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ABSTRACT. The focus of the present study is the BBM equation which models
unidirectional propagation of small amplitude long waves in shallow water and
other dispersive media. Interest will be turned to the two-point boundary
value problem wherein the wave motion is specified at both ends of a finite
stretch of the medium of propagation. The principal new result is an exact
theory of convergence of the two-point boundary value problem to the quarter-
plane boundary value problem in which a semi-infinite stretch of the medium
is disturbed at its finite end. The latter problem has been featured in modeling
waves generated by a wavemaker in a flume and in describing the evolution of
long crested, deep water waves propagating into the near shore zone of large
bodies of water. In addition to their intrinsic interest, our results provide
justification for the use of the two-point boundary value problem in numerical
studies of the quarter plane problem.

1. Introduction. Considered here are small amplitude long waves on the surface of
an ideal fluid of finite depth over a featureless, horizontal bottom under the force of
gravity. When such wave motion is long crested, it may propagate essentially in, say,
the z-direction and without significant variation in the y-direction of a standard zyz-
Cartesian frame in which gravity acts in the negative z-direction. For such waves,
the full three-dimensional Euler equations can be reduced to approximate models
featuring only one independent spatial variable. Such models go back at least to
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the middle of the 19t century and are included in works by Airy (1845) and Stokes
(1847) in the first half of the century. The model fealured in the present study has
its roots in the work of Boussinesq (1871), (1872), (1877) and later, Korteweg and
de Vries (1895). More detailed historical accounts and derivations can be found in
modern works (eg. Bona, Chen and Saut 2002, Miura 1976, Whitham 1974).

It suffices for describing the issue at hand to remind the reader that if z denotes
the coordinate in the direction of propagation and hg the undisturbed depth, then
the crucial dependent variable is n(z,t) = h(z,t) — ho where t is proportional to
elapsed time and h(z,t) is the depth of the water column over the spatial point x at
time t. It is assumed that the waves propagate in the direction of increasing values
of =, that the amplitude a of the waves is small compared to the undisturbed depth
ho, that typical wavelengths A of the motion are long compared to ho, so

h
a:hio<<1 and ﬁ:X0<<1*
and that the Stokes number
a  al?
= = 1.1
S ﬁz h% ( )

is of order one. The latter presumption implies a balance is struck between nonlinear
and dispersive effects. Under these assumptions, the non-dimensionalized evolution
equations

N+ Ne + Mz + Negr = 0 (12)
and
N+ Nz + Mz — Nt = 0 (13)

are formal reductions of the two-dimensional Euler equations. The former is the
classical Korteweg-de Vries (1895) equation first derived by Boussinesq (1877), while
the latter is the regularized long wave or BBM equation written by Peregrine (1967)
in his study of bore propagation and first analyzed by Benjamin et al. (1972). Both
these equations are written in nondimensional, laboratory coordinates, so the small
amplitude, long wavelength assumptions reside implicitly in 7, and hence should
be explicit in the auxiliary data attached to the evolution equation if physically
relevant solutions are to be considered. In (1.2) and (1.3) it has been assumed that
S = 1 and the horizontal variable is scaled by ), the vertical coordinate by hg, the
deviation 1 of the free surface by a and time by (ho/ 9)2.

Attention is turned to the just mentioned auxiliary data. It is standard in math-
ematical studies of these equations to focus upon the pure initial value problem in
which 7 is specified for all the relevant values of x at a given value of ¢, normally
taken to be ¢t = 0. That is,

n(z,0) = f(z) (1.4)
is specified for all values of z and values of ¢t > 0 represent time elapsed since the
inception of the motion as described by (1.4). Of course, if one wishes to be more
explicit about the small amplitude, long wavelength assumption, then f can be taken
in the form f(z) = aF(Bz) where F is independent of & and 3. The formulation
(1.4) does not inquire as to how the motion was truly initiated, but imagines a
snapshot taken of a disturbance already generated and then uses (1.2) or (1.3) to
predict the further evolution of the waves. The initial-value problems (1.2)-(1.4)
and (1.3)-(1.4) have a distinguished history both analytically and in experimental
studies and applications, which we do not enter here.
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Another natural formulation for both (1.2) and (1.3) is the quarter-plane or half-
line problem. This problem, put forward by Bona and Bryant (1973), is concerned
with waves propagating into an undisturbed stretch of the medium of propagation.
One imagines measuring the waves as they come into the relevant portion of the
medium at some fixed spatial point, say « = 0. This leads to the boundary condition

n(0,t) = g(t) for t>0. (1.5)

As in (1.4), if one wishes to make the small amplitude, long wavelength presumption
apparent, one might take g(¢t) = aG(ft) where G is independent of o and 3. Since
both (1.2) and (1.3) are written to describe waves propagating in the positive direc-
tion along the z-axis, it is not particularly desirable to impose a boundary condition
at a finite point to the right of z = 0. To do so can lead to reflected waves which
neither (1.2) nor (1.3) is capable of approximating accurately. (For such motions,
systems of equations are useful; see, for example, Bona, Chen and Saut 2002, 2004.)
This point leads one to pose the problem for all z > 0, thus placing the issue of
a boundary condition at the right-hand end-point at co. The equations (1.2) or
(1.3) along with the boundary condition (1.5) must be supplemented by an initial
condition as in (1.4), viz.

n(z,0) = f(z) for z>0. (1.6)

In practice, it is often the case that f = 0, corresponding to an initially undis-
turbed medium, but the mathematical theory does not require this. Function class
restrictions on u which imply at least a weak form of boundedness as x — +-co,
suffice to gnarantee that (1.2)-(1.5)-(1.6) and (1.3)-(1.5)-(1.6) constitute well-posed
problems. These restrictions are implied by the corresponding restriction on the
initial data f.

The initial boundary value problems (1.2)-(1.5)-(1.6) and (1.3)-(1.5)-(1.6), some-
times in a modified form that includes some kind of dissipation, have been used to
test the predictive power of (1.2) and (1.3) in laboratory settings (see, for example,
Hammack 1973, Hammack and Segur 1974 and Bona, Pritchard and Scott 1981).
However, when comparison between experimentally produced waves are made with
model predictions, one often has to resort to numerical approximation of its so-
lution. For this, a bounded domain is normally used, though there is theory for
numerical schemes directly approximating the initial boundary value problem for
(1.3)-(1.5)-(1.6) (see e.g. Guo and Shen 2000). There is also available analytical
theory for the two-point boundary value problem wherein (1.2) or (1.3) is posed on
a finite spatial interval with an initial condition and suitable boundary conditions.
Tn the case of (1.3), this was first developed by Bona and Dougalis (1980) who
showed that (1.3) is globally well-posed with the auxiliary specifications

n(z,0) = f(z), for 0<z<I,
77(0717) = g(t)1 n(Lat) = h(t)7 for t>0,

when f, g and h are suitably restricted. In the comparisons with experiments
mentioned above, f and h are taken to be zero and both the experiments and the
numerical simulations are only carried out on a time interval during which there is
no appreciable motion at the right-hand end of the domain of propagation. (In the
experiments, the waves were generated by a flap-type wavemaker and the boundary
data g in (1.5) or (1.7) was determined by measurement.) Numerical schemes for
this problem were put forward and tested in Bona, Pritchard and Scott (1985).
More recent work appears in Bona and Chen (1998). Theory based directly on the

(1.7)
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motion of the wavemaker rather than on an auxiliary measurement has recently
been developed by Bona and Varlamov (2005).

Study of the KdV equation posed on a finite interval began with the work of B.
A. Bubnov (1979). A review may be found in the recent paper of Bona, Sun and
Zhang (2003). For the Korteweg-de Vries equation (1.2), well-posedness holds for
the auxiliary specifications

U(I,O):f(x), fOI‘OS.’ESL,
n(0,t) = g(t), n(L,t)=h(), n(L,t)=r(t),  fort>0,

where f, g, h and 7 are drawn from reasonable function classes. It is also the case
that the problem (1.2) posed with

n(z,0) = f(z), for0<z <L,
7(0,t) = g(t), m(L,t) = h(t), Mex(L,t) =r(t), for t >0

is well-posed in reasonable function classes as Colin and Ghidaglia (2001) showed.

A natural question arises within the circle of ideas just reviewed. What is the
relationship between the two-point boundary value problems for (1.2) or (1.3) and
the quarter-plane problem for the same equations? It has been assumed, in using
a finite interval for numerical simulations, that these problems yield essentially the
same answer in the appropriate part of space-time, if h = 0 (and r = 0 in the case
of (1.2)). However, the only theory that has come to our attention is the work of
Colin and Gisclon (2001) connected with (1.9).

It is our purpose to bring forward exact theory comparing the two types of
problems in view here. The present paper deals with the BBM-equation (1.3), as
the title suggests. A companion paper will consider the same issue for the Korteweg-
de Vries equation posed as in (1.8).

The plan of the paper is as follows. Section 2 is devoted to the quarter plane
problem. We review existing theory briefly and then extend this theory in a way
that is useful for the present goals. Similar theory is worked out for the two-point
boundary value problem in Section 3, while the main comparison results are derived
in Section 4.

To give the study focus, the main result is here stated informally. Detailed
assumptions can be found spelled out in Section 4.

(1.8)

(1.9)

Theorem 1.1. Let u be the solution of the BBM-equation (1.3) posed for x,t > 0
with zero initial condition and the boundary condition described in (1.5) and let v
be the solution of the two-point boundary-value problem for the BBM-equation (1.3)
posed for 0 < z < L and t > 0 with zero initial condition and the boundary condi-
tions described in (1.7) with h = 0. For any A € (0,1) there is a positive increasing
function y(t) only dependent on the values of A, fot lg(s)| ds and fot g*(s)ds such
that

u(-,8) = v(, Dl o zy < y(E)e ™ E.

Remark: A more precise appreciation of the function v appears in Section 4, but
note the exponential approach of the two solutions as L becomes large.

2. The Quarter-Plane Problem. For the readers’ convenience, we commence by
collecting together the main notation to be used throughout. The positive real axis
[0,c0) is denoted by RT. Throughout this paper, I is used to denote the interval
[0,T] if T is finite and [0,00) if T = co. The class C(I) is the continuous functions
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defined on I, Cp(I) is the subset of C(I) consisting of all bounded continuous
functions on I, while Co(R*) is the subset of bounded and continuous functions
that vanish at +oco. For p > 1, L, = L,(R") is the Lebesque space with its usual
norm; the notation | - |, = || - ||z, will be used. The norm on Cy(R*) and Co(R*)
is | - |oo- For any real number s, H® = H5(R™") is the usual Lo—based Sobolev space
with its norm abbreviated by ||f|ls = ||fllg- and H = H?*(0,1) with its usual
quotient norm denoted by ||f||z;. If J is an interval in R and X a Banach space,
then C(J; X) consists of all continuous functions defined on J with images in X and
Cy(J; X) is the subspace of functions f € C(J; X) such that sup,¢; [|f(¢)||x < oco.
If j > 1 is an integer, then C7(J; X) is the subset of C(J; X) whose elements are
j-times differentiable with respect to the variable t. These spaces carry their usual
norms.

Considered now is the quarter-plane problem for the BBM-equation

Ug + e -+ Wy — Uggr = 0, z>0, t>0,
u(0,1) = g(t), t>0, (2.1)
u(z,0) = 0, z >0,

repeated here for easy reference, with an undisturbed initial medium and with the
natural compatibility condition

u(0,0) = g(0) = 0.
Write the BBM-equation as
U — Uggt — —Ug — Ulg,

and formally solve for u; (see Benjamin et al. 1972 or Bona and Luo 1995) to obtain

uy(z,t) = g'(t)e™" - /Ooo P(z,y)(uy (. t) +u(y, )uy (v, ) dy,  (22)

where i
— = _ o (=ty) —lz—yl
P(z,y) 2( c I ¢ ) (2.3)

Since limy_,0 P(z,y) = 0 and P(z,0) = 0, integrating by parts on the right-hand
side of (2.2) yields

(et = ¢+ [ K@n)(uw+gRen)d @9

where
1
K(z,y) =5 (e"(“y’ +sgn(z — y)e"”‘y')- (2.5)

Formally integrating with respect to the temporal variable over [0,¢], and recalling
that g(0) = 0, one obtains the integral equation

u(z,t) = g(t)e ™ + /Ot /000 K(z,y) (u(y, s) + %uz(y,s)) dyds. (2.6)

Note that if u(z,0) = f(z) is not the zero function, then f will also appear on the
right-hand side of (?77), viz.

e, = 1)+ o0+ [ [ Kloa)(uln9)+ 33209 dvds. 21

The main result of this section is now stated.
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Theorem 2.1. Let I = (0,T] where T is positive or I = [0,00) if T = co and sup-
pose the boundary value g € C(I). Then (2.1) is globally well-posed in the sense that
there is a unique distributional solution v € C(I; H(R*)) which depends continu-
ously in C(I; H*(R*)) on g € C(I). Moreover, u is C™ in the spatial variable z. If
g € C*(I) for some k > 1, then the solution u is a classical solution. Furthermore,
for any given X € (0,1), there are functions A(t) = Ags(t) and B(t) = Bya(t)
which only depend on the values of A, fot lg(s)| ds and fot g%(s) ds, such that

u(z, B)] < lg(t)]e™® + A(t)ePD P

for any (z,t) € R* x I. Furthermore, if g lies in Cy(1) N L1(I), then in the above
inequality, |g(t)|, A(t) and B(t) can be replaced by three constants only dependent
on the values of |gleo, |g|1 and |gla.

The proof will be provided at the end of this section. The result will follow from
preliminary ruminations which we begin now.

Theorem 2.2. (Local Erzistence) If g € C(I), then there is a positive, finite value
To and an associated interval Iy = [0,Ty] C I such that integral equation (2.7) has
a unique solution u, say, lying in the space C(Io; Cy). Moreover,

tl_l}& u(z,t) =0 (2.8)
in Cp(R*) and
lirg+ u(z,t) = g(t) (2.9)

in C(Iy). The solution u depends continuously in C(Io;Co) on g € C(ly).

Proof. The first part of the proof is made via the contraction mapping principle
in the space C(Jo; Co(R*)) applied to the operator which is defined by the right-
hand side of (2.7) (see Bona and Luo 1995). If u solves (2.4), then u assumes the
initial and boundary conditions expressed in (2.8) and (2.9) because of the form
of K. The continuous dependence of u on g follows because u is obtained by a
contraction mapping argument in which the operator clearly depends continuously
on g. More precisely, suppose v and v are solutions of (2.7) corresponding to g and
h, respectively, and suppose v to be obtained via the contraction mapping principle.
In an obvious notation, write

u=Ag(u) and v=Anw)
where Ay connotes the operator on the right-hand side of (2.7), and similarly for
Ap. Notice that
w—v = Ag(u) ~ An(v) = Ag(u) — Ag(v) + Ag(v) ~ An(v),
and that, consequently,
lu = vllcnicomey < 14g(w) = Ag)llencomy + 19 — hloo
<Ol —vliowncomty) + 19 = Ploos

where § < 1 is the contraction constant associated to Ay and I; = [0,7}] with
0 < Ty £ To small enough that v lies within the ball where Ay is contractive. It
follows instantly that

1
llw — vllecomey) < 1—_—9|9 — hloo

showing that the solution mapping g — u is in fact locally Lipschitz continuous.
(Indeed, this mapping is analytic, but we do not stop off to pursue this point here.
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See Zhang 1995 for theory for (1.2) in this regard.) A straightforward iteration of
this argument yields the result on [0, Tp). O

The same type of argument establishes the next result.

Theorem 2.3. If g € C(I), then there is Iy = [0,Ty] C I such that the integral
equation (2.7) has a unique solution u, say, lying in the space C(Ip; H(RT)) and
satisfying the initial condition (2.8) in H1(R*) and the boundary condition (2.9) in
C(Iy). The solution u depends continuously in C(Io; H(R™)) on g € C(Ip).
Corollary 1. (Regularity) If u € C(Io; Co(R™)) solves (2.7) where g € C(Ip), then
u i G in the spatial variable x and Olu € C(lp; H*(RY)) for j = 0,1,2,---.
Moreover, v comprises a distributional solution of the BBM-equation on Rt x Iy.
If g € C*(Iy), for some k > 1, then u is a classical solution of (1.3) on R x Ij
and 8i6iu € C(Io; HY(RY)) for0< i<k and 0 < j.

Proof. It is straightforward to deduce that if u € C(Iy; H}(R')) solves (2.7), then
ug exists and

t
we(a,t) =—g(t)e™ + (u{;r:, 8)+ —;"l'.'.g{.‘i'?, s}) s

LY . 1.s
- éjl; /r; (e~ 4 e_l"_”l) (u('g,s} : 5::."{1;‘ q)) dy ds.

Examination of the right-hand side reveals ug lies in C(Ip; H'(R')) and thus wug,
exists because of the extra spatial smoothness; moreover,

T fﬂ (*u._t(;::,s) + ula, 8)ug (2, ‘:)) is

(2.10)

(2.11)

o i 1,
| / f K(zy) (u{y, )+ —u*(y, s)) dlyels.
SO S0 2
A perusal of (2.11) indicates that ugzz € C(Ip; H'(R™)). Inductively, it is shown
that diu ¢ C(Iy; H1(RT)) for every j > 0, hence, v is C* in z. Formulas (2.11)
and (2.7) combined imply that u is a distributional solution of the BBM-equation.
Indeed, the combination

w(z,t) — ugg(z,t) = — /Ot (uz(:v, 8) + u(z, s)um(x,s)) ds

lies in C*([0, Tp); CE(RY)) for any k > 0 and the combination
Oe(u = ugy) + Ug + vty
is comprised of continuous functions whose sum is identically zero.

The further temporal and spatial regularity follows by a continued bootstrap
argument in case ¢ has some differentiability. O

Notice that the difference u(z,t) — g(t)e~%, which according to (2.7) is equal to a
double integral, is one order smoother than either « or g in the temporal variable ¢
and is C* in the spatial variable z. Moreover, it has zero initial value and vanishes
at £ = 0 and in the limit as £ — oo, for any ¢ > 0. This observation leads one to
introduce a new dependent variable

Uz, t) = u(z,t) — g(t)e ®. (2.12)
Writing (2.1) and (2.7), respectively, in terms of U leads to the equations
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Us + Ug + UUy — Uggy = —(g(t)e—z +g(t)e™ U + %gz(t)e_zm) . 2>0,t>0,

U(,t)=0, U(z,0)=0, z>0,t>0
(2.13)
and

U= [ [ K09+ 6w + 50300 dyds

| , . : , (2.14)
T p—3 —,-T _ .2z 2
+ 5 %€ /0 g(s)ds + (36 3¢ )/0 g°(s)ds.

It is helpful to understand the relationship between solutions of {2.13) and (2.14).
Note, first, that if g € C(I), then (2.14) has a unique solution U € C'(Iy; H(Rt))
in light of Theorem 2.3, where I = [0,Tb] C I. Since the integrals [’ g(s)ds and
fg 9%(s) ds are continuously differentiable with respect to ¢, it follows immediately
that such a solution of {2.14) is a classical solution of (2.13). That is, all the terms
in (2.13) exist classically, are continuous functions of (z,t), and the equation is
satisfied pointwise.

Suppose instead that U € C(Io; HY(R')) is a distributional solution of (2.13).
Then the combination Uy — Ugg: lies in C(Ip; La(RY)). Moreover, as HI(RT) C
Co(Rt), U takes on the boundary condition at z = 0 specified in (2.13) in the
strong sense of bounded continuous functions. Thus the distribution V' = U, satisfies
(I —82)V = F where F lies in C(lp; L2(R™)). Elementary considerations show that
V must satisfy the equation

Vi, t) = /0 ” Pz, y)F(y, t) dy. (2.15)

The right-hand side of (2.15) lies in C(Ip; H2(R1)). Straightforward machinations
then imply that U satisfies (2.14). Thus, it is ascertained that (2.13) and (2.14)
are equivalent at Jeast in the context of solutions in C(Io; H*(R™)). As solutions of
(2.14) in this function class are unique, so too are such distributional solutions of
(2.18).

Attention is now turned to the provision of a priori deduced bounds that imply
the local well-posedness is in fact global. Standard energy estimates come to the
fore in this endeavour. (Note that the solution U has sufficient regularity to justify
the various formal calculations embarked upon now.) Multiply both sides of (2.13)
by 2U and integrate over R* with respect to z. After suitable integrations by parts,
there appears

d

E/Ooo (Uz(w,t) + Uﬁ(m,t)) dz

. /000 20 (g(t)e™ + g(t)e™*U + 39" ™) do.
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Further integrations by parts and straightforward estimates yield
d o0 (o)
SO = o) [ e U@ ot 20) [ e U@ 0 da
0 0
o0
+ 2g2(t)/ e~ U (x,t) dx
0

1
<lg@OIUEBIT +1g®ONUE Bl + 592(t)llU(-,t)II1-
It follows that
L1l < SlgOUC, Bl + 2lo@)] + 76°()
dt » 1= 2 g ) 1 2 g 49 =
Applying the Gronwall lemma, it is concluded that

NVl < /t (1|g(s)| + l_92(5)>e%f:|9(‘f)|d"‘ ds
“Jo \2 4

e t 1
1 fElg(m)ldr = 242
<e | (Glo@+ 36°@) ds.

Using the bound in (2.16), the H'-norm of U; can also be estimated. Multiply
(2.13) by U; and integrate over Rt with respect to = to reach the relation

(2.16)

[o.@) 1 1 A
U, 0112 = —/0 Ut(a:,t)(U + §U2 +g(t)e " + g(t)e™*U + Egz(t)e_z") dz

T

1 = . 1 _2z
< |Usa(, )2|U + 5U2 +g(t)e™® + g(t)e U + 5gz(t)e =),

< IO (L o@D+ ST G2 + Slae)] + 36°)).

As a consequence, it is deduced that

1 1 1
TG0l < @+ lg®ODIVE DI+ SIVCDIE + 519+ 76°(6). (217)
The bounds in (2.16) and (2.17) together with a standard iteration of the local

well-posedness theory allow the following conclusion.

Theorem 2.4. The initial-boundary-value problem (2.13) is globally well-posed for
data g € C(I). The solution U respects the bounds in (2.16) and (2.17), 83U and
OIU; lie in C(I; HY(RT)) for all 5 > 0. Moreover, if g lies in C(I) N L1(I), then
U € Cy(I; HY(R)) and

1 1 1
UGBl < edloh (Slgh + 7lalz), (2.18)
uniformly fort € I.

Theorem 2.5. If g € C*(I) for some k > 0, then the solution U of (2.13) has the
properties o
oi8iU € C(I; HY)
forevery j >0 and0<i<k+ 1.
The proof is similar to that of Corollary 1.

Corollary 2. Ifg € C(I), then the solutionu of (2.7) lies in the space C(I; H®(R™))
and

Il < lo@1+ [ (Flote)l+ o (@) et £ ds (219
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If, moreover, g € Cy(I) N Ly(I), then the solution u of (2.7) lies in Cp(I; HY(RY))
and

1 1 1
et )l < lgloo + 219 (gl + 7lgf3)-

Theorem 2.6. Suppose g € C(I) and A € (0,1). Define A and B by

At) = Ay(t) = evx o lall ds /0 (ﬁlg(s)l + 1—1292(3)) ds (220

and
B(t) = B,() =1+ /t (3l(6)] + £6%(s)) ds. (2.21)
s , \4 8
If U is the solution of (2.13) with auziliary data g, then
[U(z,t)] < A(t)eT=3 1>, (2.22)

If, in addition, g € C(I) N Ly(I), then A(t) and B(t) are uniformly bounded above

by
I—eiy(__ L L2
&=t (26(1 mpvilh 12'912)

and ) ’
B=1+- ~l9|3
+ 4|g|1 + 8|g|2)
respectively, for t € I. In this case, U respects the bound
U(z,t)] < AeToxt=>c, (2.23)

Proof. Write U = e**U, so that U? = e~**UU. The integral equation (2.14) and
elementary considerations yield the inequality

t o
‘U(w,t)| < / ’/ K(z,y)ev (0—}— g(8)e™¥U + lUf]) dy| ds
o 'Jo 2 :
13 i
/ g(s) ds’ + —1—(6_(1_’\)z - e_<2"\)z)/ g%(s)ds
0 12 0

< [0+ dweok|k@u]eea [ [o6,9)]_d

1
+ §me—(l—)\)z

+ /O°° ‘K(i,y)‘ek(z—y)_y dy /Ot \g(S)U(.’S)LOdS

+ —26(11_ ) ‘ /Otg(S) dS‘ + %/Ot g"(s) ds.

Direct calculation reveals that

/oo 'K(CL‘ y)ek(w—y)’ dy = ; _ A e~ 1=z _ 1 e 22
0 ' 1-)X2 1-)2 14+ A

1 N 1
1-=X2 " 1=\

<

and

/Ooo ‘K(w,y)e«\(m—y)e—y‘ dy = /\_(12_‘3% (e—(l—,\)m _ €—2>
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whence,
’U( t e / U(-, 8)loo + |9(s |)’U(-,s)}wds
- A)/|gs>|ds+ / 2(s) ds
:/0 b(s)‘U(-,s)'wds+/0ta(s)ds
where
b(s) = Ii—A(l + %IU(-,s)Ioo + |9<8)l)
and

a(6) = g =3 1906 + 739°@)

Applying the Gronwall lemma to the last inequality, it transpires that

¢ ) ) ¢
‘U(';t)lw < /0 alt — s)els N4 ds < elo b(T)dT/O a(s)ds.

Since |U (-, 8)loo < IUC, 8)1 < fy {319(T)] + $9%(7)} dr, it is the case that

/Otb(’r)dq-< t+/ lg(s)|ds + 5 //{ |+4g (T)}drds)

:m t+/0 lg(s)lds+§/ t—T){ T)|+4g ,,)}dT>
= I_iX(t_‘_/o ]g(s)|ds+t/o {Z|9(T)|+§92(T)}dﬂ'>
5 [lalas+ 250

In consequence, it follows that

]0(-,0‘ < At)e ™3,

oo
and therefore,
‘U(m, t)‘ < A()eTR e,
The first part of the theorem is proved. The second part follows immediately from
the first part and the extra assumptions on g. O
Corollary 3. If g € C(I), then for any A€ (0,1) and j > 1,
lim e**8JU(z,t) =0

r—o0
and

lim e**8IU;(z,t) = 0,

r—o0

uniformly for t in any compact subset of I.
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Proof. Taking the derivative with respect to z on both sides of (2.14), there appears

the formula

Ug(z,t) = /Ot (U(:c, 5) + g(s)e~%U(z, s) + —;'UQ(:B, s)) ds

- / /oo M(z,y) (U(y, s) +g(s)e YU (y,s) + %Uz(y, s)) dsdy (2.24)
0 —00

+ -/Ot (%g(s)(l —z)e " — %gz(s)(e_:D - 26_2’)> ds

where
M(z,y) = %(e—(wy) + e~1==ul),
Taking the t-derivative of (2.24) gives
Uz(z,t) =U(z,t) + gt)e "U(z,t) + %Uz(:r, t)
- [ M@ (U + o U0 + 50 w0) d

+ 5901 - 2)e™ = 2P (e - 267)

The inequality (2.22) implies that

lim e**U,(z,t) =0

T—00
and
lim e** Uy, (z,t) = 0,

r—o0

and these limits are uniform for ¢ in any compact subset of I. Note that
t
Uge(z, t) =U(z,t) + / (Ug(,8) + Uz, s)Uz(z,8)) ds
0

N /Ot (g(s)e_m s g(s)e_zU(m, 3) + %92(5)8_21), ds

and
Uszi(z,t) =Us(z,t) + Uz (z, t) + Uz, 5)Ug (2, t)

+ (st)e™ + 90U, 0) + 38*(0)e™>) .

T

The inequality (2.22) thus implies

lim e**Uyq(z,t) =0

T—00
and

lim e*Upg:(z,t) =0,

T—0o0

uniformly on compact subsets of I.

(2.25)

(2.26)
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3. The Two-point Boundary-Value Problem. Considered in this section is
the two-point boundary value problem

Vg + Vg + Vg — Vot = 0, 0<z<L, t>0
v(0,t) = g(t), v(L,t) = h(t), t=0, (3.1)
v(z,0) =0, 0<z<L

together with the compatibility conditions
v(0,0) = g(0) = v(L,0) = h(0) = 0.
The main result is as follows.

Theorem 3.1. If g,h € C(I), then there is o unique distributional solution v of
(3.1) which lies in the spuce C(I;C>([0, L])). The solution v depends continuously
on g and h. If g,h € C*(I) for some k > 1, then v satisfies (3.1) in the classical
sense on [0,L) x I.

This theorem is a consequence of the last corollary in this section. Its proof is
the object of the rest of the section.
Solving for v; in (3.1) as in Bona and Dougalis (1980) leads to

L
vt(z,t)=9’(t)¢1(m)+h'(t)¢z(w)—/0 Py(z,y) (vy(y,t) +v(y, )y (v,1)) dy, (3.2)

where

ple=m _ (_,—L-I—u! & =%
pi(z) = Lg% $a2(z) = = (33)
and
i - - s
Pr(z,y) = ST ( _ et 4 gleyl _ 2L—(a+y) 4 20 y|>l (3.4)

Since P (z, L) = Pr(z,0) = 0, integrating by parts on the right-hand side of (3.2)
yields

L
w(e ) =g O (@) +HORE + [ Kil@n@e+ 37wy 69

where

1 _ _ =
Ki(z,y) = 2(7L_—1)(“fﬂ—sgn(l‘—y)e'z U4 2b=(H) 4 ogn(z—y)e?t y')-

(3.6)
Integrate both sides of (3.5) with respect to the temporal variable ¢ and use the
facts that g(0) = h(0) = 0 to determine that

v(z,t) =g(t)d1(z) + h(t)$2(2)
t L
1
+ [ [ K newn + 59°0) dydr
0 Jo
Theorem 3.2. (Local Existence) If g,h € C(I), then there ezists Iy = [0,To] C I

such that the integral equation (3.7) has a wunique solution v, say, lying in
C(Iy; C([0, L))). Moreover,

3.7)

lim v(z,t) =0
t—0t+
in C([0, L]) and
lim v(z,t) = g(t) and lim v(x,t) = h(t)

z—0t z—L
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in C(Iy). The solution depends continuously in C(Io; C([0,L])) on g, h € C(Ip).

Proof. See Bona and Dougalis (1980) or the proofs of Theorems 2.2 and 2.3. O

Theorem 3.3. (Regularity) If v € C(Ip; C([0, L])) is the solution of the integral
equation (3.7) where g,h € C(Ip), then v is C* in x and for every j > 0, v €
C(Iy; C([0,L])). Morevver, the function v is a distributional solution of the BBM-
equation on [0, L] x Iy. If g, h € C¥(Iy) for some k > 1, then u comprises a classical
solution of the BBM-equation (3.1) on [0,L} x Iy and 8idiv € C(ly;C[0, L)) for
0<i<kand0<j

Proof. The proof follows the lines laid out in the proof of Corollary 1. O

As in Section 2, it is propitious to introduce an intermediate variable V' given by
the formula

V(z,t) = v(z,t) — [g(t)¢1(z) + h(t)¢2(z)] = v(z,t) — u(z,t) (38)
where
pu(z,t) = g(t)d1(z) + h(t)$2(z) (3.9)
and ¢; and ¢, are defined in (3.3). Then V(0,t) = V(L,t) = 0 for all t € I and
¢ oL i,
Viz,t)= /0 /0 Ki(z,y)(v(y,7) + Y (y, 7)) dydr. (3.10)

This representation makes it clear that V' is one order smoother in both space and
time than g, A and v. Additionally, V satisfies the equation

1

T Vz_ Tzt — V+ - 2 ) L, t e I

Vi+ Ve+V Vet (,u+p +2u)z O<z< €l (3.11)
V(0,t) = V(L,t) =0, V(z,00=0, 0<z<L, tel.

To extend the existence time interval from Iy = [0,7Tp] to I, a standard energy
method is used. Multiply both sides of (3.11) by 2V and integrate over [0, L] with
respect to z to obtain

o L
S|ﬂ(-,t)|oo”v(-,t)”§{i +2|u(, D2 [VE D)2 + () D)ooty D)2 Ve ()2 (3.12)
<@V (I3 +2(c) + ) IVl

where
c(t) = lg®)] + A ()],
The last inequality reduces to

1V 0)llay < 2e®IV Dl +elt) + () (313)

Solving this inequality yields the upper bound
t
IV Dl < / (c(s) + cz(s))e% Jie(rydr gg
0

t (3.14)
. /0 (c(s) + C2(5)) dse? Jo e(rydr,



BOUNDARY VALUE PROBLEMS FOR THE BBM EQUATION 935

Multiply (3.11) by V; and integrate over [0, L] with respect to x to reach the in-
equality

”Vi(v t)"?{i_‘/t(Lv t)VIt(L, t) + Vt(0>t)vzt (Oat)
L
_ 1 2 1 2
- /0 Vt(V+ V2 ut v+ p )Tda:
1 1
< MWWVatll oo,V + §V2 +p+uV+ 5#2I|L2(0,L)

1 1
<Vl IV + 5V + 1+ 1V + 58,000

Since K1,(0,y) = K1(L,y) = 0 for every y € (0, L], Vi(L,t) = V;(0,t) = 0 for all
t € I, and so it follows that

IV Ollay < (14+e@) IVl + 5 IVC Ol +e®)+ 330 (1)

Applying (3.14) in (3.15) yields an a priori bound on ||V;(,t)|| 1. The associated
a priori bounds in C(I; H}) allow iteration of the local result to obtain a solution
defined on all of 7. The regularity Theorem 3.3 then immediately allows inference
of the following result.

Theorem 3.4. The initial-boundary-value problem (3.11) is globally well-posed in
C*([0,L]). That is, corresponding to given g, h € C(I), there is a unique solution
V € C(I;H}) and V,V, € C(I;C>=([0, L])). The solution V respects the bounds in
(3.14) and (3.15) and depends continuously on wariations of g and h within their
function classes. In addition, if g,h € C(I) N Ly(I), then the H}-norm of V is
uniformly bounded, viz.

IVl < (gl + Il + 21913 + 2(h[3 ) 2 Ush A,

Corollary 4. (Global Well-posedness) The initial-boundary-value problem (3.7) is
globally well-posed. That is, corresponding to g, h € C(I), there is a unique solution
v of (3.7) in C(I;H}). The solution v lies in C(I;C([0, L])), depends continu-
ously in this class upon variations of g and h in C(I) and respects the inequality

6Ol < lo®)]+ [ (cl0) + ) ds et i

where c(s) = |g(s)| + |h(s)|. Moreover, if g,h € Co(I) N Li(I), then v satisfies the
time-independent bound

o)y < lgloo + (1ol + [Als + 21913 + 2[R[3) e30h P,

Theorem 3.1 now follows.

4. Comparison Results. Let u be the solution of the quarter plane problem
(2.1) for the BBM equation (2.1) where g is supposed to lie in € C(I) with the
compatibility condition g(0) = 0. Then, the value u(L,t) is well defined, where
L > 0 is as in the last section. Let v be the solution of the two-point boundary-
value problem (3.1) where g is the same as the boundary condition for u. The goal
of this section is to develop estimates of the difference between v and v on the
spatial interval [0, L]. Interest will be especially focused on the situation obtaining
when h = 0, as this case has considerable practical interest.
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To begin, introduce a new dependent variable
Qlz,t) =U(z,t) = U(L, t)¢2(2) = u(z,t) — kr(z, 1) (4.1)
where U is the solution of (2.13) or (2.14),
ki (@,1) = g(t)e ™™ + U(L, ga() = g(t)e ™ + (u(L,8) — 9()e ™" )gala)  (42)

and ¢, is defined in (3.3). A simple calculation shows that @ satisfies the initial-
boundary-value problem

1
Qut Qe+ QQe = Quur =~ (ke +ksQ 4 5k) , O<z<Lie>ol o
Q0,t) =Q(L,t) =0, Q(z,00=0, 0<z<L,t>0.

Because of the theory developed for U, @ is a classical solution which is C* in
the spatial variable z. The difference between @ and V, the solution of (3.8), is
a useful quantity to understand. Once this is appropriately bounded, the identity
v—u=V —Q— (kr — u) allows one to make a further estimate of the desired sort.
Denote by W the difference

W=V-Q=@w-—u)+ (kr —p). (4.4)
Then, W is differentiable in t € I and C* in z € [0, L] provided g,h € C(I), and
W satisfies the initial-boundary-value problem

Wet Wat 2[QQHWIW] = Waze = —(wta(W + Q) + 547)

1
—I—(kL+kLQ+§k%)z, O<z<L, t>0, (4.5)

w(0,t) =W(L,t) =0, W(z,0)=0, 0<z<L, t>0.

Multiply (4.5) by 2W and integrate over [0, L]; after integrations by parts there
appears

%/OL (W"'(x,t) + W2(z, t)) dz

L L
1
:2/0 QWWzdz—l—/o 2W((kL—u)+(kL—u)Q+§(k%—p2)—pW)md:c

L L
=2/0 (Q+,u)WWmda:+2/o ‘W((kL—,u)—l-(kL—p.)Q+%(k%—,u2))xdz
<1QC, 1) + 1l DloolW (Dl
+2[1+ Q1) 4+ 3 (ke 0) + 1)) | _Ie(ot) = A DIIWa (1))

(4.6)
where

Q(z,t) + p(z,t) = U(z,t) — U(L, t)¢2(z) + g(t)$1(2) + h(t)¢2(z)-
Notice that
1Q(, ) + 1 B)loo < 24U t)loo + [g(E)] + R(2)]

< [ (1s@)1+ 56°(2)) da-+ lo)| + Ao,
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Also, we have

1+ Q(a:,t)—l—% (k:L(:v, t) + ul, t))
=1+U(z,t) — U(L,t)pa(x)

+5 (9007 + UL, 042(2) + 9()1(2) + h(t)da(a))

—14 Uz, ) — UL 0)6a(0) + 3 (9(0e" + 9001 (2) + h(Da(z)),
with )
|1+, 8 + 5 (ke ) + 1) |
<14 UG o + 9]+ 51000
<1 lgOl+ 501+ [ (Flo)+5o*(e)) ds
and

kL () — p( 0l < lg()le™ + UL, 8) — h(2)].
Define the quantities

o) = [ (o) +536°(®) ds-+10®)| + Ih(0), (47)
D) = 1-+190)+ 510 + [ (Floe)]+56*(e)) ds (49)

and
B(t) = lg()le" + [U(L, 1) ~ h(o). (19)

With these definitions, it transpires that
d
W Ola < COIWE Ol + DOE(®),

whence,
1 11
WOl < [ Dis)E(s)elt 909 ds < efi 004 [ D(5)B(s)ds. (410
0 0

Theorem 4.1. Let g € C(I) and h =0, and let A € (0,1) be fixed. Then there is
a positive function y(t) which only depends on A and the values of g on [0,t] such
that

s t) = o(, )|y, < v(E)e™E.
Proof. When h = 0, Theorem 2.6 implies
UL )] = [u(L,8) - g(t)e™"| < A(t)eT> 2
where A and B are defined in (2.20) and (2.21), respectively. It follows that
E(t) < (lo(t)] + A@eTt) e,

and thus (4.10) gives

t B(s
WDl < e €09 [ Do) (1g()] + A)eFR) dseE
0
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where C, D and E are as in (4.7), (4.8) and (4.9), respectively. The definition of
W therefore entails that,
lu,t) — vl Ol <IW Dl + kLl 8) — sl Ol
fs Clr)d ' 2O —AL
<elo Clrdr D(s)(|g(s)| + A(s)e ™ )dse
0
+2g(8)le™" +2U(L,1)|
¢
<elo O d"/ D(s)(|g(s)| + A(s)e%'}s) dse
0

+ 2(|g(t)| + A(t)e?'—(%lt)e—”‘.
Define v to be
y(t) = el O ar /0 tD(s)(|g(s)| + A()ei2e) ds + 2(lg(8)] + AR, (411)
With this definition, it follows at once that

lu(,t) = (Ol < v(B)e™E

The theorem is proved. O

Corollary 5. Let g€ C(I) and h = 0. View v(z,t) = vr(z,t) as function of L as
well. Then, for any fived point (z,t) € RT x I,

lim vy (z,t) = u(z,t)
L—oo

where u is the solution of the quarter-plane problem (2.1).

The latter convergence is uniform on compact sets. More precisely, we have the
following,.

Corollary 6. Let g € C(I) and A € (0,1) be fized and let h = 0. For any € > 0 and
any finite time interval [0, To) C I, if L s chosen greater than 3 In ﬁZ—Q, then

|u(a:, t) - ’U(.’E,t)l <e
uniformly on [0, L] x [0, To)-

Remark: If the boundary datum g has the form g(t) = aG(8t) where G and o/3?
are both order one, then elementary estimates show that (t) is of order /8" In
consequence, our estimate indicates that L needs to be taken to be of order > 1/5*
if the time scale of interest is 1/8%. As 1/8% is, in these variables, the time scale over
which nonlinear and dispersive effects can make an order one relative contribution
to the wave profile, and as the wavelength is of order 1/8, this result is not too
bad despite the crudeness of some of the estimates. In any event, the principle that
has been established is that if boundary data g is provided on [0, T, then there are
values of L large enough that the solution of the two-point boundary-value problem
with h = 0 approximates well the associated solution of the quarter-plane problem.
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