)i'(l — 3p?)C5 (=, p)dps,
from which it transpires that
1 1 e—-:',;"[+im,
03000 = 57 [ T~ 3B e

1 0o e'ip.at—ipt

(2.8) + i(3u — 1)CS (z, p)du.

2mi 1 At(p)
To see the validity of (2.7), let

T ={2: 2=13 (1), 1< p < oo}
and

Iy ={z: z=9; (), 1< p<+oo}.

Both I'] and I‘;“ are oriented curves in the complex z-plane starting at the same
point z = 4. Let Q7 denote the region enclosed by I'; and I‘; that includes a
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neighborhood of the imaginary axis from i to ico with negative real part. By a
simple change of variables,

1 oo :,uf it 1

i), AT i(30% — 1) B (w, p)dp = Dot F+F (2,t,2)dz
with
Ff(z,t,2) = e" @+ B (5 2)(=322 — 1) /A (2),
where
B(z,2) = / (3% () - 32 () €4 @O s(¢) e,
At(z) = (7 (2) - 45 (2)) (3T (2) — 533 (2)) (35 (2) — 77 (=)
and

\/—d"é 4—;; _ V-382—4d-z _
¥ (2) = ()= —F—= A ==z

The function Fit (z, ¢, 2) is analytlc in the region €2y and is continuous on the closure
of Q. In addition, Fi(z,t,2) tends to zero as z — oo in i, uniformly in z and
t. Hence, we are allowed to change the contour on the basis of Cauchy’s Theorem
and thereby determine that

i . 1 .
I E Fy (w,t,z)dz = o Jo Fi(z,t,2)dz.

But, on [T, we see that
2+ z= (1 (W) + 7 () = ip® — i,
(32 + 1)dz = d(23 + 2) = i(3u® — 1)dy,
W (@) =75 (1), % (2) =9 (), 7 (2) =77 (),
(v () =72 (W) (v (W) = 7 () (v () — 9 ()

>

+

&
Il

= (1-3u%)/3u2 -4,
and

BHe,0) = [ V- e e Og(e)de
0
In consequence, it follows that
1 .
Rt — = / et / O (&) dedy,

2mi Jp
A direct computation reveals that

1 [l eminlttint o
o Lm _‘W’(l —3u°)Cy (z, p)dp

1 [ _ s, e
=gn | e [ eyt
27 i p ,

whence (2.7) holds.
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Next, it is established that
1 0o e’iy,at—ip,t

==  i3ud — +
el i(3p° — 1)1 (2, p)dp

1 1 —ipSttiut
N / (1 - 3u)CT (z, w)du = O.

% +o00 A~ (:u')
To prove this formula, let A = —u® — u in the equation
Y +y+A=0,

where g > 0. Write the three solutions of the characteristic equation as

. — e+ i/ 4+ 3p2 N —p—inSd + 3P N
rw) =+ RAME ! R ME

We have that v} (0) =i = v (1). Let
IT={z=7(w: 0<pu<+oo}
and let % be the open region enclosed by I'; and I'Y. We may write
1 o0 e’iuat—ip,t 1
— [ ———i(3u® - 1)Cf dp=-— [ Fj(z,t2)d
27 L A+(#) ’L( H ) 1 (‘THU') H o 1"; 2 (:E, ,Z) 2

with
3 == 32.'2 1 °© - . P -
Fif (z,t,2) = e (% +z)t(ﬁT:—))/m (7 (2) — 7;’(2))@;(’)(“” O p(&)de.

Since Fyf (z,t,z) is analytic in Q% and is continuous on 2] and tends to zero as
z — oo in 7, we can change the contour of integration and conclude

1

1
o s Fif (z,t,2)dz = Fif(z,t,2)dz.

= 5t )
On I'f, for 0 < p < 400,
Brz=pd+p, (3224 1)dz = (3u® + 1)dy,
i (2) = v (w), 7 (2) = n (W), 75 (2) = 71 (1),
AT(2) = (W) =) w) =7 W) (k) = v ()

(1 + 3u2)\/3u2 + 4,

and
M (2) = 7 (2) = —iv/3p? + 4.
Consequently,

1
2me Jry

+oo 0o
Fftade = [ et [T o046 dean
2t Jo .
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In addition,

1 —in it 2) O gipdt—ipt (32 ) N
(1 =3O (zpw)dp = — | ——i(3u2 — 1)Cf (z, p)d
/foo A_(.{L) ( 1 ( u’) /J’ ) A+(,u') 2 1 ( ,U/) 124

+oo [o<]
= _/ e—(#3+u)t/ e"(m_g)gb(f)d{du.
0 T

The proposition in view is thus established.
Similarly, by appropriate changes of the contour of integration, it is inferred that

1 co Uf.p“!—-i_ut ) 9 n =
2—m/1 ml@ﬂ - DA (z, p)dp = Uy (t)é(z)
and
1 1 ﬁ—ip‘r'a‘.—f—r'.f_u ’ . N
57 | a0~ AT (e ) = U (0)6(a).
Finally, a direct computation shows that
1 [os] (_!:Iiﬂ.:lf. it

i ), Wi(&ﬁ — 1)A7 (2, w)du = U (t)¢(2)

and
1 1 =i tipt ‘ - B
ami . gt - 344z (e = U ()9(2)
The proof is complete. O

Next, consideration is given to the non-homogeneous boundary-value problem

I Ug + Ug + Ugge =0, forz, t >0,

(2.9

| u(z,0)=0, w(0,£) = h(t).
Proposition 2.2. The solution of (2.9) may be written as
(2.10) u(@,t) = [Wp(t)h] (z) = [Us(t)h] (z) + [Us(t)R] (z)

where, for x,t >0,

o0 VEmE z o) .
U(0)h] () = o / gutee () ) / e~ W= () dedy

Proof. Let 4 and h denote the Laplace transform of u and h with respect to {,
respectively. By applying the Laplace transform to both sides of the equation in
(2.9), one obtains

Xi(z, \) + g (2, \) + Tazs(z,X) = 0, @(0,A) = h(X).

As both @(z, \) and @,(z, \) tend to zero as  — oo, it is concluded that for any A
with Re A > 0,

a(x, \) = h(A)err =
where 71()) is the unique solution of

A+ri4+r=0



THE KDV EQUATION IN A QUARTER PLANE 443

satisfying Rer;(A) < 0. Thus, for any fixed v > 0, one has the representation
1 ety
u(z,t) = — / eMh(N)er M2,

270 J ooy

Arguing as in Proposition 2.1 and using the fact that the right-hand side of this
relation is continuous in v up to v = 0, there obtains

2mi T

1 00 _ 1 0 ~
u(x,t) = _/ e"th(k)e”(’\)”d)\jt 2__/ eAth()\)erl(/\)a:d)\.
0

—i00
On the positive imaginary axis, take A in the form A = iu3 — iy for a unique p with
1 < u < +o00. In terms of u, the quantity r1(A) has the value

uE — A i
() = = 31 > +:;r’

as before. By direct computation, it follows that for x, ¢ > 0,
1 100 LT
= 3 ri(MNz gy — ]
omi |, e*h(MNe d) = [Up(t)h] (z)
Similar reasoning shows that
1 0 - e ———
— MR\ e N2dN = [U, (1) h] (),

2mi J —ino

thus completing the proof. O
Finally, attention is turned to the inhomogeneous initial-boundary-value problem

Up + Ug + Upge = f, forz, t >0,
(2.11)

w(e,0) = d(z), 60,1 = h(t),
where ¢ and h are assumed to satisfy the compatibility condition h(0) = ¢(0). Let
u(z,t) = z(x,t) + e *7th(0). It is easy to see that if u solves (2.11), then z(z,t)
solves

2t + 2z + Zoaz = f + 2¢7°7H(0), for z,t >0,

z(z,0) = ¢(z) — e7"¢(0), 2(0,t) = h(t) — e7*h(0).
Decompose z in the form z = w + v + y with
Wi + Wy + Waze = f + 2777 R(0), for z,t >0,

w(z,0) =0, w(0,t) =0,
Uy + Vg + Vgge =0, foraz, t>0,

v(z,0) = ¢(x) — e *P(0), v(0,t) =0,
and
Yt + Yz + Yzzz = 0, for z,t > 0,

y(z,0) =0, y(0,t) = h(t) — e *h(0).

The following representation for the solution of (2.11) emerges from this decompo-
sition together with the results of Lemmas 2.1 and 2.2 and Duhamel’s principle.
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Proposition 2.3. The solution u(z,t) of (2.11) is
u(z,t) = W.(t) (gb(m) — e_qu(O)) +/0 We(t—1) (f(:L', T)+ 2e‘“°_Th(0)) dr
(2.12) + [Ws(t) (R(t) — e7*h(0))] (2) + e~ th(0).

3. LINEAR ESTIMATES

In this section, estimates for the semigroups W,(t) and W;(t) are obtained.
These estimates, analogous to those obtained by Kenig et al. [41, 42] for the linear
KdV equation posed on the whole line R, reveal various smoothing properties of
the semigroups W.(t) and W4(t) and will play an important role in establishing
well-posedness results for the nonlinear problem in Sections 4 and 5.

We start by laying out notation for the fractional-order Sobolev classes defined
on R*. For s > 0, write s = m+6 where 0 <8 < 1 and m is a non-negative integer.
Thus m = [s], the greatest integer in 5. For f € C*°(R*T) N H™(R'), define a new
function J2f by

J”f‘(r-.l-;..) (._.“)| ifO — 0,

L) =3 12
( / 7@ ) (g 4 ) — f(m)(x)|2d7'> ,  if>0,
J)

for any 2 € R*. Because f(™ is smooth and an L2(R™)-function and 6 < 1, JS f(z)
is finite for all z. The quantity

(3.1) 1£ Wz rey = 1 WZ2 ey + 12 F 122 R
defines a norm on C*°(R*)NH™(R™') and the completion of this space in the norm
(3.1) is denoted by H*(R"). The space H§(R™') is the completion of C$°(R*) in

the norm defined in (3.1). Clearly H§(R™) is a closed linear subspace of H*(R)
and

Hy(RT) = H*(RY)

if 0 <5 <1/2. A good reference for this material is Lions and Magenes [47)].

Next we present two technical lemmas that will find frequent use in this section.
They play the same role in dealing with the half-line problem as does Plancherel’s
Theorem for the KdV equation posed on the entire real line.

Lemma 3.1. For any f € L?(a, +o0), let Kf be the function defined by

+oo
Kf(z)= / e £ (u)dp,

where a € R and y(u) is a continuous complez-valued function defined on (a, o)
satisfying the following three conditions:

(i) Rey(p) <0, for p> a;
(ii) there exist § > 0 and b > 0 such that

[Rey(1)] -

b
e<p<at+s H— 0O
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(iii) there exists a complez number o + i with o < 0 such that

lim M =« + 0.
p—stoo

Then there exists a constant C such that for all f € L?*{a, 00),
IE fllz2r+y < CllfllL2(as00)-

Proof. By a translation of the coordinate system, we may assume a = 0. In this
frame of reference, our assumptions imply that there is a positive constant d such
that

(3.2) —Re (v(r)) > dr
for all » > 0. Next, observe that

+oo 400 +oo
/ {/ eRe(v(s)w)|f(s)|ds/ eRe(”’(t)w)lf(t)ldt} dz
0 0 0

400 ptoo  ptoo

/ / / RO+ vM)=| £(5)|| £ (1) |da ds dt
0 0 0

_ [T 1)) ds

= /0 /0 Re(v(s) + @] *

f" - | f(s)|ds
o [Re(v(s) +~(@))]

by the Cauchy-Schwarz inequality. Changing variables and using the integral ver-

sion of Minkowski’s inequality yields
/+°° |£(s)|ds /+°° |f (ut)t|dps
0 o [Re(y(ut) +~()|

[Re (y(s) +(2)) |

IA

1K fl1 22 (Rt

I Flz2(r+),
Li(R*)

Laah)

LE(RT)
+oo
< / - } .f(;_f—ﬁ)f- dy
0 Re (y(put) + (1)) L2(R+)
e il
<c / S S
o vEL+p) 1 fll2r+)
< Cllfllz2(r+)
since
I ()2 ey = 17 2\ fllz2cr)
and, because of (3.2),
t = 1
[Re (y(ut) + (@) ~ dlp+1)
for any t € (0, +00). The proof is complete. O

Lemma 3.2. Let a > 0 be given. For any f € L%*(0,a), let Gf be the function
defined by

Gi(a) = [ €40 f(u)a
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where E(p) is a continuous real-valued function defined on the interval [0, a] which
is C on the open interval (0,a) and satisfies the two conditions:

(i) €'(u) # 0 for any p € (0,a) and
(ii) there ts a constant Cy such that m <Ch forO<p<a.

Then there exists a constant C such that for all f € L*(0,a),
IG Nl L2(r+y < CllfNIz2 0,0

Proof. Let w = &(i). Then p = £~ }(w) and dw = &'(u)dp since £(u) is invertible.
In terms of the variable w,

£(a) 1
= e f(£Hw)) s dw.

It follows from Plancherel’s Theorem that

G2 e s 6(a)f(ﬁ—l(w))z<—l"—>2d“’
L (RE®) 27 Je(o) g(e1(w))

- 27r/ e Ié' e
2 [ 1o

The proof is complete. O

IN

The next step is to obtain estimates for the operators W;(t) and UZ(t) defined
in Proposition 2.2. The first one is a standard energy inequality.

Lemma 3.3. Given s > 0, there exists a constant C' = C, such that
up [Wo(®)h) (Vs qrry < CllA o

LU

()

for allh € H (R+)

Proof. It suffices to establish the estimate for Uy(t) and to consider only the cases
where s = n is an integer. The analogous result for non-integer values of s may be
obtained by standard interpolation theory First, notice that

DI @) = 5 [ 0PI (Et -1

v / e_(“s'“)gih(g)dCd,u
0

= ILi(z,t) + [Ix(z,t)

with
+o0 o]
(3.3) Ihi(z,t)= 21 / ei(#s—u)tew(u)mwn(“)(guz - 1)/ 6_(”3_“)Cih(§)dCdp
T J2/v3 0
and
(3.4)

2/V3 . o0 s ]
I(x,t) = %/ ez(u3—#)t6w(u)an(u)(3u2 _ 1)/ e~ —#)Czh(odé-du,
1 0
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where w(p) = —w Because of the obvious inequality

N
(35) Ih(z,8) < C /2/ ) e~ L (32 — 1)

/ e‘“””“h(odc} dp,
0

it follows by Lemma 3.1 that
oo e,
2/f

/oo e_(“a_“)cih(()dC‘ du
0

sup 173,82 a) < o| S(1 4 p)?n

X

LZ(R*)

- B 1/2
/ e—(ﬂ“—u)cih(g) du)
0

oo 2 1/2
| emming dn)
0
< Cllhll zentnrsaty-

As for II;(z,t), note that w(u)/i is real when 1 < u < 2/4/3. Applying Lemma 3.2
directly to IIy(z,t) yields that
NV
du)

=¢ (/w(l + )t
1

0

2/V3
sup |115(, )2 () < C / (1+ pyten
t>0 1

<C, ( /0°° /O“e—wh(o zdn)m

< Cullhllz2(a+)-
sup 100 (g vy < Crllhll  ngr

/ Tt
0

Consequently

()
The proof is complete. O

The following inequality comprises a sharp version of the Kato smoothing prop-
erty (see Kato (37, 38}, Kruzhkov and Faminskii [45, 46]) for the semigroup W(t).

Lemma 3.4. For any s > 0, there exists a constant C = C; such that
00 1/2
s+1 2
s ([T @ R @) ) <Ol g,
for all h € H0 (R*)

Proof. We prove the estimate for 0 < s < 1. The proof for other values of s is
similar. Consider first Uy(t)h. Let n = p® — p for 4 > 1 and, for n > 0, let u = 6(n)
be the unique real solution of

n=p’ - p.
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Note that
1 e , . . A
D: o)kl (@) = 5 | w(p)e™ e (= (342 — 1) /0 e~ W =M R () dedp
= o [ wlememecde [ et gydean,
2'IT 0 0

Using the Plancherel Theorem with respect to ¢ in the above representation of
D, (Uy(t)h), one sees that

/Ooo |D; [Us(£)h) ()| dt < 0/000(1 + )23

for any ¢ € RT. Thus the lemma holds for s = 0. For 0 < s < 1, since
o0

Js/ w(ﬂ)eip3t—iutew(u)z(3u2 —1)
1

2

. 2
| emeneas

0

|12 [Us(6)R] ()| =

2
X/O e_i(“a_“)gh(g)dfdu

1 oo o0 3 .
/ w(p)e t—ipt jw(u)z (ew(M)T _ 1)
1

— T—(2s+1)

2w 0

2

><(3,u2—1)/ e_i(“s_“)'zh(ﬁ)dé“dp, dr
0

= L « 7_—(25+1)

27T0

/ " o(6())eite s <ew(6(n))7' _ 1)

1

the Plancherel Theorem may be used as before to adduce

/ | T2+ [Uy(1)R) ()| dt

) 2
<c / ~(2e+1) / jescecmr ’ " e En(e)dg| dndr
0o poo 9 o) i 2
< C’/ / T—(2s+1) ‘e‘“(‘s("))T - 1( dr |w(é ))/ e~ h(¢)
o Jo 0
o0 5 oo oo ) 2
<c [Tyt ey —1fay [T luEmper| [T et an
0 0 0
o0 o ] 2
<o / (1 47)2Ce+D/3 / e Eh(&)dE| dn < Cllhllgasnss(rsy.
0 0
It is thus proved that the lemma is true for 0 < s < 1. O

Solutions of the linear KAV equation

Ug + Ug + Ugze = 0,
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have the formal property that temporal derivatives are balanced by three times as
many spatial derivatives, viz.,

D; ~ D¥
for s > 0. The following lemma gives precision to this observation.

Lemma 3.5. For any s > 0, there exists a constant C = C; such that

k
; Y < a1
(3.6) 5P || DS W (-)h] (w)HHt—{:;f—(RJr) < OllAll o2 gy,

fork=0,1,---,[s] and all h € Hy¥ (R*).

Proof. Tt suffices to show that (3.6) holds for [Uy(t)h] (x). A change of variables as
in Lemma 3.4 gives
1 (e 9]

o ). ei(us—u)twk(u)ew(u)w(glﬂ ~1)

D; [Us(t)h] (2)

X / e~ —mE R (£) dedy
0

1

— o [ emukemnetne [ emntnyagan,
T Jo 0

where §(n) is specified in the last proof. It follows from arguments, by now familiar,
that for any =z > 0,

2

|DE OB @ =452
0 _ 0o ) 2
<0 [T+ @) || e enee| an
0 0
o] oo 2
Bleph —ing _
<o [Tarn | [ e he] an= il e g,

Here we note that we can take t-derivatives of Uy(t)h of any fractional order directly
using Fourier transforms and cutoff functions. The proof is completed. O

Lemma 3.6. For any non-negative integer n, there exists a constant C,, such that

0 1/2
([ swipziwiom @) < Cullblncssces
0 >0
for all h € H{/3(RT).
Proof. The proof is given in detail for Uy(¢)h. As in the proof of Lemma 3.3,

DI [Up($)R] (z) = I (2, 8) + IIa(z, t)
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where ITy(z,t) and II(z,t) are defined in (3.3) and (3.4), respectively. By the
inequality (3.5), it follows from Lemma 3.1 that

[*S) 1/2
(/ sup ]IIl(x,t)|2d:c>
0 >0

oo %) s . 12 1/2
50< /0 ()™ (3 — 1) /0 Erd: ‘“)C’h(C)dC‘ du)

5 1/2
dn)

As for ITy(z,t), recall w(p) is purely imaginary for 1 < u < 2/+/3. If we make the
change of variables from yu to y, where

(3.7) y=wip)fi = LT VI3

/ " e () de

0

<cC ( / (14 o
0

= C[[hllgn+v/3(r+)-

2 b
in the representation of I15(z,t), there appears the formula
1 (VB g
Ihz,t) = — intttntgen (g2 1) [ e (g dedy
2r J/; 40
1 UV o
=" = et t—zytezyx (3y2 ll 1) / 6_m(y)5h(§)d£dy
21 J 4 0
1 /-+oo _ivlt—iut _duz o/ N 3.
- = €7 H\y)uy

21 J_ o

where 1 = n(y) is the unique real solution of the equation (3.7) in the range
[1,2/+/3], g is the inverse Fourier transform of the function

32 -1 ——
dW) = X W= | )

and  is the characteristic function of the interval (—1, —1/+/3). Applying Corollary
2.9 of [41] yields that, for a given s > 3/4, there exists a constant C = C, such that

o) 1/2
(/ Sup|II2(m,t)|2dm> < Cllgllze (-

0 >0
Since

+oo
loW2re gy = / (1+92)°

—00

2
dy

@)™ (32 — 1) / W =R (£)de

2
dy

i
/ \/5(1 + y2)sy2n(3y2 _ 1)2
—-1 :

/oo W’ —y)ﬁih(g)dg

0

AN

Crllhllz2(r+ys
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one obtains
oo 1/2
</ sup [IIz(m,t)|2da:) < CullhllL2(rty-
0 t>0
The estimate for Uy (¢)h is thus established. The proof is complete. O
Next is presented a half-line version of Theorem 2.4 in [41] which reveals a global

smoothing effect of Strichartz type for the semigroup W (¢). We first consider the
operator U(t) defined by

1 [t . Sy
Ultyb@) = 5 [ en'eimiese [ ety e)agan
1 —00
for any v € L?(R).
Lemma 3.7. For any (6,5) € [0,1]x[0,1/2] and any T > 0, there exists a constant
Cr such that
1/q

i
(3.8) (/ ||D"ﬁ/2u<t>¢||1p(m)dt> < Crll¢llzaca

for any v € L*(R) where

@9) = (50 —
PP =\b+1)1-06)"
Here, by definition, for r > 0,

DUE(e) = 5 [ wenttietir [ sy eragdy.
1 —00
Proof. Rewrite U(t)y as UT () + U (t)y with

+o0 o]
U Oia) = 5o [ e [T ety dea

and

400 0
U W) = 5 [ etteiin [ emity(eyagan

The estimate (3.8) for U*(t)y is established in detail. The proof for U~ ()1 is
similar. Write U™ (¢)y(z) as

UT (t)9(z) = U ()9 (@) + Uz ()9 () + Us ()9 ()

with
1 v o, =
Us(t)9(a) = 5 / g imintgu(n)z / e~ eap(¢)dedp,
1 0
1 : ipdt—ipt w(u)z oo—ig
Ua(tyila) = 5 [ emtemimieste [T oty (e)agay
2/V3 . 0
and

+co o]
o(typ(e) = 5 [ emtimimentoe [ einty(eydgay

0
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To prove estimate (3.8) it suffices to show that

1/q
(3.9) ( [ IDP72U; ()9 L dt) < Crll9)| 2 (at)

for j =1,2,3.
For U, (t), the argument appearing in the proof of Lemma 3.6 shows this quan-
tity can be written in the form . , ‘ ,

2/v3 oo
hpa) = o [ entemes [T ety
, : ~Jo
ALE -1 [
_ L iyBt—iyt iyz Y : —in(y)¢ du.
i [ e L | e eueraay
oo
_ % eiyat—iyteiymg(y)dy

where g is the inverse Fourier transform of the function

o) = )it [ e tuegas

and x is the characteristic function of the interval (-1, —1 /V/3). Applying Theorem
2.4 of [41] yields : ’

o0 1/q
o8
([ 0P thOulizgnd) < Clalim < Clblizen,

For Us(t)1, we have

||D 2 L{g( )1/)||L2(R+) < C/ 72 / e_“‘Ew(ﬁ)df‘du
(b — 7)2" 0
1/2 i 12
2 1 2 o0 . -
<ol ———au [ emeye)de d.u)
. L.Cllgllz2r

for any t > 0. Thus we arrive at

i L\ =
o8
(/0 D2 Uz(t)¢||ng(R+)dt) < CT|[¥llz2(rty-

On the other hand, the mequahty in (3.9) with j =3is equivalent by duality to

the inequality
1
|[orwwrcon| <o [T orge)
L2(R+) 0

where

=—+—/=1,

1
+=
Poa g

S
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Observe that

H / DB 25 (1) 5 (., t)dt

L2(Rt)
=/0°°/0 f(Cl,t)/O /0 (o, TVH (1, Coyt, T)dCodTdCy dE
with

H(Cl’c%t, T)

+oo  ptoo srn B ) )
/ / ewﬁ—wﬂ—w:‘rﬂﬂz’re—M1411+#2C21(uluz)eﬁ,/z

| x/ e(“’(“l)+w(”2))mdxdp1du2
0

+o0. +o00 , 04/2
/ / eiu?t—i/.ut—ip.gn’+‘iuz‘re—u1C1i+u2§212 (1 p02)

———=dp1dp;
—w(p1) — (m)

and, as in (3.5),

B /Bt — 4
wlp) = ———5—

Again appealing to duality, it suffices to show that there is a constant C such that

<o [ o ,dt)“%-

L

dar

/ FGor I H (G Carty )|

P
41
To this end, first change variables to derive the inequality

‘ /0 TG TG Gty )G

G

m .u,?'sygzgeil‘?(t—ysT)—illl(t—UT)—iﬂl(Cl—Cz‘.'/)
tfﬂ dy | dgz
2/ w1 w(pa) + py tw(ny)

« Ngﬂ e?l_‘?:(t—ysf)fiul (tTyT)fi#}(C1—Cﬁy)de2 dy
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It follows from this that

1nn) =| [ FGnHG, Gt
0 22,
A e %
< O’ / —
o 14y
o0 o0
x/ dm/ Nfiﬁemg(t—y3r)—im(t—yr)—iu1(<1—czy)f(@,T)dgz dy
2/y 0 ' 4 lzg,
oo
£ O / fe
o 1+u
/ . / % 0B i =y ) =isa (v =i G-V (G T dCadpa || .
2/y Jo Lt
If the inequality
/oo /oo mufﬂeinf(t—yaf)—im(t—yf)—im(cl—Z)d”ldz
2/y J0 : L?
<1
(3.10) <Ch—yT| e ] 7%
can be proved, then the preceding inequality gives
%L—rl 8(a+1)
L) <C / o i IR F{ O P2
from which it follows that
o0
/ IIL(, )dr
0 L
oo . M _1
g _A_l
<[ t—gy’r f »ar| dy
[ e S e VTP

o8 1

=0/°° yE v s-o(e+n)
o 14y

([T ([ re- 2 156 luar) ) i
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provided ¢ is finite. This inequality may be extended using a classical integral
inequality (cf. Hardy, Littlewood and Polya [31], Th. 382, p. 288), viz.
+oo
/ ITL (-, 1)dr
0

88 _ 1

y2‘“+ —6(0+1) oo 7
< o [T ([T wrol, )
L? 0

1
7

= it 1 i Moo . q q
- CA y1/2(1 + y) dy <A ”f( ,t)”Lp/dt)

1

o ([ st ongpa)

If ¢ = 0o, 8§ =0, so p = 2 and the result follows by a separate, but easier argument.

Thus it remains to establish the estimate (3.10) to complete the proof. To
accomplish this it suffices to verify the following claim which yields estimate (3.10)
by simply taking

IA

a=p, T=t—yr, t=t—-y°7,
and ¢ = f(z,7) in the claim.
Claim. For giveny >0, T € R and (6,a) € [0,1] x [0,1/2], define

o0
Sga(w,t) . / uaaeuaite—iuTeipzdlu
2/y

and, for ¢ € H¥/(1+6)
Loa(t)d = Spa(-1) * ¢.
It follows that for any t > 0,
(8.11) [ Loa(t)Blla/ -0y < CtCTD/2)8ll5/(116)

where C is independent of t, y and T'.
To see if the claim is true, introduce the analytic family of operators

a+1ﬂ( )p = Sa+iﬁ('at) * ¢

= / Naﬂﬁe“a“e_i”T/ e~ @0 (¢)d¢du
2/y 0
for (e, B) € [0,1/2] x R. First, it is straightforward to determine that

I Lig(t)llL2(r+) < ClldllL2(r+)

for a constant C which is independent of ¢, T, y and §. Using the argument ap-
pearing in the proof of Lemma 2.1 in [39] yields

|Sapip(z, t)| < CA + B etD)/3

for any =z > 0 and t > 0, where the constant C is again independent of ¢, y and 7.
As a result, for o € [0,1/2], there obtains

| Lot ig () Bl| oo (rt) < CECFD/3|B]| L1 (r+).

Estimate (3.11) is obtained by a straightforward complex interpolation (see [55]
Chapter V, Theorem 41). The proof is complete. O

As a corollary to Lemma 3.7, there follows some related inequalities.
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Lemma 3.8. Given s > 0, there ezists a constant C = C, such that

o0
(/ sup
0 zERT

forallh ¢ H0§ (R*). Here, by definition, for r > 0,

D"W,(t)h = D" Uy (t)h + DUy (2)h

4 A\ 1/4
pst+1/4 [Wb(t)h] (m)‘ dt) < C||h||H§(R+)

with

[D"U(t)h] (z) = %/ e"(“s_")tu’e“’(“)m(3,u2 - 1)/ e_i(“a"“)fh(f)dfdp,.
1 0

In particular, for any integer n > 1, there corresponds a constant C = C,, such that

™ sup D2 oM @) dt) < ClAl s
0

—1 3
s A ()

in—
forallh € Hy = (R+).
Proof. We write D°Uy(t)h as

(3.12) [D*Uy(t)h] () = 2i / T gttt g )e () = Ut) f(z)

T J1

where the Fourier transform of f is
~ R 3 .
Fl = Il (@2 = 1) [ et moyac
0

One easily checks that if h € Hog (RT), then f € L%(R). Thus, applying Lemma
3.7 with § =1 and 8 = 1/2 to U(t) f(z) yields
P \ 14
(] s ¥ usra) < Clifliam < Ol i gar,
0 =zcRt
which gives the inequality required in the lemma using (3.12). The proof is com-
plete. O

Attention is now turned to the semigroup W, (t) defined in Proposition 2.1. As
mentioned earlier, the corresponding estimates for W, (¢), which are similar to those
in Lemmas 3.3 to 3.8, may be obtained directly from the integral representation
appearing in Proposition 2.1. However, as pointed out by a referee, there is a
short-cut based on the next observation.

Let a function ¢ be defined on the half line R* and let ¢* be an extension of ¢
to the whole line R. The mapping ¢ — ¢* can be organized so that it defines a
bounded linear operator from H*(R*) to H*(R) for all s > 0 (see [47]). Henceforth,
¢™ will refer to the result of such an extension operator applied to ¢ € H*(R™").
Assume that v = v(z,t) is the solution of

V¢ + Vg + Vggs = 0, v(z,0) = ¢*(z)

forz € R, t > 0. If g(t) = v(0,t), then vy = vy(z,t) = W,(t)g is the corresponding
solution of the non-homogeneous boundary-value problem (2.9) with boundary con-
dition h(t) = g(t) for t > 0. It is clear that for z > 0 the function v(z,t) — vy(z, t)
solves the IBVP (2.1), and this in turn leads to a representation of the semigroup
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W,(t) in terms of Wy (t) and Wg(t), where Wg(t) is the Cp-semigroup in the space
L?(R) generated by the operator A* defined by
A*f — _fl . f///
with domain D(A*) = H3(R) and v(z,t) = Wg(t)$*(x).

Proposition 3.9. For a given s > 0 and any ¢ € H*(R™1) with ¢(0) = 0, if ¢* is
its extension to R as described above, then W (t)¢ may be written in the form

We(t)¢ = Wr(t)¢* — Wi(t)g
for any x, t > 0, where g is the trace of Wg(t)¢* at x = 0.

To have appropriate estimates of W,(t)¢, the following trace result related to
the semigroup Wrg(t) is needed.

Lemma 3.10. If s > 0 is given, then there exists a constant C depending only on
s such that

sup Wi Jb(@)l gorvsey < Ol o
for all ¢y € H*(R).
Proof. Observe that

+oo 3 . R
Wat(@) = [ ety

—c0

Il(.'E,t) + Iz(:l?,t) + 13(33, t)
with

1
- R ~ V3 . X A
Li(w,1) = / S (dy,  Da,t) = [ ST B (n)dy,

V3

S

and
1

Is(z,t) = / i e 1)y,

o — 00

Note that the cubic equation
n=u’—p

has only one real solution z = &1(n) when 1/4/3 < 1 < co. By a change of variables,
we may write

Ii(z,t) = /002 it gi81(n)z (35%(77) _ 1)—1 /°° 6—51(n)5¢(§)d§dn_

— 3_\/5 — 00
Applying the Plancherel Theorem to I1(z,t), there results

v A-00
—9 s
C [ |3t =177 (1 + Inl)2erD

YT aA

IA

111 (=, ')”i{(sﬂ)/s(a)

P 2
$&m)| dn

IN

+oo R
c / (14 w2 1B Pdgs = Clo e

Sk

for all z € R.
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Similar arguments yield the uniform bounds
145 (s )l grgoenrra gy < Clibllme(my
for j=2,3 and z € R. O

The following estimates for W, (¢) follow from Proposition 3.9, Lemma 3.10, sim-
ilar estimates of Wg(t) obtained in Kenig, Ponce and Vega [41], and the estimates
of W, (t) established earlier in Lemmas 3.3 to 3.8.

Lemma 3.11. For any given s € [0,7/2], there ezists a constant C such that if
¢ € H§(RY) for0<s<1or¢e Hi(RY)NH*(RY) for s > 1, then

sup ||We(t)9llgrs(r+) < Cllollra(reys
0<t<+o0

o0 < 2
sup / T W (£)9(2)|” dt < Cll%e mes,
8]

zeRt

sup [|DEWe()$()|l go—+1s3 g1y < Clidllaro(rr
(r1)
zERT t

fork=20,1, and

0o 1/4
( / nDs“/‘*Wc(twn%gomﬂdt) < Clllarqar.
In addition, if s > 3/4, then
- 1/2
(/ sup |W.(t)¢(z)|? dx) < CA+T)|¢llas(rty-
0 tefo,T]

We conclude this section with a technical lemma which is needed to handle the
non-homogeneous boundary condition.

Lemma 3.12. Let 0 < s < 7/2 and T > 0 be given. Let f(z,t) = e ®h(t) where
h € H*(R*). Then there ezists a constant C such that the function u given by

u(z,t) = /0 We(t —7)f(:,m)dr

obeys the inequalities

1/2
2
su u(-,t s +{ su Js+1u z,t >
OSt<I-|)-OO ” ( )”H e (IE}E*' ” ’ ( )|’L§(R+)

1
k
+ Z SuRP+ ||Dzu||Ht(s—k+1)/3(R+)

k=0 %€
i 1/4 o 1/2
+ (/ ||D5+1/4u($,t)“im(R_}.)dt) —|— (/ Sup ’U(x,t)lz dz)
v ‘ 0 t€0,T]
Cl|h] L2(r+) for0<s <2,

<

C”h|IH(8~2)/3(R+) for2 <s<7/2.
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Proof. Let 1(x) be an extension of e~ from R* to R such that ¢ € H®(R). Then
we may write u(z,t) as

w(z, 1) = / Wit — 7)9()h(r)) (@)dr — /O Wa()3(- — )(z)dr

where §(t) is the trace of Wgr(t)y¥(-)h(r) at x = 0. By switching the order of
application of the linear operator W3 () and integration with respect to 7, it appears
that u(z,t) = w(z,t) — [Ws(t)g](z) with

(2,1) / Walt — )()h(r)dr
and g(t) = w(0,t). Note that w(z,t) solves
wi(z,t) = —we(2,t) — Weea(z, t) + Y(z)R(1), w(z,0) =0

for z, t € R. Applying the estimates of the z-derivatives of w(z, t) obtained in [41],
it is straightforward to see that

gl a1 (m+y = w(0, e (r+y < ClihllL2(r+)
and

gl m2(r+y = lw(0, )z (r+) < Cllblla(at)-
Standard interpolation theory then implies
(3.13) gl ar+s(ry = 1w(0, M zr+s(r+) < Cllhllgocary

for 0 < s < 1. The classical estimates for w obtained in [41] together with Lemmas
3.3 to 3.8 for W4 (t)g yields the inequality in the lemma. d

4. LOCAL WELL-POSEDNESS
Considered in this section is the fully nonlinear initial-boundary-value problem

Ut + Ug + UUg + Ugge =0, forxz, t >0,

u(z,0) = ¢(z), u(0,t) = h(t).

for the KdV equation. Solving (4.1) will be shown to define a continuous mapping
from the product space H*(R*) x H(+1/3(0, T), from which the auxiliary data
are drawn, to the space C([0,T]; H*(R'1)) where the solution u resides if s > 3/4,
at least for small values of 7T". This is a result of local well-posedness. While the
arguments leading to our result are a little involved, they follow from the estimates
put forward in Section 3 together with standard modern ideas for dealing with
nonlinear dispersive wave equations.

The development begins with the introduction of several seminorms and some
Banach spaces as in the paper of Kenig, Ponce and Vega [41]. For given s > 0,
T > 0 and any function w = w(z,t) : Rt x [0,T] — R, define

(4.1)

A’{,s(w)E sup ||w('1t)||H“’(R+),
0<t<T

- 1/2
Ag’s(w) = (sup / |J£+1w(m,t)|2dt> ,

z€RT JO
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T = ) (. S . . . 1
Ass(w) = sup lu(z, Meret iy + 59, I1Dw(a, )l CLICES

g 1/4
AT (w) = (/ sup |me(m,f}|th) ]
(

) wmeRt

oo . \ 1/2
Af(w) = (/ sup |w(m,t)|2dm> :
o \Jo tep1)
In addition, let
A o(w) = max{A{ ;(w), A7 ,(w), A (w)}
and
Mr,o(w) = M (w) + A (w) + Af (w).

It is convenient to summarize the linear estimates established in Section 3 in
terms of these quantities. This reinterpretation is stated as a set of four lemmas.

Lemma 4.1. For a given s € [0,7/2] and T > Q, there ezists a constant C' depend-
ing only on s such that '

A (We(t)g) < Clldllzre(r+)
for ¢ € H§(R*) if s <1 or for ¢ € HY(RT)N H*(R*) if s > 1; .

AL, (Wo(t)h) < Cllhll gesrvyra(re)

for h e HF VP (RY);

X, ( / Wt - T)f(z,T)dv‘) <c| T —

for f € L*(0,T; HY(R™)) if s < 1 or for f.€ LMO,T5H(R) N HA(RY)) if s> 1.

Lemmia 4.2. There etists a constant C such that for any T >0, o -
L AL (We(t)g) < Clldlfgrsecr+y
for ¢ € HY2(R*);. o
v (Wb(f)h) < \Q[|h||'1}1'/2‘(o,;n) '

for h € HY*(R*);

: T
AT (/0 Wci(t = T)f(:v,T)dT> 5(]/0 Gy s ey dr

for f € L}(0,T; HY2(RHY).
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Lemma 4.3. For any s > 3/4 and T > 0, there ezists a constant C depending
only on s such that

AT (We()$) < C(L+ )¢l e (r+)
for any ¢ € H*(RT) with ¢(0) = 0;
A5 (Wo(D)h) < C(1+T)|hll gressnrsagrey
for any h € HED/3(RY) with h(0) = 0;

AF (/ot We(t - T)f(z‘,T)d*r) <SCO+T) /OT 1FCo I s ey dr

for any f € LY(0,T; H*(R")) with f(0,t) =0 for0<¢<T.

Remark 4.1. In the above inequalities, the condition s > 3/4 is sharp in the sense
that the estimate fails if s < 3/4 (cf. [41]).

Lemma 4.4. Let f(z,t) = e™®h(t), and let T > 0 be given. For any s € [0,7/2]
and € > 0, there exists a constant C' depending only on s such that if 0 < s < 2,
then

t
AT (/ W, (t — T)f(l‘,’T)dT) <C(l+ T1/2)||h||L2(0,T)
0

for any h € L2((0,T); if 2 < s < 7/2, then

t
A ( [ Wete = nip(emrar) < & (PN + (44 TA s )

8—2

forhe H™s

(0,T).
Consider the initial-boundary-value problem

{ut+uw+ummz=fa f0r37,t20,

u(z,0) = ¢(z), u(0,t) = h(t).

The preceding lemmas imply the following estimates for its solution w.

(4.2)

Proposition 4.5. Let s > 0 and € > 0 be given. There ezists a constant C de-
pending only on s and on € when it appears, such that for any T > 0,
(i) for0<s<1/2,
T
Ao (W) < C | NBllas(rr) + 1Bl geros@s +/0 ||f('at)”H5(R+)dt> ;
(ii) for1/2 < s <2 and $(0) = h(0),

T
Mw < C <"¢"H8(R+) + | All e ra ey +/0 ||f(‘,t)||Hs(R+)dt>

+ O 1+ 150,z
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(iii) for 2 < s <3 and ¢(0) = h(0),
T
A, () <C <||¢||HS(R+) + 1Bl zsrvr8(RH) +-A 7¢Ol s (r+ydt

FO (14T 10 gz

(iv) if ¢(0) = h(0), then
Af(w) <C (||¢||H1/2(R+)+||h||H1/2(R+)+/ £, )||H1/2(R+)dt>

+ 1@+ TV4150, )20
(v) if $(0) = h(0), then

T
T/, v . o o . Fie . o -
A5 (U) < C (||¢||H%+E(R+) + ”h”H'i%'H(R"') +/0 ”f( ’t)”H%+€(R+)dt>

+ CTY2||£(0,) 2 o,1)-
Proof. For 0 < s < 1/2, the solution u of (4.2) is given by

@3)  u(at) = Wat)b() + [Wot)h] (z / Wit = 7)f(z, 7)dr,

whereas for 1/2 < s < 3, by Proposition 2.3, if $(0) = h(0), then its solution u can
be written as

w(z,t) = We(t)pi(z)+ [ We(t —17) (f1 (z,7)+e 2f(0,7)+ 2e_m_7h(0)) dr
0

+ [Wh(t)h1] (z) + €= *h(0)
with
¢1(z) = ¢(z) = e 7¢(0),  fi(z,t) = f(z,t) —e 7 f(0,1)
and - ‘ )
hi(t) = h(t) = e th(0). B :

The advertised estimates then follow by combining the estimates in Lemmas 4.1-
44. , \ g

For any T' > 0 and s in the interval 0 < s < 3, let Z% be the collection of all
functions u € C([0, T); H*(R™")) satisfying N

M 4(u) < o0 if0<s<1/2;
M) +Af(u) <o if1/2<s<3/4

AT,s(u) < 00 if3/d<s<3.
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For v € Z%, define its norm ||v|| zs, as

A (v), if0<s<1/2;
vl zs = A (v) + AT (v), if 1/2 <5 <3/4;
Ar,s(v), if 3/4<s<3.

The space Z3. possesses the following property which is one of the keys to establish-
ing the well-posedness of the initial-boundary-value problem under consideration.

Lemma 4.6. Let 3/4 < s < 3 and T > 0 be given. For any u,v € Z7, uvgy €
L?(0,T; H*(RY)) and

(4.4) luvall 20,7500 (rH)) < Cllullzs vl zs

where C depends on s, but is independent of T, u and v.
Proof. We prove (4.4) for 3/4 < s < 1. The proof for other values of s is similar.

Since

[|uvz ||2LZ(0,T;Hs(R+))

T
=A (s g (e ) et

T
+/0 173 (uC:, t)va (-, ) 2 anydt

and it is straightforward to deduce that

T
/'wuwwummmﬂascwﬁﬂw%,
0

it is only necessary to show that

T
Annmumuﬁmmmﬂﬁscw@ﬂw%.
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To this end, argue as follows:

/ 172w B)va (- )2 eyt

I

U8 00
/ / 7—(2s+1) / lu(a + 7, t)ve (z + 7,t) — u(z, t)vs (2, t)|? dedrdt
0 Jo 0

T poo oo
< 2/ / 7'_(25"'1)/ lu(z + 7,t) — u(z, t)]? lva(z + 7, )| dedrdt
o Jo 0
+2/ / _(2s+1)/ (T + 7,t) — va(, t)|° [u(z, t)|? dedrdt
oo T co
< 2 / / / D) o (@ + 7, 8) — va(, )P Julz, t)|? drdtda
o Jo Jo
T e} o]
+2/ ”Uﬁv("t)"%w(R+)/ 7'_(2S+1)/ lu(z + 7,t) — u(z, t)[* dedrdt
0 0 0
o0
< 2/ sup_|u(z,t)|* / / 7D |y, (2 4 7, 8) — vy, £)[? drdtds
0 0<t<T
T o] [
+2/ ”Uw(‘,t)”%oo(aﬂ/ T_(zs-"l)/ Iu(w+7',t)—u(av,t)|2davd7-dt
0 0 0
[+ T o]
< 2/ sup |u(, )|’ dz Sup/ / 77D (@ + 7, ) — vy (, t)|* drdt
0 0<i<T zeRtJo Jo
/T
+2/0 llvz(, ||Loo(R+)/ 3 “s“)/ u(z +7,t) — u(z, t)|* dedrdt
< CllulZgllvl|Zs.-
The proof is complete. m

Lemma 4.7. Let s € [0,3/4] and T > 0 be given. Then for any u € Z} and
v € Z5, wy € L2(0,T; H*(RY)) and

(4.5) (wv) |l 220,752 (r*)) < Cllull za vl zs,
where C is independent of v and v.

Proof. The proof is similar to the proof of Lemma 4.6. O

As in many initial-boundary-value problems, some compatibility conditions are
needed for relating the initial data ¢ and the boundary value h. A simple compu-
tation shows that if u is a C'*°-smooth solution of (4.1) up to the boundary, then
its initial data u(z,0) = ¢(x) and its boundary value u(0,t) = h(t) must satisfy

(4.6) ¢ (0) = hy(0)
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for k=0, 1, -+, where hy(t) = h(*)(t) is the k-th order derivative of h,
¢o(z) = ¢(x),  and
(4.7)
Bu(0) = — (11(8) + $hor () + T8 (8 @) bemsa (@) )
fork=1,2,---.

Definition (s-compatibility). Given T > 0 and s > 0, we say that (p,h) €
He(RT) x Ht1/3(0,T) is s-compatible if

¢x(0) = hx(0)

for k=0,1,---,[s/3] — 1 when s — 3[s/3] < 1/2 and for k=0, 1,--- ,[8/3] when
s —3[s/3] > 1/2.

Here is the local well-posedness result for the problem (4.1) that is the ultimate
focus in this section.

Theorem 4.8. Let T > 0 and s € (3/4,3] be given. For a pair of s-compatible
functions ¢ € H*(R") and h € H+9)/3(0,T), there exists a T* € (0,T] depending
only on ||¢llgs(r+) + 1Bl ge+v/30,1) Such that the problem (4.1) admits a unique
solution u € Z3..

Remark 4.2. The proof given below shows that the solution map

(¢ h) = u

from H*(R*) x He+tD/3(0,T) — Z$, is Lipschitz-continuous. It will be shown
later in Section 6 that this map has much stronger regularity; namely, it is real
analytic.

Proof. For the given s-compatible pair (¢,h), let 0 < 8 < T and r > 0 be two
constants (to be determined later) and define

Spr={weZy: w(0,t)=h(t), wz0)=4¢@), wlz=r}

The set Sg,- is a closed subset of the space Z§. According to Proposition 4.5, for
any v € Sp,s, the linear problem

Up + Ug + Ugge = —VVg, forz,t 20,
(4.8)
u(z,0) = ¢(z), u(0,t) = h(t)

has a unique solution u € Z3. Thus (4.8) defines a map I' from Z3 to Zj, say
u =T(v)

for any v € Z. In addition, for any € > 0, there exists a constant C such that

As,s D)) < C (@l me ey + Il HG1/30,1))

B
+C <A “U('a T)UI('v T)”HS(R“')dT + “U(Oa ')’Ua:(oa ')||L2(0,ﬁ)>
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if3/4 <s<2and
B8 )
Ag,s (D(v)) < C (/O (s vz (, )l = (mydr + ”¢||Ha(R+)>

+C (872 + B/ 0(0, yus (0, )],
if 2 < s < 3. By Lemma 4.6, it is known that

1l e .70 )

s v
/0 loCy T)va (s ) s rydr < CBY2Ag,(v)Ag,4(v).

In addition, for 3/4 < s < 2, it is clear that

" 1/2 s , 1/2
( vz (0, )v(0, t)lzﬁ’fﬂ) ( / Ivz(O,t)h(t)lzdt>
4] \ 0 .

) 1/2
C (/ vz (0, t)|2dt> 2l o172 (0,
A : :

< ('-"."j 1/4 AT‘s {'U) H }I-||H(,g+.1"?/3’, (0,1)

IA

If 2 < s <3, then

IA

5—s o
lvs(0,)0(0, Mre-nra0,8y < CBF oz (0, )0(0, Ml picorasiosis)

< OB T Ags(v)Ag,a(v).
Comblmng the above estlmates ylelds

Aos (0©) < C (18]l sy + Bllssrsam + (B4 + B/ ()
for any s € (3/4,3] and 0 < S < T-. Here Cis 1ndependent of ¢, h and g: Settlng

(4.9) r=2C (||¢ll g+ (m+) + ||h||H(1+s>/3(o 7))
and choosmg B € (0,T] such that
4.10) S C(ﬂ1/4+,8‘1/2>r'§ 1/2,

it is seen immediately that
Ag,s (I‘(v)) <r for any v € Sg .

Thus T' is a map from Sg, to Sy, if 8 and r are chosen according to (4.9) and
(4. IU) A similar argument shows that for such 8 and 7,

Ag,s (D(v1) — T(vg)) < ‘)‘ﬁ, (v1 —vg)

for any vy, v, € Sg,r. Thus I'is a contraction from Sgr t0 Sap.. Its unique fixed
point is the desired solution of (4.1); it is defined on the temporal interval [0,8. O

The next step is to extend Theorem 4.8 to the case wheie 's > 3. First, the
definition of the space Z3 is extended to values of s > 3. For 8 > 3, write s in the
form

s=3m+ s’
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with m = [s/3] or m = [s/3] =1 and 0 < ¢’ < 3. For a given T" > 0 and such
a value s, let Z5 be the collection of all functions u € C™~1([0, T); H3(R*)) with
™y € C([0,T); H* (R™)) satisfying

m—1

lullzg. = 10 ull 7y + D 195 ull 23 < +oo.
k=0

Theorem 4.9. Let T > 0 and s > 3 be given with s = 3m + s’ where m =
[s/3] and 0 < & < 3. For any given pair of s-compatible functions (¢,h) €
H*(Rt) x HEHD/3(0,T), there exists a T* € (0,T] depending only on Pl £rs () +
|All zres+0 0,y such that (4.1) admits a unique solution u € Z3..

Proof. As in the proof of Theorem 4.8, for the given s-compatible (¢, h) € H¥(R™)x
HGD/3(0,T, let 8 € (0,T] and 7 > 0 be two constants to be determined and let

Spr ={w € Z5 : w(0,¢) = h(t), w(z,0) = ¢(z), ||lwllz; <7}
The set g, is a closed subspace of Zj. Define the map I' from Zg to Zj by
uw="T(v)
where v € Zg , and v is the unique solution of the linear problem
U + Uy + Uggy = —VVg, forx, t>0,

u(z,0) = ¢(z), 1(0,t) = h(t).

As above, it will transpire that if § and r are appropriately chosen, then IT' is a
contraction map from Sg, to Sg .
The proof of Theorem 4.8 implies that there is a constant C' such that

(411)  Ags(I'(v)) £C (||(¢, M)\l gty x G+ 30,1y + (B2 + ﬂ1/4)>\%,3(v)> -

Let w® = 9fT(v) for k = 1,2, ---,m. The function w(*) solves the initial-
boundary-value problem

wi® + wl® +wil = —(OF(vv,), forz,t>0,

w®) (z,0) = @y(x), w®)(0,4) = hy(t),
for k=1, 2, --- ,m. By Proposition 4.5, there is a constant C such that

Mo (08 < C (1o bl oy rornsaom) + 108002 o gy ()

for k=1, ---,m— 1. In addition, we know that
Mo (0™ < C(lgmllare gy + Mol s75 0

107 (vl (o, )
if0<s <1/2;

)‘,is’ <“’(m)> +Af <w(m)> <C (||¢m||Hs’(R+) + ||hm||H<s'+1)/a(o,T))

+C (107" 0va) s 0 ey + 1O (w0)) (0, ) 2200, )
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if 1/2 < s’ < 3/4;

Mg, s’ (w(m)) <C (H¢m|iHs'(R+) + ”hm||H<s'+1>/a(o,T)>

O (107 o)l s gy ey + 1T (0)) (0,230,
if 3/4 < &' < 2; and

AB,s (w(m)) <C (II¢m||Hs'(R+) + Hh7n||H(s’+1)/3(0,T)>

+C (187 2l 11 0 1v vy + 1O @), Ol =750,

if2<s" <3 Sincew € Z3, by repeated application of Lemma 4.6, there follows
the inequality

k

k o
168 (vvz)l| 11 0, g1 ity < CBY2Y ( . ) 1(67v0; ™)l r2(0,8, 1 (R+))
j=0
k 6 _ .
<08 Y (5 ) dpal@lomnas(dt )
=0 \ 7
< CBY?|vlZ,
fork=1,---,m — 1. Similarly, using Lemma 4.6 and Lemma 4.7, it is seen that

10" (vva)ll L1 0,8, (RH)) < Cﬂl/2||v||%;,~
Furthermore, it is straightforward to show that
187 (v02)) (0, 1) | 20,8y < CBY*|IwlI%;
when 1/2 < s’ < 2, and that
187" (v02))(0, )| gres-21730,8) < C(BY2 + BY/)[vZg

when 2 < ¢’ <3.
Those estimates, together with (4.11) yield

IP@ 25 < C (I8, Wllseny sy + (B2 + 64 ol )

The remainder of the proof is the same as the culmination of the proof for Theorem
4.8. The theorem is thereby proved. O

By writing the equation in (4.1) in the form
Uprgr = —Ut — Ug — Ulyg,

one sees that if both « and u; belong to the space C([0,T]; H*(R")) for some
s > 1/2, then u € C([0,T); H*¥3(R™)). Thus the following theorem is a direct
consequence of Theorem 4.8 and Theorem 4.9.

Theorem 4.10. Let T > 0 and s > 3/4 be given. Then for any s-compatible pair
(¢,h) € H*(RT) x HEHD/3(0,T), there exists a T* € (0,T] depending only on
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(@ M) | e (R+yx HCa+11 /30,7y Such that (4.1) with initial data ¢ and boundary data
h admits a unique solution

u € Z%. NC([0,T*); H*(R™))
with Ofu € C([0,T*]; HS=%%(RT)) for k=0, 1,--- ,[s/3].

5. GLOBAL WELL-POSEDNESS

The well-posedness results presented in Section 4 are local in the sense that
the length of the time interval [0,7*] on which the solution exists depends on
the quantity ||@||msr+) + [|Allge+v/s0,r). In general, the larger is ||¢||gs(r+) +
Al gs+1/3(0,1y, the smaller will be T*. However, if T* = T no matter what the size
of ||l s (r+) + [hll gea+1/3(0, 1), the initial-boundary-value problem (4.1) is said to
be globally well-posed. With local well-posedness in hand, it is well understood that
one need only establish a priori global H®(R™)-estimates for the smooth solution
u of (4.1) to show that (4.1) is globally well-posed.

In this section, aided by the smoothing properties established in Section 3, a
range of a priori estimates is provided and these are established under the same
hypotheses as those used to prove the local well-posedness when s > 3, while a
slightly stronger assumption on the boundary data h is employed when 1 < s < 3.
The theory begins with H*(R*)-bounds in the range 1 < s < 3.

Theorem 5.1. Let T > 0 and s € [1,3] be given. Then there exists a continuous
non-decreasing function s : Rt — R such that for any smooth solution u of

(4-1),
61 s Dl < @ (Il + IR, ) )

Two important tools will be utilized in the proof of this theorem. One is the
smoothing properties of the equation established earlier. These will be used to
recover the regularity lost through taking boundary traces. The other is nonlinear
interpolation theory as expounded in Tartar [57] and Bona and Scott [8], which is
the key to obtaining the estimate (5.1) for 1 < s < 3.

Here is a précis of the (real) interpolation theory as it will be used below. Let By
and B; be two Banach spaces such that B; C By with continuous inclusion map.
Let f € By and, for £ > 0, define

K(f,t) = imf {If — gllz +1tllgllz, }-

For 0 < 8 <1and 1< p< 400, define

o0 1/p
[BOaBl]G,p =By, = {f € Bo: |fllep = (/0 K(/f, t)pt_ap_ldt) < +OO}

with the usual modification for the case p = +oco. Then By, is a Banach space
with norm | - flgp. Given two pairs of indices (61,p1) and (6;,p2) as above, then
(glapl) < (02,p2) means

01 < s, or

0, = 6 and p; > ps.

If (61,p1) < (62,p2), then By, 5, C By, p, and the inclusion map is continuous.
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Theorem 5.2. Let B} and B! be Banach spaces such that B} C Bé with contin-
wous inclusion mappings, 7 = 1, 2. Let A and g lie in the ranges 0 < A < 1 and
1 < g < 400. Suppose A is a mapping such that

i) A: By, — Bf and for f, g € B3,
147 — Aglez < Colllflas . + lallzs IS — sllag

and
ii) A: Bl — B? and for h € B}

| ARl 55 < Ci(lhllsy )lklls,

where C; : Rt — Rt are continuous non-decreasing functions, j =0, 1.

Then if (6,p) > (A, q), A maps By, into B , and for f € By ,

147155, < O lsy MFlsy .
where for r > 0, C(r) = 4Co(4r)*=0C1(3r)".

Remark 5.1. This theorem is identical with Theorem 2 of Tartar [57] except that
Tartar makes the more restrictive assumption that the constants Cy and C; depend
only on the Bj norms of the functions in question. Theorem 5.2 was used by Bona
and Scott [8] to provide the original proof of global well-posedness of the pure
initial-value problem for the KdV equation on the whole line in fractional order
Sobolev spaces H*(R).

Nonlinear interpolation theory as embodied in Theorem 5.2 will be used to prove
the estimate (5.1).

Proof of Theorem 5.1. For T > 0 and 1 < s < 3, let
Vi = {(¢,h) € H*(R*) x H=* (0,T)] ¢(0) = h(0)}
with the inherited norm from the product space H°(R*) x H o (0,7). To apply

Theorem 5.2, choose
Bi=V}, BE=Vi Bi=C(0,TH\RY), B?=C(0,T});HYR")).
Let A be the solution map for the IBVP (4.1): u = A(¢, h). For a given s with
1< s<3,choose p=2and 6§ =(3-s)/2, so that
B;,=C(0,T;H*(R")) and  Bj, =V}

The following two propositions are needed to assure both the hypotheses (i) and
(ii) in Theorem 5.2 are satisfied in the present context.

Proposition 5.3. For a given T > 0, there is a T-dependent and non-decreasing
continuous function ar : RY — RT such that any smooth solution u of (4.1)
satisfies

(5.2) sup [lu(, )|z (r+y < er(ll(d h)llvp)-
0<t<T

Proposition 5.4. For a given T > 0, there is a T-dependent and non-decreasing
function ar : Rt — R such that any smooth solution u of (4.1) satisfies

(5.3) sup |[u(, )| zra(r+y < e (([(8, A)llvp)ll (@, A) vz
0<t<T
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If Propositions 5.3 and 5.4 are valid, then hypothesis (ii) is assured by (5.3). To
see hypothesis (i) is also satisfied, let u; and uz be two smooth solutions of the
equation in (4.1) with

ui(z,0) = ;(z),  4;(0,8) = g;(t)
for j = 1,2 and let 2(z,t) = ui1(z,t) — ua(z,t). Then z(z,t) solves
2t + 2z + (a(z,8)2)g + 2022 =0, >0, t>0,
2(z,0) = ¢1(z) — (), 2(0,t) = g1(t) — 92(t)

where a(z,t) = 3 (u1(z,t) + uz(z, ). It follows from estimate (5.2) and Theorem
4.9 that a € Z% and

lallzs. < oz (1l (¥1, 90) vz + (2, 92)llvy ) -

Then, by Proposition 6.1 in the next section, which is proved independently of the
present considerations, we have that

sup |lua(:,t) — Uz(-,t)||H1(R+) <oar <||(1,1;1,gl)||v% + ||(¢2,92)||VT1>
0<t<T .
x||(1 — 2, 91 —92)||VT1.

Thus Theorem 5.1 follows by a direct application of Theorem 5.2. O
Consideration is turned to proving Proposition 5.3 and Proposition 5.4.

Proof of Proposition 5.83. For a smooth solution v of (4.1), write it in the form
u=w+ v+ g(z,t) where g(z,t) = e"*"*h(0), v solves

Vg + Vg + Ve =0, forz, t >0,
v(z,0) =0, v(0,t) = h*(t) = h(t) — e *h(0),
and w solves
(5.4) Wt + Wy + wwz + (VW)e + (gW)z + Weez = Y (2, 1) — (gv)s — Vg
with Y (z,t) = 3g(x,t) + ¢?(x, t) and with the auxiliary conditions
(5.5) w(z,0) = ¢*(z) = ¢(z) — e %¢p(0) and w(0,t) =0.

By Proposition 4.5 and the third part of Lemma 3.11, there is a T-dependent
constant Cp such that

||U||Z% < CTl|h||H2/3(O,T) and
(5.6) T e
( / sup Ivm(w,t)l“dt) < Crllhllgsreo,m)
0

z€RT
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for any (¢, h) € V4. Multiplying both sides of (5.4) by 2w, integrating with respect
to = over (0,00),:and-integrating by parts appropriately, there obtains

7 000 w?(z, t)de + wif(O,t) S= /000 v(x,t)vm(m,t)w(a:,t)aa:
= [ viteiti?(e, :
0
(5.7) +2 /000 (Y(a:,t) — (g(=z, t)w(m 1) ( (z, t)v(m t)) )w(:n,t)da:.

Ht')lder’s inequality gives

/ / |vg (z, 7)|w? (z, T)dzdt </ sup |vg(z, T |/ (z, T)dzdr
0 z€ERt

‘ ) 1/4 3/4
ok ([ st nr) ([t )

" b 0 zeR+

3/4
8/3

< ol [ TSy

3/4
<HUHZ1 Sup ||w( )||L2(R+) (/ llw -, )||L2(R+)dT>

a

1f
< Crlvlzg 0 e )lzsnsy (ol st

and
t 00 -
/ / [v(z, T)ve (0, T)w(z, T)|dzdT
0 JO o

IA

/0 oy ) g 0y ) oy dr

IA

91 [ e m)lzacunydr

Similarly, one has

/ / oz, 7w (e, 7)dzdr < ||¢||H1(R+)/ / (z, T)dzdT,
1/2
/ / Y (z, t)w(z, t)|dzdr < CT||¢||H1 (84 (/ / wZ(g; T d:):dr) ,

A T

and

/Ot /Ooo |(g(x,f'r)v(x,T))zw(.'p,j)|dmd7-

/2
< Orléllmcav vl ( / / mxdT)
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Integrating (5.7) with respect to the temporal variable over [0,t] and combining the
above inequalities with (5.6) allows one to infer that

00 t 1
/ w*(z, t)de + / W(0,7)dr < = sup [w(, ) Bas,
0 0 2 o<r<t
t t
oo +as / (-, )| aarydr + o / o0, )23 gy
0 0

1 t
< 3 800 0Dl + 00+ | w7 squnydr
0<r<t 0

for any t € (0,77, where a;, j = 0,1,2,3, are constants depending only on T" and
(¢, R)||v;z. Consequently, it transpires that

t
(58) sup o, 8lzaen + [ w20,0dt < ar (16, Wy )
0<t<T 0

Next, multiply both sides of (5.4) by —2wz, — w?, integrate over R+ and (0, 1)
with respect to = and t, respectively, and integrate by parts appropriately to reach
the formula

[t odes [(ut0nir= [T 108 @+ [ w0
N AT Y o N ———
[ ettt 2 [ [ o i
[ [ttt [ st
- /0 (0, 7)ve (0, 7Ywa (0, 7)dr — 2 /0 Y (0, 7)wa(0, T)dr
+2 /0 t /0 ~ Yo, 7)we(z, 7)dudr /0 t /0 " Y (@, (@, 7)dadr
2 [ [ gurto ot uste o =3 [ [ ga, i, i
- [[s0mtonir+2 [ [7 oot @ndsar
2 [ [ sustorryuta, e —4 [ [ gu(arvuta, rus(e, e
2 /0 t / ™ 9(2, 7)vas(@ 7 (3, T)dadr

(5.9) -2 /Ot [92(0, 7)v(0,7) + 9(0, T)v=(0, 7)) wa (0, T)dr.
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For any t € (0,7T], the terms on the right-hand side of equation (5.9) may be
estimated as follows:

vz (2, T)wd(z, 7)dxdT

13
S/o [w (s T my lva € M| 2y lw (e, 7) L2y dr

t
<Ivlzg sup [0t Dzscasy [ F, ) oy dr
_T_

v(z, T)ve(z, T)w(x, T)dzdT

1
< / ooy ) Zrs iy 0 )l ey 0 o) ety

ot
= "“HEZ%/O |IW('=T)||§{1(R+)C£T;

(z, Twg(z, T)d(L‘dT

< / 2 ) om0 o7 ey a7 sy

RE 1/4 t ’ 3/4
4 4/3
< 0 TosCe)lzacay (oo quydr) ([ oslom) 13

t ‘ 1/2
< Crloty (| holm)ysqundr)

vz;(m, ﬁ')w(m, T)wg(x, T)d2zdr

<, vz (s )l oo 1w s vy dr

¢ 1/4
< ([ WustMmqunar) ([ Bl )

t 3/4
4/3
< Callblsmom 2 oty [ 106 Hin)

3/4"

- , ;pt 1/2
< Callblasmom s oMy [ 1ot lncan)
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’U(xa T)v:z::z: (-'E, T)’Ll)m (w, ’r)d:sz

t
< /0 oy 7)va (7| (s a7l oy dr

" 1/2
o e R

(oo t
/ [lwe (-, ||L2(R+)d7'+/ sup vz(x,T)/ v2 (z,7)drdz
0 0

0<r<t

t 0
/||wI T ||L2(R+)d7'+ sup /vﬁx(w,T)dT/o sup v*(z,7)dx

0<z<+o0 Jo 0<r<t

t
< / lwa(, ™) 3agnydr + ol

/ w(x,t)dz
0

and

< NwC ) e ey lw(, t)]|2

1
< 71wC O gey + 1w, Ol psy:

In a similar vein, one obtains the following inequalities:

/ / (z,7)|w?(z, 7)dzdr < Cr|/(¢,h) ||V1/ [|w(|%2 (R+)4T;

1/2
/ / (@, Twa(e, Ddadr < Crll(g, Bz (/ e )nmm)df) ;
t fo'e]
// |gz(m,T)w3(w,T)|da:dT
1] 0

t
< [h(0)| /0 (e, Il ey I, 72 dr

t
< Wrlrscory 98 I PMEageny [ e m)ls g s
! TR

/ot /Ooo |92 (2, T)w(z, T)we(x, T)|dedT

t
< Crllllaersoy S It Plzaen [ hoaor)lagadrs

t o0 t
/0 / 192 (2, P)w (@, 7)|dz < Cr bl gars 0.1y / sy )2y
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/ / gz, T)v(z, 7)) sw? (z, 7)|dzdT < Ci llv]l 23, / lw(-, 7|22 (R AT

/ / 9(z, TV (T, TYws (2, T)'d.’L‘d’T'
< .C’T|h(0)|y(/0°o 0:“11}) |’Um:z:(-77 T)lzdm) v (/ / E(eme d:cdr)

t
/ / g,v mwzld:::df<C’T||'u||z1/ lwz|l L2 (r+ydT.:

In addition, the integrals corresponding to boundary traces need to be bounded:

1/2

and

t
(0, 'r)wﬁ(O, T)dT
0

< sup|v(0T|/ (0,7)d

0<r<t

I

[l zs, / w? (0, 7)dr;
J0

) ‘
/ "5(0,7)ua (0, 7)ws (0; 7)dr
0

<oz ( /0 20, T)df)l/_z ( /o ,_ ;(o,_T)dT)

1/2

t
<ol ([ wtomer)

t
[ @ ryuso,midr <3 (lmom + IAle0)

+ 1/2
([renorin)"s
0

| 190, Dl 0,7)dr < Ih(0) JAC
0 . 0

1/2

and

/0 192(0,7) [0(0,7) + v& (0, 7)] we (0, 7)| d7 < Cr[R(0)][|v]| 23,

x ( /0 t |ww(o,T)|2d¢) "
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Combining the above estimates yields the inequality

t
(&) 2 sy + /0 w?, (0, 7)dr

1 t
< 5 sup lw( M) ey + @1 +az/ w7 gy,
0<T<t 0

valid for any ¢ € [0, T, where the a;, j = 1,2, depend only on T, (¢ z1(g+) and
|hll zr5/6(r+)- As before, there obtains from this integral inequality the bound

1/2

T
sup_ (&) micre) + ( / wﬁzm,t)dt) < ar( (¢, W)lvp)-
0<t<T Jn
The proof of Proposition 5.3 is complete. O

Proof of Proposition 5.4. Observing that
Uggr = —Ut — Ug — Ulyg,

we are naturally led to search for a global L?-estimate on u; instead of attempting
to derive a global L*-estimate for ug4, directly. As observed already in [5, 6], there
is a crucial advantage to this approach in terms of the boundary traces that arise
in the analysis.

If v = uy, then v solves

O4v + 00 + O (uv) + 83v =0, for z, t >0,

(5.10)
,U(I7O) = ¢1($), U(Oat) = hl(t)v
with ¢1(z) = —¢'(2) — ¢(z)¢'(z) — ¢"'(z) and hy(t) = h/(t). We show that
(5.11) sup |[[o(-,t)l|z2(r+) < er(llullz2)(hill g/srey + 91ll2 R4 ),
t€[0,T

which, together with (5.2) is equivalent to the desired estimate (5.3).
Rewrite v as v = w + z with w solving

Wt + Wy + Wyze =0, forzx, t >0,

w(z,0) = ¢1(x), w(0,t) = hy(t).
It follows that z is a solution to the initial-boundary-value problem

04z + Ogz + Oz (uz) + 832 = —(uw),, forz, t >0,
(5.12)
z(z,0) =0, z(0,t) = 0.

By Proposition 4.5, there is a T-dependent constant C such that

7 1/2
sup (&)l () + sup ( [ hoa@ P dt)
0<t<T >0 \Jo

(5.13) < Cr (161l z2aey + Ikl msso.my) -
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Since
/ / lwe(z, t)u(z, t)|2dzdt = / / |we (z, t)u(z, t)|*dtds
S/ sup |u(z,t) |2/ |wg (z,t)|*dtdz
lo 0<t<T
T [*9)
< sup / |wm(:1:,t)|2dt/ sup |u(z,t)|>dz
220Jo 0 O0<t<T
2
< CTHU”Zz,; (1l z2cr+y + 1B2ll zr2/30,1))
and

g o T 0o
/ / lw(a, £)ua (3, £) Pdudt < / sup [us(z, £)[? / (o (z, £)[2ddt
0 0 0 0

zeRt

o T
< sup / |w(a:,t)_\|2d:r/ sup |ug(z,t)|?dt
0 0

zeRt

< CT||“[|%,}F (||¢1||L2(R+) + lh1ll grreo,my)
it i3 seen that

o 1/2
(5.14) (/U II(W)mlliz(m)dt) < Orllullzy (Ig1llz2rr) + bl o,ry)

for any T > 0.
Next multiply both sides of the evolution equation in (5.12) by 2z and integrate
with respect to z qver Rt. After integration by parts, there appears

%/ 22(x,t)dx + 22(0,t) + / ug(x,t) 2% (z, t)dx = 2/ g(z, t)z(z, t)dz,
0 0 0
which holds for any ¢ € [0,T), where g = —(uw);. As a result, it follows that
% 2%(z, t)dz 5/ g’ (z,t)dz + <1+ sup |ug(z, t)|)/ 22(z, t)dz.
0 0 : 0

zeRt

Using Gronwall’s lemma, it is adduced that

00 t ‘ oo
sup ‘/! zz(w’ t)da; S / ef:(1+supy20 Ium(er)l)dT / gz(m’ S)dde
0 0

0<t<T Jo
aT(||u||Z1 / / (z, sdwds

which, together with (5.13) and (5.14), yields (5.11). The proof is complete. | O

IN

Next, a global a priori bound in H*(R*) is obtained for solutions of (4.1) when
s> 3. .

Theorem 5.5. For given T > 0 and s = 3m+s' with0 < s’ <3 and m > 1, there
exists a T-dependent and continuous non-decreasing function ar : R* — RY such
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that for any smooth solution u of (4.1),
m—1

sup (107 u(, )|l ot ey + D sup_[10Fu(:, t)llas(r)
0<t<T k—g 0St<T

< or (16 Pl o (rHyx G+ /30,7)) -

Proof. We only prove Theorem 5.5 for m = 1. The general case follows by induction.
Let v = u;. Then v is a solution of

O4v + Ozv + Oz (uwv) + 83v =0, for z, t > 0,
(5.15)
v(z,0) = ¢1(z), v(0,t) = hy(¢).

The problem (5.15) is linear, but with u € Z3 as a variable coefficient. Applying
the proof of Proposition 5.3, the following estimate emerges for sufficiently regular
solutions of (5.15):

2 (-, t)llz2r+y < Crllullzy (I¢1llzacrey + [hallzirsosmy) -

Secondly, by using Proposition 6.1 in the next section, which, as mentioned before,
is proved independently of the considerations in this section, we also have

sup |{[v(,t)|gr(r+) < ar (||u||z;) (Npsll a2 mey + 1Pl r2rs 0,m)) -
t€(0,77]

The following estimates hold by interpolation:

tes[lé%]”v("t)“HS’(R+) < ar(ullz)I(@ ) e (r+yx HG+D/3(0,1)

(5.16)

(AN

ar ([(¢, B) || gro(r+yx mes+1/30,7))

for any s’ with 0 < s’ < 1. When s’ > 1, using Proposition 6.1 directly gives

A

t:;(l)%]||v(',t)”m’(n+) < or (||U||zg> [1(®, M)l o Ry x HG+D7300,T)

IN

ar (|| (¢, h) ||HS(R+)><H(S+1)/3(0,T)) S

Thus (5.15) holds for m = 1. As already indicated, the remainder of the proof
follows by an induction that is analogous to the argument just presented for the
case m = 1. O

As an immediate consequence of Theorem 5.1, Theorem 5.5 and the local well-
posedness results established in Section 4, the following global well-posedness result
for the initial-boundary-value problem (4.1) is obtained.

Theorem 5.6. Let T > 0 and s > 1 be given. Then for any s-compatible (¢, h) €
H*(R*) x HT+3)/12(0,T) when 1 < s < 3 and for any s-compatible (¢,h) €
H*(Rt) x HTD/3(0,T) when s > 3, the problem (4.1) admits a unique solution
u € Z&NC([0, T); H*(RT)) with 8fu € C([0,T); H*—3F(R*)) fork =0, 1,---,[s/3].
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6. TAYLOR SERIES EXPANSION

Having established local and global well-posedness results, interest naturally
turns to related issues. Here we focus on the mapping that takes compatible pairs of
initial- and boundary-data into associated solutions and inquire about the regularity
of this correspondence. For given T > 0 and s > 0, let X% be the collection of all
s-compatible functions (¢, h) € H(R*) x HE+D/3(0,T). By its definition, X3, is
a linear vector subspace of H*(R*) x H(+1/3(0, T) only when 0 < s < 7/2. When
s is in this range, we consider X% as a Banach space with norm induced by that
of H*(RT) x H*1/3(0,T). For any s > 3/4, the results established in Sections 4
and 5 show that the initial-boundary-value problem (4.1) defines a nonlinear map
Ky from the space X3 to the space Z5. For T > 0, let DI' = DT(K;) denote the
domain of the map K7 in the space X%. An element g = (¢, k) belongs to DT if
(¢, h) € X7 and the associated solution u of (4.1) with auxiliary data (¢, k) exists
at least on the time interval [0,T]. Obviously, DI is not empty since 0 € DT,
Because of the global well-posedness of (4.1) for s > 3, it is clear that DT = X&
in this case. From the proofs of the results presented in Section 4, the map K;
is known to be Lipschitz continuous from DT to Z%. In this section it is shown
that K has far stronger regularity. More precisely, when 3/4 < s < 7/2, for any
g € DI, there exists an 1 > 0 such that for any w € X3 with |lw|lxs < n, we have
g+ w € DT and K;(g+ w) has the following Taylor series expansion:

= KM () [w
Kilg+w) = Kr(g) + Y, 200"
n=1 .

where K}n) (g) is the n-th order Fréchet derivative of K evaluated at g and the
series converges strongly in the space Z35. In other words, the map Ky is analytic.
In case s > 7/2, the Taylor series expansion does not hold in the form just presented
since the space X4 is no longer a vector space. In this situation, consideration is
given to an initial-boundary-value problem for a general m-nonlinear system which
includes (4.1) as a special case. It will be shown that the corresponding nonlinear
map Ky is analytic.

To begin, we present a well-posedness result for the linear, variable-coefficient,
initial-boundary-value problem

0w+ Ou + Oz (au) + 83u = 9,(fg), forz >0,0<t<T,
(6.1)
u(z,0) = ¢(z), u(0,t) = h(t),

for the linearized KdV equation. This result was already used in Section 5 and will
also play an important role in establishing analyticity of the map K.

Proposition 6.1. Let T'> 0 and s € (3/4,3] be given. Suppose that a, f, g € Z5.
Then, for any (¢,h) € X7, (6.1) admits a unique solution u € Z% satisfying

(62) lullzs < ar (lollzz) (I71z3Igllzs + 1, 7)1xs.)

where ar © Rt — R* is a T-dependent and continuous non-decreasing function
which is independent of f, g and (¢, h).
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Proof. The proof is similar to that of Theorem 4.8 and consequently we content
ourselves with a sketch. For given (¢, h) € X3, € (0,T] and r > 0, let

Sgr={we Zg w(z,0) = ¢(z), w(0,t) = h(t), ”w“ZE <r}
For given a, f, g € Z4, consider the map I' : S, — Z7 defined for v € Sg,, by
uw="T(v),
where u is the unique solution of

Ug + Ug + Ugge = —(a¥)g + (f§)z, forz >0,0<t<T,

U(:E,O) . ¢($), U(Oat) - h‘(t)
Applying Lemmas 4.1 — 4.6, one can show that there is a constant C' depending on
r and T, but independent of v, such that

Aas (C()) < C (lgh 2zl 25 + 18, W)llxz.) + C(BY* + B2)A7,5(a) Ap,s (v).

Hence if we choose 7 so that

(6.3) r=2C (|lgllzs 1l zg + (8, W)llxs) ,
then there is a unique choice ,8 for which
(6.4) rC(BY* + B *)Ar,s(a) = 1/2.

If we define 8 = min{T, 3}, then

Mg, (T(v)) <7
for any v € Sg,r. Moreover, for any v, v3 € Sg,r,

Mo (Dwr) ~ Dwz)) < 5hg,r (o1 = va).

With such a choice of r and g, T is a contraction map from Sg  to Sg,,. Its unique
fixed point is the desired solution of (6.1) on the temporal interval 0 < ¢t < fS.
However, since the value of 3 is chosen according to (6.3) and (6.4) which only
depends on ||a| zs., ||g|lzz. and || f| zs., a standard iteration extends the solution to
the entire interval 0 <t <T'. The proof is complete. O

The major step in the present development is to show that for T > 0 and
s € (3/4,3], DT is an open set in the space X5 and that the nonlinear map K is
analytic from DT to Z.

The following formal calculation is instructive. If Ky is an analytic mapping
from DT to Z%, then, for n =0,1,2,- -, its n-th order Fréchet derivative K} (n )( )
at g € DT exists and is the symmetrlc, n-linear map from the n-fold product
X3 x - x X7 to Zz given as

n a"
KM ()wi, -+, wn] = {851 €, (9 + Zfaﬂ%) }

0,,0
for any wy,ws, - ,w, € X5. The homogeneous polynomial K}")(g)[w"] of degree
n induced by K I") (9) evaluated at w™ = (w,w, -+ ,w) (n-components) is

K = { Fkilorew}
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where w = (wg,wp) € X35 If we define y,, by
v = K ()",
then it is formally ascertained that (y1, y2, -+, yn) solves the system

041 + Opy1 + O (uyy) + 83y; =0, forz>0,0<t<T,

(6.5)
yl(m’o) = w¢($)’ y1(07t) = wp(t),
and
=
. ek + Ok + Oa(uye) + Ogye = —3 Z ( ) (Y59—3),

yk(.’L‘,O) =0, yk(o’t) =0,

forz >0,0<t<Tand2<k<n, whereu = K;(g) = yo and w = (wy, ws) € X5..

On the other hand, for any g = (¢, h) € DT, let u = K;(g) and consider solving
the linear system (6.5)-(6.6). It follows from Proposition 6.1 that the system (6.5)-
(6.6) may be used to define a homogeneous polynomial of degree n which maps X2 T
to Z7 as described in the following proposition. -

Proposition 6.2. Let T > 0, 3/4 < 5 < 3 and g € DT = DI(K;) be given and
let w = Ki(g). Then the system (6.5)-(6.6) defines a homogeneous polynomial

K}") (g)[w™] of degree n from X3 to Z5. Moreover, there exists a constant cs such
that

(6.7) lynllzs < c5nlflwlik,
for any n > 2, where c3 = c3(T, ||ul|z3), and it may be that c3 — +o00 as T — +oo
o7 as jjujlzs. — Foo, bui in any case c3 = 0 if T — 0, or if {jujizs, — 0.

Proof. The proof is a straightforward consequence of Lemmas 4.1 — 4.6 and Propo-
sition 6.1 (see [64], Prop. 3.3 for details). O

For w € X7, define a Taylor polynomial P,(w) of degree n by

68) Patw) = 3 OB _ 3

k=0

and a Taylor series by

(6.9) Z [m

Proposition 6.3. Let T > 0 and 3/4 < s < 3 be given. For any g = (¢,h) € DT,
there exists an m > 0 depending only on ||K1(g)|zs. such that the formal Taylor
series (6.9) is uniformly convergent in the space Z§ with respect to w € X4 with
lwllxs < n. Moreover, if v= P(w), then v € Z4 solves the problem

Vg + Vg + WUz + Uy = 0, forx >0,t€e(0,T],
(6.10)
v(z,0) = ¢(z) +wy(z), v(0,t) = h(t) + wr(t).
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Proof. Tt is readily seen that the sequence {P,(w)}?2, of Taylor polynomials is
Cauchy in Z3. uniformly for w in the ball of radius # in X4 for suitable 7. Indeed,
because of Proposition 6.2, it transpires that for m > n > 0,

||m ||/ ,
Z Z o llwll%s.-

Z38 k=n

m
Yk
k!

k=n

| Pr(w) = Prm(w)l 25 =

If n is chosen so that

(6.11) n < 1/(2¢c3),
then for w € X3 with [lw|xs < 7, one has

m

1

|| Pn(w) — Pm(w)”Z} < Z 5%
k=n

which goes to zero uniformly as n, m — oco.

Since { P, (w)}5%, is a Cauchy sequence in the space Z7, it makes sense to define
v = P(w) as its limit as n — oo. Then v € Z3. and v solves the initial-boundary-
value problem (6.10). To see this, note first that

o(@,0) = Y- 200 (5,0) 1 44 (2,0) = 9(z) + (o),

k=0

v(0,t) = i w(0t) _ w(0,8) + y1(0, ) = A(t) + wr ().

!
k=0

Moreover, since the series P(w) is absolutely convergent in the Banach algebra Z%,
it follows that

(o) 2 00 2
2 Yk UYk Yk
v <u +3° —!> 212 Z ( F)
k=1

k=1

1 oouyk loolk—l k
o[ 142 e 11 L5 el
(2“ +; k!+2;k!;<n>yynk

In consequence, we have

1 1)
3tv+§32( )+83'v—8tu+z t?{k+82u

k=1
== Py, 1 ()
+;*ﬁ“ 5 +Z{ il 2k,n;0< ) (YnYn—k)
1
= | Bu + Eax(uz) + 32“) + (Bey1 + O (uyr) + y1) +
00 1 1 k—
] z 3
+kZ=:2 x {8tyk: + Oz (uyk) + il X:: ( ) (YnYn—k) +8xyk}
=0.

The proof is complete. |
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The following theorem is now readily adduced.

Theorem 6.4 (Analyticity). For any T > 0 and 3/4 < s < 3 the nonlinear prob-
lem (4.1) establishes a map K from the space X3 to the space Z3 having as its
domain DT a non-empty open subset of X5. The map Ky is analytic from DT
to Z% in the sense that for any ¢ € DY, there exists an m > 0 such that for any
w € X3 with ||w|xs <n, the Taylor series expansion

od (n) n
K](¢+w) . Z KI (¢)[w ]

n!
n=0

converges in the space Z5.. Moreover, the convergence is uniform with regard to w
in the aforementioned ball in X7.

Remarks. 1. The above theorem holds also for 3 < s < 7/2. Since its proof is
similar to that for the system discussed below, a separate discussion is not
included.

2. Since 0 € DT, there exists an 7 > 0 depending on T such that for any
g = (¢,h) € X% with ||g]|xs < 7, the problem (4.1) has a unique solution
u € Z% defined at least on the time interval (0,T"). Moreover, according to
(6.8) and Proposition 6.2, n — co as T' — 0. The local well-posedness of the
problem (4.1) thus follows as a corollary to Theorem 5.1. This provides an
alternative approach to the well-posedness of (4.1): show first the analyticity
of the map K by establishing the solvability of the n-linear system (6.5)-
(6.6). One advantage of this approach is that it clearly shows the solution of
the nonlinear problem (4.1) can be obtained by solving a sequence of linear
problems.

3. We know already that (4.1) is globally well-posed in the space X§ when
s > 3. In case 3/4 < 5 < 3, ounly local well-posedness has been proved in
X7 and the needed a priori estimates are not available. Of course, global
well-posedness is valid for 1 < s < 3, but slightly stronger conditions on the
boundary data are needed than is implied by membership in X7. This raises
the question of whether the corresponding solutions blow up in finite time or
exist globally in the space H*(R™). As an application of the analyticity of the
map K7, a partial answer to this question is forthcoming. For (¢, h) € X2,
the corresponding solution u of (4.1) exists globally in the space H*(Rt) if
and only if (¢,h) € DT for all T' > 0. On the other hand, it follows from
our theory that for any 7' > 0, DT is a dense subset of the space X45. The
Baire Category Theorem thus implies that initial- and boundary-data that
yield globally defined solutions comprise a dense Gs-set in X7 .

Attention is turned to the case s > 3. As pointed out earlier, if s > 7/2, then
X35 is not a linear space because of the nonlinear compatibility condition imposed
by membership in this class. One way to deal with this fact of life is to realize
(4.1) as a specialization of a system of equations. This formulation is useful also
for 3 < s <7/2, and so it is pursued here in the entire range s > 3.

As in Section 4, for any s > 3, write s = 3m + s’ where m > 0 is an integer and
0 < s <3. For T > 0, define the space Z% as

s __ 73 3 3 s’
Zi =27 X Zp X o X Lip X D
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and the space X7 as
Xe=X3x X3 x X3 x X8,

in which there are m copies of Z3 and X3 featured, respectively. Consider the
system

Ut + Uy + Togwe = —F (@), forz>0,0<t<T,

(6.12) . )
i(e,0)=d),  @(0,1) = (),
where
@ =(uo, U1, ,um)”, 6= (o, b1, ", m)",
h=(ho, h1,- - hm)"
and

r
= L [ m
F(u) = 5 <ug$ 2U0U1, e 7; ( k > U’k“m—k) >

—

and the superscript 7 connotes the transpose of the relevant vector. The pair (¢, ﬁ)
is said to be s-compatible if

¢;(0) = h;(0)
for j =0,1,--- ,m —1 when s’ <1/2 and for § =0,1,--- ,m when s’ > 1/2. By
Theorem 4.8, for any s-compatible (¢, h) € X3, the initial-boundary-value problem
(4.1) has a unique solution u € Z5. If we let ¢g = ¢, then ¢y, ¢g, - - , drm may be
obtained recursively via (4.7). For k = 0,1, ,m, let hy = h(*)| and us, = 8Fu. If
é=(do, *+,ém), b= (ho, -+, hm) and @ = (ug,- - ,Um), then (§,A) € X3 and @
is a solution of (6.12). In this sense, (4.1) is a special case of the system (6.12).

Theorem 6.5. Let T' > 0 and s > 3 be given with s = 3m + s and 0 < & < 3.
Then for any s-compatible (¢, h) € X3, the system (6.12) admits a unique solution
U E 2f.

Proof. Observe that the nonlinear system (6.12) consists of initial-boundary-value
problems for m + 1 scalar equations. Among them, the first one is the initial-
boundary-value problem (4.1)'which only involves ug. The second one involves
only up and uy. If ug is considered known, then the second equation is linear in uq,
and so on. Thus we may solve the nonlinear system by solving for ug in the first
equation, then using this determination of ug in the second equation and solving
the corresponding linearized problem to obtain u; and so forth. Using Theorem 4.8
and Proposition 6.1, we obtain inductively ux € Z3 for k =0, 1, --- ,m — 1. The
equation for u,, has the form

Ot + Opm + Op(aty) + O3uym = f, forz>0,0<t < T,
(6.13)
m(2,0) = ¢m(z), um(0,1) = hm(t),

m—1
f= —%31 <Z ( T,: )ukum—k>
k=1

where
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and the coefficient a = up is known. By Proposition 6.1, for any s’-compatible
(¢m, hm) € X5, (6.13) possesses a unique solution u,, € Z5 . The proof is complete.
a

By Theorem 6.5, for given T' > 0, the system (6.12) defines a map K; from the
space X to 23 where s = 3m+s’ withm > 1 and s’ # 1/2. The map K; is analytic
from A7 to Z7. To establish this, consider the linearized system corresponding to
(6.12), namely

BB + Iy + Oy (J(@)D) + 030 = 8, f, forz>0,0<t<T,
(6.14) _
w(xﬁo) S ‘-.'Isl(""')t @(O,t) = h’(t)’

where J is the Jacobian of F at @ = @ given by

. k
o OF(i) B k . . .
1@ =252 =2 (1} ) 6t +astik-1) ,
B =4 0<k, i<m
1 ifi=j,
6(4,5)=-
0 ifi#j,
and
F= (bovo,brv1, -+, bvm)".
Proposition 6.6. Let T > 0 and s > 3 be given and let
g=(b03b1>"' abm)T> 6:(1)0,1)17"' yv'm)T‘

—

Suppose @, b, 7 € 2Z5%. Then for any ( ,ﬁ) € X%, (6.14) admits a unique solution
w € Z7. Moreover,

)24 < ar (1@l23) (1Bl + [Bllzg 9114
where ar : Rt — Rt is a T-dependent and continuous non-decreasing function.

Proof. The proof is very similar to that of Proposition 6.1 and is therefore omitted.
. |

- -

For given @ = K; ((d), h)) with (5, l_i) € Z3., consider the linear systems
Off1 + Oafft + 02 (J(@)i1) + 0351 =0, forz >0, 0<t<T,
(6.15)
Gi(2,0) = za),  71(0,8) = Fx(0),
and forz > 0,0<¢t<T,
O + Oxn + Ox(J(@)Fn) + 03Tn = Fu(f1, - Fn-1),
(6.16)
In(z,0) =0, 7n(0,8) =0
for 2 < n < N, where
Fo = (fr0) fats s fam)”
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with

B 18 k v—1 k -
f'n.,k:——’i z ;Z( j > ( 5 )yzdyn—i,k—j

J=0 i=1

fork=0,1,---,m.

-

Proposition 6.7. Given T > 0, s > 3 and § = (5, k) € XE, let @ = Kr(( R)).
Then the system (6.15)-(6.16) defines a homogeneous polynomial IC(IN)(g’) [@™] of
degree n from X2 to Z5. Moreover, there exists a constant C such that

[l 25 < Cnl[@]|%y,

for any n > 2, where C = C(T, || zs.), and it may be that C — +oo as T — o0
or ||| zs. — oo, but in any case C' — 0 if |||z, — 0 or if T — 0.

Proof. This follows from Proposition 6.6 by direct computation. O

For w € X, define a Taylor polynomial Py (&) of degree n by

ROl o i
(6.17) Pn(w)=ZT —_—’CI(Q)+Z——!,
k=0 k=1
and a formal Taylor series by
0 (k) ¢ 21,75k
(6.18) P() = Z M
k=0

Arguing as in the proof of Proposition 6.3 gives the following result.

Proposition 6.8. For any § = (¢,h) € DT = DT(K;), there exists an n > 0
depending only on ||K1(J)||zs such that the formal Taylor series (6.18) is uniformly
convergent in the space 2% for W € X§ with ||@||xs < n. Moreover, if ¥ = P(),
then ¥ € Z5. solves the problem

04T + Oyl 4 Oy (F(0)0) + 2 =0, forz>0,0<¢t<T,
(6.19) B B

#(z,0) = b+ iy, (0, ) = h + iy
for0<t<T.

As a direct consequence of Proposition 6.8, we arrive at the following satisfactory
result.

Theorem 6.9 (Analyticity). For any T > 0 and s > 3 the nonlinear problem
(6.12) establishes a map K1 from the space X3 to the space Z3.. The map Ky 1is
analytic from X% to Z3 in the sense that for any $ € Xj, there ewists an 1 > 0
such that for any k € X2 with ||| x5 < m, the Taylor series expansion

= e foasd K:(”] h ,]T'In'
K:I(¢7+h)zz 1 E:rl)[’ J
n=0 d

converges in the space Z%. Moreover, the convergence is uniform with regard to h
in the aforementioned ball in X7.
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