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Abstract
In this paper we consider a coupled KdV system of Boussinesq type and its
symmetric version. These systems were previously shown to possess general-
ized solitary waves consisting of a solitary pulse that decays symmetrically to
oscillations of small, constant amplitude. We solve numerically the periodic
initial-value problem for these systems using a high order accurate, fully dis-
crete, Galerkin-finite element method. (In the case of the symmetric system, it
is possible to prove rigorous, optimal-order, error estimates for this scheme.)
The numerical scheme is used in an exploratory fashion to study radiating
solitary-wave solutions of these systems that consist, in their simplest form, of
a main, solitary-wave-like pulse that decays asymmetrically to small-amplitude,
outward-propagating, oscillatory wave trains (ripples). In particular, we study
the generation of radiating solitary waves, the onset of ripple formation and
various aspects of the interaction and long time behaviour of these solutions.

Mathematics Subject Classification: 35Q53, 65M60, 65M15, 76B15, 76B25

1. Introduction

In a previous paper [13], the present authors considered systems of the Boussinesq type,
including the KdV–KdV system [9, 10]

ηt + ux + (ηu)x + 1
6uxxx = 0,

ut + ηx + uux + 1
6ηxxx = 0,

(1.1)
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and the symmetric KdV–KdV system, [11],

ηt + ux + 1
2 (ηu)x + 1

6uxxx = 0,

ut + ηx + 1
2ηηx + 3

2uux + 1
6ηxxx = 0.

(1.2)

The variables in these systems are non-dimensional, but unscaled. Both systems are
approximations to the two-dimensional Euler equations for surface wave propagation along
a horizontal channel that contains an ideal fluid. Both admit two-way wave propagation and
are valid approximations to the Euler equations in the case of long waves of small amplitude,
when the Stokes number of the flow is of O(1) [9, 11]. The independent variable x represents
the position along the channel, t is proportional to time, η(x, t) is the deviation of the free
surface from its undisturbed level at (x, t), while u(x, t) is the horizontal velocity at (x, y, t),
where y is the dimensionless height

√
2/3 above the bottom. (The undisturbed depth is equal

to one in the present variables.) The system (1.1) is one of the systems put forth in [9]. It
has a Hamiltonian structure and its initial-value problem has been shown in [10] to be well
posed, locally in time, in appropriate Sobolev classes. The symmetric system (1.2) is one of
the family of systems derived in [11] and reduces to a symmetric hyperbolic system when
the dispersive terms are dropped. A local well-posedness theory for the initial-value problem
for (1.2) in appropriate Sobolev spaces was also developed in [11]. Its solution conserves the
L2-norm, which is to say, the quantity

∫ ∞
−∞(η2 + u2) dx does not depend upon t .

Since the systems (1.1) and (1.2) are approximations to the Euler equations, a natural
question to ask is whether they possess solitary-wave solutions like those of the Euler equations.
In [13], using the theory of [26], we showed that (1.1) and (1.2) do not possess classical solitary
waves decaying to zero at infinity (with the possible exception of isolated, ‘embedded’ solitary
waves). Instead, they possess generalized solitary waves (GSW), which are homoclinic to
periodic solutions of small amplitude. Such GSW have been shown to exist as travelling-
wave solutions of gravity-capillary surface wave models and various other model equations
and systems arising in water-wave theory (see, e.g. [3, 5, 6, 16, 17, 19, 22, 25–27, 30, 31] and
their references). In [13] we constructed accurate approximations to GSW solutions of (1.1)
and (1.2) by solving numerically periodic boundary-value problems for the nonlinear systems
of ordinary differential equations satisfied by travelling-wave solutions of the systems. We
then checked, using these GSWs as initial conditions in an evolution code approximating
the periodic initial-value problem for the systems, that they indeed travelled with practically
constant speed and shape over very long temporal intervals.

The GSWs are solutions of (1.1) or (1.2) on the real line, whose L2-norm is infinite. When
initial conditions of finite energy, i.e. functions η(x, 0) and u(x, 0) vanishing sufficiently fast
at infinity, are allowed to evolve under (1.1) on (1.2), what is observed numerically is that the
solution forms wavetrains that travel in both directions. These wavetrains typically consist of
one or more main pulses that resemble classical solitary waves and are followed by dispersive
oscillatory tails of small amplitude. What is also observed is that oscillations of very small
amplitude (ripples) are immediately formed and propagate outwards, preceding and travelling
faster than the largest of the main pulses. (This effect of radiation of ripples by solitary
waves was first observed in [6], to our knowledge, in the context of a one-way model.) The
solitary-wave-like pulses apparently decay in amplitude and speed; it appears that their energy
is being transferred to the ripples. They will be called in the following ‘radiating solitary
waves’ although they are not proper solitary waves as they do not travel with constant speed
and shape.

The existence of GSWs and of radiating solitary waves has been observed and studied in
the case of the fifth-order KdV equation

ut + uux + uxxx + uxxxxx = 0,
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see, e.g. [4, 6, 15–17, 23, 29, 32]. The above equation is a unidirectional model for small-
amplitude gravity-capillary wave propagation in a certain range of Bond numbers, see [24]. It
possesses GSW solutions (see, e.g. [4] for a summary and references to the relevant existence
theory established by dynamical systems techniques), whose decay to exponentially small
oscillatory profiles extending symmetrically to infinity from both ends of the main pulse
was studied by asymptotic techniques (when the fifth-order derivative is multiplied by a
small positive parameter) in [15, 23, 29, 32], among others, and numerically in many other
works starting with [15]. It was recognized in [6] that this equation possesses asymmetric
solutions that are not travelling waves, and in which a main, solitary-wave-like pulse decays
asymmetrically to rightward propagating ripples that are generated at the front of this pulse.
These solutions were studied by numerical and asymptotic methods in [6, 4].

In this paper, we study by numerical means certain properties of solutions of (1.1) and (1.2),
especially issues connected with the generation and evolution of radiating solitary waves. Light
shed on these issues gives information about the long-term programme of understanding how
nonlinearity and dispersion interact with one another, in addition to providing a more detailed
view of the particular systems (1.1) and (1.2). We consider the periodic initial-value problem
for (1.1) and (1.2) on a spatial interval [a, b], on which we suppose that the initial conditions

η(x, 0) = η0(x), u(x, 0) = u0(x), x ∈ [a, b], (1.3)

hold. Here η0, u0 are smooth, periodic, real-valued functions on [a, b]. We assume that the
periodic initial-value problems (1.1)–(1.3) and (1.2)–(1.3) have unique smooth solutions over
a temporal interval [0, T ]. While interest is focused mainly on what happens to localized
disturbances η0 and u0 when (1.1) or (1.2) is considered posed on the whole real line R, it is
the periodic initial-value problem that is actually approximated numerically. The presumption,
which has been backed up by rigorous theory in related situations (see, e.g. [7, 18]), is that if
the interval [a, b] is large compared with the support of η0 and u0, then, at least over a certain
time interval, the solution of the problem considered on R and the solution of the periodic
initial-value problem closely agree, at least on the fundamental period domain.

The plan of the paper is as follows. In section 2 the fully discrete numerical schemes
used in the simulations are outlined. For the spatial discretization of (1.1) and (1.2) a standard
Galerkin-finite element method is used, with smooth periodic splines on a uniform mesh.
The resulting semi-discrete systems of ordinary differential equations are very stiff and are
discretized in time by the fourth-order accurate, two-stage implicit Runge–Kutta method of the
Gauss–Legendre type. This type of scheme has been previously used for simulating accurately
various nonlinear dispersive KdV-type equations (see, e.g. [12, 21]) without requiring stringent
stability conditions on the discretization parameters. For the KdV–KdV systems (1.1) and (1.2),
the implementation of this implicit scheme requires solving at each time step nonlinear systems
of equations. Solutions of these are approximated by Newton’s method. The attendant linear
systems are solved efficiently by iterative methods in the spirit of the analogous technique for
the KdV equation in [12]; here, its application to systems requires new twists. The resulting
fully discrete scheme was tested and found experimentally to be of optimal order of accuracy
in [13]. An optimal-order L2 error estimate for the semi-discrete approximation of the periodic
initial-value problem for the symmetric KdV–KdV system (1.2) has been proved in [21]. An
analogous result for the semi-discretization of (1.1), which is much harder to analyse, is not
yet available, though our simulations show that the scheme has optimal-order L2-convergence
rates.

In section 3, this numerical scheme is used to simulate the evolution, under (1.1), of
a ‘heap of water’ modelled by a Gaussian initial surface elevation and zero initial velocity.
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This corresponds to earlier numerical experiments (see [28], for example). The initial profile
resolves into right- and left-going waves composed of radiating solitary pulses followed by a
dispersive tail and preceded by ripples. The ripples eventually wrap around the boundary due
to periodicity and superimpose themselves on the rest of the wave profile. Following the ideas
in [8], a procedure is initiated for ‘cleaning’ the main pulses. This procedure does not clear
out the ripples, which are a permanent feature of the solution of the KdV–KdV systems. We
study their development and growth.

A further numerical study of the generation and evolution of radiating solitary waves
is performed in section 4 on larger spatial intervals and with special initial data that yield
nearly one-way propagating waves as in [1]. In these experiments, the aim is to simulate
more accurately the initial stages of the evolution of the Cauchy problem for the KdV–KdV
systems. In particular, we describe in detail the onset of the ripples and the decay in amplitude
and energy of the main pulses, paying particular attention to recording the amplitude of the
generated ripples as a function of the amplitude of the initial main pulse. Finally, Section 5
addresses several issues of longer-time evolution, ‘stability’ and interaction of radiating solitary
waves. Among other points of interest, there emerges the interesting fact that GSWs, when
perturbed or when they collide, apparently lose their travelling-wave character and start
radiating.

What is found is rather interesting. First, while there are no solitary-wave solutions of
finite energy of these KdV–KdV systems, there are nevertheless ‘ghosts’ of such solutions
that play the same role as do the classical solitary-wave solutions of other Boussinesq systems
(see [20, 28]). That is, initial disturbances of finite energy try to break up into solitary waves,
but succeed only in forming a train of these radiating solitary waves. The radiating solitary
waves are not stable, but they appear to hold their identity well enough through interactions and
under perturbations to be loosely termed meta-stable. On very long time scales, the conjecture
that is forced upon us is that all initial data will disperse due to the lack of coherent structures
of finite energy to which the solutions can evolve. These time scales are much longer than the
time scale over which the systems (1.1) and (1.2) are proven to be good approximations of the
two-dimensional Euler system, but if this proposition were established, it would argue against
the use of (1.1) and (1.2) in practical water-wave simulations.

By and large, the systems (1.1) and (1.2) give qualitatively similar results for the range of
phenomena described in this paper. There are a few interesting differences however, which are
pointed out along the way. It is worth noting that the numerical scheme used is more robust in
the case of the symmetric system (1.2).

2. The numerical scheme

This section provides a brief review of the fully discrete Galerkin-finite element scheme that
is used to discretize the periodic initial-value problem for the systems (1.1) and (1.2).

To describe the discretization in the spatial variable x, let N be a positive integer and
define a uniform grid on [a, b] by xj := jh, 0 � j � N , where h := (b − a)/N . For integers
r � 3, consider the N -dimensional space Sr

h of smooth periodic splines of order r (degree
r − 1) defined as

Sr
h := {φ ∈ Cr−2

p ([a, b]) : φ|[xj ,xj+1] ∈ Pr−1, j = 0, 1, . . . , N − 1},

where Ck
p([a, b]) denotes the k times continuously differentiable, periodic functions on

[a, b]. The standard Galerkin semi-discrete approximations of the solutions of the periodic
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initial-value problems (1.1)–(1.3) and (1.2)–(1.3) are the pairs of Sr
h-valued functions ηh, uh

defined on some temporal interval [0, t∗] by the following equations.

• For the KdV–KdV system (1.1):

〈ηht , χ〉 + 〈uhx + (ηhuh)x, χ〉 − 1
6 〈uhxx, χx〉 = 0,

〈uht , ψ〉 + 〈ηhx + uhuhx, ψ〉 − 1
6 〈ηhxx, ψx〉 = 0,

∀χ, ψ ∈ Sr
h, 0 � t � t∗,

(2.1)

• For the symmetric KdV–KdV system (1.2):

〈ηht , χ〉 + 〈uhx + 1
2 (ηhuh)x, χ〉 − 1

6 〈uhxx, χx〉 = 0,

〈uht , ψ〉 + 〈ηhx + 1
2ηhηhx + 3

2uhuhx, ψ〉 − 1
6 〈ηhxx, ψx〉 = 0,

∀χ, ψ ∈ Sr
h, 0 � t � t∗. (2.2)

Here, 〈·, ·〉 denotes the inner product on the space L2(a, b). (The corresponding L2-norm will
be denoted by ‖ · ‖.) The systems (2.1) and (2.2) are supplemented by the initial values

ηh(0) = Phη0, uh(0) = Phu0, (2.3)

wherePh is theL2-projection operator onSr
h. It is readily seen that (2.1) and (2.2) comprise first-

order, N ×N nonlinear systems of ordinary differential equations. The initial-value problems
(2.1)–(2.3) and (2.2)–(2.3) have solutions that exist at least locally in time, on intervals [0, t∗],
where t∗ = t∗(h).

The symmetric KdV–KdV system (1.2) has a number of favourable mathematical
properties, when compared with the system (1.1). Some of these properties, for example,
the conservation of the L2-norm of the solution (η, u) of (1.2)–(1.3) on its temporal interval
of existence [0, T ],

d

dt
(‖η‖2 + ‖u‖2) = 0, 0 � t � T ,

also hold for the solution (ηh, uh) of the corresponding semi-discretization (2.2)–(2.3). In [21]
it is proved that the temporal interval of existence of (ηh, uh) is at least equal to [0, T ] and that
the optimal-order L2 error estimate

max
0�t�T

(‖η − ηh‖ + ‖u − uh‖) � chr (2.4)

holds for some constant c = c(η, u, T ), independent of h, if the solution (η, u) of (1.2)–(1.3)
is sufficiently smooth. We have not been able to prove analogous error estimates for the
system (1.1). However, in [13], we have verified by means of numerical experiments the
validity of (2.4) for the system (1.1) in the cases of cubic and quintic splines, i.e. for r = 4
and 6.

The systems of ordinary differential equations (2.1) and (2.2) are very stiff. To discretize
them stably in the temporal variable, an implicit time stepping scheme is mandated. We
resorted in [13] to the fourth-order accurate, two-stage Gauss–Legendre implicit Runge–Kutta
method, which, as is well known, has favourable nonlinear stability properties. This scheme,
being fully implicit, requires that a 2N × 2N nonlinear system of equations be solved at each
time step. We accomplish this using Newton’s method in the spirit of [12]; the attendant linear
systems of equations are solved iteratively by an ‘inner’ iteration procedure that requires at
a given time step, solving a number of N × N complex, sparse linear systems with the same
matrix. The overall fully discrete method appears to be unconditionally stable and has global
L2 error bounds of order O(k4 + hr), where k is the uniform time step. This was checked by
means of numerical experiments for both KdV–KdV systems in [13].
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3. Application of a ‘cleaning’ procedure to KdV–KdV systems

If the periodic initial-value problem for (1.1) or (1.2) is initiated with given localized initial
profiles (η0, u0) resembling a ‘heap’ of water and its solution approximated using the evolution
code described in section 2, one observes that one or more solitary-wave-like pulses are
generated, followed by smaller amplitude dispersive oscillatory tails and accompanied by very
small-amplitude oscillations (ripples). This is illustrated, for example, in figures 4(a) and (b),
which show the right-travelling wavetrain (there is also a companion, left-travelling wavetrain
which has been cut out) produced at t = 160 by the evolution according to (1.1), generated by
a Gaussian initial surface elevation profile and zero initial velocity. More precisely, the initial
data that generated the outcome of figure 4 were

η0(x) = 0.3e−(x+100)2/25, u0(x) = 0, x ∈ [−150, 150]. (3.1)

To study the question of possible generation of travelling waves from the initial profile
(2.1) under the evolutions (1.1) and (1.2), use is made of the ‘cleaning’ process put forward
in [8] in a similar context. The idea is to let the leading solitary elevation distance itself from
the trailing dispersive tails, which it will on account of their differing dynamics, and then cut
this pulse from the rest and use it anew as an initial value. The new structure, while not yet an
exact travelling wave, will develop a smaller dispersive tail which can again, after due lapse
of time in the evolution, be clipped from a newly arisen solitary pulse. Repeating this process
several times was observed in [8] to result in a very good approximation of a travelling-wave
solution of the relevant evolution equations. For Boussinesq systems that feature bounded
group and phase velocities, such as those studied in [2, 8, 20], this procedure seems to work
rather well, generating in a few iterations travelling-wave profiles with noise amplitude of only
about 10−10. For (1.1) and (1.2), the procedure is complicated by the fact that the expected
solitary-wave-like pulses are accompanied by ripples and the fact that the group and phase
velocities are unbounded. (If ω(κ) is the frequency associated via the linearized dispersion
relation with wavenumber κ , then the group velocity ω′(κ) grows like ±κ2/2 as wavenumbers
get large.)

To get an idea of how well the cleaning process works in the context of unbounded group
and phase velocities, it is informative to apply it first to the Korteweg–de Vries equation

ut + ux + uux + 1
6uxxx = 0, (3.2)

where one understands in detail the travelling waves and where there are no GSWs.
The solution of (3.2) on the interval [−150, 150] with periodic boundary conditions

was approximated using cubic splines with h = 0.1 and the two-stage Gauss–Legendre
Runge–Kutta time-stepping scheme with k = 0.02, starting from the Gaussian u(x, 0) =
0.5e−(x+100)2/25. In the first cleaning iteration, we let the solution evolve up to t = 160 (cf
figure 1), cut the dispersive tail by setting uh = 0 in the two intervals [−150, 90.2], [113.2, 150]
and translated back the remaining pulse so that its peak was again at x = −100. (It should be
noted that ‘cutting’, i.e. setting the numerical solution equal to zero in a set [−150, α]∪[β, 150],
is done smoothly by setting the coefficients of the B-spline basis functions in the representation
of uh equal to zero before and after some index, see figure 1(c).) Thus the truncated solution
is in C2([−150, 150]). During the evolution from the new initial profile, small-amplitude
oscillations were still produced behind the main wave due to the cutting, so the process had
to be repeated. The amplitude of the oscillatory noise decreased rather slowly as a function
of the number of cleaning iterations. For example, figure 2 shows three stages of cleaning the
solitary wave. However, the cleaning procedure is apparently convergent: the ‘clean’ solitary
wave that is produced after 15 cleaning iterations propagates over a long time interval (up to
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Figure 1. (a) Evolution of a Gaussian, KdV equation (3.2), t = 160; (b) smooth truncation in the
vicinity of x = −90.2.
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Figure 2. Cleaning of the cut solitary wave of figure 1. (a) After the 4th iteration, (b) after the
7th iteration, (c) after the 15th iteration. (All at t = 70.)

t = 200 at least) with a speed (1.249 12) and an amplitude (0.747 367) that are constant to six
digits, and an L2-shape error (relative to its shape at t = 0) less than 3.7 × 10−6.

Having convinced ourselves that the cleaning procedure works even in the face of
unbounded group velocities, we proceeded to integrate the KdV–KdV system (1.1) with
the evolution code described in section 2, using cubic splines with h = 0.02, k = 0.004
on [−150, 150] and with initial conditions given by (3.1). The aim was to produce
a ‘clean’ travelling wave-like solution. The initial profile resolves into two wavetrains
moving in opposite directions; figures 3(a) and (b) show the η component of this solution
at t = 30. Note that in addition to the dispersive tails following the two main pulses,
small-amplitude ripples have developed in front of the main pulses. The wave is then
cleaned, keeping only the rightward moving wavetrain, by setting the solution equal to zero in
[−150, −100.6]∪[50.44, 150] and using the resulting ηh and uh as new initial conditions for the
system, setting t = 0 again. At t = 160 this solution has evolved into one whose η-component
is shown in figures 4(a) and (b). (Note the ripples that have appeared again.) This solution is
translated so its maximum is at x = −50 and is cleaned in [−150, −117.26] ∪ [−36.3, 150].
The result for the η-component is shown in figure 4(c). This procedure is repeated two more
times. After the fourth cleaning, the solution is evolved up to t = 70; the η-component is shown
in figures 5(a) and (b). At this point, the leading pulse has distanced itself sufficiently from
the trailing dispersive tail. Hence, after translating back so that the maximum is at x = −100,
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Figure 3. Evolution of a Gaussian, system (1.1), η at t = 30; (b) is a magnification of (a) and (c) is
the new initial profile after the first cleaning.

the main pulse is again isolated by cutting out dispersive tails and ripples i.e. zeroing the
solution in [−150, −114.4] ∪ [−86.44, 150] (fifth cleaning). The resulting η-pulse is shown
in figure 5(c).

If this profile is now evolved, the resulting dispersive tail is negligible; however, ripples
appear again in front of the main pulse and wrap around due to periodicity. If the solution is
cleaned two more times and the evolution code started from the profile whose η-component
is shown in figure 6(a), there obtains the evolution shown in figures 6(b)–(j) up to t = 700.
Ripples develop in front of the wave, wrap around the boundary due to periodicity and ‘climb
over’ the main pulse. Up to t = 700 they seem to stabilize around an amplitude of 5 × 10−5.

These ripples do not appear to be an artefact of the numerical integration. When the
computation is repeated with smaller h and k, and also when quintic splines are used for
the spatial discretization and a different time-stepping method implemented (a third-order
accurate Gauss–Lobatto implicit Runge–Kutta scheme), there obtains, at the same cleaning
level, exactly the same profile. The profile of the ripples changes with the number of cleanings
of course, but it is convergent and by the seventh cleaning it has stabilized. Figure 7, for
example, gives some idea of this convergence; it shows the ripples after the sixth cleaning
(dotted line) and after the seventh cleaning (solid line) at t = 120. The profile after the
eighth cleaning is identical within line thickness to that after the seventh cleaning. Thus, it is
reasonable to conclude that after the seventh cleaning, the noise due to the cleaning process
has fallen to at least two orders of magnitude below the level of the ripples.

The ripples at t = 120, see figure 7, have a maximum amplitude (after the seventh cleaning)
of about 4×10−5. We measured their propagation speed and period at different subintervals of
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new initial profile after translation and the second cleaning.
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Figure 6. Evolution of the η-component after the seventh cleaning. (a) t = 0, (b) t = 40,
(c) t = 80, (d) t = 120, (e) t = 200, ( f ) t = 300, (g) t = 400, (h) t = 500, (i) t = 600 and
(j) t = 700.

[−150, 150] and found that the ripples are very nearly solutions of the linearized system. For
example, in the case of the ripples of figure 7(e), the measured average spatial period was equal
to about 1.77 (hence κ ∼= 3.55) and the average phase speed was about 1.11. (The wave number
computed for this speed from the linearized dispersion relation for (1.1), κ = √

6(c + 1), is
equal to about 3.56.)

The properties of the main pulse are not easy to measure due to the superposition of ripples
on it. The variation of the amplitude of its η-component and of the speed of the pulse with
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Figure 7. Magnification of the ripples; t = 120, (——) 7th cleaning, (- - - -) 6th cleaning.
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Figure 8. Amplitude (left) and speed (right) of the main pulse of figure 6 as functions of t .

time is shown in figure 8. The amplitude seems to stabilize around the value 0.189 31 ± 10−5,
while the speed is about 1.0913 ± 2 × 10−4.

Overall, the computation was of quite good quality. The invariants I1 = ∫
u dx,

I2 = ∫
η dx, I3 = ∫

ηu dx of (1.1) were conserved up to 10, 9 and 9 digits, respectively,
up to t = 700. The Hamiltonian H = ∫

[ 1
6η2

x + 1
6u2

x − η2 − u2(1 + η)] dx was preserved to
5 digits up to t = 170 and to 4 digits up to t = 700.
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A qualitatively similar picture was observed when the ‘cleaning’ procedure was applied to
the evolution generated from the initial conditions (3.1) by the periodic initial-value problem
for the symmetric KdV–KdV system (1.2). The main difference was the larger size of the
amplitude of the ripples.

It is tentatively concluded that in the case of the KdV–KdV systems, the cleaning procedure
does not yield ‘clean’ solitary-wave pulses as in the KdV equation or alternative Boussinesq
systems. This is of course due to the fact that the KdV–KdV systems do not possess classical
solitary-wave solutions as was pointed out in [13]. In the case of system (1.1), as shown
in figures 6(a) and (b), when an isolated rightward-travelling η-pulse (obtained in our case
by a previous iteration of cleaning and smooth truncation) is used as an initial condition
for (1.1) with its associated velocity u, it moves to the right radiating rightward-travelling,
small-amplitude ripples from its front. (The leftward-travelling part of the solution radiates
leftward-travelling ripples from its front. Hence the ripples travel outwards from the bulk of
the solution.) These ripples seem to travel faster than the main pulse at this stage and, due to
periodicity, wrap around the boundary and superimpose themselves on the rest of the solution.
Their amplitude in the beginning is slowly rising with time. Of course, one cannot rule out
categorically that the change in amplitude is not because of a long-time linear error growth
due to the numerical integration. It is worth noting, though, that when the computations are
repeated with different discretization parameters, using splines of different degrees in space
and other types of temporal discretizations (some of which are of dissipative type), there the
same profile at the same value of t and level of cleaning was obtained exactly. However,
as we are not solving the nonlinear system of the fully discrete scheme exactly, but are using
instead Newton’s method and solving the associated linear systems iteratively, some slow error
growth is expected in long time computations (see, e.g. [12]). Observe, however, that, as time
advances, the maximum amplitude of the ripples tends to stabilize. So does the amplitude of
the main pulse as well. Therefore, one could ask whether this procedure will eventually yield a
main pulse and ripples of constant amplitude travelling at the same speed, i.e. a travelling wave
of the GSW type. It is difficult to check numerically a ‘pointwise’ travelling-wave property
for profiles like those of figure 6, given the difficulty in measuring precisely the speed and the
amplitude of the main pulse and of the ripples.

In the next section, the generation of ripples is further studied in other examples, posed
in larger spatial intervals with ripples of larger size, in which the decay of the main pulse (in
L∞ and also in L2) is clearly observed.

4. Radiation of ripples

In this section, the outcome of some numerical experiments is presented; they focus on the
initial stages of the generation of ripples when a solitary-wave-like pulse evolves according to
the system (1.1) or (1.2). Although we still integrate the periodic initial-value problem, larger
spatial intervals are taken to simulate more accurately the Cauchy problem evolution of the
ripples and the main pulse over a longer temporal interval.

As a preliminary note of interest, consider the change in variables x → y = x − cst ,
where cs > 1 denotes the speed with which a main, solitary-wave-like pulse of the system (1.1)
or (1.2) travels to the right. Then small-amplitude solutions evolve in a frame travelling with
this main pulse according to the linearization of (1.1) or (1.2), i.e. according to the constant
coefficient system

(∂t − cs∂y)η + ∂y

(
1 + 1

6∂yy

)
u = 0,

(∂t − cs∂y)u + ∂y

(
1 + 1

6∂yy

)
η = 0.
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Combining the above equations, it is observed that η and u satisfy the equation

(∂t − cs∂y)
2η − (

∂y

(
1 + 1

6∂yy

))2
η = 0,

which has solutions of the form η(y, t) = ei(κy−ω±(κ)t), κ ∈ R, that satisfy the dispersion
relation

ω±(κ) = −csκ ± κ
(
1 − 1

6κ2
)
.

Thus, the phase speed v± = ω±/κ is given by

v±(κ) = −cs ± (
1 − 1

6κ2
)
.

Observe that for large enough wavenumbers κ >
√

6(cs + 1), there is a solution component
of the form ei(κy−ω−(κ)t) which is leading the solitary pulse (i.e. its phase speed v− is positive
in this coordinate system). This is an indication that we may expect the existence of outward-
propagating ripples in front of the main pulse. (For smaller κ , v− becomes negative; this is an
indication of the existence of a dispersive tail trailing the main pulse). It is worth noting that
for large κ the group velocity of the oscillations is given in this frame of reference by

d

dκ
ω−(κ) = −cs − 1 +

1

2
κ2.

Thus, it exceeds the phase speed v−(κ) by 1
3κ2. (This can be observed in the evolution depicted

in figures 6(a) and (b), where a phase speed of 1.11 (in the original x, t frame of reference)
corresponding to κ = 3.55 gives a group velocity of 5.31, which would place the front of
the ripples at t = 40 at about x = 126, in approximate agreement with what is observed in
figure 6(b).)

To study the onset of the ripples, the integration was carried out on the much larger spatial
interval [−750, 750]. The symmetric KdV–KdV system (1.2) was integrated on this interval
using the evolution code with cubic splines and h = 0.1, k = 0.02. (We obtained qualitatively
similar results for the usual KdV–KdV system (1.1). However, as the emerging ripples for the
latter system are of smaller amplitude, the radiation phenomena are easier to describe in the
context of the symmetric system.) The initial conditions η0 and u0 were chosen as in [1, 8]
to provide approximately unidirectional profiles. (This enables one to dispense with much
cutting and cleaning. In addition, we observed that such one-way initial profiles produce
larger size ripples during their evolution, with consequent measurement advantages.) The
particular initial data taken were

η0(x) = φ(x), tqsu0(x) = φ(x) + 1
4φ2(x), (4.1)

where φ(x) = A sech2
(√

3A
2 x

)
is a solitary-wave solution of the KdV equation ut + ux +

3
2uux + 1

6uxxx = 0. When A = 0.6, the η-component of the numerical solution is shown for
t = 0(100)500 in the sequence of plots in figure 9.

The computation is of very good quality. The invariants∫ 750

−750
η dx = 1.788 854 382 00,

∫ 750

−750
u dx = 1.967 739 820 19,

∫ 750

−750
(u2 + η2) dx = 1.613 853 313 31

maintain the 11 digits shown up to t = 500. The waveform that emerges indeed moves mainly
to the right, shedding a tiny dispersive tail that trails the main pulse. It consists of two parts
travelling in both directions reflecting the fact that the system models two-way propagation.
Ripples of large size, of maximum amplitude a equal to about 0.03, appear at the front of the
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Figure 9. Evolution of the η-component of the solution, symmetric KdV–KdV system, initial
data (4.1), A = 0.6. The plots on the right are magnifications of those on the left. (a) t = 100,
(b) t = 200, (c) t = 300, (d) t = 400 and (e) t = 500.

main pulse and are radiated to the right. (They qualitatively resemble the ripples shown in
the figures of [6] and [4], where the unidirectional fifth-order KdV equation was integrated
numerically). By t = 300, the ripples have propagated through the boundary and are starting
to interact with the dispersive tail and the main pulse. (It is interesting to note that very small
ripples apparently emanate from the dispersive tail as well.)

As a result of the formation of large ripples, the amplitude of the main pulse clearly
decays, as in figure 10. The oscillations after about t = 300 are due to the interactions of
the ripples with the rest of the solution. Figure 11 shows a similar type of temporal decay
for the quantity Eη(t) := ∫

{x: η(x,t)>0.02} η2(x, t) dx, which approximates the ‘energy’, i.e. the
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Figure 10. Amplitude of the η-component of the solution as a function of t ; evolution of figure 9.
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Figure 11. ‘Energy’ Eη (——) and Eu (- - - -) of η and u of the main pulse as a function of t ;
evolution of figure 9.

square of the L2-norm of the elevation of the main pulse, as well as the decay of the analogous
‘energy’ functional Eu(t) = ∫

{x: η(x,t)>0.02} u2(x, t) dx of the u-component of the main pulse.

The analogous ‘energy’ of the ripples, defined as Erip(t) = ∫
{x: η(x,t)�0.02}(u

2 + η2) dx, is of
course increasing; its graph is shown as a function of t in figure 12.

As already mentioned, the KdV–KdV system (1.1) gives qualitatively similar results.
(Note that the correct one-way initial data for (1.1) are η0(x) = φ(x), u0(x) = φ − 1

4φ2.)
Table 1 shows, in the cases of a few experiments that were run for both systems, the values

of the amplitude A, the maximum value of the KdV solitary wave that we took as η0 and the
resulting observed approximate maximum amplitude a of the η-component of the ripples after
they have been fully established and before they have interacted with the rest of the solution
due to periodicity. Observe that for small initial amplitude A, the size of the emerging ripples
is extremely small, while the size of the ripples increases rapidly with A. (In the case of
the fifth-order KdV equation, asymptotic computations in [6] and [4], and also in [29], show
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Figure 12. ‘Energy’ of the ripples Erip as a function of t ; evolution of figure 9.

Table 1. Amplitude A of η0 and resulting maximum amplitude a of ripples; KdV–KdV system
(1.1) and symmetric KdV–KdV system (1.2).

A a (1.1) a (1.2)

0.2 2 × 10−5 6 × 10−5

0.3 0.0004 0.0009
0.4 0.0016 0.004
0.6 0.0086 0.027
0.8 0.022 0.08
1.0 0.042 0.14
1.2 Blow-up 0.2

that a decreases exponentially as A decreases.) For A � 1.2 the numerical solution of (1.1)
appeared to form a single-point blow-up singularity in finite time caused by the growth of
the negative excursion of the ripples which at some point becomes less than −1, drying the
channel locally and rendering the KdV–KdV models completely invalid. We cannot be certain,
using a uniform mesh evolution code, whether this is a numerical artefact or a property of the
solution of the problem. However, when the computations were repeated with smaller h and k

and quintic splines, blow-up occurred at about the same value of t . No blow-up was observed
in the case of the symmetric system (1.2) for the same ranges of A and temporal intervals of
integration, however.

In conclusion, on the basis of our numerical experiments, it is reasonable to conjecture
that in the case of the pure initial-value problem for the KdV–KdV systems, localized initial
conditions of finite L2-norm will resolve themselves, as time grows, into a principal structure
consisting of solitary-wave-like pulses and dispersive tails and another part consisting of
radiated, outgoing wavetrains of ripples. The main part of the solution will decay in amplitude
and eventually (although we did not reach that stage in our computations) all its energy will
be transferred to the ripples that will probably disperse as t → ∞.

5. Interactions and ‘stability’ of solitary-wave-like solutions of the KdV–KdV systems

Reported in this section are computational experiments performed to shed light on interaction
and ‘stability’ of solitary-wave-like solutions (radiating solitary waves and GSWs) of the
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Figure 13. Collision of ‘cleaned’ pulses of system (1.1); the η-profiles.

KdV–KdV systems (1.1) and (1.2). Such phenomena have been extensively studied for classical
solitary waves, by numerical and analytic techniques in the case of one-way models such as
the KdV or the BBM equation and their generalized analogs and by numerical means in the
case of other Boussinesq systems (cf, e.g. [2, 8, 12, 14, 20, 21, 28]). The aim is to describe what
happens in some analogous situations in the case of the KdV–KdV systems. For both systems
the results were qualitatively similar, so the outcome is reported for only one case.

5.1. Head-on collisions

The first configuration considered is interaction during a head-on collision of two radiating
solitary waves. We report two numerical experiments. Consider the system (1.1) with initial
values of the form η(x + 100) + η(x − 100) and u(x + 100) − u(x − 100), where η and u are
‘cleaned’ pulses obtained from a Gaussian as described in section 3. The evolution derived
from this starting point is shown in figure 13. Figure 14 shows a magnification of two profiles
of figure 13 that enable one to see some details of the interaction. As t grows, but still prior
to the interaction, tiny ripples appear in front and behind (due to periodicity) the main pulses,
as expected from the experiments of section 3. After the main pulses collide at about t = 92
and pass through each other, there is an interaction of the dispersive tails following the two
main pulses as they separate and an enlargement of the ripples in front of them (figure 14,
right).

Figure 15(a) shows the (total) amplitude of the solution as a function of t for this
experiment. During the interaction the amplitude rises to about 0.398 33, which is
approximately 5.21% above the sum of the amplitudes of the two initial pulses, and returns
to its previous value modulo small oscillations due to ripples. Figure 15(b) is a phase shift
diagram showing the paths in the x–t plane of the two main pulses. As in the case of collisions
of classical solitary waves, the main pulses are slightly delayed by the interaction.
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Figure 15. Total amplitude and phase shift diagram for the head-on collision of figure 13.

In another numerical experiment, we took as initial values for the system (1.1) the exact
GSWs of the KdV–KdV system obtained as solutions of the periodic two-point boundary-value
problem for the appropriate system of nonlinear ordinary differential equations that arise from
the KdV–KdV system upon making a travelling-wave assumption and which were analysed
in section 4 of [13]. As was pointed out in [13], the evolution code perfectly preserves the
GSWs as travelling-wave solutions. Figure 16 shows what happens when two such GSWs
collide. The spatial interval was taken to be [−50, 50] and the initial η profiles were centred
at x = ±20 and given opposite velocities. (The GSWs have speed 1.2, i.e. c = 0.2 in the
notation of section 4 of [13], and were constructed with half-period L = 50.) The simulation
of their temporal evolution was accomplished with cubic splines and h = 0.05, k = 0.01. The
features of the collision are basically the same as those shown in figure 13, but the oscillations
produced after the interactions are larger. Figure 17 shows the evolution of the total amplitude
of the solution and the phase shift diagram near the collision point. For this experiment, the
GSWs cease to be GSWs after the interaction and they apparently become radiating solitary
waves. Thus, they do not seem to be stable as GSWs under this interaction, in contrast to
what happens to classical solitary-wave solutions of one-way model equations or of other
Boussinesq systems.

5.2. Perturbations of initial GSWs

We pursue further the issue of ‘instability’ of GSWs for the KdV–KdV systems raised by the
previous experiment by studying computationally the evolution of slightly perturbed GSWs
of (1.1). It was seen, for example, in [20] that classical solitary waves of other Boussinesq
systems appear, in similar computational experiments, to be asymptotically stable. However,
it seems that GSWs become radiating solitary waves when subjected to small perturbations.
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Figure 16. Collision of two initially exact GSWs for system (1.1); η components.
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Figure 17. Total η amplitude versus time and phase shift diagram for the collision of the GSWs in
figure 16.

This is illustrated in numerical experiments in which we took as η0 and u0 a GSW pair for
the system (1.1) generated by solving the periodic two-point boundary-value problem for the
ordinary differential equations that result from the travelling-wave hypothesis. (These were
GSWs with speed cs = 1.2 (c = 0.2), constructed with L = 150.) The perturbed initial
data (η̃0, ũ0) were taken to be η̃0(x) = rη0(x) and ũ0(x) = u0(x), where r is a perturbation
parameter. Figure 18 shows the evolution in the case r = 1.05. The main pulse travels to
the right. As a result of the small perturbation, dispersive tails appear travelling to the left
and right, as expected from similar experiments in the case of classical solitary waves in [20].
In addition, new ripples of larger amplitude emerge mainly in front of the main pulse. They



2844 J L Bona et al

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

-150 -100 -50  0  50  100  150
-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

-150 -100 -50  0  50  100  150

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

-150 -100 -50  0  50  100  150

Figure 18. Evolution of a perturbed GSW for (1.1). Perturbation of η0(x), r = 1.05, t = 0, 20, 60.
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Figure 19. Evolution of the amplitude of the main pulse, figures 18 and 20. (a) r = 1.05,
(b) r = 1.5.

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

-150 -100 -50  0  50  100  150
-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

-150 -100 -50  0  50  100  150

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

-150 -100 -50  0  50  100  150

Figure 20. Evolution of a perturbed GSW for (1.1); η̃0(x) = rη0(x) with, r = 1.5, t = 0, 20, 60.

superimpose themselves on the dispersive tail as well. Figure 19(a) shows the evolution of the
amplitude of the main pulse. When the perturbation factor r grows to 1.5 (figures 20 and 21)
the emerging ripples in front of the main pulse become larger in amplitude. Figure 19(b) shows
the associated evolution of the amplitude of the larger main pulse as a function of time.
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Figure 21. Perspective view of the evolution of the perturbed GSW of (1.1) with r = 1.5.
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Figure 22. Resolution of a Gaussian; system (1.1), a0 = 1, (a) λ = 1/5 (t = 20), (b) λ = 1/15
(t = 30), (c) λ = 1/35 (t = 45).

5.3. Sequences of radiating solitary waves produced from general initial profiles

Another manifestation of the stability of classical solitary waves is the resolution property
of arbitrary, suitably decaying initial profiles into sequences of solitary waves plus dispersive
tails. This property has also been studied in detail by inverse scattering techniques in the case
of the KdV equation and by means of numerical experiments in a variety of non-integrable,
unidirectional equations and in Boussinesq systems, see, e.g. [12, 20, 28]. In the case of the



2846 J L Bona et al

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

-150 -100 -50  0  50  100  150
-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-150 -100 -50  0  50  100  150

(a) (b)

Figure 23. Resolution of a Gaussian; system (1.1), a0 = 1, λ = 1/25 (a) t = 40, (b) t = 100.
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Figure 24. Resolution of a Gaussian; system (1.2), a0 = 1, (a) λ = 1/5 (t = 10), (b) λ = 1/15
(t = 15), (c) λ = 1/35 (t = 15).

KdV–KdV systems, an example of the resolution of a Gaussian initial condition into radiating
solitary waves was already observed in section 3. Pursuing this issue further, we considered
the system (1.1) and took initial data of the form η0(x) = a0e−λx2

, u0(x) = 0 in [−150, 150].
With such initial conditions, it was observed that the initial profile resolves into leftward-
and rightward-travelling sequences of solitary-wave-like pulses whose number depends on
the parameters a0 and λ of the initial Gaussian, together with trailing dispersive tails, see
figures 22 and 23. In the beginning, ripples are radiated only in front of the front running
main pulses of each wavetrain. Subsequently, the whole profile is polluted by them due to
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periodicity, e.g. figure 23(b). A similar picture is obtained for the symmetric system (1.2),
albeit with larger ripples, see figure 24. When we took a larger amplitude a0 in the Gaussian
(for example, for a0 = 2) the numerical solution of (1.1) appeared to blow up in finite time. It
is uncertain whether this is a numerical or a real phenomenon. However, the experiment was
repeated with smaller mesh parameters h and k and blow-up was observed at the same time.
It is also relevant that no blow-up was observed for the symmetric KdV–KdV system (1.2) for
the same initial disturbances.
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