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Summary. Let T be a contraction mapping on an appropriate Banach space B{X).
Then the evolution equation y: = Ty — y can be used to produce a continuous
evolution y(z,t) from an arbitrary initial condition yo € B(X) to the fixed point
7 € B(X) of T. This simple observation is applied in the context of iterated function
systems (IFS). In particular, we consider (1) the Markov operator M (on a space of
probability measures) associated with an N-map IFS with probabilities (IFSP) and
(2) the fractal transform T' (on functions in L' (X), for example) associated with an
N-map IFS with greyscale maps (IFSM), which is generally used to perform fractal
image coding. In all cases, the evolution equation takes the form of a nonlocal
differential equation.

Such an evolution equation technique can also be applied to complex analytic
mappings which are not strictly contractive but which possess invariant attractor
sets. A few simple cases are discussed, including Newton’s method in the complex
plane.

1 Introduction

In this paper we introduce a class of evolution equations associated with contrac-
tion mappings on a Banach space of functions B(X). The purpose is to produce a
continuous evolution toward the fixed point T of a contraction map 7', as opposed
to the usual discrete sequence of iterates zn = T"xzo that converge to Z.

The original motivation to devise such evolution equations arose from a desire
to perform continuous, yet fractal-like, (i.e., spatially-contracted and greyscale dis-
torted) “touch-up” operations on images. A fractal-based evolution method could
be used to produce arbitarily small local alterations to an image u(z) in a neigh-
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bourhood of a point xo € X that depend upon the behaviour of u at other regions
of X.

In addition to applying the idea to contractive fractal transform operators, we
show briefly that such methods can also be applied to to other mappings, e.g.,
complex analytic mappings, that possess invariant attractor sets. While a few simple
cases are examined here, a more thorough investigation will be reported in a future
paper.

The structure of this paper is as follows. In Section 2, we introduce the class of
evolution equations which take the form of differential equations involving functions
Or measures on an appropriate complete metric space (X, d). Section 3 reviews the
basics of N-map Iterated Function Systems with probabilities (IFSP) and associ-
ated invariant measures. In Section 4 is constructed an evolution equation scheme
so that time-dependent probability measures will evolve continuously (in time) to
the invariant measure 7 of an IFSP. In Section 5, we consider IFS-type fractal trans-
form operators on functions and illustrate the evolution scheme on a fractally-coded
image. In Section 6, some simple applications of the evolution method to complex
analytic dynamics are briefly considered, namely (i) iteration of quadratic maps and
(i) Newton’s method in the complex plane.

2 Evolution equations associated with contractive
mappings on Banach spaces

In all that follows, X will denote a closed and bounded subset of R", n = 1,2,
with d the Euclidean metric on X. Let B(X) denote a Banach space of functions
defined on X. Suppose that T : B(X) — B(X) is a contraction mapping, which is
to say

|Tu—-Tv| < er [[u—v]|, forallu,ve B(X), (1)

where cr € [0,1). From Banach’s fixed point theorem, there exists a unique § €
B(X) such that § = T'g. Moreover, if, for any yo € B(X), we define the iteration
sequence ynt1 = Tyn, n=0,1,---, then || yo — 7 |— 0 as n — oo.

The goal is to produce a continuous evolution from the initial condition yo to
the fixed point §. In other words, from the initial condition yo, we aim to find a
function y(t) that converges to § as t — oo, i.e., || y(t) =7 ||— 0 as t — oo. Consider
the evolution equation

% =Ty —y, (@)
where y = y(z,t), z € X, t > 0. Clearly the fixed point function 7 is a solution
of this equation — an equilibrium solution in the parlance of dynamical systems
theory. One immediately wants to know whether this equilibrium solution is globally
asymptotically stable, i.e, whether all solutions y(t) to Eq. (2) converge to 7.
Example: Let Ty = 3y + § for y € L*([0,1]), say. Then §(z) = 1 is the unique
fixed point of T'. In this simple case, where T' does not involve any operations on &,
the evolution of y is rather simple. For a given y(z,0), the unique solution to Eq.
(2) is _

y(z,t) = [y(z,0) — L)e™"2 + 1, (3)

and we see that y(z,t) — g(z) for all z € [0, 1].
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Theorem 1. Let B(X) be a real Banach space and T : B(X) — B(X) a contraction
map on B(X) with fived point function §. Then for any initial value y(x,0) = yo(z) €
B(X), the solution y(t) converges ezponentially rapidly to § as t — oo,

Remark 1. By a solution of Eq. (2), we mean a C'-curve y : [0,00) — B(X) such
that (2) is satisfied for each ¢ > 0.

Proof. First, rewrite Eq. (2) as

Oy _
5 TV =Ty (4)
Duhamel’s formula leads in the usual way to the equation
t
y(t) = yoe ™" + ™ / " (Ty)(s)ds. (5)
0

In the special case yo = §, we have y(t) = § = T% and

F=ge " +e* [ e (T7)(s)ds. (6)
o

Subtracting (6) from (5), one obtains
yt) -7 = (yo—7)et +et /Ot e*(Ty(s) - Tg)ds. )
By Minkowski’s integral inequality, it follows that
Iy@ -7 < lyo-glle'+e? /ot e’ || Ty(s) - Tg | ds, (8)

where the norm is that of B(X). Contractivity of T gives

t
1071 < Iw-gletvere™ [@hae)-slas @
0
Gronwall’s lemma then implies that for ¢ > 0,
ly@ -7l < llyo—7] e (10)
Since 0 < er < 1, it follows that || y(t) — § [— 0 ast — oo and exponentially

rapidly, in fact, and the theorem is proved.

2.1 Practicalities and the discretization of the evolution equation

Attention is now turned to a few practicalities of solving the evolution equation in
(2). In the computations reported below, we have employed a very simple forward
Euler scheme to compute y(t). If A > 0 denotes the time step and yo the initial
condition, then letting yn = y(nh), for n =1,2,. .., we have

Yn+1 =y’n+(Ty”l_y‘n)h1 n=07172a"" (11)
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Note that for h = 1, the above scheme reduces to the usual iteration procedure
Yn+1 = Tyn. In fact, the above recursion relation may be rewritten as

Yn+1 = Uyn
= hTyn+(1 _h)y’na n=0y172a"'1 (12)

which is a linear interpolation between y, and Tyn. If T is a contraction with
Lipschitz factor cr € [0,1), then U has Lipschitz factor cy = 1 — h(l = er). If
0 < h <1, then U is a contraction and the fixed point of U is g, the fixed point
of T'. In Section 3, we shall apply this method to contractive fractal transforms
(Iterated Function Systems with greyscale maps) on LY(X).

Note that the repeated application of the Euler operator U can be written as

" =2n:<’;) (1 - Rh)"k Bk Tk, (13)

k=1

This can have some interesting consequences on the evolution of y(t) to the fixed
point 7 of T. For example, suppose that h = 1/N where N > 1. Then the Euler
scheme over a fixed time interval, say between ¢ = 0 and t = 1, will involve higher
iterations of the operator T than the simple discrete iteration process g1 = Tyo
corresponding to h = 1. In the same way, a higher-order scheme for the integration
of the evolution equation (2) will also yield a more subtle approximation than does
straightforward iteration.

Suppose that the starting function yo is “flat,” for example, a constant function
on X. Then in the case that T is a fractal transform operator which produces spatial
contractions of a function (see Section 5), the resulting function UM yo could have
much more spatial detail than the iterate 1y = T'ug, although the higher-frequency
components will probably have rather low amplitude. This clearly indicates that the
Cl-curve y(t) does not have to pass through, i.e., interpolate, the discrete sequence
¥n = T™yo, n = 0. The prospect for enhanced spatial detail may become even more
pronounced when higher order integration schemes, e.g., Runge Kutta methods,
are used to approximate the differential equation. The points that arise from such
considerations are currently being investigated.

In the next section, we introduce Iterated Function Systems in their original
setting, namely, applied to probability measures on a compact set X.

3 Iterated Function Systems and invariant imeasures

The idea of defining an operator through the parallel action of a set of contraction
maps can be fraced back to a number of papers, for example, [16]. However, the
use of such systems of maps to construct fractal sets and supporting measures wag
described independently by Hutchinson [11] and Barnsley and Demko [2]. The latter
paper introduced the appelation “Tterated Function Systems”.

In what follows, (X, d) denotes a compact metric “base space,” typically [0, 1]".
Let w = {wi,--+,wn} bea set of contraction maps w; : X — X, to be referred to
as an N-map IFS. Let ¢; € [0, 1) denote the contraction factors of the w; and define
¢ = maxi<ign ¢. Note that ¢ € [0,1).
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Now let H(X) denote the set of nonempty compact subsets of X and h the
Hausdorff metric. Then (M, h) is a complete metric space [7]. Associated with the
IFS maps w; is a set-valued mapping W : H(X) — H(X) the action of which is
defined to be

N
w(s) = Jwi($), §eHX), (14)

where w;i(9) := {wi(z),z € S} is the image of S under w;, 1=1,2,---,N.
It is a standard result that W is a contraction mapping on (H(X),h) [11}; in
fact,
h(w(A),w(B)) < ch(A4,B), A,Be€H(X). (15)
Consequently, there exists a unique set A € H(X}, such that w(A) = A, the so-
called attractor of the IFS w. Moreover, for any So € H(X), the sequence of sets
Sn € H(X) defined by Sn41 = W(Sa) converges in Hausdorff metric to A.
Examples:
1. X =[0,1), N = 2: wi(z) = 1z, wa(x) = 32+ 2. Then the attractor A is the
ternary Cantor set C on [0, 1].
2. X =1[0,1), N = 2: wi(z) = sz, wa(z) = sz + (1 — ) for 0 < s < 1. Then
A =10,1). If s =0 then A= {0,1}.
Let M(X) denote the set of Borel probability measures on X and da the Monge-
Kantorovich metric on this set:

dm(p,v) = sup |:./x fz)du — /X f(w)du] } (16)

f€Lipy (X,R)
where
Lipy(X,R) = {f : X = R | |f(z1) — f(z2)| < d(a1,22), V21,22 € X} (17)

For i <i < N, let 0 < p; < 1 be a partition of unity associated with the IFS maps
w;, 50 that Zf__l pi = 1. Associated with the IFS with probabilities (IFSP) (w,p)
is the so-called Markov operator, M : M(X) — M(X), the action of which is

N
v(S) = (Mp)(S) =Y pin(wi (8)), VS €H(X). (18)

(Here, w;'(8) = {y € X | wi(y) € S}.) Then M is a contraction mapping on
(M(X),dn) [11, 7, 1]. Consequently, there exists a unique measure i € M(X), the
so-called inwvariant measure of the IFSP (w, p), such that g = My, Moreover, for
any po € M(X), the sequence of measures pun € M(X) defined by pn+1 = Mpn
converges in dy-metric to f.

Examples:

1. X =1[0,1], N = 2: wi(z) = 3z, wa(z) = 32+ 2, as in Example 1 above, with
p1=pz = % Then [ is the Cantor-Lebesgue measure supported on the Cantor
set C C [0,1].

2. X =[0,1], N = 2: wi(z) = 3z, wa(z) = jz + 3. The attractor of this IFS is
[0,1]. When p1 = p2 = %, the IFSP invariant measure is Lebesgue measure on
0,1]. )

3. [X ——J 0,1}, N = 2: w1(z) = 3z, wa(z) = 3T+ %, with p1 = 0.4, p2 = 0.6. The
IFSP invariant measure is pictured in Figure 1 (histogram approximation).
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Fig. 1. Histogram approximation to the invariant measure for the IFSP in Example
3 above. (1000 bins on [0,1] were used.)

4 Continuous evolution of probability measures to fixed
points of IFS Markov operators

As just mentioned, the iteration procedure,
,U«n+1=M,U4n, n=0;1725"" (19)

with initial condition o € M(X), produces a sequence of measures jti that converge
in dp-metric to the invariant measure ji = M of the IFSP (w, p). We aim now
to produce a continuous version of this evolution from po to ji. Consider measures
€ M(X) to be time-dependent, ie., u: X x B — R. In what follows, we shall use
the notations u(S,t) and u(t) interchangeably: the former specifically denotes the
p(t)-measure of a Borel set § € X.

The evolution of u(S,t) is defined by the equation

o _
B = Mp—p. (20)

This evolution equation for 4(S,t) may be interpreted as follows. Let to € M(X)
be tlie initial value of this equation and let S be a Borel set in X. Then (20) at S
is the ordinary differential equation

E‘%;Q = (Mp)(S,t) — u(S, 1)

N
= panwH(8),t) - u(S,1). (21)

Note that if go = ji, the IFSP invariant measure, then u(S,t) = p(8) for all ¢t > 0.
It remains to show that, if 4(0) # /i, then u(t) — 7 as t — oo (in das-metric).
Eq. (21) may be integrated to yield
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N t
WS = (e + 3 ome™ [ ulur(s), s 22)
i=1 o

It is clear that u(S,t) defined in (22) is a Borel measure on X. Evaluating at S = X
shows that u(t)(X) = u(0)(X) = 1. So u(t) € M(X). Also note that if S has
no preimages, i.e. SN wi(X) = @ for 1 < i < N, then (Mu)(S) = 0 so that
1(5,t) = po(S)e™ - 0 as t — oo.

Theorem 2. Let ji be the invariant measure of the IFSP (w,p) with associated
Markov operator M, so that MJi = fi. Then all solutions #(t) of Eg. (20) approuch
it ezponentially as t — oo in the das-metric.

Proof. In the special case that u(0) = f, it follows that the RHS of Eq. (20) is zero.
This implies that u(t) = f for all t > 0. More generally, we proceed as in Section 1.
Integrating Eq. (20), we obtain

u(t) = p(0)e + e~ / & (M) (s)ds. (23)

0

When p(0) = fi, we have u(t) = [ for all ¢ and clearly,

B=jge b+ e_t] e’ (Mp)(s)ds. (24)

Subtracting (24) from (23), multiplying the result by a function f € Lip1(X,R) and
integrating both sides of the resulting equation over X , there obtains

/X Fau(t) - /X fda /X Fau(0) - /X fda

< e

t
et [l [ gaauon- [ saum|as. )
0 X x
It follows immediately that
t
dm(u(t),B) < dm(u(0), B)e™" + e—t/ e*dm(Mu(s), Mp)ds. (26)
0
Contractivity of M on M(X) implies that
t
dr(u(t),p) < dM(p(O),ﬁ)e_t-f-ce—t/ e*dar(u(s), u)ds. (27)
0
As in Section 2, it follows that
dm(p(t),B) < dm(u0), @m)e ™t ¢>o0. (28)

Since ¢ € [0, 1), then necessarily das(u(t), i) — Oast — 00, once again exponentially
rapidly, thus proving the theorem.
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Fig. 2. Evolution of measures u(t) toward the IFSP invariant measure of Figure
1, according to Eq. (20). Initial value is 4(0) = m, Lebesgue measure on [0,1]. (a)
t=1.0, (b) t =3.0, (c) t = 5.0. As in Figure 1, these are histogram approximations
using 1000 bins on [0,1].
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5 IF'S operators on function spaces

IF'S operators on function spaces B(X) may be defined in a manner rather similar
to that of measures [9, 10]. For the moment, we consider general function spaces
F(X) supported on X. The essential components of a fractal transform operator are
as follows.

1. A set of N contraction maps w; : X — X; given a function u € F(X), each
map w; produces a spatially-contracted copy of u, u;(z) = u(w; '(z)) supported
on the subset X; = w;(X). Note: In the case of functions, we demand that
w(X) = UL wi(X) = X so that each point z € X has at least one preimage
wy (z).

2. The u;(x) are now modified by means of greyscale maps ¢; : R — R that
satisfy suitable conditions. Usually, they are assumed to be Lipschitz so that for
each ¢; there exists a K; > 0 such that

|¢i(t1) - ¢1(t2)| < Kiltl — tzl, for all ¢1,t2 € R. ' (29)

The result is a set of spatially-contracted and greyscale-modified copies of u,
namely, gi(z) = (¢souow] !)(z). (The set of contraction maps w; with associated
greyscale maps ¢; is also referred to as an “Iterated Function System with
greyscale maps” or an IFSM (w, &) [9].)

3. These fractal components gi(z) are then combined — with an operation that
is suitable to the space in which we are working — to produce a new function
v € F(X). The natural operation to combine fractal components in L? spaces
is the summation operation.

The net result of all of these operations is summarized as v = Tu, where T :
F(X) — F(X) is called the fractal transform operator, viz.

v(2) = (Tu)(e Z@ (2)- (30)

For a given p > 1 and with suitable conditions on the IFS map contraction factors
c; and the greyscale map Lipschitz constants K; [9], the fractal transform T is
contractive on L? (X)) with fixed point function @ € LF(X). The fixed point equation,

a(z) = (T8)(z) = »_ ¢i(a(w; ")) (), (31)

1=1

indicates that @ is “self-similar,” i.e., that it can be written as a sum of spatially-

contracted and greyscale-modified copies of itself. Moreover, for any uo € LP(X),

the sequence of iterates upt1 = Tun, n =0,1,2,---, converges in LP-metric to @.
The continuous evolution equation analogous to Eq. (20) is then

au(a, t) qu 7)) —u(z), z€X. (32)

i=1

In most applications, the greyscale maps are assumed to have an affine form, ¢;(t) =
a;t + Bi, so that the above equation becomes
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c}u

Z [ w(w; (z)) + Blx,(z )] -u(z), z€X, (33)

where I4(s) denotes the characteristic function of a set A € X, ie., Ta(z) = 1 if
z € A and zero otherwise.

Since the fractal transform T' does not contain any differential operators, Egs.
(32) and (33) are ordinary differential equations in u(z, t), involving only time deriva-
tives. Nevertheless, because of the terms w; ! (z), these DE’s are nonlocal in that the
time evolution of u(z,t) is determined by values of u generally not at z. This can
lead to rather complicated evolution.

This evolution scheme and its implementation are quite similar to that discussed
for measures in the previous section. As such, we do not present any examples and
proceed to consider block fractal transforms in the next section.

5.1 Fractal transform operators and block image coding

It is overambitious to expect that a general image, viewed as a function or measure,
would be well approximated by a union of shrunken and distorted copies of itself.
Following the idea of Jacquin [12), however, it has been found that an image u may
be well approximated by a union of shrunken and distorted copies of subsets of
itself. This has been the basis of block-based fractal image coding [3, 8, 13] which is
reviewed very briefly below.

For simplicity, the support X of an image will be considered as either [0, 1]2
(continuous support) or an 7 x n pixel array (discrete support). Consider a partition
of X into subblocks R; with X = U; R;. The R; are assumed to be “nonoverlapping,”
either intersecting only at common boundaries (continuous case) or not at all (pixel
case). Associated with each “range block” R; is a larger “domain” block D; C X
so that R; = w;(D;) where w; is a 1-1 contraction map. The image function u|x,
supported on each R; is also found to be well approximated by a spatially-shrunken
and greyscale-modified copy of u|p,:

u,|R1,zqf)iouIDi:q&ioulpiow;l, 1<i<N. (34)

Once again, the ¢; : R — R are greyscale maps that are typically affine maps in
practice.
Because the range blocks are nonoverlapping, we may write the above relation

ag

u(z) ~ (Tu)(z Z¢, u(wi(z)), =€ X. (35)

The block fractal transform operator T has the same form as the operator in Eq.
(30). It is a well-known result [1] that if the “collage distance” || u — T'u || is small,
then u is well approximated by the fixed point @ of T. More precisely,

lu—a] Tull, (36)

where ¢ is the contraction factor of the fractal transform operator 7. This allows
the inverse problem of fractal image coding to be reformulated into a more tractable
problem. Instead of searching for a T whose fixed point @ is close to u, we search
for a T that maps u close to itself.
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In Figure 3 is presented the fixed point approximation % to the standard 512 x 512
Lena image (8bpp) using a partition of 8 x 8 nonoverlapping pixel blocks (642 = 4096
in total). The “domain pool” for each range block was the set of 322 = 1024 16 x 16
non-overlapping pixel blocks. (This is clearly not optimal.) This image was obtained
by starting with the seed image wo(z) = 255 (plain white image) and iterating
Un+1 = Tun to n = 15. Iterates ui, uz and us are also shown in this figure.

Fig. 3. Starting at upper left and moving clockwise: The iterates u1, u2 and u3 along
with the fixed point @ of the fractal transform operator T' designed to approximate
the standard 512 x 512 (8bpp) “Lena” image. The “seed” image was uo(x) = 255
(plain white). The fractal transform T was obtained by “collage coding” using 4096
8 x 8 nonoverlapping pixel range blocks. The domain pool consisted of the set of
1024 nonoverlapping 16 x 16 pixel blocks.

In Figure 4 we show the time evolution of images u(z,t) as determined by u; =
Tu—u where T is the fractal transform operator described above and used in Figure
3. In this case, the time evolution proceeds at a slower pace than in Figure 3, starting
at uo = 255 (plain white image) and proceeding in time steps of 0.2 using a step
size of h = 0.1 in the Euler method of Eq. (11).
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Fig. 4. Start.mg at upper left and moving clockwise: The images u(x,1) at times
02 0.4, 0.6, 0.8 produced from u(z,0) = 255 (plain white) under evolution by

= Tw—u where T is the fractal transform whose discrete iteration was shown in
Flgure 3. Buler method, step-size h = 0.1.

6 Applications to complex analytic dynamics

Here we are concerned with complex iteration dynamics zp4; = R(zn), where z € C
and R : C — C is a rational function of degree greater than or equal to two. The
closure of the set of all repulsive k-cycles of R, k > 1, is the so-called Julia set Jr
14, 5]

For simplicity, the examples here will be taken from the well studied one-
parameter famly of quadratic maps R(z) = 2% +¢c. When ¢ = 0, the Julia set
of R(z) = z* is the unit circle. The points Z = 0 and Z = oco are attractive fixed
points of R(z). The point Z = 1 is repulsive. The set J acts as a boundary between
the basins of attraction of 2 = 0 and Z = vo. As ¢ decreases from 0, the Julia set
becomes “crinkly” and the finite attractive fixed point moves leftward along the
negative real axis. At ¢ = —3/4, this fixed point becomes neutral. Further decrease
of ¢ produces an attractive two-cycle that becomes neutral at ¢ = —-5/4. This is
the start of the famous period-doubling bifurcation associated with this iteration
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process. Much more can be written about the iteration dynamics, but we keep the
discussion short here.

Following Eq. (2), the evolution equation associated with the quadratic map
R(z) = 2* + c will be

dz .2
=7 +c— 2z ) (37)
where z(t) € C. If we let 2 = z+1ty and ¢ = c1 +ica, then Eq. (37) yields the system
dzx
E:mz—yz—w-l-cl, (38)
d
—i’ =2zy —y + c2,

of ordinary differential equations for z(t) and y(t). The results of the previous sec-
tion do not apply globally since R(z) is contractive only in neighbourhoods of its
attractive fixed points. (In the quadratic case, R(z) can have at most one finite
attractive fixed point. Moreover, such finite attractive fixed points exist only for ¢
values on a bounded set in C — the large principal cardioid region of the Mandelbrot
set of 2% 4+ c.) Nevertheless, it is interesting to explore the dynamics of the system
of ODEs in (38).

First consider the case ¢ = 0. Using simple linearization methods, it can be shown
that the point Z = 0 is a locally asymptotically stable equilibrium solution and that
Z =1 is a locally unstable equilibrium solution of (38). Numerical experiments and
analysis suggest that, in contrast to the discrete case (where the basin of attraction
of Z = 0 is the open disc |z] < 1), the basin of attraction of z = 0 is the cut plane
C\ [1,0). All points (a,0) for a > 1 converge to infinity.

For ¢ € R decreasing from zero, numerical experiments show that the unique
fixed point Z1; < 0 continues to be the asymptotically stable equilibrium point of (38)
even when it is no longer attractive for the discrete iteration process. Furthermore,
the basin of attraction continues to be the cut complex plane. However, when c has
a nonzero imaginary component, the cut disappears and all points, except the other
finite fixed point Z2, travel toward Zz;.

6.1 Newton’s method in the complex plane

Recall that the Newton function associated with the complex valued function f(z)
is
_,_ I
N(z)==z @) (39)

If Z is a zero of f(z), then it is also a fixed point of N(z). In the discussion that
follows, we assume that the zeros of f(z) are simple. Then N'(2z) = 0, so that z is
locally superattractive. For an initial seed z9 € C suitably close to z, the iterates
Zn+1 = N(zn) converge quadratically to Z.

Consider the following evolution equation in the time-dependent complex vari-
able z(t) that corresponds to Eq. (2), namely,

dz
o = N(z) -z (40)

f(2)

TR
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Technically speaking, IV is not necessarily a contraction mapping so that the results
of Sections 2 to 5 do not apply globally. However, Eq. (40) can be integrated to give

f(z(t)) = f(2(0))e™". (41)

Thus f(2(t)) — 0 as t — co. Assuming for simplicity that f(2) is analytic, it follows
that z(t) tends to a zero of f. (There will, of course, be complications with the
critical points of f.)

It is instructive to consider a couple of examples.

1. f(2) = 2% — 1 with roots z; = 1 and 72 = —1. In the classical Newton iteration
method, the imaginary axis I = N(I) serves as the boundary for the basins of
attraction of the two roots, as originally shown by Cayley [6].

If we let z = + iy, then Eq. (40) yields the system

dz zr 1 T

it R “2)
&y _y 1y

dt 2 2z2 4y’

of ODEs in z(t) and y(t). As expected, the y-axis is invariant (it also contains the
critical point # = 0) and acts as a boundary for the basins of attraction of the two
roots. If 2(0) = 0, then z(t) = 0 for ¢ > 0. If 2(0) > 0, then (z(t),y(t)) — (1,0)
as & — oo0. If 2(0) < 0, then (z(t),y(t)) — (—1,0) as t — oco.

2. f(z) = 2* — 1 with roots z; = 1 and %33 = —3 % z-;-\/ﬁ Here, the boundary
between the basins of attraction for the Newton ileration method is a very
complicated object ~ the Julia set of the Newton function. From the Julia-
Fatou theory of iteration of rational functions, any open neighbourhood of a
point z on the Julia set must contain subsets of each of the basins of attraction
of the roots z;. The basins of attraction of the three roots are shown in Figure
5 (left).

Once again letting z = = + iy, Eq. (40) yields the following system of ODEs in
z(t) and y(t):

dz z 1 z2—4?

=l = _a=n = 4
dt 3+3(m2+y2)2’ (43)
dv_ vy 2wy

dt 3 3 (z24y2)?

The Julia set boundaries are eliminated in this scheme. The basin boundaries
lie on the rays 6 = /3, 6 = 7 and 6 = —7/3 as shown in Figure 5 (right). (The
critical point z = 0 is also included in this set of boundary points.)

7 Concluding Remarks

In this paper we have introduced a method to produce a continuous evolution of a
quantity y to the fixed point § of an appropriate contraction mapping 7. Such a
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Fig. 5. Left: Basins of attraction of Newton’s complex iteration method for the three
cubic roots of unity. Right: Basins of attraction using the system of ODEs in Eq.
(43). In both plots, the region of the complex plane being plotted is —1 < Re(z) < 1,
—1<Im(z) < 1.

continuous evolution replaces the usual discrete sequence of iterates y, = T™y, that
converge to §. The curve y(t), however, does not generally interpolate the y,. The
evolution equation in Eq. (2) is not unique in that there are many possible ways of
continuously “steering” the evolution of y(t) to the fixed point § of the contractive
operator T.

The method of Eq. (2) has been applied to two fundamental sets of contraction
mappings associated with Iterated Function Systems: (1) the Markov operator M
on probability measures associated to an IFS with probabilities (IFSP) and (2) the
fractal transform operator T" associated to IFS with greyscale maps (IFSM). We have
also presented some preliminary results of applying the method to complex analytic
dynamics: (1) the iteration of quadratic functions and (2) Newton’s method in the
complex plane.

As mentioned earlier, the original motivation to devise such a continuous evolu-
tion procedure arose from a desire to perform nonlocal, fractal-like (i.e., spatially-
contracted and greyscale distorted) operations of a more continuous, i.e., “touch-up”
nature. In other words, one could make arbitarily small alterations to an image func-
tion u in the neighbourhood of a point zo € X that would depend on values of u(z)
for z away from zo.

In view of the vast research on partial differential equation methods in imaging,
we envision combined fractal-based/PDE methods that could be used to produce
small nonlocal alterations in the presence of diffusion-like processes. For example,
one may wish to modify the evolution equation (20) by adding a small diffusion
term, e.g.,

0
6_11: —edy=Ty—y, (44)
where ¢ could be either positive (diffusion) or negative (backward diffusion). Of
course, such simple diffusion schemes are not generally employed in imaging. Instead,

one considers “anisotropic diffusion” methods [14, 15).
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Finally, the application of continuous evolution methods to complex analytic

dynamics reported here is admittedly very preliminary and much remains to be
explored.
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