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Abstract

In this paper, we obtain new nonlinear systems describing the interaction of
long water waves in both two and three dimensions. These systems are symmetric
and conservative. Rigorous convergence results are provided showing that solu-
tions of the complete free-surface Euler equations tend to associated solutions of
these systems as the amplitude becomes small and the wavelength large. Using this
result as a tool, a rigorous justification of all the two-dimensional, approximate
systems recently put forward and analysed by Bona, Chen and Saut is obtained. In
the two-dimensional context, our methods also allows a significant improvement
of the convergence estimate obtained by Schneider and Wayne in their justification
of the decoupled Korteweg-de Vries approximation of the two-dimensional Euler
equations. It also follows from our theory that coupled models provide a better
description than the decoupled ones over short time scales. Results are obtained
both on an unbounded domain for solutions that evanesce at infinity as well as for
solutions that are spatially periodic.

1. Introduction

1.1. Generalities

The water-wave problem for an ideal liquid consists of describing the motion of
the free surface and the evolution of the velocity field of a layer of perfect. incom-
pressible, irrotational fluid under the influence of gravity. In this paper, attention
is given to both the two-dimensional case wherein the wave motion is assumed
not to vary appreciably in one of the coordinate directions, say the y-direction in
a standard Cartesian coordinate system, and the fully three-dimensional setting.
However, consideration is restricted to the special case of a flat bottom. It is well
understood that several different regimes may be obtained for this problem; atten-
tion is given here to the so-called long-wave limit. In this setting, it is assumed
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equations approximately satisfy the class of models S put forward by Bona, Chen some of what follows. All the systems in the classes S, S” and %, can be written
and Saut. A detailed analysis of decoupled formulations is the subject of the last in the form (7), so it suffices for the purposes at hand to provide a definition of
— comsistency within the context of (7).

Definition 1. Let s 2 0,0 > 5,29 > 0and T > 0 be given. A family {Z/IE}()(KF
- <E&0

which is bounded in W!-2°(0, % H (R4Y) independently of ¢ is consistent with
the system (7) if

1.2. Description of the results

There are three principal types of results in the technical elaboration of our
theory, namely, consistency, existence and convergence results. To describe them, & e e . .
we need to discuss in a preliminary fashion the digcerent systems involved. G+ AGOU” + eBUNOXUT) + 2 (C(aius) + D(a}}B,L{E)) = &R

The primary system on which everything developed here is based is the Euler:
system (1)—(4). From the Euler system, we obtain the classical Boussinesq sys-
tem by making the long-wave and small-amplitude assumptions outlined above,
expanding appropriately in the small parameter &, and then dropping terms tha
are formally of order higher rather than lincar in &. Boussinesq’s original system'  One of the technical goals of this paper is to establish rigorous consistency
belongs to the wide class obtained by BONA, CHEN & SAUT [8) which is her¢iresults for systems of the classes S, S” and ¥ and to prove reTaled existence and
denoted by S. All these systems have the same nonlinear structure as the original convergence results. Here is a more detailed account of this objéictive
Boussinesq system; they differ from each other only in their modelling of disper- '
sion. As mentioned above, they are all formally equivalent. The second class of
systems, denoted S’ is a new one. It is obtained from S by nonlinear changes of
variables which renders symmetric the nonlinear hyperbolic portion (the non-dis-
persive part) of the system. Members of the class S’ are also formally equivalent to
the systems of class S, and hence formally good approximations of the full Euler
equations on the long time scale characterized by ¢!, The final class marked for
discussion here is denoted ¥ and is in fact the subclass of S’ consisting of those
systems for which both the dispersive and the nonlinear part are symmetric. The

where the family {RS}OQQO is bounded in L*°(0, % H*(R)) for 0 < ¢ < &y,

When the values of o and s are important, we will say that the family {L{E}

is consistent with regularity o and s. N

Consistency results. Let {(¢°, 1)} be a family of solutions of the Euler equations
(1)-{4) for some open interval of values of ¢ of the form (0, 0), say, where g > 0.
Define ‘VS = V¢ with 8, X) == ¢(X, 1 + en°(t, X)), the velocity potential
at the free surface. If {(V?, 1°)} is bounded in W1%(0, L: Ho(RY)) for some
o large enough, it is established in Theorem 6 that {(V%,n%)} is consistent with
the Boussinesq system. This result is in the general spirit of the results of CRAIG,
: CHANTZ. SULEM & SULEMin [16, 15]. A direct approach is used to prove this result
 Which avoids use of the singular integral associated with the Dirichlet-to-Neumann
operator for the flow domain.

Wealso prove that any net of functions consistent with any one of the systems of

class X is non-empty. Indeed, the sample system displayed in Section 1.1 is a mem-

ber. Systems which belong to = are conservative in the sense hinted at in Section lass S ; . : ¢
1.1, which will now be explained. €lass 3 Is, up to a linear change of variables, consistent with any other system of S.

In what follows, we will prove theorems of existence for systems in X and con The linear change of variables (taken from [8]) corresponds physically to taking as a

o : : . 3 new'in i i i i i
vergence of their solutions to those of the full Euler equations, including bounds of dependent variable the horizontal velocity at a different height above the bot-

the rate of convergence. We will also prove comparison theorems between solutions tom (see Proposition 1);,Slmilaf_ ly, itis shown that if {(V'*, #°)} is consistent with a
of the systems in X and solutions of the other systems under discussion. g7 -temin Sthen {_(VE’ ’?e)} obl'amed fr.om {(V*. n°)} by the aforementioned nonlin-

A crucial component of our analysis will be the notion of consistency whichis oy c‘hange of variables is consistent with a system of the class S’ (which has a sym-
presented now. Consider the general system ‘metric nonlinear part). At this point, a key assumption in the three-dimensional the-

ory is the irrotationality of the flow, which can be expressed as the vanishing of the

B+ AGOU + sBU)Y(Oxld) + (C(@ibl) I D(af( 3:“)) _o, (7)?:0“1.] of the velqcity ﬁeld.e.verywhere in the flow domain (see Proposition 2). More-
OVer, we prove in Proposition 3 thatany function consistent with a systemin §’ isalso

consistent with all the other members of S’ (again, up toa linear change of variables).

where U(t, X) : [0, %] x R¢ — R?, T is a fixed positive constant, p is an integer{
X=(x,y)ifd=2and X =xifd =1, A(dx) = A19x + A28, with A; and Al{_'Existence results. For the systems of class S, the local well posedness for the

constant matrices, B(U)(dxU) = B (U)d,U + Bo(U)d,U and fC'auchy problem has been discussed in some detail in [8, 9]. Necessary and suffi-
; p If:lent conditions for the well posedness of the associated linear problems was given
C(af{u) _ Z C,-,-kafij, D(a)%atU) _ Z Dy 8,2, S, in [8]. It was posited that the systems which are linearly ill posed are unlikely to

'be nonlinearly well posed, and they were discarded from the discussion in [9]. In
the latter reference, local well posedness was demonstrated for all the systems that
To be concrete, we can assume that By and B are polynomial in the componeniswere determined to be linearly well posed except for one highly degenerate case.
of U and that C;; and D;; are constant matrices, though this is not necessary forHowever, when written in the scaling favoured here, the time of existence for most

i jke=1 ij=I
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that the free surface may be described as the graph of a function defined over the
bottom. More precisely, the motion of the fluid is described by the set of equationg

h?

209+ =0 for0 <z < 14 Ly, X),
| s, A s\ ho .
e+ 3 V!~ + h—3|0‘:4)| A= 0 atz=1+ &0, X),
0

2

.6 atz =1+ zon(, X),

atz =0,

A
dn+ Ve -Vn= Yod
81(}5 =0

where the operators V and A act on the transverse variable X € RY, d = 1 or 2,
In the case d = 1 (the two-dimensional case), X = x is the coordinate along the
primary direction of propagation and the motion is assumed not to vary appreciably
in the y-direction, whilst if d = 2 (the three-dimensional case), then X = (x, y)
represents both the horizontal variables. The vertical coordinate is denoted z as
usual, with gravity acting in the direction of the negative values. The equation of
the featureless, horizontal bottom is z = 0 while the free surface is located at
z=1+ ,;—’On(t, X). The equations are written in the usual non-dimensional form
where a is a typical wave amplitude, /g is the undisturbed depth of the fluid and A is
a typical horizontal wavelength. The dependent variable ¢ is the non-dimensional
velocity potential and n(t, X) = (h(t, X) — ho)/a, where h is the total depth of the
water column at the point X at time ¢.

The preceding equations are mathematically and numerically recalcitrant, Some
results concerning the Cauchy problem wherein the free surface 1 is specified for
all values of X and the velocity potential ¢ is specified appropriately in the result-
ing flow domain, both at a given instant of time, are available (see, for example,
[14, 19-21, 23, 25, 26], and the references contained in these works). In many
practically important situations, we rely upon simplifications of these equations
to describe approximately the behavior of their solutions. Various model equa-
tions have been derived by means of formal asymptotic expansions. Historically,
the initial developments in this direction were associated with works of Lagrange,
St. Venant, Green, Airy and Stokes among others. A very significant step forward
was made by BOUSSINESQ [13] who seems to have been the first to properly under-
stand the long-wave regime described next.

The long-wave regime is characterized by the presumptions of long wavelength
and small amplitude, viz.

A
'—>> 1!

a
E=— k1,
ho

ho

in conjunction with the assumption that the Stokes number

S_aAZ
3
hy

is of order 1. For notational simplicity, we take S = | throughout our discussion
so that
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A2
=
ho £

If we did not adhere to this presumption, the only change is that the equations would
feature the value of S in various of the coefficients. With this notation and the pre-
sumption that § = 1, the non-dimensional water-wave equations take the form

eAd + 329 =0 for0<z<1+en, (1)
1
B9+ (eIVOP+ 1) +1=0  atz=1+en, @
I
on+eVe-Vn = ;ang atz =1+en, 3
8,9 =0 atz =0. €

Perhaps the simplest of the asymptotic models which takes into account both
nonlinear effects as reflected in the small but finite amplitude, and the dispersive
effects coming from large but finite wavelength is the Korteweg-de Vries equation
(KdV equation henceforth). It is a unidirectional, one-dimensional description in
terms of the dependent variable n, with the form

®)

1 3
dn+on+e (gaffn + 517&:?7) =0.

Note that in the present scaling, the variable 7 and its first several partial deriva-
tives are all of order one. This regime has been analysed by CRAIG [14] starting
from the Lagrangian form of (1)-(4). In terms of the variables introduced above,
he showed that there exists a constant 7" independent of & and a solution (¢¢, n*) of
(1)~(4) defined at least on the time interval [0, {i] such that »® is approximated to
within order & in the L norm by an associated solution of (5). It is worth noting
that according to the formal derivation of the KdV model as written in (5), we can
expect the solutions to be good renditions of an associated Euler flow (H-@)ona
time scale of order £ ~! and also the neglected effects to make an order-one relative
contribution on a time scale of order £~2. Thus Crai g's result provides theoretical
Justification for the use of (5), but it has nothing to say about the eventual breakdown
of the model as an approximation to (1)~(4) (see [10, 11, 2, 1] for more complete
discussions of these matters).

SCHNEIDER & WAYNE [23] extended Craig’s result about the KdV regime by
wriling a theory that allowed for more general initial disturbances. They also wrote
theary for wave motion in both directions. Expressed in the present variables, they
showed that the solution of (1)~(4) may be approximated to within order £'/* on
a time scale of order ~! by the solutions of two uncoupled, counter-propagating
waves, each of which satisfies a KdV-type equation, namely

6 4
1
02— 0xm2 — €| =

1 3
dm + a4 (—aﬁm + —ax(n,%) =0,
(6)

6

3 3. .20\ _
3x712+23x(772) =0.
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While suggestive and interesting as a principle, an error estimate ol order gl/4
is clearly not a practically useful bound. A sharp resull of this nature appears in
Section 5 of this paper. A similar theory was obtained for a general class of hypey.

this type of approximation presently. |
Following the lead of BONA & SMITH [12], BONA, CHEN & SAUT [8] system.

ten as a coupled system) in the dispersive terms to put forward a llllruc~pa1'umcler
family of Boussinesg-type systems, all of which are formally equivalent modelg
of solutions of the two-dimensional Euler equations (1)-(4) where X = x. Many
systems of this family were eliminated as potential models when the associateq
initial-value problems were shown to be ill-posed in [8]. However, there remaip
significant sub-Families that are known to be at least locally well posed in quite rea-
sonable smoothness classes (see [9]). These systems are reviewed in a little more
detail in the next section for the reader’s convenience.

In this paper, Lhe class of systems developed by Bona, Chen and Saut is extended
in an interesting and helpful way. The key to the extensions proposed here is a non-
linear change of variables that leaves the formal order of approximation unchanged,
but which results in new systems with very atlractive mathematical properties. In
parlicular, we derive systems in both two and three spatial dimensions that are sym-
metric in their nonlinear structure and their dispersive modelling. An interesting
example ol the systems we derive and analyse is

)+4 ()]

)i

3,77+VV+%V(77V)+F(CAV V—dAdm) =0,

3, (V2)
AV + 3 ()
8,V+V17+F|:4 (77)+4 ay(V22)

+e(@AVnp—bAd V) =0,

3y (V1 V2)

ax(v??
3 (Vi V)

where V = (V), V2)T denotes the horizontal velocity field at height 6, and in our
present scaling it is naturally required that 0 £ 6 < |, The conslants a, b, ¢ and d
appearing in the equation are

92 | 02 (1—06%)
a—<7—6)l,b—<7—6>(l—)")vc—Tl

(1 —6?%)
e am—— ] . Ll
L, d 5 (1 —p)

where A and y are any two real parameters. Iff we choose the parameters so thalijion 1o
iin [8].

a=candb 2 0,d = 0, then this system is symmetric and it is well posed in

wk-20(0, %, HY =R (®3Y) for any k and s such that s — 3k > 2. Moreover, we have

the exacl conservation law

EX /2 VI 2+ eb|VVE +d|VyH) =0
R

(see Proposition 4).

bolic systems by BEN YOUSSEF & COLIN in [4]. We will have more (o say aboy,

atically Look advantage of the freedom associated with the choice of the velncily.
variable and made full use of the lower-order relations (the wave equation wrj;..

D s
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Fully symmetric models turn out to be a powerf‘ul mathematical tooI.. Indeed,
we are able to prove that approprlgtely smooth solutions Qf the full eqt'lanons (-
(4) can be ;lpprnxt—maled h%/ SOlU.[‘IOIlS of these symI;Ietrlc systems with aq error
which is at most of order ¢ t, un‘ltorml)‘/ for ¢ € [0, +]. We then show that in two
dimensions, smooth solutions of any of the Bona-Ch.en-Saut syste2ms differ from
solutions of a symmetric system by 2'1[ most a quantity pf order‘s t on the‘same
Jong-time scale £~ ! The latter resylt givesa satisfactory rigorous tounda.tlon tqr the
use of any of the well posed versions of these models to 'descrlbe two-dimensional
gurface water waves in the long-wave or Boussinesq regime.

D. LANNES proved recently [19, 20] that the water-waves equations in finite
depth are locally in time well-posed in reasonable function classes (WU proved this
earlier in the case of infinite depth [26]). However, applying this result to the present
case of long waves does not yield directly that the existence time is large, of order
0(1/5). Thus, our three-dimensional results are expressed in terms of solutions of
the Euler equations which may exist, without the extra assertion that such solutions
necessarily do persist on the relevant long time scale.

Our results apply both to the equations posed with the bottom comprising of the
entire space RY, d = 1 or 2 with function-space restrictions that imply solutions
decay to zero at infinity, and to the periodic initial-value problems.

Returning briefly to the issue of approximation via a decoupled system in the
two-dimensional situation, we remark first that laboratory experiments and real
world flows arising in geophysical contexts often show nonlinear coupling effects
between counter-propagating waves. This apparent contradiction with the result
of [23] quoted above appears to derive from two sources. First, in practice, the
parameter £ is not so small. (Values of & on the order of 0.3 regularly appear in situ-
ations where approximations to the Euler equations are used to model real waves.)
Secondly, the Schneider-Wayne result subsists upon the assumption of a definite
rate of decrease of the relevant wave motion at infinity. Many wave regimes arising
in the laboratory or in field situations are of a quasi-periodic nature and certainly
do not fit the approximation of tending to zero at infinity at a substantial rate,
at least on the spatial and temporal scales where the models might possibly be
useful. Indeed, as will become apparent in the analysis presented in Section 5, a
decoupled approximation such as (6) does not present the same convergence rate (o
associated solutions of the Euler equations (1)~(4) as does the coupled Boussinesq

‘equations presented here and in [8] in the situation where the initial disturbance

has only function class restrictions and not a definite rate of approach to zero at

infinity. For the situation where the initial data is periodic, mentioned in (he last

paragraph, the decoupled system may fail entirely to provide a useful approxima-
the Euler equations, in contrast to the coupled systems developed here and

. In the next subsection, a more detailed view of the theory developed herein
'S presented. The plan of the remainder of the paper is now outlined. Section
2 is devoted to the derivation of the symmeltric systems to which frequent ref-

crence has just been made. The exact relationship between the symmetric sys-

lems and the full Euler equations is invesligated in Section 3, while in Section

% 1L1s proved in the two-dimensional case that the exact solutions of the Euler
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equations approximately salisfy the class of models S put [orward by Bona, Che
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f what follows. All the systems in the classes S, S and X, can be writien

and Saut. A delailed analysis of decoupled formulations is the subject of (e last'f soﬂ;"e (;-'0]'[[‘1 (7), so it suffices for the purposes al hand to provide a definition ol
: ¥ in the Fis 4

section. ' B Ao - context of (7).

section consistency within the ¢ .

1.2, Description of the results

~ whic

There are three principal types of results in the technical elaboration of our
theory, namely, consistency, existence and convergence results. To describe them;
we need to discuss in a preliminary fashion the different systems involved, '

The primary system on which everything developed here is based is (he Euley
system (1)—(4). From the Euler system, we obtain the classical Boussinesq gys
tem by making the long-wave and small-amplitude assumptions outlined above
expanding appropriately in the small parameter £, and then dropping terms thaﬂ:
are formally of order higher rather than linear in . Boussinesq’s original Sys[em'.;-
belongs to the wide class obtained by BONA, CHEN & SAUT [8] which is ey
denoted by S. All these systems have the same nonlinear structure as the origing]|
Boussinesq system; they differ from cach other only in their modelling of dispers
sion. As mentioned above, they are all formally equivalent. The second class of
systems, denoted S, is a new one. It is obtained from § by nonlincar changes ofE
variables which renders symmetric the nonlinear hyperbolic portion (the non-dis:
persive part) of the system. Members of the class S§" are also formally equivalent o
the systems of class S, and hence formally good approximations of the [ull Euler
equations on the long time scale characterized by &~ I The final class marked for];
discussion here is denoted ¥ and is in fact the subclass of $7 consisting of those!
systems for which both the dispersive and the nonlinear part are symmetric. The
class T is non-empty. Indeed, the sample system displayed in Section 1.1 is a mem
ber. Systems which belong o T are conservative in the sense hinted at in Sectio
1.1, which will now be explained.

In whal follows, we will prove theorems of existence for systems in X and con
vergence of their solutions to those of the full Euler equations, including bounds on
the rate of convergence. We will also prove comparison theorems between solution
of the systems in X and solutions of the other systems under discussion.

A crucial component of our analysis will be the notion of consistency which i

presented now. Consider the general system

QU + A@x)U + sBU) (3xU) + & (C(a;*(u) i D(a}(a,m) =0,

where U(t, X) : [0, L] x RY — R2, T is a fixed positive constant, p is an intege

Definition 1. Lets >0,0 25,£ > 0and T > 0 be given. A family [E,(“']“{HE“

lis pounded in w20, % H”(R")) independently of ¢ is consistent with

the system (N if
g+ AU+ eBUDGA o <C“’§U”) + D(aia,w)) _ 2RE

where the family {RE}()(KE” is bounded in L*°(0, %; HY(RY)) for 0 < & < &.

When the values of o and s are important, we will say that the family {t4°
gularity o and s.

}O<F,‘<[~?()
is consistent with re

One of the technical goals of this paper is to establish rigorous consistency
results for systems of the classes S, $” and £ and to prove related existence and
convergence results. Here is a more detailed account of this objective.

Consistency results. Let (¢, 7%)} be a family of solutions of the Euler equations
(1)=(4) for some open interval of values of ¢ of the form (0, &g), say, where gy > 0.
Define V& 1= Vy® with ¢ (¢, X) 1= ¢ (X, 1 + en”(¢t, X)), the velocity potential
at the tree surface. If {(V#, )} is bounded in W1°°(0, %, H° (RY)) for some
o large enough, it is established in Theorem 6 that {(V*, ﬁ‘)} is consistent with
the Boussinesq system. This result is in the general spirit of the results of CRAIG,
SCHANTZ, SULEM & SULEM in [16, 15]. A direct approach is used to prove this result
which avoids use of the singular integral associated with the Dirichlet-to-Neumann
operator for the flow domain.

We also prove that any net of functions consistent with any one of the systems of
class S is, up to a linear change of variables, consistent with any other system of S.
' The linear change of variables (taken from [8]) corresponds physically to taking as a
few independent variable the horizontal velocity at a different height above the bot-
(tom (see Proposition 1).~Similar]y, it is shown that if {(V#, n®)] is consistent with a
system in Sthen ((V#, n#)} obtained from {(V#, n)} by the aforementioned nonlin-
car change of variables is consistent with a system of the class S’ (which has a sym-
metric nonlinear part). At this point, a key assumption in the three-dimensional the-
ory is the irrotationality of the flow, which can be expressed as the vanishing of the
curl of the velocity field everywhere in the flow domain (see Proposition 2). More-
OVer, we prove in Proposition 3 that any function consistent with asystem in 8 is also
consistent with all the other members of S (again, up to a linear change of variables).

X=(,yifld=2and X =xifd =1, A@x) = A|dy + A20, with Ay and 4
conslant matrices, BU)(dxU) = B (U)3,U + By(U)d,U and

d d
Clxth =Y Cyudlld, D@y =Y Dydald.
i jk=1 ij=I

nls

To be concrete, we can assume that By and B are polynomial in the componé
of U and that C; ¢ and D;; are constant matrices, though this is not necessary fol

[Existence results. For the systems of class S, the local well posedness for the
Cauchy prpblcm has been discussed in some detail in [8, 9]. Necessary and suffi-
. Ienl:cundllinns for the well posedness of the associated linear problems was given
in [8]. l.l was posited that the systems which are linearly ill posed are unlikely to
ll:’el}:“ﬁ::l:lf:[l‘"ge\:ff:!l ]pn?fid, and they were discarded {rom thf: discussion in [9]. In
e determim_.ld‘":" I;)Cd. well posedness was demo‘nstrated 1.01' all the systems that
o wn e I.meﬂrly w:.j-ll posed except for one highly degenerate case.
0 ritten in the scaling favoured here, the time of existence for most
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of these systems using the theory in (9] is only on the order of £~!/2, (HOWe\rer'_

certain systems in S have a global existence theory due to their special, Hamjj.
tonian structure.) For the present purposes, it is convenient to have an existengy

theory on the time interval [0, %j] where T' may depend upon the order one initig]
data, but is independent ol &, together with e-independent bounds for the solutiong

in WheeQ, f— H (RY)) for o large enough. Fortunately, the systems of clags 3
which play a crucial role in our analysis anyway, are indeed locally well posed on |

the longer time scale of order 6!, as is shown in Proposition 4.

Convergence results. The most fundamental of our convergence results, Theore, |

1, concerns solutions of the systems within X. It states that corresponding (o any

family {(V*, n)} of functions consistent with one of the X-systems, there exists 5

family of exact solutions {(VE, n%)} ol the relevant system salisfying
; > ]
|(VE ") = (Ve 0D e ey = O(e°1)

forall ¢t € |0, %] This error estimale is easily established owing to the Symmelry
of the systems in the class X. From this central result, we deduce at once that
the asymptoltic behaviot of any family of tunctions {(V¥, n)}, consistent with one
of the systems of class S or §, can be described in terms of an exact solution
{(V§, n%)} of one of the symmetric systems of class ¥ (see Corollaries | and 2),
The principal convergence result concerns the asymplotic behaviour ol the
full Buler equations (1)—(4). It is demonstrated that for any family {(V*, n)} of
solutions of the Euler equalions and for any system in the class Z, there exists a
family {(Vg, n%)) of solution of this X-system with the following property. Let
{(Vipps r;ZM,)} be the family of functions obtained by applying to {(Vg, #%)} an
approximate inverse of the change of variables that arose in deriving the class
S’ from the class S, followed by the inverse of the transformation that arose when
deriving elements of the class S from the classical Boussinesq equation. This results
in a set of variables that are in principle directly comparable to the Euler variables.
Using the preceding theory, we readily deduce that
l(VE’ nﬁ) — (VP

P = D
app? nupp)ll,’"((),f:H“‘(IR")) = 0(&°1)

for all t € [0, %] (see Theorems 2 and 3).

Combining these convergence results yields the overall objective, which is that
solutions of any of the approximate systems discussed here yield good approxima-
tions to the full Euler equations on the long-time scale &~! where nonlinear and

dispersive effects can have an order-one relative effect on the velocity field and

the wave profile. In particular, these results leave us free to choose an approximale
system with good mathematical properties for the modelling task at hand. This
freedom can be very helpful when questions of the design of numerical schemes

or the imposition of non-homogeneous boundary conditions arise. In Mmany cases,:

a suitable dispersive perturbation of a symmetric hyperbolic system, the hallmark

of the systems in the class ¥, appears to be mathematically very convenient, for!

example.
A couple of further points are worth emphasizing. Note that for the two dimen-

sional case, for any initial data (v, no) € H* (R)? for suitably large s, there exists?
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on of the Euler equations on the relevant time scale. Thus in the two-
u‘snlulllﬂ"“ case, the asymptotic analysis is complete on the lime scale e In
dmwnsl?ﬂi{ m;lh'i‘nnal situation, our theory applies 1o solutions of the full Euler
the lh.rctj(.;] mlt.l they exist. Finally, we refer again to Section 5 where we will ana-
equal;t’,"; :J]:oxim;:ting power of uncoupled systems as in (6). The approximation
]ysfz l,T qlullcnli{mcd above are superior to those obtained [or a pair of uncoupled
csu\l;m‘ cl.rui(ms in the absence of specific decay assumptions about the solutions.
I\Kﬂiregjc;. the present theory remains valid in the periodic case, which is not the

case for decoupled models.

2. Formal derivation of symmetric systems

2.1. The class S of Bona-Chen-Saut systems

The aim of this section is to recall the derivation of a class of model systems
which, in the two-dimensional setting, were put forward recently by BONA, CHEN
& SAUT in [8, 9]. We take as our starting point one of the original versions of the

Boussinesq system, namely
&
&V +Vn+ EV|V12 = 0(eh),

3)
I+ V- V+6(V (V) + %AV- V) = 0(ed),

as ¢ — 0, where V denotes the horizontal velocity at the free surface and 7 the
deviation of the free surface from its rest position as before. Henceforth, the notation
(Vo, o) is reserved for the value of (V, 1) atr = 0, which is to say, the initial data.
As above, ¢ is the small parameter measuring the amplitude to depth ratio and, on
account of the assumption that the Stokes number is exactly equal to 1, the square
of the ratio of the depth to a typical wavelength. We give below in Proposition 1 a
precise meaning of what is meant by the [ormal notation O (&) on the right-hand
side of (3).

Elementary potential theory shows that the horizontal velocity of the water at
height @ (recall that in the present scaling, 6 = 1 at the free surface and 6 = 0 at
the bottom) is approximately given by Vj,, where

Vo= (1 —%(1 —92)A)¥1V‘ )
or equivalently,
M= (1 - %(1 —HZ)A) Vo
Subsliluting the relation (9) into (8) leads to the system
O Vi + Vi + % (VlVH~|2 — (1 =6%)As, VH> — 0@,
g (10)

X 0
d/'?‘i-v VH+6(V(7}VH)+ (7 —8> AV . VH) = 0(82)
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(cf. [8] in the \wo-dimensional case). Note that the initial data for Vy is
£ 5 -1
(1 ey )A) Vo i= Voo
2 ]
To introduce the BBM-version (see [3]) of these systems, remark that at the lowe“"

formal order, ‘

—Vi+ 0(), ?
=V Vy+ Ofe). |

8/ V(«/ =
o=

As a consequence, the dispersive terms in (10) may be rewritten in the lorm

A Vy = (I — )AdVy — HWAVn + 0(e),
AV - Vy = AAV - Vy — (1 = DA+ O(e), (1)
without loss of formal accuracy in terms ol powers of &, where A and ¢ are twg
arbitrary real parameters. Using (1) in (10) gives the system ||

(1 —6%)
2

I ‘ . (1 — 6%
Vo +Vn 4-€(§V|VH|2—(] — ) A(J,‘/ra-f—/t——z———llvn)

= 0(?), |

g g2 | '
( : 2|V - (Vi AV Yy — [ — = — M)A
d,n-l—V ‘/(J"‘F( (T] ())+(2 6) (2] (2 6)(] )L)Ad’n)
= 0(=2).

The class S is just all the systems of the form Sy » ; where 0 <6 = 1andpand
X are arbitrary real numbers. These are written in the compact forim

|
WV+Vnte (EVIVIQ +aAVn — bAE),V) =0,
S(LA,/A

dIN+V-V4e(V-mV)+cAV-V —dAdn) =0 ]
with |

_(1-6%
2 0 I)——2—'(l

c_(e)z I‘Kd_ 6% | _—
~(F-5) ¢=(7-5)0-»

as in [8] in the two-dimensional case. Note thata +b+c-+d = %, so the collection
§ really is a three-pavameter family. .

=)
(12)

; [ster
, CONsts

Thg first congistency result (in the sense of Definition 1) is pmvidcd in the
following proposition,
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nd . be given and suppose 0,6y € [0, 1]. Let V&, n®) be

sonl. Letha
o’ S, and let Vi be defined by

1t with the systen

(1-£a- oa) " (1-Za—-oa)ve

pmposi

vi=

. . . - 2 £ 8
Then (V{?’ nf) is consistent with Sy, x . Moreover, forall (A, 1) € R (V1 )

is consistent with Sy ay e
Proof. This is clear thanks to relation (9). O

As discussed already, for a long wave model for the wz‘?‘t?r’—wave problem to be
useful, it must have a Jocal existence theory 1:01' 0r§er-nne 1;11't\a1 data that prov.ldes
smooth solutions at least on time intervals of the form [0, 1. Moreov.er, solutions
with fixed initial data in the variables in force here mgst i_‘:e huunde:_[ with respect tq
ein W1 (0, -f; HY(R4Y) for suitably large values of s. For most of the me.mhcrs of
the ¢lass S, cven those which are locally well posed, there is no theory of this nature.
(There is a sparse subclass of the systems in S that have a global existence theory
and these of course conform to the time-scale requirements. However, even in these
cases, there is no analysis showing that the solutions are bounded independently of
small values of &).

This unsatisfactory situation will be rectified by making use of the symmetric
systems which are the subject of the next subsection.

2.2. The class S’ of nonlinearly symmetric systems

In the last subsection, we reviewed how to obtain formally equivalent model
systems from the Boussinesq system by making changes of variables that had the
effect of modifying the dispersive part of the model. In this section, attention is
given to the nonlincar part. The formal zero-dispersion limit of the Boussinesq
system (8) is the system

VYV +Vn+ %vm? =(,
(13)
dn+V-V+eV.(nV)=0,

of hyperbolic conservation laws. It is handy to write (13) in the form
1% 1%
9 ( 77) + AV, oy ( . > + Ax(V,m)dy (:;) =0,

eV

where
eV 1

AiV,m) =10 0 0

14+en0

8V1
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and Ad formally compute the equations satisfied by V and n:
. & ~ £
00 0 a,v:a,v(1+§n)+vaa,n+0(52)
€ £ & ~ =
AV, = | eVieVa | , = —[VH+EVIV|2](| +§Tl) —EVV'V‘FO(EZ)
1_ - 1 I - =
0 I+eneV =—Vn—=¢ (EV|V|2 + ZV]nI2 + EVV . V) + 0(e?).
in the three-dimensional case. In two dimensions, this becomes It follows that
. 1_ ~5 1 P . 2
v ¢ =VIVI"+-Vn"+=VV.-V | =0 )
5 (:) + Aw, M, <77) 0, a,V+Vn+e<2 VP + 2Vl + 5V ) (&%)
Similarly, we compute
where dn=-V-V—eV.-(qV)+ 0@
&V I - £ 5
:—V-[V(]—— )]— V. (V) + 0>
A, ) = ' K V- (nV)+ 0(e?)
| 4enev

= = 1 =
=-V.V-¢ (v (V) = Ewnm) + 0(?),
Obviously, whatever the space dimension is, these systems of conservation laws . _
are not symmetric. However, a symmetrizer in the fully three-dimensional case is ~ and so it transpires that

~ £ = 2
|4 en0 oV, a+ V- VSV V) = 06D,

385

(15)

(16)

The system formed by (15) and (16) is symmetric in the two-dimensional case, but

0 I+eneVy |. not in three dimensions where X = (x, y). Indeed, it can be written (omitting the
tilde) as
eV eVh | | |
, , _ , , o Vi+omn+e (Vl OVi+WVod Vo4 —noen + = V1 (8, V) + 8),V2)> = 0%,
Note that in two dimeusions, this symmelrizer specializes o 2 2
1 1
1+ ¢enev Va+aoyn+e <V13yV1 + V20,V + 5773,\177 + EVZ(a.r Vi+ 3yV2)> = 0(?),
i €
ev | 9+ 0V + 3y Vot 2 (3enVi + 18 Vi + dynVa + ndy Va) = 0(e),
but that or equivalently,
I +6n0 v el
& — e =
n ) 1 2 271
0 | Vi Vi
Gl Val+| vy 0 0 de | Va
can also be used. 0 n
. Indf:pendcm of the dimension, these symmetrizers are not compatible with the 1+ En 0 e Vi
dispersion terms. Therefore, they cannot be used for adducing solutions of the 2
Cauchy problem. This disappointing observation leads us to search for another 0 EVl 0
strategy for obtaining equivalent sysiems, in the sense of the preceding subsection, 2
that are symmetric with regards to their nonlinear portion. Consider the nonlincar 3e e Vi 5
change of variables + | eV ~?VQ 1+ 27 dy | Va | = O(e”). a7
n
~ £
= — & &
1% V(1+2n) (14) 0 I+=n=-W
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At this stage, we apply a O—curl condition. Indeed, even if curl V = (&) and
E_. ., & . . .
nol exactly 0, we can replace 5 Vaiy Vo by EVEH.'P' V| in the first equation of (17)
& Eorim o i & . .
and EVJ iy V) by 35 V)i V2 in the second one. With these substitutions, the system

becomes

I , 2 3 . 2, 1 2 | . 2
HVit+ante Za.\‘(n )+ Z()X(V' )+ Za_\»(VQ“) + ;()),(V| Vo) ) = O(e9),

1 1. 3 |
dVa+oyn+e (Zfi_y(rf) + Zdy(v|2) + Ea_v(vf) + S0V VQ)) = 0(?),

£
I+ Vi+d,Va+ 5 (V) + dy(nVa)) = 0(s%).

(18)
Introduce the new class §' = S(',‘)h“ of systems having the form
oV Vnteftont 3 (BVD)
CEITTE T T by v)
WV | 1 (Vi) .

/ | x\ V9 il 3y _ .
S()‘)\‘/l +3 (dv(v‘lg)> + 3 D, (V) V) +aAVn —bAYV 0,
on+Vv-V4e (%V(TJV) +cAV -V — (IAU,U) =0,

(19)

where a, b, ¢, d are as in (12). The previous computations allow us to write the
following proposition.

Proposition 2. If {(V®, n®)) is consistent with Su.ag and nearly irrotational in
the sense that curl V¥ = 0(g), then {(VE, n®)) is consistent with Sk v where

e =y (1 = fn”).
2
The lollowing result is clear al this point,

Proposition 3. Proposition I remains true for systems of class S' instead of S.

2.3. The symmetric class.

Considered here is the subclass of §' for which @ — ¢,b = 0andd Z 0. This
(non-empty!) class is denoted by .

ors ) d
Proposition 4. Fix0, A, 1 such that system (19) is in the class . Forall s > H +1

and all (Vo, o) € (H* R, there exist Ty > 0 independent of & and a unique
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v, € C <|:O, ?:| ; (H“'(]R"))‘[“) solution of (19) such that (V, n)(t = 0) =

Vo. 10)- . .
/(\/I()ré‘m’-‘-’r’ there exists Co > O independent of & such that

|(Vv n)|Wk'°°(0,%:H-"—3k) § CO

for all k such that s — 3k > d /2 + 1.
Furthermore, the quantity

/ V2402 + eb|VV|? + de| V|2

is independent of t (the integral is taken over all of RY).

Proof. This is established straightforwardly using standard energy estimates for
quasi-linear, symmetric hyperbolic systems. Note that the dispersive part does not
interact with these estimates because of the relationships ¢ = ¢, b = Qand d > 0.
The conservation of the energy follows from the following standard computation.

Multiply the system by 1‘7/ and integrate over all of the space. The result for the

nonlinear part of this calculation is zero as the following calculation shows:
1 1 1
/ %naxnvl + 3V123_r Vi+ EVQE)XVQ Vi + 53),V| v+ -2-V] WV,

1 1 1
+§naynvz + 5V] dyViVa+ 3V2d,VaVa + Ea*‘ ViV

1 1 1 1 1
+5Vid:VaVa + Erﬂar Vi+ S8enVin + Enzam + 3nVan

| |
= / ndenVi + Enzale + ndynVa + Enzayvz
i |
+V20, V) + 501 Vi +o,ViVaV + SVidyVavi,
I
=3 f DeWVi + 0235 Vi + 0,(nP)Va + 02, Vs

+FO(VOVI + 3 VIVE 4 8, (VD) Va + V23,V
=0.

The result follows, 0

3. Error estimates

3.1. The symmetric systens

In this section, we establish the fundamental estimates ensuring that any fam-
ily consistent with a symimetric system is near a solution of that system on time
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intervals of size O (l . We take 6, A, o such that the system S,’,‘)\‘“ given by (19)
3

is in X, that is, it has symmetric dispersive and nonlinear parts. Such a system is

wrilten as

Iy 3 (VD
(),V+V17+5<—VY) +_<8),(V22)

4 4
LoV | 1 av(vm)) . >_
1oy, 1 fo AVH—bARV ) =0, (20
+4<av(vﬁ) T2 oy ) HaAV = bAG (20)

[
on+V-Vie (;V(;]V) +aAV -V —dAB,n) =0, @2

with a, b, ¢ and d as in (12) and where

2 2
_ (-89 :(?ﬁ_l%:c,b;o,dgo, 22)

¢ 2 2 6

Theorem 1. Fix A, j1, 0 satisfying (22) and s 2 0. Let {(V*, n®)} be a family of
functions bounded with respect to & in W ((), = H P ®RYY ) for some T > 0,
If this family is consistent with (20)~(21) in the sense of Definition 1, then there
exists a fumily ((VE, n§)} of exact solutions of (20)~(21) defined on |:0, g} and
such that

[V~ V)ﬁ*lm(o.,;ux(mr')) + [ ~ '7%|L°°(O,1;H-“(R")) < Ce’tforallt e [O’ %] :

Proof. Write the system (20)—~(21) as a dispersive perturbation of an hyperbolic
quasi-linear symmetric system, viz,

VN . (V \Z/ o I A
C(n>.—(),(n>+<V'V)+€(A(V.’7)dx(n)

e AV AN
+B(V, )d, (n ) +a (AV _ V) — AY, (dn )) =0. (23)

The assumption of consistency made on (V*, n*) means that

£ A
(5)-=(7)
n ry

with (¢, r5) bounded in L (U. —{ H (']I&"’}). Now let (V§., n3:) be the solution
ol (23) such Ei‘ml (V. )t = 0)6: (VE, p")(t = 0). This solution is defined at
least on [(J. i}] with 7y > 0 by Proposition 4. Writing the system satisfied by
the difference (V* — Vg, n® — 5%) and performing standard energy estimates on it
leads to the error given in theorem 1 on | 0, %] where Ty = Min(Ty, T}. By the

usual scaling arguments, we can take T'=T. O
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3.2. Corollaries

The first corollary shows that the asymptotic behavior of any family {(V*, %))
consistent with a system of S can be described in terms of the solution of one of
the systems of X, via a pseudo-differential change of variables.

Corollary 1. Lets 2 Oand (9, A, 1) fixed satisfying (22). Assume that there exist a
set of parameters (8, A, i) and a smooth enough Sfamily ((V*, n®)} consistent with

, T
e system S 5 .« € 8" and defined on |0, —j[ Jfor some T > 0,
A gt o

Then the system Sé_ au € 2 admits a unique family of solutions (VE, n%) defined
on [o, -Z—J with initial conditions (Vs 0s 1% o) defined as

. £ 25 AN £ 2 ¢ . ,
vio=(1- (1 -8%a) (1- SU=0DA) VPG =0), nh=n(=0).
Moreover, the net {(V, n%)} satisfies the error estimate

vi—(1-Za—ea) " (1 - S0 -694) v

L0, H* (R4Y)
£ 3 2
i ’77 . n%'Loo(O.,:H.v(Rd)) g Ce’t

forallt €10, I,

Proof. From Proposition 3, it follows that
= & -1
(7", i7°) = ((1 -30-698) (1-2a-eda) v, 77"')

is consistent with Sr/%,m € X. From Proposition 4 we can deduce the existence of

(V,n%) and from Theorem 1, the error estimate between Ve, 17°) and (VE, n%).
Inverting the pseudo-differential change of variables then yields the result. 0O

The same kind of property holds for systems of the original class S, but we
must also perform a nonlinear change of variables.

Corollary 2. Let s 2 0and 8, A, W) fixed satisfying (22). Assume that there exist
a set of parameters (6, A, i) and a smooth enough family {(V*®, n®)} consistent
with the system St € S and defined on l:O, Z:l Jor some T > 0. If. for each
& Vg nearly irrotational in the sense that cusrl VE = O(e), then the system
Sé,&,_[ € X admits a unique family of solutions (VE, n%) defined on [O, Z:l with

L= 8
thitial conditions (V§ o, 15 ) defined as

Vom0 = (% (1+30°¢ =0).r¢ =0),

*‘——
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with
- (1 . g(l —Qz)A)_l (1 - g(l - 92)A> Vet = 0),

Moreover; there exists gy > 0 such that for all e with 0 < & < &,

Ve — (1 — g(l —(92)A>_l (1 = g(l —QQ)A) <V§(1 - gn%))

Lo (0,05 HY (R4 y)
£ F < 2
+[n nZILN((),/;H“(IR‘/)) s Cet

forallt [0, 1],

Proof. From Proposition |, it follows that {(V"', 1)}, as defined in the proof of
Corollary 1, is consistent with Sy » ;. € S. From Proposition 9, we then deduce that

one family {(‘;/:i', r)z”)} defined as

= ~ () ~
V’=V(|+5’7), nt=n,

is consistent with S, , y € L. From Proposition 4 we can deduce the existence of

(Vs., n5,) and trom Theorem I, the error estimate between (ve, ?}:F) and (V§, n%).
Inverting the nonlinear change of variables (which is possible for & small enough)
and then the pseudo-differential one yields the result. 0O

Remark 1. The irrotationality condition imposed in Corollary 2 is not necessary in
the one-dimensional situation in which there is a single horizontal variable since the
nonlinear change ol variables symmetrizes the hyperbolic part of the Boussinesq
system without using the fact that the curl of the velocity field vanishes (as seen in
Section 2.2).

3.3. The main result

The aim of this section is (o state and prove the theorem concerning the approx-
imation of solutions of the Euler equations. We choose (o work with a formulation
of the Euler equations alternative to (1)~(4). This new formulation is a system of
partial differential equations coupling 7, the deviation of the free surface from its
rest position, (o V = Vi, where ¥ denotes the values of the velocity potential at
the free surface, ¥ (¢, X) = ¢ (1, X, | + en). This formulation, which involves a
Dirichlet-to-Neumann operator G, is derived in Section 4.1. The syslem in ques-
tion is

. . 3 &

UV =&V QG (my) + Vo + 59 (1v - VG (Y1) + VIGe(yI? =0
(24)

for X e R and ¢ > 0, and

i+ eV (V —eVnG.(my) = gV(Gs(n)w), (25)
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where Ge(m 1s given by
Gy = 0,00, X, 1 +en).

of course, once the free surface is assumed to be known, the velocity potential ¢
satisfies the elliptic system

eAG +82p =0, XeRI, O0<z<l+en,

3,0 =0 atz =0, XeRY, (26)

¢(X, 1+ en) = (1, X).

1f (VE, n°) is a solution of (24)—~(25) with initial data (V§» n§), we construct what
will be called an approximate solution (V;,,, ¢,,,) of (24)-(25) in the following

way. First, consider ', n0°) given by
A N 2 ol 3 ~ ¢ £
W= (1-20-69a) V5, W =g
Then, take (Vg ¢, 75 ) to be

~ g £
(Vi om0 = (W71 + 20, ) @

Choose the parameters (9, A, j4) such that the system SF’,‘ o belongs to the class &
(ie., it is completely symmetric); in other words, choose the parameters in such a
way that (20)—(21)~(22) are satisfied. Let (V§, %) be its solution with initial data
(Vg, n5)(t = 0) = (V5 4, 1§ o). This solution exists and is bounded with respect

T ‘ -
to e in L™ (0, —; H") for some T > 0 by Proposition 4.
£

From this family of solutions of the symmetric system S{,.Mt, we obtain our approx-
imate solution of the Euler equations by inverting approximately the nonlinear
change of variables, and then the pseudo-ditferential one, viz.

o= (1= 50 -0) 5 (1 )]

& _ &
nupp =nx.

(28)

Theorem 2. (The two—dimensional case). Let s 2 Oand let {(vg, n§)) be a bounded
family in HO(R)? (0 2 5 large enough). There exist T > 0 and eg > O such that
the following holds. There is a unique SJamily of solutions {(v¢, n°)} of the Euler
equations (24)—(25) with initial conditions (v ng), and for all e with0 < & < &,

£

v < ce?t

L0, HY)

£ £ _ &
vapp L9, 1: %) +(n Napp

forall s € 10, L, where (Ve pps Mhapp) 15 given by (28).
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Theorem 3. (The three—~dimensional case). Let s =2 0 and let {(V], n5)} be q
bounded family in HY (B2 (0 > s large enough) such that curl Vi = 0. Le;
{(VE,0P) be a family of solutions of the Euler equations (24)—(25) with initiq)

. ; T
conditions (V§, n5) and bounded with respect to e in W' (0, — H? (Rz))
£

Then, there exist T > O and gy > O such that for 0 < & < &y,

+ 7" =1t , < ce?t
PP\ pos(o, 1) =

£ &
d Vaw LX(0,1:HY)

Jorallt € [0, %] where (fo/u” '75/)/)) is given by (28).

Proof. In the two-dimensional case, the existence part follows from [14] or [23],
The key point of the proof is that the solutions of the Euler system are consistent
with the Boussinesq system (8). This fact is proved in Theorem 6. Since this latter
system belongs to the class S (it can be written in the form Sy, with8 = A = 1),
the results of both theorems can be deduced from Corollary 2. O

Comments:

1. This result is not only a consistency result but a true convergence result with
improved error bounds. The available error estimates for KdV-type decoupled sys-
ters such as in [23] lead only to etrors of order O (£'74) in the scaling adopted here,
We improve this result in Section § by showing that the error estimate for KdV-type
uncoupled approximations is O (¢), and that this estimate is sharp. It is clear that for
short times, the estimale given in Theorems 2 and 3 is more precise. Moreover, both
theorems remain valid in the periodic framework (provided of course that solutions
of the Euler equations exist over the relevant time scales), which is not the case for
uncoupled approximations.

2. Among all the systems of class S and §’, only those belonging to the class £
are well understood in terms of the Cauchy problem on a time interval of size

1 .
I:O, (0] (;):l This is why we constructed our approximate solution (V(;"W, '7:},;,))

in terms of the solution (V£ ni.) of such a symmetric system S{,‘,L_H. However, an
approximate solution can be constructed from any family of solutions consistent
with one of the systems of 8, or 8. Indeed, if ((vf, :}f)] is consistent with St
and coincides with the family of solutions [(V*, %)} of the Euler equations at

— » ST, s{11e £ &8 ~
t =0, then we can define {V“W.l_. ”n;:p.l) to be

2 (5 .

From Proposition 1, “chqu,l- ;;:;W‘])] is consistent with the Boussinesq system
(8). Therefore, thanks to Corollary 2, we can replace (V*, ®) by (Vebop. 1> Tami )
2 o 2 ‘ ‘ . i 3 afrpr,
in the stalement of Theorem 1, By the triangle inequality, this result, together with
Theorems 2 and 3 yields the following corollary.

(_?orollary 3‘. If the family {(V*, n%)), defined on [0, %]for some T > 0, solves the
Euler equations and if, for all the relevant & > 0, curl V&t = 0) =0, then
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< ce?t

£ E__ &
‘V - + |17 Mapp.1 iLm(O,/;H-") =

P
Vupp,l IL"’(O.!:H-")

T
forall t € [0, <1

imilarly, il ((V5,n5)) is conlsistent with Sé).)\.u, arfd coincides with the soluli(.ms
(v n®)} of the Euler equations at ¢ = 0, then for each ¢ > 0, we can define

£ 4 as
( Vupp.ﬁ 1 Mapp.2 )

= (1= 50-92) (% 0 52)

with the same method as above, we obtain the following corollary.

£ _
17(,/)/),2 =13

Corollary 4. If (V#, %)}, defined on [0, %] for some T > 0, solves the Euler
equations and if curl VE(t =0) =0, then

< celt

£ & _ &
‘V -V + ‘77 n“/’/"z‘w(o,r;m) =

&
app,2

L0, HY)

forallt € [0, 1;]

3, It follows from Corollaries 3 and 4 that all the tormal approximate systems of the
class S of Bona et al. and of the new class S’ are justified rigorously. This comment
can sometimes lead (o a spectacular conclusion. For example, the original system
due to Boussinesq is ill-posed, but nonetheless, we have a convergence result! More
precisely, we can prove that any family of solutions of the Euler equations existing
over times O(1/g), is well approximated as & — 0 by any family of functions
consistent with the Boussinesq system and having appropriate initial values.

Theorem 4. Let {(V*, n®)} and {(V,,,,s» n;m\,)} be two sufficiently smooth, appro-
priately bounded families defined on (0, Z—j, with Vg, and VE irrotational func-
tions. Suppose that these families are consistent with the Euler equations and the
Boussinesq system (8) respectively. Then for all t € {0, %J

|V€ - VEU:M"I,“’(O,I:IP‘) + |17H - 7’Fl:fnu.\'IL"O(O,I;HA') g ngt'

4. Note that the way we prove the error estimates is a little unusual. Indeed, the
method used is the opposite of the standard approach in that we consider the solu-
tion of the Euler equations (that is the “exact solution”) as an approximate solution
of the symmetric Boussinesq system Zy » ., tather than the other way around. The
error estimate which is the center of our analysis is oblained by referring to this
Boussinesq system. The crux of the matler is that it is not so difficult to analyze
approximate solutions to a completely symmetric syslem.

5. Another approach to improving the error estimates for the uncoupled KdV
approximation (6) for the water-wave problem consists of computing the nex( or-
der terms in the WKB expansion. This method, studied by WAYNE & WRIGHT [24]
for a model problem (which is in fact a Boussinesq system) has the advantage
of giving an O(g?) error term, but appears not Lo extend to the periodic case. Of
course, higher-order Boussinesq approximations are also available and would have
the same type of formal error estimates when compared with solutions of the full
Euler equations (see, e.g., [7]).
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4. Consistency of the Euler equations with the Boussinesq system

4.1. Statement of the problem

The aim of this section is to prove the consistency of any solution of the Euley
equations with the Boussisnesq systems. For convenience, let us recall equationg
(1)=(4), which are the Euler equations in the long-wave small-amplitude scaling,
with Stokes number equal to 1, namely

EAG + 32 =0 for0<z<1+ep, (9
%p =0 atz =0, (30)
1
g+ (sIVOP +10.0°) 40 =0 az=14en, (31)
1
On+evVe-Vn=-0,¢ atz=1+en, (32)
£

where A and V denote the usual Laplace and gradient operalors in the transverse
vatiable X e RY, X = (x, y)ifd =2and X = x ifd = 1. By the earlier works of
CRAIG [14] and SCHNEIDER & WAYNE [23], we know that for d = | there exists g

T
family of smooth solutions of (29)~(32) defined on [0. ;:I such that (Vy ., ¢, ¢)

. T ek .
is bounded (with respect to &) in Wk [, —. g (R) ) for k and s large enough,
e

Following [15], we take (¢, X) := @, X, 1 4+ en(t, X)) as a new unknown;
as mentioned before, this quantity is the velocity potential at the free surface. A
standard approach (see, e.g., [21, 15, 16, 25, 23]), is to write the equations satisfied
by 1 and ;. To this end, we need to use the Dirichlet-to-Neumann operator which
basically expresses the normal velocity at the free surface in terms of the value of
the potential at the free surface. Since the normal velocity can be deduced from 9.,
itis natural to consider the operator which maps ¥ 10 d;¢ .= .4,. More precisely,
forany f e (C'n W1'°°)(R") and for any ¢ such that 0 < 1 — €| floo, we define
the operator G, (f), which acts on H32(RY) and has values in H'2(RY, 10 be

Ge(N)g = 0u(X, 1 +&f), (33)

where u is the solution of

sAu—i—é)zZu:O for0Sz<1+ef, XeRY, (34)
du=0 az=0 XeR (35)
WX, 1+ef) =g, XeRY (36)

Before rewriting equations (29)~(32) using this operator, we need Lo compute the
derivatives of ¢ in terms of ¥ and . Simple computations yield

al¢lz=l+m; =0y — &G, (ny, 37)
VOlivey = Vi — eVnG(n)y. (38)
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1 anks (0 (37)—(38), it is straightforward to rewrite (29)-(32) as
Lank

|
£ 241G DY =0, (39
ar— ednGe(mMy + 1+ 3 VY — eVnGe(my|® + 5 |G (Ml (39)

1
In+evn - [V —eVnGe(my]= EGE(U)V/,
(40)

; dandt €0, L]
ith X € R and 1 el . . o
iy The next step is to obtain an asymptotic expansion of the operator G, as& — 0.

This is the goal of the next theorem.

Theorem 5. Forany f and g smooth enough, define G1(f)g = —Ag and G2(f)g
LA%g — fAg. Foranys €N, there existo € N, o 2 s and &9 > 0 such that

0

s . il !
for all positive & < eo, if (f, Vg) € HT (R, then
3 3 £ T
1Go(£)g — £G1()g — 2 Ga(F)glusqrry S €°C (IS lue, |V 8lie),
where C is a continuous function of its arguments.

Remark 2. This theorem could certainly be obtained using the estimates of the Dl:
richlet to Neumann operators in the works of CRAIG [14] and SCHNEIDER & WA.YI\flf
[23]. However our proof is interesting since it 1s s.impler and uses dlrect.ly t}21: elliptic
equations. We postpone il lo Section 4.3. A similar approach is used in [22].

4.2, Asymptotic expansion of solutions of the Euler equations

The aim of this section is to give an asymptotic expansion .Of thfa so!uti(.)ns 0[?
(39)~(40). This is accomplished in the following theorem, the gist of which is that
any solution ol (39)—(40) is consistent with the Boussinesq system.

Theorem 6. Let s = 0. Let {(y5, nF)} be a family ()fsoll,tri(u;‘s of(39)7(40). There
exists o € N such that if (Vy*, n°) is bounded in w oo, =1 H7(RY)), then

g ) :
31 VH + VnF + 5V(l‘//~|2) . EZ,.IF’
| . ,
ant+V-Vite <V - (fVH + ;AV . V") = ¢%rf,
where V¥ .= Vy*, and rf, r5 are bounded in L>°(0, %, H (R%Y), independently

ofe > 0.

Remark 3. From previous works [14, 23] it is known when ¢ = | that equations
(39)—(40) are well posed. Therefore the assumption made in Th‘eoren‘] 6 on l.he
existence and regularity of (V¢, n%) reduces Lo a simple assumption of regularily
on the initial conditions (g, no) taken for (39)-(40).
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groof. Let {(¥%, n°)} be as in the statement of the theorem. Using Theorem 5, we
ave ,

En.1.E £ 1 £ & [
Ge(n" )" +eAy" +6> (gazw'ww) = 0(e), A1)

where the O (¢®) error term is taken relative to the L { 0, Z"-; H*(RY) ) norm
. I,

Suhs}ituting (41) into (39), taking the gradient of the equation thus obtained, and
keeping only the terms of order O(¢) leads to the conclusion that

3 £ € 12y 2 T
o V:i+ Vp +5V(|VP| ) = 0(?), XeRY, te [0, ;:l, (42)
with V& := V¢, Similarly, substituting (41) into (40) leads to

a & V'VS ) E17€ l )
i’ + +a(v V) + 3AV.VF) = 0(eh). (43)

Note that the error terms 0(6‘2) are relative to the space L™ (0, Z H* (R‘/)) for
&

any chosen s, provided that o is large enough. O

4.3. Expansion of G,

This subsection is devoted to the proof of Theoren
: n 5. Recall that we are con-
::herned l\;\lnth the opberator G defined by (33)—(36). Applying a change of variables
e problem may be reduced to one set on an horizontal strip: let i b :
e aageiD BT p: let u be defined on

U(X,2) = u(X, z(1 + £f)), (44)

where u and f are as in (33)—(36). It follows immediately that for all X € R

and all z € [0, 1+ &f], we have u(X,z) = 5<X, -
from (33)—~(36) the equations satisfi - y .l -+ &f .
respectively, isfied by i. Equations (35), (36) and (33) yield.

. We now deduce

2 U(X,00=0, XeRY, (45)
X, 1) =g(X), XeRY (46)
1
Ge(F)(g) = Pt !
() T3es o u(X, 1), X e R4, “@n
To use (34), we mustcompulte 822u and Ay in terms of &Z. Introducing x, := ]
we see that | e Ef,

2, 242~
azu_xﬁazu,

Au = AU+ 2D X 8,0 + 27V, 00 - Ve + 22|V 282w,

S eSS

Long Wave Approximations for Water Waves 397

and equation (34) therefore becomes
enii+ (x2 + 622V xe ) 820+ 262V e - VOl + 62AKeT =0 (48)

Now, define

o =g

~ @@=
0 = ——p A, (49)

2+ 5) — fAg® - 1),

5o N (2
=74 \e6 6

The principal obstacle to establishing Theorem 5 is overcome via the following
preparatory result.

Proposition 5. For any s € N, there exist o € N and g9 > 0 such that for all
positive € < £ and all (f,g) € H? (RH2, the solution W of (45), (46) and (48)

satisfies

ol (ﬁo + el + 6252) — 0@ in H'(S),
where 1o, ) and Wy are as in (49).

Proof. To prove this proposition, we proceed as follows:

(i) In a first step, we construct an approximate solution of (45), (46) and (48), up

to order 0(53);
(ii) In the second step, we perform energy estimates on the dilference between

the exact and approximate solutions.
Step 1. Construction of the approximate solutions
The energy estimates which will be used in Step 2 use the principal part of (48),
which is e Al + (an + 822V xe |2) r‘l‘f?& Because of the coefficient £ in front of A,
the error estimate on X derivatives are one order worse (in terms of &) than those on
z-derivatives. For this reason, it is helpful to construct approximate solutions which
are good to one order further than 0(&?), that s, to order O (£3). We therefore make

the ansatz

~ ~ ~ D 3

Hg = g+ €Uy + &1y + €73,
fot the approximate solutions, and substitute it into (48) assuming that 3,4; = 0 at
c=0fori=0...3,gp=gatz=land¥; =Datz = 1fori = 1...3. Atorder
Y, we find Bfﬁg = 0, which, with the boundary conditions on Wo, yields ip = g.

To expand (48) in powers of £ up to order 3, we need to expand x. and its

derivatives, viz.

Xe =1 —sf +E2f1+ 0@,

lXFT|2 = J —28f +382f2 + 0(63)7
IVxel? = eV fI* + 0@,
Axe = —eAf + O(D).
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U"'"E ““‘3-‘53 fi’fP"ES":if-l’!‘S f‘"d "3%“3‘-'“'28 the l*’-“l'"'ls Ornfdt;l' O(e*) and higher in (48) We first prove the estimate of Proposition 5 for s = 1 and s = 2, and then prove
g“""‘:"‘ anrequation 0_{ the form £ Py +£° P +& Py = O(&). Choosing i), ¥ and i (he general result by induction. Multiply (56) by w and integrate the result over the
tocancel Py, Py and P yields three ¢quations. The first one, namely Py = 0, yieldg gipS = (X eR?, z €0, 17} to reach the formula
Allg + 8%, = 0:
B gty =G 50y —e/Ilez—/aglazwlz—fazagazww—%z/bg-Vszw
the second one, Py = 0, gives
—2¢2 / V- b0,ww + &2 / Cedww = / oEhHw, (57

where the boundary conditions on w have been used to eliminate the boundary

and finally P; = 0 is the same as terms in the integration by parts petformed with respect to the z variable. Since
N . ar = 14 O(e), the second term of the above equation can easily be controlled,
Ay + 073 — 2f822ﬁ2 + 3f282251 —2zV 3,V — zzAfBZEI =0. (52) and the third one satisfies
I}Jlsing the boundary conditions, these equations can be solved: for (50), it transpireg / 0,a,0, ww‘ < 0(e)|3,w| [w],
that
= Ag 5 where |- | denotes here the L? norm on S. From Poincaré’s inequality, it follows that
iy = —7(2 —1). (53)
For i, (51) gives ‘/ dea.ww| < 0(e)3,w|% (58)
e A0, ) For the fourth term of the left-hand side of (57), remark that
0t = ——(2" ~ 1) — 2f AT, (54)
2 . 9. < T 3
and hence 28 /bf degw) = 0(e9)|8,w| |[Vw]
N s 2 < 0 (0,0 + | Vwl?) (59)
uz:—4 A +8)—ng(Z — 1), (55)
Similarly, the fifth and sixth terms are bounded above s follows:
y
Equz.ztion (52? also allows the determination of the value of 3. However, this quan- 2 2 2
lity 1s of no interest in the present context, and consequently the computation is 267 / Vb ww + & / cgazww' < 0(e%)|3,w|?, (60)
omitted. ’
. The next task is to understand just how close the families of approximate solu- where Poincaré’s inequality has been used again. Substituting (58)—(60) into (57),
trons just constructed are to the exact solutions. itis determined that
Step 2. Error estimates 172
Introduce now the difference between the exact and approximate solutions of 8/ |Vuwl” + / |2zl = 0(eh (/ |w|2) '

(48), namely w = i — liq. Then w satisfies
and hence, by Poincaré’s inequality,

2 2 2
eAw +(X{‘ +82 IVXF' )azzw+2a (ZVXFJ .anw_,_E (:AXF) azw = 0(64),

‘__——V__——_J:ug(x,;) N :T-g(x.:} e[ [Vw|* + / |3, w]* = O(eb).
(56) This last equations yields
with d,w =0at z = 0, ) — Datz =1.R
W ak z » o~ vt =1 Remark that a,, b, and ¢, are y iforml 4 /2
; Fooasige kU e bg > miformly w| = O(e = / 61
K,;:T(I:“" “;V:'CE;S)‘..R being as large as we wish provided that o is large enough. M=o, RSB, i
Chyin (8), we have ;. = 1+ 0(e). As above, S is the stripRY x [0, 1]. which proves the proposition for s = 1.

y
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We now prove it for s = 2. Taking the L2 scalar product of (56) with Aw yields
8/ |Aw|2 + / aF{)zzwAw + 262 / by - 3, VwAw + g2 / Ced;wAw
= f o(HAw, (62)
and taking the L? scalar product of (56) with Bzzw gives
a/ Awafw + /a,qlafwl2 + 262 / bg - BZVwafw + &2 / cﬁazwafw

=/0(a4)a§w. (63)

Attention is first given to the two terms in the above equations which give control

of the cross derivatives, namely /agafwAw and e/ Awafw. Notice that

z=1
/Awafw = —/azAwazw + [/ Awazw}
. R4 72=0

_ f 19, Vl?, (64)

since the boundary terms are zero, thanks to the boundary conditions satisfied by
w. The other term can be treated in the following manner:

z=1
/agazzwAw —/8zagazwAw—/a£82wBZAw+ [f/agazwAw]
Re 72=0

—/BzagazwAw-i-/Vagazwanw —I-/a,glanw|2.
Using the fact that a, = 1 + O(g) and (61), it follows that

/a,gazzwAw = 0() (|Aw| + IBZVwI)—l—/agIanqu. (65)

Then, using (64) and (65) in (62) and (63), it is determined that

6/|Aw|2—|—/ag|8;“w|2—|—a/IBZVw|2+/a€|8ZVw|2

= 0(") (Aw| + 9, Vwl) + 028, Vw| |Aw| + 0(e%)]0,w| |Aw]|
+0 (M0, V| [02w] + 0(6?)[8,w] [02w] + O (e*) (|Aw| n |a§w|).

) S . 1
Multiple use of the inequality ab < E(a2 + b?) and of the fact that a, =14+ 0(¢)

then yields
8f|Awl2+f|83w|2+/|anw|2= 0@,

which implies the proposition for s = 2.
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Attention is now turned to proving the general case of the proposition by induc-
tlon. Assume that for some integer s 2 1 and for any horizonatal derivative 3, both
JE|8 8, w| and 137" 92w| are of size O(e*). Apply 8" to (56) and take the L2
scalar product with 9* 822 ; this leads to the relation

5[Aa‘vwa“'afw+/8"((1682211))8"'8311)+282/8“'(bnanw)8"'3Z2w
+¢? / ¥ (ced,w)d 32w = / 0(eh9* 82w
Rewrite this equation, viz.

/|va 8zw|2+/

+& /([8“',1)]61Vw) 8“'6?w+23 /bga-"anwa-“afw

' ae] 82w 329°* w+/ap|a 32w

52/ (18, cx18,w) a"a§w+82/c£a“’azwa-‘a§w = / 0982w, (66)
where [P, Q] denotes the commutator of the operators P and Q, which is to say,

[P,O]l=PoQ—QoP.

The terms containing commutators are bounded above in simple ways:
¥ 192 248 < 2 n2as
[0°, aglojw) 8;0"w| < Const. |0;w|ys-1(s)18; 8" wl,

g2 / (18, be18, Vw) 870°w| < Consl. £2|3,w| s sy 9" 32wl

52/ (12°, cx10,w) 329 w| < Const. 28, w51 (5)18" D2w],

where we have used |[8"', aﬁ]w|l » < Const. Jw|ys—1. The other terms of (66) are
estimated using the inequalities

< 0N wl s+t [82w] s,

2¢? / bed* 3, Vwd® 92w

< 0@ED)|8,w|ps |32 w] 5.

&2 / ¢ 0' 0, wa" 83 w

Combining these estimates appropriately in (66) leads to the inequality

e/|va-“azw|2+/|a-"a§w|2

S 102w 11820 w| + £218,w| s |3°82w| + £2]8,w] gys-118" 82w

+e2 (3wl ot 187wl s + 6218w s 07w s + f 0(ehd" 3w,
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where by <, we mean that the inequality holds up to a constant which is independen
2 " PP
of &, Recalling that \/£|d.w| g+ and |8Zw| ys-1 are of size O (e*), itis then clear thay

el wlyysn +107wlls = 0,

which completes the induction. The proposition is deduced from the inductiop
property using Poincaré’s inequality once again.
Attention is turned back to the proof of Theorem 5. Recall that the operator

L A . _ 1
Ga(f)(g) is given in (47) as G-(f)(g) = e

essary for us to compute 9.7 (z = 1). From Proposition 5, it is deduced that in the
. o o~ —~ —~ o .

H* (RY) norm, we have Dot |g=1 = (0;H0 + £3,0 | + £70.12)| ;=1 + 0. Using

the explicit expressions (49) for the @i, i = 0, 1, 2, we arrive at the conclusion

;i (z = 1). It is therefore nec.

2
. &
Bi(z=1)= —eAg — ?A2g - 262 fAg + 0(cY),

and a straightforward Taylor expansion of (47) then implies the Theorem. 0O

5. Uncoupled approximations

Many uncoupled models exist for the water-wave equations in the case of
two-dimensional motions (one-dimensional surfaces). SCHNEIDER & WAYNE [23]
proved that the uncoupled KdV-KdV approximation is indeed an approximation of
the full equations in certain circumstances. Our goal here is to justify a whole class
of uncoupled models (including the KdV-KdV and BBM-BBM models) oblained
formally from the water-wave equations. Moreover, we present sharp error esti-
mates, sensibly better than those of [23], and also comment on the validity of the
uncoupled models in the case of spatially periodic motion: in particular, we show
that the uncoupled models are not good approximations of the full equations in the
periodic setting if we are unwilling to make a zero-mass assumption on the initial
data. Such an assumption is certainly not natural in coastal engineering applications
where the mean water level may rise as much as a meter in storm environments
(see, e.g., |6, 5]).

5.1. From the symmetric systems to uncoupled approximations

Constructed here are approximate solutions of the symmetric systems in the
class %, namely,

3

1
v+ hn+e (Zaxﬂz + 7

dv? +ad’n — bajfa,u) =0,
(67)

1
hn+dvte <§8x(nv) +addy — dafa,n> =0,

where a, b and d are as given in (22),

s
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The analysis commences by diagonalizing these systems. I{]troducing the un-
knowns U = v+ n and N = v — n and writing (67) in terms of U and N leads to

the system
U + 0.U+ s(f-‘{;.i,, (3U2 + N2 +2UN)

+ad’U — %’nfa, U+ N) - %a_fa,(ti - N)) =0
&N — 0N+ £( 40, (U2 +3N%+2UN)

—ad’N — ;—’a-l_';?ea,w +N)+ %afa, W - ) =0.

(68)

As is usual when positing long-wave WKB expansions, we seck approximate solu-
tions (U,, Ny) of (68) in the form

U(I(t’ x) = U0(8t7 X — f) + EU] (8t9 t, x)!

Ny (t, x) = No(et, x +1) + &N (et, 1, x), (69)

Uy, Nu)|t=0 =, N)|t=0-

Substituting this ansatz into (68), cancelling the first powers of & appearing in the
expressions thus obtained, and using the usual decoupling tools (see [17, 41), we
attain the following uncoupled equations for Up and Np:

b+d)

3 2
drUo 4 ad>Uo — BVEB,U0+§8XUO =0,

(70)

(b+d)
drNo — ad> Ny — >

3
329, No + ga_\.zvg =0}
where T stands for et. By the same token, the equations determining the correctors
Ui and N are
(b—d)
2

Il

2,
(8 + 0,)U) agiy Nu) 3

| 5
- (—a,..w{; +2UgNo) —
8 7))

| (h— d) a2

&

5.2. Estimates of the correctors

Equations (71) give (U, Ny) in terms of (Uy, Np). These equations can be
solved explicitly: N

!
UILT, 1,3 = =3¢ (N&(T,x 1) — NA(T, x — r))

(-d)

(00 No(T, x + 1) — 8,8 No(T, x — 1))

t
—%aon(T, X — t)/ No(T,x —t +2s)ds
0

—éUo(T, x =) (No(T,x+1) = No(T, x —1)),  (72)
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with a similar expression holding for Ny. Forall s € R, and with one possible excep.
tion, the terms which appear on the right-hand side of (72) are obviously boundeg

in L>([0, To] x R,; H*(R)) provided that (Up, Ng) € L*([0, Tol; H” (R))? to,

some o big enough. The possible exception is the term

1 t
Wi(T,t,x) = —Za,\-Uo(T.x - t)/ No(T, x —t + 2s)ds. (73)
0

While not quite obvious, this latter term is under control as well, due to the following
lemma.

Lemma 1. Let s € N. Then for all o large enough, the following results hold:
(i) If (Uo, No) € L®([0, To]: H° (R))? then Wy € L ([0, To] x R;; H*(R)) and

fo

sup  [Wi(T, t, ) usry < Const. V1,
Tel0,Ty]

Vi 2 0;

(i') If, moreover, Ny satisfies the following decay assumption: there exists o >
such that

1
2

sup (L+xH%Ny(T, x)| <00, B=0,...,s,
(T.x)€l0.Ty| xR
then
sup |Wi(T,t, )|usry < Const. , Yt 2> 0;
T€l0,7y) N

(i) 1n the periodic case, i.e., if (Ug, No) € L®([0, Ty]; H (T2, then

¢ 21
Wi(T, t,x) = —QBXUO(T,X — t)] No(T,x)dx + O(l) as t — oo.
0

In particular, Wy is bounded in L*®([0, Tol; H*(T)) when No(T, -) has zero mean
value for all T € [0, Ty]. Otherwise, it grows linearly in t.

Proof. Point (i) is classical (see, e.g.,[18,4]). We recall the proof in the case s = 0.
From (73), we deduce

1

IWi(T, t, ')|L2([R) RS |3rU0(T)|L2(R)

f
/ No(T, x — t + 25)ds

2
< Const. V1|8, Uo(T)| 2y | No(T) 12xey

which easily yields the desired estimate.
Point (i’) is in the spirit of Lemma 5.5 of [23] and Proposition 3.5 of [18], and its

proof is qL!ite obv.ious in the present case. Finally, (ii) is deduced easily trom (73)
by expanding Ny into Fourier series. 0O
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5.3. Validity of the uncoupled approximations for the diagonalized symmetric
system

We first consider the error made when approximating the exact solution (U, N)
of (68) with initial conditions (U°, N°) by (U,, N,) as given by (69)—(71).
Proposition 6. Let s € N. Then for all o large enough, there is a To > 0 so that:
(i) If (Uo, Np) € L([0, To); H” ()2 then for all t € [0, %],

(U, N) = W, N oqo.r, e gy < Const. 62672,

(i) If. moreover, Uy and Ny satisfy the following decay assumption: there exists
o > 1/2 such that

sup ‘(l + 1) (A U(T, %), 3fN0(T,X))\ < 00,

(T, )€|0,Ty1xIR
then forall t € [0, %]
(U, N) — (Uq, Nu)|L00(|0,,|‘”.\-(1p§))2 < Consl. 1.

(i) In the periodic case, i.e. if (Ug, No) € L*([0, Tpl; H? (T)? then for every
tef0, &),

|(U, N) s (U(,, NU)IL°°(|0,[|.H"(R))2 é Const. 82f2.

(i) If, in addition, the initial conditions U 0 and VO satisfy a zero mean value
condition, which is to say, f(f” Ul = 0" NO =0, then fort € [0, LEQ],

|(U’ N) - (U(,, Ntl)lL"O(l(),rl.ll-“(R))z é COnSt. 821.

Proof. The approximate solution (U, N,;) satisfies (68) with an error term of size
0(e2J1), 0(gY), O(e%t) and O(£?) in cases (i), ('), (ii) and (ii') respectively, by
Lemma |. Standard energy estimates applied to (68) imply the desired results. O
Remark 4. To use Lemma | in case (i') (or (ii’)), we must know that Ug(T', -) and
No(T, -) satisfy the decay condition (respectively the zero mean value condition)
forall T e [0, Tp] and not only at the initial value (U%, N, Ttis classical that these
properties are propagated by the KdV-type equations (70) (see, e.g., [12] and the
references therein for periodicity and zero mean conditions; see Proposition 6.3 of
[23] for the propagation by the usual KdV equation of the decay condition arising
in (i).

Proposition 7. In the periodic case, if the initial data U 0(x) or N°(x) has nonzero
!

mean value, there exist To 2 T > 0 and C > 0 such that for all t € [0, —F—],
(U, N) = (Uo, No)l oo (10,11, 1 (R))> Z Cet:

Remark 5. This means that in the periodic case, without the zero mean value con-
dition, the decoupled KdV approximation is not a good one on the long-time scales
of interest in the use of such models.

Proof. The second term of the approximate solution (Uy, N, ) has in this casc a
linear growth in time as shown by (ii) of Lemma 1. Therefore U — Up is hounded
{rom below by Cet — C26%¢2. The result follows. O
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5.4. Validity of the uncoupled approximation to the Euler equations

In (he previous sections, we derived a class of uncoupled KdV-like equations
(70) from systems (67) of the class . We now put forward a set of two uncoupled
KdV equations starting from a one-dimensional version of Boussinesq’s original
system (8), namely

£
v+ 0o+ ;8_1-1,'2 =

. [ 4 (74)
on+oyv+e|a(nv) + ;‘J_i- v] =0.

Exactly as in Section 5.1, we can diagonalize this system by introducing the un-

knowns F = v+ nand G = v — 1, and search for an approximation (F,, G,) of

(F, G) in the form

Fu(t,x) = Folet, x —t) + el (et,t, x),
G,(t,x) = Golet,x +1t)+eGi(et, t, x),
(Fa, G)li=0 = (F, G)|s=0.

It turns out that the equations which Fp and G must satisty are uncoupled and
exactly the same as equations (70) which already appeared in the symmetric case,
provided we take b =d =0 and a = %. This is to say thal (f¢, g%), defined as

fE@t, x) = Folet, x — 1), 8°(t,x) = Go(et, x + 1),

solves the set ol equations
N 3 2 L3 e
@ +0d) f +e Eﬂ,\-f"+gﬂ_;f’ =0,

, & 3 q 82 I nd & (75)
(O —0,)8" +¢ gdxg' - g:}i.g ) =0,
Construction of the KdV approximation for water-waves.

Consider initial data (vg, no) for the Euler equations in the form (24)—~(25) and
denote by {(v®, n*)} the associated family of solutions. The KdV approximation of
(v%, n%) is constructed as follows. Let fy := vg =+ 19 and gg := vy — ng and denote
by (f€, ") the family of solution of (75) with initial condition (fy, go). The KdV
approximaltion (U7<(1v’ n‘,’(dv) is

[+ gf

e =g
KdvV — 2 > .

e
Tkay = =%
Forany k € N and s € R, note that for sufficiently smooth initial data, there

exists To > O such that both {(v*, n%)} and {(Wkay+ Mk qy)) are bounded families
: ko0 To S ]

in W lov ?]’ H ([F:-) B

Choice of a reference symmetric system.

As menl'ioncd above, if we choose @ = ¢ = 1/6and b = d = 0 in (67) (which
can be obtained by taking A = ;& = 1 and 92 = 2/3), the associated uncoupled
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equations (70) coincide with the uncoupled KdV equations satisfied by Fo and Gy.
[t is therefore natural to consider the symmelric system S:/T/T L determined by (70)
with this choice of parameters. From Theorem 2 the approximation (vj'pp, )
given by (27) and (28) (with A = v = 1 and 9% = 2/3) satisfies

< Const. €2t

) Ty
< fort e |0, =2 |. (76)
L2(0.1, 15 (R))? &

£ £ £ &
W, n") - (vup/n '7(11)/;)
Error estimate for the KdV approximation.
We can now estimate the error made when approximating the solution (v*, n*)
of the E.ulcr equations by the KdV approximation (v% ,y, N 4y) constructed above.
According Lo (76), we have

£ & e £ (1€ F £ e £ £ £ P
W, n )_(UI\Q/V’ nl((lv) =", n )——(U”I,I,, nupp)—l—(vupp’ nupp) — (Wkay nk'th)

_ 2 £ I3 £ £

= 0@+ (Uupp' nupp) - (UK([V’ ”KlIV)'
Inverting approximatively the nonlinear pseudo-differential change of variables, it
is observed that

& £ I &
’(Uu/)/;' nupp) - (UK(IV’ '7’("‘/)}100((); 115 (R))?

= (v, nt —lj‘{‘—‘-,fl 0(&?),
‘( £ 12) = Wkay» Meav)| e iy T 0

wilh
P £ —1 £ ——
& _ n?2 £ e G _ &
Vgay = (1 = 66,\‘) Vg v (' + 5771\%/\/) , Nkav = Nkav:

, 575 J(TER T 25 the solution t S etric system S’ i
and where (v§;, n%;) denotes the solution to the symmetric sysujm Sm.u with
initial conditions (27). In accordance with the notation of Section 5.1, we write
U =v§ + 0§ and N = v§, — n§; so that (U, N,) as constructed in Section 5.1
gives a goonﬂl_a‘sﬂ){mpt(li‘idcscription of (U, N).Now remark that F := v} ., -+1% 4y
and G 1= ;Jf\’d!f — 0% 4y solve the uncoupled KdV equaliN()ni (70) up 1o a term of
order O (7). It follows that il we replace (Up, Np) by (F, G) in the ansatz (69),
the results of Proposition 6 are not altered.

The outcome of these ruminations is that the error made by the KdV approxi-
mation can be evaluated in the L*°(0, ¢, H*(RR)) norm to be

. N : o) .
(W, n%) = Wiay» Nkay)ll = O™ + (U, N) = (Uq, No)ll-
Our final result is now a simple consequence of Proposition 6.

Theorem 7. Let s € R. For o large enough, if (vo, no) € (H? (R))?, then there
exists Ty > O such that for all t € [0, %],
0]

2,312

|V, 1) = Wy Miav) | Lqoar.msary? = Const. e
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(') If, moreover, vy and no satisfy the decay assumption. there exists o > % such
that

sup | (1 + x5 (98 vo(x), afno(x))‘ < 00,

xeR

then for every t € [0, 1],
10", ") — (Vkav ni(clV”L""([O.t],HJ‘(R)ﬂ < Const. &°¢.
(i) In the periodic case, i.c., if (vo, no) € H°(T)?, then for t € [0, %],
[, n%) — (kv ﬁi(dv)lLoo([OJI‘H.\'(’H‘))2 < Const. £2¢2,
(ii") 4f, in addition, [§™ vo = [ o = 0, then for every t € [0, L],

(v, n®) — (U;'((/v, ni(dV)|L°°([0,t|,H-"(’Jl‘))2 < Const. £,

(i) /n the periodic case, if vo or no have nonzero mean value, there exist Ty 2

T =
T\ > 0and C > O such that for all t € [O—LJ,
ﬁ‘

[V, 0%) = Wiy Nkav)leoqo,. e cry? = Cet.

Remark 6. (i) In [23], it is proved that under the decay assumption featured in (i),
the decoupled KdV model furnishes an approximate solution of the Euler equations
with an error estimate of size O (2'/*) which was shown 1o be valid on the long-
time scale of order £, The error estimates (i) and even (i) improve considerably
this bound. In the case (i), our estimate is sharp (since we have constructed the
next term in the asymptotic expansion). In the periodic case, our results show that
the uncoupled KdV approximation diverges from the exact solution of the Euler
equation unless a zero-mean-value assumption is made on the initial data,

(i) It is worth pointing out that there is not currently an existence result for the
Euler equations in the periodic framework. So, just as for the three-dimensional
case with Sobolev class initial date, we assume the existence of a family of solu-
tions {(v*, n)} of the Euler equations, over limes O(f) and with initial condition
(vo, n0). '
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