MICROARRAY DATA ANALYSIS: CURRENT PRACTICES AND FUTURE

DIRECTIONS

Faaiza Vaince', Jerry Bona?, Hassan M Fathallah-Shaykh'2
'Department of Neurological Sciences, Section of Neuro-Oncology, Rush University
Medical Center, 1725 West Harrison Street, Chicago, IL, 60612, USA, 2Department of

Mathematics, Statistics, & Computer Science, The University of lllinois at Chicago, 851 S.

Morgan Street, Chicago, IL 60607

Address correspondence to:
Hassan M Fathallah-Shaykh
Rush University Medical Center
1735 W. Harrison St, 3rd floor - Cohn Building
Chicago, IL 60612
USA
Tel: (312) 563-3563
Fax: (312) 563-3562

E-mail; hfathali@rush.edu



Abstract

Microarrays have become one of the leading technologies used for gene expression
analysis and functional genomics in many biological fields. Potential applications of
microarrays can facilitate advances in molecular biology, systems biology, functional
genomics, clinical medicine, and pharmacogenomics. However, microarray data can
also lead to inaccurate and irreproducible conclusions. Here, we present a critical
review of current computational tools used for normalization, statistical analysis, cluster
analysis, and mathematical modeling-based analysis. Despite the pitfalls and
challenges that still encompass the computational analysis of microarray data, the use
of this technology remains very promising. In our opinion, achieving the full potential of

microarray technology requires additional theoretical advances.



Introduction

In the past few years, DNA microarrays have progressed to become one of the
leading technologies used for gene expression analysis and functional genomics .
Because of the potential to elucidate the behavior of tens of thousands of gene
transcripts in various cellular and tissue states, microarrays have generated intense
interest in many biological fields . Applications in clinical medicine include the study of
gene function, reguiation, and interaction particularly in comparing the molecular
properties of normal to pathological states. Potential applications include the ability to
predict clinical behavior, prognosis, and drug response from tissue samples .

At the same time, it must be acknowledged that microarrays can also be misleading
in producing inaccurate and irreproducible conclusions. The challenge lies with
improving the accuracy and efficiency of the analytical tools used to identify those
candidate genes responsible for differentiating phenotypes. This task is hampered
because current practices are complicated by various inconsistencies and discrepancies
. The purpose of this review is to give an overview of the process that goes into DNA
microarray analysis. In so doing, both the advancement and the pitfalls of current
methods will be highlighted. The methods that will be discussed and compared are
those that are involved in normalization, statistical analysis, mathematical modeling-
based analysis, and cluster analysis. The hope is that from this review, one will not be

dismayed at the challenges to microarray data analysis, but instead have a better



understanding of the progress that has been made as well as the areas where

improvement is still necessary to bring this highly promising technology to its full power.

Platform selection
Current platforms include spotting cDNA products of specific genes, in situ
synthesized oligonucleotides, and the Affymetrix Gene Chip® . The concepts discussed

below can similarly be applied to all array types when formatted appropriately.

Hybridization

Samples to be analyzed usually consist of cDNA prepared from the mRNA
population of a particular tissue sample during a particular state, i.e. a healthy or
diseased state. This cDNA is typically prepared using one of two fluorescent dyes Cy3
and Cy5 (both are utilized in dye swapping procedures) so that following hybridization,
independent images are generated for the control and query samples from which a
quantification and comparison can be generated based on the relative fluorescence
intensities. Some protocols actually amplify an initial mMRNA sample population via in
vitro transcription, which produces an aRNA population that is then hybridized onto a
plate for analysis. Commercially and freely available software packages can be used to

provide this image processing. The assumption is that the binding intensities indicated



are proportional to the relative quantity of mRNA, or gene expression, present for the

particular genes being assayed.

Normalization

Sources of variations and hAeterogeneity are numerous in microarray experiments
because of the multiplicity of the biological steps, reagents, and equipment used. These
include: 1) variations in the quantity of mRNA present in the samples, 2) the efficiency of
hybridization and washing, 3) variations in the labeling, detection, and measurement
efficiencies of the fluorescent signals, and 4) any other undesired technical or systemic
variances, such as in scanner or image processing, specific to the experiment . These
experimental variations introduce noise that is heterogeneous between experiments. It
is important to realize that normalization yields only at best a partial correction of the
noise.

Typically, normalization aigorithms will rescale the data to generate expression
ratios that are then transformed and reported as log ratios, which allow for
straightforward comparisons of down-regulation vs. up-regulation of genes. There are
several different normalization methods that can be applied to DNA microarray data and
they can also be applied across various platforms. In other words, normalization can be
applied to data within a single or dual channel (two-color) slide, to data in paired-slides

(as in dye-swapping experiments), and to data across multiple slides .



Control genes

A set of reference genes is usually selected for the process of normalization. There
are a number of ways in which this is done. They include: (i) all genes in the array, (ii)
housekeeping genes that are constantly expressed across cell lines, (iii) a control sector
of genes, (iv) rank invariant genes . There are advantages and disadvantages to using
each of these as a set of reference genes.

Using all the available genes as control genes gives the most versatility and stability
for correcting both spatial bias/ (layout bias in spotted arrays) and intensity based biases
in fluorescence detection. But, this is not a very good approach when analyzing
samples containing high differential expression as with custom arrays or arrays where
the general expression profile is very different from that of the query samples.

The use of predetermined or housekeeping genes (genes that, by experience of
hypothesis, are constantly expressed regardless of cell state) as a control can be useful
in situations featuring highly differentially expressed query genes . On the other hand,
recent evidence counsels action when using housekeeping genes, as many of them are
not actually so very static in their expression levels, especially in tumors .

A well-selected control set of genes may be effective in adjusting for intensity-based
biases. Additionally, an advantage of using an MSP (microarray sample pool) titration
serles is that prior biological assumption is not required in application . On the other
hand, it is clear that a control set is not as effective as using all the genes for providing

accurate spatial normalization and for low intensity values. If the control set is large,



their use in, for example, spike-in or dilution series experiments may again present cost
problems .

The use of rank-invariant set of genes allows for intensity-dependent normalization
and is a more conserved set , but may not span the entire intensity range and may fail
in cases where the majority of genes are either up or down-regulated .

Finally, the method of nonlinear rank-dependent transformation does not require a
control set. This method transforms the ranked expression ratios of one scanned image
(Cy3) to model the other (Cy5) based on the slopes of the expression curves at specific
ranks.

Evidently, the advantages and disadvantages of each approach must be carefully
considered when selecting an option for a particular experiment. Algorithms for
normalization include those that are based on total intensity normalization, regression

analysis, and ratio statistics . These categories are discussed in more depth below.

Total Intensity/Ratios Normalization
The total intensity/ratios techniques rely on an assumption to formulate a factor that
is utilized to re-scale the intensity ratio of every gene in the experiment. The assumption
is that the amount of up-regulation of genes will be balanced by the amount of down-
regulation of genes. The total intensity technique assumes that the sum of all intensities

should be equivalent for both dyes when using two channels per gene. The total ratio



technique assumes that the product of all expression ratios is equal to one . As such, all

the data is rescaled to meet the presumed standard.

Normalization via Regression Analysis

Normalization techniques using regression models can be broken up into severat
symmetrically distributed categories. They all start with the assumption that the levels of
up and down-regulation are symmetrically distributed, and that the set of genes under
study will display an average expression ratio equal to one (or log ratio equal to zero).
One technique is commonly referred to as global normalization. This approach utilizes
the global median of log intensity ratios to fit a narmalization curve, and the intensities
are adjusted accordingly so that the average expression ratio is equal to one. This
model would be inappropriate in arrays that are not expected to display a symmetrical
distribution of up and down-regulated genes. Also, with this approach, the log ratios for
expression levels are not dependent on intensity biases.

However, there are intensity dependent regression models and these can be
categorized as either linear or nonlinear. The linear model uses the least square
method to fit a curve. For example, a graph plotting the log ratios of the Cy5 dye
intensities vs. the Cy3 dye intensities would be scattered along a straight line that is
fitted for best slope using regression techniques. Again, the slope is expected to be one
if the fluorescent dyes for the samples were equally labeled and detected. As such, all

the data is rescaled for normalization so that the slope becomes one for the normalized



value . In the nonlinear models, intensity measurements across all the genes in the
array are not assumed to be uniformly organized along a straight line. Instead, the
microarray data may be analyzed by local regression techniques, the most common of
which is the LOWESS (locally weighted scatter plot smoothing) model . Most of the
current regression algorithms are set on default parameter values, which may not
always be corrected and optimized by the researcher, thereby compromising the
effective reduction of systemic variation. However more of an effort is certainly being
made now to unravel approaches that optimize these parameters . Recently, additional
nonlinear local regression models have also been proposed. These models include
those involving global curve-fitting or partial fitting using splines , signal distribution
analysis , generalized cross-validation , and wavelet regression .

Finally, in addition to global and intensity-dependent regression models, spatiality-
dependent models have recently been introduced and are steadily gaining popularity.
This model takes into factor spatial variations in intensity across a microarray slide and
can be performed in a smooth robust manner that refies on a medial spatial fiter. The
efficacy of this model is dependent on randomized placement of the highly differentially
expressed spots , which is a challenge considering this requires advance knowledge
that may not be available. Also, many recent models have proposed the incorporation
of both spatiality and intensity-dependent normalization, which appear to give better

results than either alone .



Normalization via Ratio-based Statistics

Essentially, these types of normalization algorithms quantify and determine the
significance of the fluorescent signal ratios. Chen et al have refined their previous ratio-
based method by considering the contribution of background intensity to the measured
signal intensities . A new signal-to noise ratio is constructed. For high signal-to noise
ratios, a constant coefficient of variation for the two channel intensities is assumed . An
approximate probability density for the expression ratio is calculated, and again the
mean expression ratio is normalized to one, and confidence limits are established to
determine those genes that are differentially expressed. For low signal-to-noise ratios,
Chen et al. have proposed the refined model that corrects for the greater relative
contribution of background noise . A more generalized model of the original model
proposed by Chen et al has also been suggested. With this model, the coefficient of
variation is not dependent on the mean intensity . Instead the intensities are calibrated
and incorporated into a statistical model whose parameters are estimated for maximum
likelihood, and are based on replicate data.

Other recent examples include an intensity-dependent Bayesian normalization
method which also corrects for errors in total intensity measurements , a robust two-way
semi-linear mode! , a single-channel normalization method which utilizes principal
component analysis , and methods that incorporate adjustments for systemic variations
caused by background intensities and gene-specific dye biases . As can be seen there

are many options to consider when choosing a normalization scheme for a given



dataset, and the selection should be made cautiously with the experimental objective in
mind. Variations and combinations of the aforementioned methods are often utilized to
obtain more accurate and qualitative results. For example, the composite method
proposed by Yang et al utilizes all the genes in the array as well as a novel set of
controls (the MSP titration series) for normalization, and its local regression analysis
accounts for both spatiality and intensity dependent biases .

While normalization is necessary to standardize the data, normalization alone is not
effective in identifying those genes that are differentially expressed because it does not
filter the noise. Furthermore, normalization does not suffice as a data mining technique
from which specific gene-to-gene relationships and patterns of gene expression can be
deduced. Specifically, normalization strategies are limited because: 1) noise is
preponderant, or the overwhelming majority of measurements obtained by microarrays
are false, and 2) the geometrical distribution of noise is neither symmetrical nor linear .

As such, further data analysis is needed, the techniques of which are discussed below.

Data Analysis

The goals of data analysis are usually to discover: 1) those genes that are
differentially expressed between samples/reference, and 2) "patterns of gene
expression.” Below, a variety of different data analysis practices are reviewed, including

statistical analysis, mathematical-modeling based analysis, and cluster analysis.



Statistical Analysis
Statistical analysis of gene expression levels may be conducted in order to identify
and define those genes that are differentially expressed. This process is commonly
referred to as inference, which entails the ranking of genes in order to measure the
degree of differentiation and assessing the statistical significance of the results .
Inference can be performed by either permutation-based or model-based statistical

methods.

Permutation Based Methods:

Under permutation-based methods, the parameters for differential expression are
defined by a test statistic, the significance of which is assessed by comparison of the
observed value to the null distribution (which is computed by simultaneous permutation
of all the sample labels for all genes being analyzed).

A commonly used model includes the two-sample t-test where two conditions or
samples are compared and a p-value is obtained. Different versions exist of the t-test
depending on the size of both samples and the amount of variance. In the t-test model
proposed by Dudoit et al. , the p-value is calculated by permutation. The test performs
well when the distribution of gene expression is uni-modal and symmetrical, but is not so
efficient with more realistic distributions that exhibit multiple modes . In a similar
parametric approach, a regression model is utilized in robust statistical procedure that

seeks to compare the expression profiles of individual genes between two sample



groups . It does so by first correcting for heterogeneity using all expression values, and
then finding Z scores for each gene as a ratio of mean difference between the two
groups over the standard error for the corresponding gene. However, in order to
translate the Z scores to significant p-values, an asymptotic normal distribution must be
assumed. As such, this test is inefficient when smaller sample sizes are used.

Other methods include the Wilcoxan rank sum method, the empirical Bayes method,
and the significance analysis of microarray method, The Wilcoxan rank sum method is
a robust method that compares the rank sum of two groups of samples, but in so doing it
may lose information about individual differences within the same group . Its utility is
also limited to larger sample sizes where the chances are higher for determining levels
of gene expression that are actually statistically significant. The empirical Bayes method
as proposed by Newton et al estimates levels of gene expression changes within a
simple hierarchical model. From this model, significant changes are identified by a
posterior probability distribution for the actual differential expression and an empirical
Bayes estimate of this expression level. The significance analysis of microarrays
method assigns a score to each gene in attempt to find those scores that are statistically
significant. The scores are based on changes in gene expression relative to the
standard deviation of repeated measurements for the gene . Using permutations, an
estimate for the false discovery rate of such measurements is calculated. Tusher et al.
report an FDR of 12 % with this type of analysis. The problem with the above two

nonparametric approaches is that in order to construct a null distribution in the



measurements, an assumption is made based on a symmetrical distribution of random
errors of measured gene expression . This can lead to large false discovery rates.

Zhao and Pan propose a modified mixture model approach that attempts to overcome
these problems by constructing alternative null and test statistics . Recently, a new
statistical nonparametric method for identifying differential gene expression based on
relative entropy has also been proposed . This method combines relative entropy with
kernel density estimation to detect differentiation in gene expression. It also claims to be
flexible in its application to distributions that are uni-modal or multi-modal, and also
claims to yield novel results as compared with the current methods already in practice.
The practicality of this method may be limited by its sensitivity to changing the

controlling parameters, and its future utility has yet to be determined.

Model-Based Methods:

Model-based methods utilize a statistical model to calculate the parameters that
define differential gene expression. These models display the mean expression and the
standard error, and make assumptions about the statistical distribution of the noise or
error in the data. The advantage of these models is that they take into consideration
technical errors for each gene, and account for variation across technical replicates .
The subsequent inferences that are made about individual and group-wise gene
expression vary according to different methods. One example is to perform this

inference by analysis of variance . This method constructs error bars via ANOVA



methods, and essentially normalizes the data to account for variations due to any
potential confounding factors. These model-based methods can be viewed as yet
another normalization method, but we discuss them here since they also determine the

statistical significance of any differential gene expression in the dataset.

Statistical Correction:

Upon performing statistical inference, statistical correction is often necessary for
gene-to-gene comparisons that are subject to multiple rounds of statistical testing. If
correction was not applied, there would be many expressed genes whose differential
expression would mistaken be found to be statistically significant. One common
approach that was used before was the Bonferroni correction. This correction requires
that the p-value be multiplied by the number of tests conducted, so that the correction
can control the family-wise error (FEW) . The family wise error represents the
probability of finding a false-positive result for differential expression for individual genes.
In another type of approach that used more often today, the Benjamini and Hochberg
correction , the false discovery rate (FDR) is controlled. This correction procedure
multiplies the univariate p-value by the number of genes, which is then divided by the
rank of the p-value . Other alternative modeis for statistical correction are also available,
including those proposed in the context of significance analysis of microarrays and the

Bayesian hierarchical model . Unless smaller sample sizes are utilized, most of the



results from statistical correction will yield drastically few significant findings for
differential gene expression.

To summarize, a recurring problem with statistical analysis is that each method
relies on it own set of assumptions. In general statistical models/tests perform well
these assumptions are met, like when the distribution of gene expression is uni-modal
and symmetrical. However, they are not so efficient with more realistic distributions .
The efficacy of many of the statistical models is also limited to larger sample sizes
wherein statistical significance can be more reliably determined, however the larger the
sample size, the more statistical correction that is necessary for multiple testing. Also,
comparisons between different methods yield inconsistent results for which method is
superior , so one must be careful in choosing which approach would work best for their
dataset. In fact, each microarray dataset has its unique noise distribution, which: 1) is
heterogeneous between datasets, 2) is nonlinear and is not uni-modal, and 3) is rank-

dependent .

Mathematical Modeling-Based Analysis
An alternative to statistical analysis is a newer method being applied to DNA
microarray analysis. This mathematical modeling-based analysis is not based on
probability theory. As mentioned above, since statistical significance is based on
normal, symmetrical, and uni-modal distributions, there may be significant limitations

when the datasets include hundreds of thousands of measurements and when a large



percentage of the measurements are false. The significance of the "p-value® should be
treated with caution in situations where sample size is very large, especially when
artifacts constitute a large percentage of the data. For example, because recalling
defective cars is too costly, a car manufacturer cannot afford a p-value of 0.5 or 0.05.
Similarly, because noise constitutes a predominant majority of microarray data and
because thorough validation is too costly to be considered feasible, a p-value of 0.05 is
untenable, especially in the genome-scale profiling of tens of thousands of genes. The
goals of mathematical modeling-based methods are to shed light on the nature and
behavior of noise and to create systems that discover highly specific states of differential
gene expression by effectively filtering technical noise . Specificity and sensitivity are
computed from true negative datasets compare the same pool of brain RNA to itself
(same-to-same), and spike-in experiments, respectively.

MASH is an algorithm that yields highly specific discovery of states of genetic
expression . MASH includes two filters, F1 and F2, which are based on the rank-
dependent slopes and consistency of replicate measurements, respectively. MASH
specificity is a thousand-fold better, but its sensitivity is equal to other methods .
Background-subtracted spot intensities are sorted in ascending order to assign a Rank
to every spot. The curves of the log-transformed rank-sorted measurements are fitted to
a non-linear mathematical equation that couples each curve to its unique set of 19

variables that reflect the slopes at specific ranks. The curve fitting is based on a



systematic schema. A careful look at the function that is the outcome of the fitting

reveals that it is in fact composed of a single type of element, namely the functions

°(x) = 1/(1+(°x)

where ° > 0 and a are constants. The fully fitted curve is in fact just a polynomial in
these type of elements and powers of the independent variable x. A careful reader may

notice an absolute value in the formula presented, but it turns out that the parameter a;s

is never such that this absolute value has no force. These elements are in common use
in approximation theory in case they have integer powers (they are sometimes called
Padé approximants) and the present approximation is just an extension of this common
practice.

What is more interesting is that a dataset so large and complex can in fact be
modeled so successfully by such a small number of parameters! The method used thus
far does have an ad homynum aspect to it, but it suffices to establish the principle that
these datasets do not have as many degrees of freedom as one might suppose at the
outset. In this aspect, it is a bit like the currently popular methods for modeling
turbulence, where carefully chosen basis elements can lead to a very good description
of the flow using a relatively small number of parameters (see, for example Holmes et
al..

A recent study of the geometrical distribution of datasets in 3-D space reveals that:



1) noise constitutes the predominant majority of microarray measurements, 2) the
geometry/distribution of the data in 3-D space is ran-dependent and unique to each
datasets, and 3) the distribution of noise replicates the distribution of all data. Using
these ideas, a new algorithm (Fs) improves the sensitivity of MASH without lowering its
high specificity . In particular, Fs uses a filter to isolate some of the noise in the dataset
to construct rank and noise-specific upper and lower bound surfaces that essentially
eliminates technical noise. The specificity, sensitivity, and accuracy of Fs are 99.999%,

92%, and 100%, respectively .

Cluster Analysis

Following data analysis methods that may filter the noise within individual
experiment, clustering algorithms can be used for multivariate analysis of multiple DNA
microarray experiments as a means for classification and pattern discovery of gene
expression. The goal of cluster analysis is to identify and group those genes that are
similarly expressed across different experimental conditions. These algorithms organize
genes according to their expression vectors, or their representative location in
"expression space" . For example when a gene is studied across different samples, its
expression profile is construed as an expression vector. These expression vectors can
then be organized in rows in expression matrices alongside other genes (organized in
subsequent rows).

Before cluster analysis can be applied, certain parameters must be resolved. Of



particular importance is defining the distance metric that will be utilized in the clustering
algorithm. This calculated measurement is necessary in order stipulate the distance
required between any 2 expression vectors when placed in a cluster together. There
are a variety of metric and semi-metric distance measures that are utilized . One of the
most common is the Euclidean distance, which is a simple calculation of the distance
between two coordinates on a graph. This metric works well when the variables are first
standardized, but is not as effective on raw data for which the scales of graphical display
can vary. Another popular distance metric utilized is the Pearson correlation, which is
more effective for experiments conducted along a time-course.

Like normalization methods, cluster analysis can be applied by various methods that
can be broken down into different categories . For one, clustering can be conducted by
divisive or agglomerative methods. Divisive methods start with all the genes in one
cluster. These genes are then subsequently split off into additional groups.
Agglomerative techniques work in a reverse fashion by starting with single gene groups
that are subsequently clustered into groups that contain more and more genes with each
round of clustering. Cluster analysis can also be categorized as unsupervised and
supervised. Unsupervised analysis consists of clustering groups into classes of
unknown function. Supervised analysis takes previously unknown samples and clusters
them into known classes. A known class is one for which biologically relevant
information is already available. Examples of all the above categories of cluster analysis

will be reviewed below.



Hierarchical Clustering:

One of the most widely used clustering techniques is an agglomerative model
known as hierarchical clustering, which is relatively simple to apply and see visually
distinct results . Under this model, single gene expression profiles are fused together on
the basis of similarity (proximity in expression space) to form larger groups. These
groups are consequently fused into a smaller number of groups until the process has
been exhausted. The results are represented in a single hierarchical tree that can be
diagramed with a dendrogram. The algorithms applied to group the genes can vary
according to the distance metric that is chosen, and as such the results will vary as well.
For example, in single-linkage clustering, the minimum distance is calculated between a
pair of gene expression vectors. This method can be problematic in producing
"chaining" results that fail to resolve relatively distinct clusters that are intercepted by
intermediate "noise" points . Other examples of hierarchical algorithms include centroid
clustering, Ward's method, complete-linkage clustering, and average-linking clustering.
The problem with several of these hierarchical methods is that they are biased towards
finding tightened ‘spherical clusters' even when other shapes may be more appropriate .
As a result, the clusters do not end up representing the expression of genes assigned to

the clusters, and if one wrong assignment is made early on, it cannot be corrected .

K-means Clustering:



Another common clustering technique is one known as k-means clustering. In this
method, genes are clustered into a predetermined number of clusters (set by the user).
A series of computations then regroups the genes so that intra-cluster distances are
minimized and inter-cluster dissimilarity is maximized. As with hierarchical clustering,
various algorithms can apply k- means clustering . K-means clustering works best when
previous knowledge of the system is utilized in order to help specify clusters as well as
seed cases, or genes, within the clusters. However, unless effective ‘recovery'
computations are performed, these methods are typically not as effective as hierarchical

methods .

Neural Network Clustering:

Neural network algorithms are modeled after the learning processes of cognitive
science and the neurological functions of the brain. These networks are used to build a
data ‘training set' that provides the framework for predictions and classification of
microarray data sets . The most common neural-network-based paradigm utilized for
gene expression clustering is a divisive approach known as self-organizing maps .
These maps compare gene expression vectors to reference vectors in order to assign
the genes to clusters via an iterative process. These clusters are fitted into a
predetermined (set by the user to establish the number of resultant clusters) geometric
configuration such as a two dimensional rectangular or hexagonal grid. Like k-means

clustering, this method is more effective when it is conducted in a semi-supervised



fashion where previous knowledge of the system is utilized in constructing the initial
seeds. However, uniess the dimensionality is simplified in conjunction with another
method such as principal component analysis as described below, its complex and

multidimensional data can be hard to visualize.

Principal Component Analysis:

Principal component analysis is essentially a weighted type of clustering useful in
simplifying multi-dimensional data by reducing redundant data . It does so by
summarizing all the values of a gene expression vector into one number. With each
computational step of analysis, it maximizes variability between samples so that the best
separation of data can be easily visualized. As in other clustering methods, principal
component analysis cannot positively define the genes designated to each cluster.
Variations of this analysis have recently been proposed, such as total principal
component regression, which takes into account the errors in both independent and
dependent variables . These methods and their family of related techniques, such as
factor analysis and principal coordinate analysis, are most effective when combined with

other clustering methods such as the ones described above.

Supervised Cluster Analysis:
These methods differentiate genes into aiready specified categories and are often

utilized in tumor diagnosis and drug discovery . One example of such a method is the



support vector machine. An SVM is essentially a reference set containing those genes
that are known to be positively co-expressed and those genes that are negative for this
expression . Using this reference or ‘training' set which is based on available biological
information, the SVM sets out to distinguish other genes in the data set as either
members or non-members of these predefined classes . The computations required in
this method include kernel function measurements, which are often improperly applied
to yield incorrect classifications. An effort must be made to choose the best kernel
functions and parameters to minimize error. Also, it is important that classification results
be cross-validated (i.e. by a Monte Carlo cross validation estimate) to predict the
probability of misclassification .

In addition to the above models, other clustering algorithms exist and continue to be
proposed, one such model is bootstrapping cluster analysis, which uses confidence
intervals to estimate the differential expression of individual genes and assess the
stability of cluster analysis results .

The major problems of clustering methods are they are biased to find clusters
especially when noise is not only preponderant but also heterogeneous between
datasets. Microarray experiments often cluster by technical variables like date,
technician, batch, etc. In addition, it is very important to realize that in the presence of a
preponderance of noise, most of the clusters are likely to be false especially when the
clustering methods are supervised. If cluster techniques are used incorrectly,

misleading interpretations will distort the original relationships amongst the genes in the



dataset. Furthermore, because the large sets of data in microarrays are subject to
heterogeneous dataset-dependent technical noise, and noise may not be reliably
eradicated, one cannot find much accuracy in the groups of genes that are established
by cluster analysis. In the presence of technical noise, relations discovered by
clustering techniques may be erroneous and may explain the inability to replicate or
generalize the results of a single or a few datasets. Another important source of
instability stems from the assumption of accuracy for the fold changes between
experiments. Clustering techniques compare samples based on the levels of genetic
expression or fold changes of expression ratios. Unfortunately, the fold change values
for gene expression across different samples do not always yield an accurate
comparison. Thus, in the presence of unfiltered noise and in the absence of an accurate
system for comparing fold changes, relations inferred from clustering methods should be
interpreted cautiously. The merit of clustering results, especially in classifying diseases,
can be promising but is highly dependent on the quality of the input data, i.e. how noise-
free they are. Clustering is very useful when combined with filtering methods, as

detailed below .

Applications
Systems Biology/Biological Chemistry
Single genes or molecules of the cell belong to rich networks of molecular

interactions that include transcriptional regulation, signaling pathways, protein-protein,



and protein-nucleic acid interactions. Recent evidence support the intuitive idea that
based on the knowledge of the identity of differentially expressed genes and their states
of genetic expression, one could draw inferences about gene-to-gene and gene-to-
protein interactions and protein states that may eventually uncover complete molecular
systems behind complex phenotypes. Examples include the discovery of balanced
opposing molecular functions behind the phenotypes of meningiomas, and complex
molecular systems that create the phenotypes of motility as well as resistance to
endoplasmic reticulum and oxidative stress in cultured gliomas . This idea is illustrated
in Figure 1. Highly specific discovery of transcriptionally regulated genes uncovers only
a part of the puzzle of molecular systems; nonetheless, the other components that are
not dependent on the up- or down regulation of genes may be inferred and tested

experimentally to obtain a complete picture of the molecular system (the Mona Lisa).

Clinical Applications and Pharmacogenomics
The clinical applications of DNA microarrays are numerous. Potentially, they have
utility in early and efficient diagnosis of disease, particularly cancer , and in diagnosis by
detecting genes that can serve as markers . Also, microarrays can be used to detect
genes that make individuals susceptible to certain diseases or discover molecules that
make cells resistant to certain treatments or protective mechanisms . In so doing,
prevention and treatment programs can be individually tailored for optimal effect on the

healthy and patient population. Also the discovery of differential gene expression for



predefined disease phenotype can serve as prognostic markers for individual patients .
The clinical relevance of microarrays spreads across many medical disciplines such as

oncology, infectious diseases, lung disease, cardiology, and pharmacogenomics .

Conclusions

Despite the pitfalls and challenges that still encompass the computational analysis
of microarray data, the use of this technology remains promising amidst the advances
that have been made in refining the analytic techniques. Achieving the full potential of
microarray technology requires additional advances in mathematical theory and
applications, and a more thorough understanding of the underlying biological systems

and mechanisms involved in cellular processes.
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Figure 1. A cartoon that illustrates one application of highlv specific discovs=’ k<
minrrngarravs. A tvbical microarrav data set is beset bv the larae amount of extraneous
noise from which the real data must be mined for interpretation. In (a) noise is adr= +~
the painting of the Mona Lisa. (b) Highly specific and sensitive discovery by
mathematical modeling-based data analysis filters noise and delivers highly accurate
information on states ot genetic expression. This information uncovers pieces of the
bioiogicai picture or network. (c) By inference, current knowiedge leads 10 re-aifaiyniy
UIDLUVGTEG STEIES OF genetic expression Into a system. The remaining pieces of the
picture can be deduced from hypotheses that can then be tested and validated by

standard biological techniques until the complete biological picture is elucidated (d).
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