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In this paper, we study spatial analyticity properties of two classes of equations modeling
unidirectional waves in nonlinear, dispersive media, namely KdV-type equations and
BBM-type equations. The commentary begins with KdV-type equations and the obser-
vation that, for a class of such equations, boundedness of a solution suffices to maintain
analyticity and so loss of analyticity detects loss of Loo-regularity. For a larger class of
KdV-type equations, the same conclusion is valid provided that Loo-boundedness of a
solution is replaced by WX -boundedness. It is also shown that these nonlinear dispersive
wave equations are amenable to Gevrey-class analysis based on the boundedness of a
Sobolev norm. This analysis yields an ezplicit lower bound on the possible rate of de-
crease in time of the uniform radius of analyticity of a solution in terms of the assumed
Sobolev bound and the Gevrey-norm of the initial data. Attention is then shifted to
BBM-type equations. It is shown that, regardless of the strength of the nonlinearity,
a solution starting in a Gevrey space remains in this class for all time. Moreover, a
lower bound on the possible rate of decrease in time of the uniform analyticity radius
has temporal asymptotics that are independent of the degree of the nonlinearity, and so
apparently determined in the main by the dispersion.
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1. Introduction

This paper is concerned with evolution equations modeling unidirectional propaga-
tion of nonlinear waves in dispersive media. In the first part, we study Korteweg-de
Vries-type (KdV-type henceforth) equations, and in the second part regularized

long-wave or BBM-type equations. The KdV-type equations considered here have
the form

ug + G(u)ug — Lug =0, (1)
while the BBM-type equations are

ut + G(w)ug + Luy = 0. (2)

Here, the dependent variable u is a function of two real variables z and ¢, G is a
function that is analytic at least in a neighborhood of zero in C, but real-valued
on the real axis, and L is a Fourier multiplier operator. The function G, which
in applications is usually a polynomial, reflects nonlinear effects while the Fourier
multiplier operator L given by

Lu(€) = a(€)8(¢) (3)

has a symbol a that determines and is determined by the linearized dispersion
relation arising in the physical situation under consideration. (Here and below, a
circumflex over a function connotes that function’s Fourier transform with respect
to the spatial variable z.) For a discussion of the modeling issues underlying these
two classes and both formal and rigorous comparison between them, we may safely
refer to Refs. 1, 8 and 9 and the references therein.

Interest is focused upon the initial-value problem wherein a wave profile

u(z,0) = p(z), forzeR, (4)

is specified at ¢t = 0, say, and the further evolution is then determined by (1) or
(2) with u starting at ¢ as in (4). While there might be some objections to posing
a problem on an infinitely extended domain, there is a considerable mathematical
advantage gained by the absence of lateral boundaries. The description thereby
obtained is potentially valid far from the interference of solid boundaries.

The present work is focused upon analyticity properties of solutions of (1) or
(2) with respect to the spatial variable z. Starting from initial data ¢ that has an
analytic extension to an open, complex strip

S, ={z€C:|¥(2)| <7} (5)

for some 7 > 0, it has been established that a solution of (1) with ¢ as initia]
data remains analytic in a similar strip at least for a short time, although the
width of the strip may decrease with elapsed time (see e.g. Ref. 18). (Local-in-time
well-posedness for (1) with L = —02 and G(z) = 2P, the so-called generalized KqV.
equation, in analytic spaces on a fixed closed strip has been recently obtained in
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Ref. 17.) Our purpose here is to delve a little more deeply into this situation. In
particular, is local persistence of analyticity all that one can hope for? Put another
way, is it possible to lose analyticity in finite time? This question may be related to
singularity formation which has come to the fore as an interesting issue lately (see
Refs. 3, 6, 7 and 23).

In the first two sections, attention is given to finding function classes X of low
spatial regularity having the property that X-regularity suffices to maintain ana-
lyticity. The first result of this type was obtained by Kato and Masuda?® for the
generalized KdV-equation utilizing an abstract theorem about certain parametric
Lyapunov families in Banach spaces. (By generalizing slightly their proof, one deter-
mines that their result holds for the general model (1) as well.) Let H*® = Ng>oH*
where, for s > 0, H® is the standard, Ls-based Sobolev class of order s. They
showed that as long as the solution remains in X = H°°, then the solution contin-
ues to be analytic in a strip of the type exhibited in (5). In Sec. 2, we observe that
combining the result in Ref. 20 with a criterion for finite-time blow-up of solutions
of the generalized KdV-equation derived by Albert, Bona and Felland,? one obtains
the stronger result that, as long as the solution u(-,t) lies in X = L, it remains
analytic in a strip. In Sec. 3, it is demonstrated that a solution of (1) will retain
H¥_regularity, for any k > 1 provided that both the solution and its derivative are
bounded in Ly,. Utilizing this result in place of the criterion of Ref. 2, we deduce
that for more general models of the form (1), boundedness in X = W1 implies the
continuation of analyticity. The last section about KdV-type models is focused on
the problem of deriving an explicit lower bound on the possible rate of decrease in
time of the uniform radius of analyticity 7 starting from analytic initial data, and
assuming the boundedness of a suitable Sobolev norm. The estimates presented in
Ref. 20 do not provide explicit bounds on 7 as a function of ¢. Here, we show that
(1) is well-suited to a Gevrey-class approach (see Ref. 15 where the method was
introduced, and also Refs. 13, 14, 16, 22 and 24). Such an analysis yields a simple,
explicit, lower bound on the decrease of 7 in terms of the analytic Gevrey-norm of
the initial data and the assumed Sobolev bound.

In the second part of the paper, consideration is turned to BBM-type equations
as in (2). Global-in-time well-posedness of (2) (say with G(z) = zP) in H® for
suitable values of s is known for all values of p (see Refs. 4, 5 and 10) (this is
in contrast to the KdV-case, where global-in-time well-posedness is obtained only
for p < 4 (cf. Ref. 21), and there is finite-time blow-up at least if p = 4%% and
strong evidence of blow-up in case p > 45711}, Results similar to those obtained
for KdV-type equations hold in the BBM-context as well. However, stronger results
are established in case both the nonlinearity and the dispersion are homogeneous
(G(2) = 2P and a(§) = |£|* where p = m/n > 1 is rational, m, n relatively prime, n
odd and p > 1). Under these assumptions, a lower bound is derived on the possible
decrease in time of the uniform radius of spatial analyticity which is algebraic in t.
The bound obtained for the KdV-type equations features exponential decrease, as
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does the bound for the BBM-type equations without the homogeneity assumptions.
An intriguing feature of this algebraic bound is that it is asymptotically independent
of pas t — +o0.

2. Loss of Analyticity Detects Loss of Boundedness:
The KAV Case

We start with a review of notation which follows that of Ref. 20. For 7 > 0, let
A(r) be the set of all functions f analytic in S(7) such that f € Ly(S(r")) for each
0 < 7' < 7, and which are real on the real axis. The collection A(7) is a Fréchet space
with the L2(S(7,,))-norms as the generating system of seminorms, where 0 < 7, < T
and 7, — 7 as n — oco. Thus the topology is defined by the sequence {px}$,
where pg(f) = _T’:_k ffooo [f(z+1iy)|? dz dy < +o0. Standard notation is used for the
L»-based Sobolev classes H* = H*(R) and for the L,-based classes sz = W;“(]R).
An unadorned symbol || - || will always denote the usual norm on Ly = Lo(R). The
Lo-inner product will also be written unadorned. Otherwise, the norm in a space
X will be denoted || - ||x. The Fréchet space H® = H®(R) = Ny5oH*(R) will
also appear in our analysis. When X denotes one of these Sobolev classes or other
topological linear space, and T' > 0, C(0,T’; X) is the class of continuous functions
u:[0,T] — X. In case X is a Banach space, C(0,T; X) is equipped with its usual
norm

oo lu(t)llx

Interest is first given to the KdV-type equation

ut + G(u)ug + Ugze = 0. (6)

Theorem 1.2° Let T > 0 and u € Ny»0C(0, T; H®) be a solution of (6) where
G is real-analytic. If ug € A(ro) for some 70 > 0, there is a 1 > 0 such that
u € C(0,T; A(ry)).

Hence, starting from analytic initial data, regularity in the Lo-based Sobolev
spaces of all orders suffices to maintain analyticity. Put another way, if the solution
loses analyticity in the sense that it no longer belongs to A(o) for some o > 0, then
it must have lost its infinite Sobolev regularity. We refer to this situation by saying
that loss of analyticity detects loss of H*-regularity. In this context, the following
result of Albert et al.? is helpful.

Theorem 2.2 Suppose s > 2 and let ug € H®. Let T* be the mazimum value such
that, for all T € (0, T*), the solution u of (6) with initial data ug lies in C(0,T; H®).
Then either T* = 0o and the solution is global, or

sup [u(t)||L., = oo.
0<t<T*

B o
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Combining Theorems 1 and 2, the following result emerges.

Theorem 3. Let ug € A(1o) for some 19 > 0, and suppose that the solution u of
(6) with initial data uo ezists on [0, T] and satisfies

sup ||u(t)||L., < oo.
0<t<T
Then there exists T3 > 0 such that u € C(0,T; A(m1)).

Proof. It is easily seen (see Lemma 2.2 in Ref. 20) that A(r) C H* for any 7 > 0,
and hence up € H*. Theorem 2 implies that v € C(0,T; H*) for all s > 0. All the
conditions in Theorem 1 are thus satisfied, and it follows that u € C(0,T; A(71))
for some 11 > 0. o

3. Loss of Analyticity Detects Loss of Wolo-Regularity:
More General Dispersion

Consider (1) where L is homogeneous and defined by Lu(¢) = |¢|*a(¢) for some
p >0, and G is an entire function with power series expansion G(z) = >, ., an2"
about the origin that is real for real z (so the a, are all real numbers). Without
loss of generality, we may suppose G(0) = G’(0) = 0. Define g : R — R by
9(r) = Y. ,>0lan|r™ and remark that the series defining g converges uniformly on
bounded subsets and that |G(z)| < g(|z|) for z € C. Notice that y = 2 corresponds
to the case treated in Sec. 2. Although Theorem 1 is valid for the more general
models, the blow-up criterion presented in Ref. 2 has not been established in such
a context. To obtain a result analogous to Therorem 3 in this more general setting,
the following proposition will be utilized.

Proposition 4. Let u be a solution of (1) defined on some temporal interval [0, T]
and let uy = u(-,0) be its initial value. Assume that there exists M > 0 such that

sup |lu(,t)llwy < M. (7)
0<t<T
If ug € H*, for some k € N, then u € C(0,T; H*).

Proof. We argue by induction on k. For clarity, the cases k = 1,2,3 are treated
explicitly and then the inductive step applying for & > 4 is presented. In the calcu-
lations that follow, it is presumed that the solution u and all its partial derivatives
lie in Lo. The final inequalities do not depend upon this assumption, but rather
feature only Sobolev-norms of u up to order k. In consequence, a standard limit-
ing procedure using local well-posedness allows one to infer the stated inequality
under the assumption of limited regularity. Local-in-time well-posedness in H*® for
s > 3/2, say, follows readily as an application of semigroup theory, as expounded
in the work of Kato!® for example. Also, the constants K appearing below may
depend on k, M, T and wug.
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Mutiplying (1) by u — ugg, integrating over R, and integrating by parts leads to

1d 9 2 . 1] __]_'/ 14, 3
5E/(u +u$)d:1:—/F(u)uzdx 5 G'(u)ug dz

< F(u)[z=

* yloonm [ar=k w24
_ 139 us de = uzdz,
where it is presumed 0 < ¢ < T so that (7) holds, F'(s) = G(s)s and here and
below, an unadorned integral is taken to be over the entire real axis. Gronwall’s
lemma yields boundedness of ||u(:,t)|[g: for 0 <t < T.

Multiplying (1) by % + Uzeze and integrating by parts yields

d

p (u? +u2,)dr <2

/(G(u)uz)mum dz

< 2/|G"(u)ug||ux||um|da:+6/IG'(u)uzlugz dz

+2 ‘/G(u)@m(ugz)dw

< K/(u2 +ul,)de

valid at least for 0 <t < T. Again, Gronwall’s lemma comes to our aid to infer an
H?-bound on this time interval.

Multiplying (1) by © — Uzgzeze and integrating with respect to z for a third
time gives, for 0 <t < T,

d
7 (u2 + uim) dx

<2 ’/(G(U)uz)mzzuzmaﬂ dz

<2 [ 16" ()0 lusl ] do + 12 [ 6" (w2l el fizee] o

+ 7/ |G (u)ug|u2,, dz + 6 ’/ G’ (u)ul juges d

<K /(u2 +ul ) de +6 ’/ G’ (u)u2 Uy d

The last term can be bounded as follows:

6 /G'(u)uizumz dz| =2 ‘/G”(u)umuiz dz

< K/ |Uge|® dz .
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Agmon’s inequality [[Uzs|lL., < ||lullgs|lulzs allows us to continue the last inequal-
ity as

5/2 1/2 1/2
/ tgal® d < 22wl 42 < Kul 3

since the boundedness of ||u|| ;2 was obtained in the previous step. The boundedness
of the H3-norm of u on [0, 7] follows.

The case & = 3 shows how the inductive step should be made. Assume the
boundedness of u in H*~1, Notice that

[l s NtallLog, - Nu* 2|2y < o]l et (8)
where u() is shorthand for 8%u. Multiplying (1) by u + (—1)*u(2®) leads to

% ( 24 (u(k))Z) dr <2 }/(G(u)ux)(k)u(k) dz

Because of (8), the only terms in (G(u)uz)*) that can possibly cause a problem
are those containing u*+1), 4(*) and u(*~1), These cases are considered separately.
uwktD) terms:

/ Gu)u® oy ® gy

< K/(u(’“))2 dz.
u®) _terms:

'/ G (w)uzu®u®) dy

< K/(u<’°>)2dx.
u* =1 _terms:

’/G”(u)uiu(k_l)u(k) dz

< K/(u2 + (u¥2) dz
and

’/G'(u)umu(k_l)u(k) dz

<K [+ @) ds
since k > 4. O

An analyticity result now follows just as in Sec. 2.

Theorem 5. Let up € A(1o) for some 70 > 0 and suppose that a solution u of (1)
satisfies

sup |[lu(t)|lwa, < oo.
0<t<T

Then there exists 71 > 0 such that v € C(0,T'; A(m1)).




352 J. L. Bona & Z. Grujié

4. Rate of Decrease of the Uniform Radius of
Analyticity for KdV-Type Equations

In this section, it is shown that (1) admits a Gevrey-class analysis. A consequence
of this is an explicit lower bound on the possible decrease with time of the uniform
radius of analyticity of a solution starting from analytic initial data, and assuming
the boundedness of a suitable Sobolev norm.

Let A = (I —82)Y/2 and, for n > 0, 7 > 0, consider the two-parameter family of
Gevrey operators A"e™. It is easily seen that if u € D(A%e™4), the domain of the
operator A"e™ in Lo, then u is the restriction to the real axis of a function analytic
in the complex strip S,. In consequence, analyticity results obtain via energy-type
estimates in the scale of Gevrey spaces.

Assume the initial-value problem starts with initial data uo € D(A"e™4) for
some positive values of 79 and 7. Before estimating the resulting solution in a scale
of Gevrey spaces, some useful properties of D(A"e™4) are presented. The first two

lemmas are one-dimensional, whole-space versions of the original ones in Ferrari
and Titi.4

Lemma 6.1 Let 7 > 0 and n > 1/2. Then D(A"e™4) is a Banach algebra, which
is to say that there is a constant ¢ = c(n) such that if u,v € D(A"e™), then

|47 ()| < cf| ATe™ul[|| ATeTv] .

Remark 7. If 7 = 0, this result recovers the standard observation that H” =
D(A") is a Banach algebra for n > 1/2.

Lemma 8.1 Let 7 > 0 and 1 > 1/2 be given. Suppose F is an entire function with
Taylor series Y oo anz™ at 0. If u € D(A"e™), then there are positive constants
c1 = c1(n) and ca = co(n) such that

1A% F ()] < 1 f(call A"e™ ),

where f(r) =300 lan|r™.

The next lemma is an interpolation inequality that may be found for example
in Ref. 24.

Lemma 9. Let r,s and 7 be non-negative numbers. Then there are absolute con-
stants ¢ and cy such that for z € D(A™t%e™4),

|A"e™ 2] < er| AT2] + car® | ATHoETA2] .

The following lemma, exploits some cancellation properties inherent in the non-
linear term. A multidimensional version in D(A") was first presented in Ref. 12 (in
a study of the Navier-Stokes nonlinearity), and a generalization to D(A"e™) was
given in Ref. 22 where analyticity properties of a generalized Euler equation were
studied. This is a version of Lemma 8 in Ref. 22 suitable for our purposes.
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Lemma 10. Letr > 3/2 and 7 > 0. For w € D(A™t'e™) and z € D(A™+!/2e74),
there are constants c; and co depending only on r such that

|(A7e™ 4 (wy2), ATe™2)| < cr| A w472 |]? + car| AT e 4w || AT 222

Proof. Define I; and I» by the formula
(ATe™(wd,z), ATe™2)
= [(ATe™ (wdy2), ATe ™ 2) — (W (ATe™2), ATeT42)]
+ (WO (ATe™2), ATe™2) =L + I (9)

Integrating by parts, one obtains that there is a constant ¢ depending only on
r > 1/2 for which

1 1
I = —5((ATeTAz)2,8mw) < §||8ww||Loo||A’“e”‘z||2
< | A9 w||| ATe™2||* < || AT wl[| ATemAz||? . (10)

By Lemma 9, there are constants ¢; and ¢ such that
||AT6TAZ||2 < cl“ArzHZ +C2T||Ar+1/2e'rAz||2 .

Inserting the last inequality in (10) gives the desired bound on Is.

A bound on I; presented in Ref. 22 is valid in any space dimension and could be
incorporated directly. However, guided by the application in view, we modify the
last two estimates in Ref. 22 trading a smaller power for a less restrictive assumption
on 7. More precisely, we replace the estimate (43) in Lemma 8 of Ref. 22 with the
inequality

/ €13/ 2eTAHEN ™ 5(6)| de

< / ([1+ |6[2]1/2)3/2e7O+ED 56)| de
1/2
< ( / ([1+ g2 H/2)=2 d&)

1/2
- (/([1 + |§‘2]1/2)2r+162’r(1+|§|2)1/2|2(§)|2 d£>

= || AT /24y (11)

Of course the assumption r > 3/2 is crucial to this estimate. The stated inequality
is thereby derived for I; and the lemma established. O
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The stage is now set for D(A"e74)-estimates. It will be convenient to consider
the equation satisfled by v = u, obtained by differentiating (1), namely

v + G'(u)v? + G(uw)vy — (Lv)g = 0. (12)
Let T be a decreasing, positive function of time that is at least C! and such that
7(0) = 7p. Taking the Lo-inner product of A%e?™4y with Eq. (12) yields
1d

§d—t||1‘1"€mv||2 — F[| AT 2T Ay |2

< |(A"e™H(G (u)v?), ATe"0)| 4 |(A"eTA(G(u)vg), ATe )|
=NL;+ NL,. (13)
First, the term NL; is bounded in the following way:
NLy < [|A"eT(G' (up?)[[ A" v]| < cl|ATemAG! (u) ||| ATem o]

o0
< e1g'(cal| Ae ™ u||)[[ A" 0|® < e1 ) nlan|cz Tt | ATem Ay "2, (14)
n=1
where c; and ¢z are constants depending only on 7 as indicated by Lemmas 6 and
8 which were used in the second and the third step, respectively. Applying Lemma
9 with z = v, 7 = 1, s = 1/(n + 2) and raising the resulting inequality to the
(n + 2)th-power leads to

”Ane'rA,U“n+2 < 2n+lcrll+1“An,U”n+2 + 2n+lcg+l7_“An+1/(n+2)eTAv|'n+2 . (15)
Interpolating the quantity on the right-hand side of (15), viz.
”An+1/(n+2)erAv|| < “AneTA'U||n/(n+2)||An+l/26TAUI|2/(n+2), (16)

and inserting this into (15) gives, via (14), the inequality

o0
Nirse (Z n|an|03_1||A”vll"‘1> 1™ ]?

n=1

o0
+ et (Z n|an|c2-1nA"efAvn"-l> | AneTAu]||| AT+1/2eT4y |2
n=1
= c1g'(c2[| AT | A"0[|* + a7 (call AT H0))[| AT A0 ||| AT 26 4Ay|2,
(17)
where ¢1, ¢2, c3 and ¢4 are constants depending only on 7.

Since N Ly contains v,, it cannot be handled in the same manner. However, a

bound comparable to (17) is not unexpected assuming more regularity (a larger
value of 7). Notice that N L has the form

(Are"A(wawz),ATeTAz). (18)
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Assuming 7 > 3/2, Lemma 10 may be applied with w = G(u), z = v, 7 = . There
follow the inequalities

NL < i AT G(u)|l[| A" + ear|| AT eTAG (w)|| | ATH/2eT v |2
< erglea| AT ul) [ A™|1® + catg(call AT u]) | AT/ 2eTAu| ®
< erglea|| AT A™|1* + csg(eal| ATem o[ AT 2|17, (19)

where c1, ¢z, ¢3 and ¢4 are constants depending only on .
Collecting the estimates (17) and (19), one obtains

2| AT A + (= — cyrh( AT )| AT e

< ezh([|A™||) [ A™[|? (20)

with h(s) = g(cs3s) + s¢'(cas) and c¢1, c2, c3 and ¢4 constants depending only on 7.
From the differential inequality (20) it is straightforward to advance the conclusion
v(-,t) € D(A"e™®4) for 0 < t < T where

t
7(t) = 7o exp [— c1 / h(”A”eT"AvoH2
0

tl
ba [ n(ATE DA ) at . (21)
0
Expressing this in terms of u yields the final result. O

Theorem 11. Let G be an entire function with Taylor series expansion Zf:o an 2"
about 0 and let g(r) = 3.°°, |an|r™ for v > 0. Let A = (I — 8%)*/? and suppose
ug € D(A"e™4) for some 19 > 0 and n > 5/2. Assume that the solution u of (1)
lies in C(0,T; D(A™)) for some T > 0. Then u € C(0,T; D(A"™(MA)) where 7(t)
is as depicted in (21) with h(s) = g(c3s) + sg’(cas) and c1, c2, c3 and cq constants
depending only on n.

Remark 12. If G(z) = 2? is a pure power, then h(s) = cos? for some constant cg.
Consequently, 7 has the form

7(t) = Toexp(—7(t)),

where
P

tl
d+C2Co/ ||A”u(-,t")||”+2dt”] dt’
0

V)= [ a

and d = || A"e™Ayq||.

Remark 13. In the case of the generalized KdV-equation (L = —82 and G(z) =
2P), no a priori Sobolev boundedness is needed if p < 4. Namely, if ug € D(A"e™4)



356 J. L. Bona & Z. Grugié

(m,70 as in the theorem), then uy € D(A") and since the generalized Kdv-
equation is globally well-posed for this choice of the parameters (cf. Ref, 21),
u € C(0,T; D(A")) for all T > 0. Hence, for p < 4 in the generalized KdV-equation,
a solution that starts analytic in a strip remains so for all time. However, for p>4,
a priori Sobolev bounds are not available for large initial data. Indeed, for p = 4 we
know that solutions blow up in finite time (see e.g. Refs. 3 and 23). Moreover, for
p > 4, numerically obtained evidence and some theory suggest that blow-up occurs
for all p > 4.571! In these contexts, our theory shows a solution initiated with g
disturbance that is analytic in a strip remains analytic in a, possibly smaller, strip
up to the time of blow-up. Obviously, the strip of analyticity must shrink to zero
as t approaches the blow-up time.

5. Rate of Decrease of the Uniform Radius of Analyticity for
BBM-Type Equations

Consider (2) with the polynomial nonlinearity G(z) = z + z” and the homogenecous
dispersion, a(§) = |{|* where p = m/n > 1 is rational, m, n relatively prime and n
odd and g > 1, and rewrite it in the form

1
(I + L)u; + <u + up+1) =0. (22)
p+1 z

"The point of this assumption on p is that, by a suitable choice of branch of the map

z— 2!/™ it can be assumed that G is real on the real axis. Recall that the symbol

of L is ||, and so the operator I + L can be written as A* where the symbol of A

is (1+ |€]#)!/#. Note that in terms of regularity, A is equivalent to (I 032,
The initial data ug will be taken from a Geverey class, viz.

up € D(ASTH/2gT04) (23)

for some €,75 > 0. A suitable value for ¢ will be determined presently. Let u be a
solution of (22) with initial data wg. As p > 1, u is globally defined and lies at least
in C(0,T; H*/**€) for any T > 0.

As in the last section, let 7(t) be a positive, decreasing, C!-function such that
7(0) = 7o. Our goal is to obtain a priori estimates on the Gevrey-class norms
||Asth/2emA | as we did for KdV-type equations in Sec. 4. Taking the Ls-inner
product of (22) with A%e%™4y followed by some straightforward manipulations,
there appears the differential inequality

lillAE+”/2eTAu|l2 ‘ 7~_||Ae+p,/2+1/267—Au“2

2dt
< c||Ae+1/ZeTAup+1||“As+1/2e'rAu|| ) (24)

Since the spaces D(A"¢™4) are Banach algebras for n > 1/2, the right-hand side
of (24) may be bounded by c||A+1/2eTAy||P+2 for 4 suitable constant ¢ possibly
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depending on p, p4 and €. Taking that into account and exploiting the interpolation
inequality presented in Lemma 9, (24) leads to

1d

e ||A5+p/26TAu“2 _ ,T-_“Ae+y./2+1/26-rAu||2

< C||AE+1/2U||:D+2 + CTs(p+2)||A5+1/2+se'rAu”p+2 ] (25)
Next, interpolate the last term in (25) as follows. For any s such that
p/2<1/2+s<p/24+1/2,

write

||As+1/2+se‘rAu|| < ||Ae+p/267—AuH—2s+y,||As+p/2+1/2e'rAu||1+2s——u_
Using this in (25) yields

2dt
+ ers(Pt2) ||A6+u/2eTAu”(—2s+u)(p+2)“Ae+u/2+1/2eTAu“(1+2s—u)(p+2) .

(26)

1d ”As+u/2€'rAu||2 - 7-_||As+u/2+1/26'rAu”2 < c||Ae+1/2u||p+2

The specification
-1 1
H =
2 p+2
optimizes the exponents, and with this choice the differential inequality (26)
becomes

1d “Ae+,u/2e‘rAu”2 L C(—7" o Tl+w ||Aa+p/26'rAu||p)||Ae+p./2+1/26'rAu||2
2dt

< ¢f| A5TY 2y PF2, (27)

Recall that € > 0 was arbitrary in the preceding ruminations. Since p > 1, we
can set € = pu/2 — 1/2. With this value of ¢, the right-hand side of (27) becor.nes
c|| A#/?u||P*2. The advantage of this choice of ¢ is that the Lz-norm of APy s a
conserved quantity as is readily seen by multiplying (22) by u. Hence, the right-
hand side of the differential inequality (27) is equal to a quantity independent of
time, namely to ¢|| A#/?ug||P+2. The inequality (27) can be analyzed in the following
manner. As long as

—f — SRR getn/2gm Ay P > 0, (28)
(27) implies

%”Ae-‘ru/QeTAuHQ < C”AE+1/2UOHP+27
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and thus

| A2 Au| < || AH/ 2 Ao 4 of A+ 2y [ HD 24172 (29)

Inserting this into (28), it is concluded that (29) will certainly hold as long as

i< —[HAE'H‘/QeT”AuOH + c”As+1/2uO”(p+2)/2t1/2]p7.1+ 2=+ 2) ) (30)

Straightforward integration yields the following lower bound for 7; for allt >0

1 1
T(t) > = ,
K Tu_l + Zﬁzgth--'fis"zpiz; (31)

.Whe.re K is. a constant depending on u, p, 79 and wug. Consequently, asymptotically
in time, 7 is bounded below by a positive constant times

T (32)

I'X very interesting feature of (32) is its independence of the strength of the non-
linearity p. Hence, the influence of the degree of the nonlinearity weakens as t gets
larger, and vanishes in the limit as t — oo.

The results obtained in this section are summarized in the following theorem.

Theorem 14. Consider (2) with the polynomial nonlinearity G(z) = z + 2P and
homogeneous dispersion (€) = |€|* where p > 1. Assume that for some 19 > 0
the initial data g belongs to the Gevrey class D(A*=Y2em0A) Then, the solution u
of (2) with initial value ug remains analytic for all positive times. More precisely.
u € C(0,T; D(A#=/2e74)) for all T > 0 where a lower bound on the uniform mdiu;
of analyticity (t) is given by (31). Moreover, asymptoticaﬂy in time (ast — oa), T
z.} bounded below by an algebraic expression of the form 5= which is indepﬂndr;nt
of p.

Remark 15. A lower bound on the rate of decrease of the uniform radius of
analyticity for the more general BBM-type models of the form (2) features expo-

nential decrease — the proof is completely analogous to the proof presented in
Sec. 4 for the general KdV-type models.

Remark 16. A natural question to ask is whether it is possible to derive an
algebraic lower bound for the KdV-type models at least in the presence of homo-
geneous nonlinearity and dispersion provided the dispersive effect is strong enough
(in particular, for the generalized KdV equation itself). One indication that the an-
s‘wer could be affirmative is the algebraic bounds for the growth of norms of deriva-
tives in. time for the generalized KdV equation obtained in Ref. 25. The setting of
Bourgain-Gevrey spaces (see Ref. 17) may be suitable here since Bourgain-Gevrey

spaces seem to be well-designed for exploiti i i i
Gesl ploiting dispersive effects in Gevrey cl
This will be addressed in a future work. o
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