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Abstract. In this essay, we study the initial-value problem

ut + ux + g(u)x + Lut = 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,

}
(0.1)

where u = u(x, t) is a real-valued function, L is a Fourier multiplier operator
with real symbol α(ξ), say, and g is a smooth, real-valued function of a real
variable. Equations of this form arise as models of wave propagation in a
variety of physical contexts. Here, fundamental issues of local and global well-
posedness are established for Lp, Hs and bore-like or kink-like initial data. In

the special case where α(ξ) = |ξ|r wherein r > 1 and g(u) = 1

2
u2, (0.1) is

globally well-posed in time if s and r satisfy a simple algebraic relation.

1. Introduction and notation. The regularized long-wave equation or BBM-
equation

ut + ux + uux − uxxt = 0 (1.1)

was put forward by Peregrine (1966, 1967) and Benjamin et al. (1972) as an alterna-
tive model to the Korteweg-de Vries equation for small-amplitude, long wavelength
surface water waves. In the analysis following the derivation of (1.1), Benjamin
et al. (1972) proved (1.1) it to be globally well posed in the Sobolev class H1(R)
and in spaces such as Ckb (R) ∩Hs(R) provided s ≥ 1. Bona and Tzvetkov (2009)
recently showed that (1.1) is globally well-posed in L2(R) and that this result is
sharp in a certain sense.

The Benjamin-Ono equation

ut + ux + uux −Huxx = 0, (1.2)
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where H is the Hilbert transform, is a model equation derived by Benjamin (1967)
for a class of internal water waves. Just as the BBM-equation is an alternative to
KdV-equation, Kalisch and Bona (2000) remarked that the regularized Benjamin-
Ono equation

ut + ux + uux +Huxt = 0 (1.3)

is formally equivalent to the Benjamin-Ono equation (1.2) (and see the rigorous
theory in Albert and Bona 1991). They also showed that (1.3) is well-posed in
Hs(R) locally in time for s > 1

2 and globally in time for s ≥ 3
2 .

Notice that the symbols of the operators −∂2
x in (1.1) and H∂x in more recent

work (1.3) are |ξ|2 and |ξ|, respectively. It seems natural to inquire about the
initial-value problem

ut + ux + uux +Drut = 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,

}
(1.4)

where D = (−∂2
x)

1
2 and r ≥ 1. Well-posedness issues remain interesting for nonho-

mogenous symbols as well. Indeed, a considerable range of symbols arise in practice,
so well-posedness issues for the generalized class (0.1) are not just of mathematical
interest.

To state the main results of the present study, it is helpful to introduce our
notation, which is mostly standard.

For 1 ≤ r < ∞, Lr = Lr(R) connotes the rth-power Lebesgue-integrable func-
tions with the usual modification for the case r = ∞. The norm of a function
f ∈ Lr is written |f |r. The Sobolev class Hs = Hs(R) is the class of tempered

distributions whose Fourier transform f̂ is a measurable function such that

‖f‖2
s =

∫ ∞

−∞
(1 + |ξ|)2s|f̂(ξ)|2 dξ < +∞

where f̂(ξ) = 1√
2π

∫ ∞
−∞ f(x)e−ixξ dξ. Note that ‖f‖0 = |f |2 and the latter notation

will be preferred. If X is any Banach space and T > 0, C(0, T ;X) is the class of
continuous functions from [0, T ] into X with its usual norm

‖u‖C(0,T ;X) = max
0≤t≤T

‖u(t)‖X .

If S ⊂ X is a subset, then C(0, T ;S) is the collection of elements u in C(0, T ;X)
such that u(t) ∈ S for 0 ≤ t ≤ T . When T = ∞, C(0,∞;X) is a Fréchet space
with defining set of semi-norms

pn(u) = max
0≤t≤n

‖u(t)‖X , n = 1, 2, · · · .

The subspace Cb(0,∞;X) of elements of C(0,∞;X) which are uniformly bounded
is a Banach space with norm

‖u‖Cb(0,∞;X) = sup
t≥0

‖u(t)‖X .

The Banach space C1(0, T ;X) is the subspace of C(0, T ;X) for which the limit

u′(t) = lim
h→0

u(t+ h) − u(t)

h

exists in C(0, T ;X). It is equipped with the obvious norm. Inductively, one defines
Ck(0, T ;X) and, by analogy, Ck(0,∞;X) and Ckb (0,∞;X).

The notion of well-posedness in view is a standard one.
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Definition 1. An evolution equation

ut = Au, u(0) = u0

is said to be locally (in time) well-posed in a Banach space X if for any u0 ∈ X,
there is a positive number T such that the equation possesses a unique solution u
which lies in C(0, T ;X). Moreover, the solution u must depend continuously on
u0. That is to say, the mapping u0 7→ u from X to C(0, T ;X) must be continuous.
This correspondence is sometimes called the flow map. The evolution equation is
well-posed globally in time if T can be chosen arbitrarily large.

Here is a sample of the outcome of our investigation, stated in rough form.

Theorem 1.1. The initial-value problem (1.4) is locally well-posed in Hs if r and
s satisfy one of the following conditions:

(a) r ≥ 1 and s > 1
2 ;

(b) r > 5
4 and s > 1

4 ;

(c) r > 3
2 and s ≥ 0.

In addition, if r > 1 and s ≥ 1 − r
2 , then the well-posedness is global.

The plan for the remainder of the paper is the following. In Section 2, the pure
initial-value problem is converted into an integral equation. Local existence is then
established for this integral equation by an application of the contraction-mapping
principle in appropriate Lp-spaces. For a restricted class of the equations possessing
a local well-posedness theory, an a priori bound is derived that leads to global well
posedness. In Section 3, the same technique of contraction mapping is used to
give local well-posedness results in L2-based Sobolev spaces. The proof of global
well-posedness is inspired by the work of Bona and Tzvetkov (2009) concerned with
(1.1). In Section 4, bore-like initial data is countenanced, and similar theory is
derived in this case. The paper concludes with a brief summary and an interesting
further avenue that might be worth investigating.

2. Local well-posedness in Lp spaces.

2.1. Associated Integral Equation. The theory begins by converting the origi-
nal initial-value problem into an associated integral equation. For this, we operate
formally and consider afterward the issue of whether or not solutions of the integral
equation are indeed solutions of the initial-value problem.

Write the evolution equation (0.1) posed on all of R in the form

(I + L)ut(x, t) = −
(
u(x, t) + g(u(x, t))

)
x

(2.1)

and take the Fourier transform with respect to the spatial variable x. Denoting the
Fourier transform of u with respect to x by û, there appears the formal relation

(
1 + α(ξ)

)
ût(ξ, t) = −iξ

(
û(ξ, t) + ĝ(u)(ξ, t)

)
.

Dividing by 1 + α and taking the inverse Fourier transform leads to the integral
equation

ut(x, t) = K ∗
(
u+ g(u)

)
(x, t) (2.2)

where the kernel K is given as

K(x) =
1

2π

∫ ∞

−∞

−iξ
1 + α(ξ)

eixξ dξ
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or

K̂(ξ) =
−iξ√

2π
(
1 + α(ξ)

) .

Of course the convolution may have to be interpreted in the sense of tempered
distributions. A formal integration in the temporal variable then leads to the BBM-
type integral equation

u(x, t) = u0(x) +

∫ t

0

∫ ∞

−∞
K(x− y)

(
u(y, s) + g(u(y, s))

)
dy ds (2.3)

where u0(x) = u(x, 0) is the initial data. For classes of functions v : R× [0, T ] → R

to be delineated presently, let w = A(v) be the function obtained from v by replacing
u with v on the right-hand side of (2.3). The equation (2.3) then takes the form

u = A(u). (2.4)

In terms of the integral equation, a solution is thus seen to comprise a fixed point
of the nonlinear operator A.

2.2. Local well-posedness in Lp spaces. Assumptions on g and the symbol α
of L are now provided. As mentioned earlier, our goal is to work in relatively large
function spaces.

(H1) The function g : R → R is C1, g(0) = g′(0) = 0 and there is a p > 1 and a
constant C0 such that ∣∣1 + g′(z)

∣∣ ≤ C0(1 + |z|p−1)

for all z ∈ R. (The assumptions g(0) = g′(0) = 0 are innocuous; since g appears
only differentiated, the value g(0) is irrelevant. The value of g′(0) can be absorbed
into the linear convection term ux.)

(H2) The symbol α is a real-valued, even, continuous function, having the prop-

erty that the tempered distributionK whose Fourier transform is −iξ/
√

2π
(
1 + α(ξ)

)

is given by a measurable function lying in L1(R) ∩ Lr(R) for some r > 1.

Examples: If L = −∂2
x, then

K(x) =
1

2
sgn(x)e−|x|

as one ascertains by a direct calculation using the Residue Theorem (see Benjamin
et al. 1972). Clearly, this version of K satisfies (H2) for any positive value of r,
including r = +∞.

If L = Dr with r > 1 where D̂rh(ξ) = |ξ|rĥ(ξ), then

K(x) =
1√
2π

F−1
{ iξ

1 + |ξ|r
}

=
1

2π

∫ ∞

−∞

iξeixξ

1 + |ξ|r dξ = − 1

π

∫ ∞

0

ξ sin(xξ)

1 + ξr
dξ

where F connotes the Fourier transform in the spatial variable x and F−1 is its
inverse. It thus follows that K is odd and in particular K(0) = 0. For any x > 0,
integration by parts twice yields

K(x) = − 1

πx

∫ ∞

0

1 − (r − 1)ξr

(1 + ξr)2
cos(xξ) dξ

= − 1

πx2

∫ ∞

0

r(r + 1)ξr−1 − r(r − 1)ξ2r−1

(1 + ξr)3
sin (xξ) dξ.



REGULARIZED NONLINEAR DISPERSIVE WAVE EQUATIONS 1257

It is thereby concluded that K(x) = O(x−2) as x → ∞. On the other hand, for
x > 0, K(x) may also be represented in the form

K(x) = − 1

π

∫ 1
x

0

ξ sin(ξx)

1 + ξr
dξ − 1

π

∫ ∞

1
x

ξ sin(ξx)

1 + ξr
dξ

= − 1

π

∫ 1
x

0

ξ sin(ξx)

1 + ξr
dξ − 1

π

xr cos 1

x2(xr + 1)
− 1

πx

∫ ∞

1
x

1 − (r − 1)ξr

(1 + ξr)2
cos(xξ) dξ

= − 1

π

∫ 1
x

0

ξ sin(ξx)

1 + ξr
dξ − xr cos 1

πx2(xr + 1)
− xr

πx2

∫ ∞

1

xr − (r − 1)yr

(xr + yr)2
cos y dy.

It follows immediately that

|K(x)| ≤ 1

π

∫ 1
x

0

ξ2x

1 + ξr
dξ + xr−2(xr + 1) =

1

π

∫ 1

0

ξ2

x2−r(xr + ξr)
dξ + xr−2(xr + 1).

It is straightforward to see that

|K(x)| = O
(
xr−2

)

as x → 0. These considerations imply K ∈ L1 ∩ Lq for any q < 1/(2 − r) if r < 2,
whilst K ∈ L1

⋂
L∞ if r ≥ 2.

Here is a local existence result for (2.3).

Theorem 2.1. Consider the integral equation (2.3) and suppose the nonlinear func-
tion g and the integral kernel K satisfy hypotheses (H1) and (H2). Then (2.3) is
locally well-posed in Lq for any q with

q ≥ max
{
p,
r(p − 1)

r − 1

}
, (2.5)

where p and r are the values specified in (H1) and (H2). Moreover, the flow map
G : u0 7→ u, that associates to the initial data u0 the unique solution u, is C1.

Proof. It is shown that the operatorA in (2.4) is a contraction mapping ofC(0, T ;B)
for some T > 0, where B is a closed ball in Lq.

The condition on q in (2.5) implies that 1 < q/(q − p + 1) ≤ r, hence, K ∈
Lq/(q−p+1). For any u ∈ Lq, note that

|g(u) + u| =
∣∣∣
∫ 1

0

(
1 + g′(su)

)
ds u

∣∣∣ ≤ C0

(
|u| + |u|p

)
, (2.6)

where C0 is the constant appearing in (H1). By Young’s inequality,

|K ∗ (g(u) + u)|q ≤ C0

(
|K|1|u|q + |K|q/(q−p+1)|u|pq

)
, (2.7)

which is to say,

K ∗ (g(u) + u) ∈ Lq .

It follows that A maps C(0, T ;Lq) to itself, for any T > 0.
It is now shown that A is contractive on a suitable subset of C(0;T ;Lq) provided

T is well chosen. Specify the constants β and T by

β = 2|u0|q and T =
1

2C0(|K|1 + |K|q/(q−p+1)βp−1)
.

Define the space X to be

X = XT,β = C(0, T ;Bβ)



1258 JERRY L. BONA AND HONGQIU CHEN

where Bβ = {u ∈ Lq : |u|q ≤ β}. The set X is a complete metric space with the
distance d induced by the norm on C(0, T ;Lq). For any u ∈ X ,

d(Au, 0) = ‖Au‖X ≤ |u0|q + TC0

(
|K|1β + |K|q/(q−p+1)β

p
)
≤ β.

That is to say, A maps X to itself. Moreover, if u, v ∈ X, then∣∣∣K ∗
(
u− v + g(u) − g(v)

)∣∣∣
q

=
∣∣∣K ∗

∫ 1

0

(
1 + g′(v + s(u− v))

)
ds(u− v)

∣∣∣
q

≤
∣∣∣|K| ∗

∫ 1

0

C0(1 + |v + s(u− v)|p−1) ds|u− v|
∣∣∣
q

≤ C0

∫ 1

0

{
|K|1|u− v|q + |K|q/(q−p+1)|v + s(u− v)|p−1

q |u− v|q
}
ds

≤ C0

{
|K|1 + |K|q/(q−p+1)β

p−1
}
|u− v|q.

(2.8)

In consequence, it appears that
∣∣Au(·, t) −Av(·, t)

∣∣
q

=
∣∣∣
∫ t

0

K ∗
(
u(·, τ) − v(·, τ) + g(u(·, τ)) − g(v(·, τ))

)
dτ

∣∣∣
q

≤
∫ t

0

∣∣∣K ∗
(
u(·, τ) − v(·, τ) + g(u(·, τ)) − g(v(·, τ))

)
(·, τ)

∣∣∣
q
dτ

≤C0

∫ t

0

{
|K|1 + |K|q/(q−p+1)β

p−1
}
|u(·, τ) − v(·, τ)|q dτ.

Taking the maximum in this inequality for t ∈ [0, T ] yields

d(Au,Av) = ||Au−Av||X

≤C0T (|K|1 + |K|q/(q−p+1)β
p−1)||u− v||X ≤ 1

2
||u− v||X =

1

2
d(u, v). (2.9)

This, together with the fact that A maps X to itself, demonstrates that A is con-
tractive. The contraction mapping principle then comes to our rescue and existence
and uniqueness in C(0, T ;Lq) follow readily.

Define an operator B as

Bv =

∫ t

0

K ∗
(
v + g(v)

)
ds

(so that A and B are related by Av = u0 + Bv). A calculation shows B is Fréchet
differentiable and that for v, h ∈ C(0, T ;Lq),

B′(v)h =

∫ t

0

∫ ∞

−∞
K(x− y)

(
h+ g′(v)h

)
dy dτ =

∫ t

0

∫ ∞

−∞
K(x− y)

(
1+ g′(v)

)
h dy dτ.

For φ, ψ ∈ C(0, T ;Lq), define

H(φ, ψ) = ψ − φ− Bψ,
so that when φ = u0 and ψ = u where u is the fixed point of the operator A
corresponding to initial data u0, then

H(u0, u) = u− u0 − B(u) = u−Au = 0
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and

DψH(u0, u)h = h−
∫ t

0

∫ ∞

−∞
K(x− y)

(
1 + g′(u)

)
h dy dτ = h− B′(u)h.

Moreover, because of the choice of T and β, it is seen that

|B′(u)h|q =
∣∣∣
∫ t

0

∫ ∞

−∞
K(· − y)

(
1 + g′(u)

)
h dy dτ

∣∣∣
q

≤ T sup
0≤t≤T

|K ∗
(
(1 + g′(u)h

)
|q

≤ C0T sup
0≤t≤T

(
|K|1|h(·, t)|q + |K| q

q−p+1
|u(·, t)|p−1

q |h(·, t)|q
)

≤ C0T
(
|K|1 + |K| q

q−p+1
βp−1

)
‖h‖X

=
1

2
‖h‖X .

Hence, DψH(u0, u) = I −B′(u) is invertible and therefore, by the implicit function
theorem, the flow map G(u0) = u is a C1 map, and

Du0
u = −(I − B′(u))−1DφH(u0, u).

Corollary 1. If g ∈ Ck and g(j) is bounded by a polynomial of degree p − j for
j = 1, · · · , k, then the flow map u0 7→ u = G(u0) is a Ck-map from Lq to C(0, T ;Lq).
If g is a polynomial, then the flow map G is real analytic.

Proposition 1. (Temporal Regularity) Suppose g in (2.3) is a polynomial of degree
p. Then the solution u ∈ C∞(0, T ;Lq), or what is the same,

∂ku

∂tk
∈ C(0, T ;Lq)

for all k ≥ 0.

Proof. Because of Theorem 2.1, there is T > 0 such that u ∈ C(0, T ;Lq) is the fixed
point of the operator A as in (2.3).

Our earlier considerations have revealed that if v is defined to be

v(x, t) = K ∗
(
u+ g(u)

)
(x, t) ∈ C(0, T ;Lq),

then from (2.2),

u(x, t) = u0 +

∫ t

0

v(x, s) ds ∈ C1(0, T ;Lq).

Once u is known to lie in C1(0, T ;Lq), estimates which are by now familiar show
that v ∈ C1(0, T ;Lq) and that

utt = vt = K ∗
(
ut + g′(u)ut

)
. (2.10)

A straightforward induction now finishes the proof. Note that the formula for ∂kt u
is easily determined to be

∂kt u = K ∗
(
∂k−1
t u+ g′(u)∂k−1

t u+ · · ·
)
,

k = 1, 2 · · · , where all the terms under the convolution are composed of monomials
in u, ut, · · · , ∂k−1

t u of degree at most p.
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Another point worth mentioning is the smoothing associated with taking a tem-

poral derivative. Indeed, since ût = −iξ
1+α(ξ)

(
û+ ĝ(u)

)
, ut is smoother than u+ g(u)

if α grows super-linearly at infinity. For simplicity, let the nonlinear function g
be homogeneous, say g(z) = zp. For the dispersion α, suppose there is a positive
number s > 1 + p−1

q such that

lim inf
|ξ|→∞

α(ξ)

|ξ|s > 0.

Then, for any ǫ in the range [0, s− 1 − p−1
q ),

∣∣∣(1 + |ξ|)ǫût(ξ, t)
∣∣∣
q/(q−1)

=
∣∣∣ iξ(1 + |ξ|)ǫ

1 + α(ξ)

(
û(ξ, t) + ûp(ξ, t)

)∣∣∣
q/(q−1)

≤ γ1|û(·, t)|q/(q−1) + γ2|ûp(·, t)|q/(q−p)
≤ γ1|û(·, t)|q/(q−1) + γ2|û(·, t)|pq/(q−1)

where the numbers γ1 and γ2 are determined to be

γ1 = sup
ξ∈R

|ξ|(1 + |ξ|)ǫ
1 + α(ξ)

and γ
q

p−1

2 =

∫

R

( |ξ|(1 + |ξ|)ǫ
1 + α(ξ)

) q

p−1

dξ.

Thus, ut ∈ C
(
0, T ;W ǫ

q/(q−1)

)
where for r ≥ 1, W ǫ

r = {u ∈ Lr : (1+ ξ2)
ǫ
2 û ∈ Lr}. In

particular, for the original BBM-equation where s = 2 and p = 2, if the initial data
u0 ∈ L2, then the solution u ∈ C(0,∞;L2) as proved by Bona and Tzvetkov (2009).
In this case, it is concluded from the above ruminations that the time derivative ut
lies in C(0,∞;H1) and so is spatially smoother than u.

Proposition 2. (Spatial Regularity) Let u ∈ C(0, T ;Lq) be the solution whose ex-

istence is guaranteed in Theorem 2.1. Furthermore, suppose that u
(j)
0 ∈ Cb

⋂
Lq for

j = 1, 2, · · · , k. Presume also that g is polynomial of degree p. Then u ∈ C(0, T ;Ckb ∩
W k
q ). Moreover, the flow map G : u0 7→ u is continuous from u0 ∈ Ckb

⋂
W k
q to

u ∈ C(0, T ;Ckb ∩W k
q ).

Proof. The contraction mapping argument used to prove existence of solutions in
Lq is readily adapted to the space W k

q ∩ Ckb . It follows therefore that at least on

some, possibly shorter time interval [0, T ′], the solution u lies in C(0, T ′;W k
q ∩Ckb ).

It remains to see that we can take T ′ = T, which is to say, so long as the solution
remains in Lq, it must also lie in the smaller space W k

q ∩Ckb .
It suffices to provide a priori bounds on the relevant norms. These are derived

using the inequalities

|K ∗ (u1u2 · · ·up)|q ≤ |K| q

q−p+1
|u1|q · · · |up|q

and

|K ∗ (u1u2 · · ·up)|∞ ≤ |K| q

q−p+1
|u1|q · · · |up−1|q|up|∞.

The derivation of the relevant a priori bounds proceeds by induction on k. First,
note that by hypothesis (H1), (or indeed by the fact that g is a polynomial of degree
p that vanishes at the origin), there is a constantC such that |z+g(z)| ≤ C(|z|+|z|p)
for all z ∈ R. For k = 0, proceed as follows. If u0 ∈ Lq ∩ Cb, then since

u = u0 +

∫ t

0

K ∗
(
u+ g(u)

)
ds,
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it follows immediately that

|u(·, t)|∞ ≤ |u0|∞ + C

∫ t

0

(
|K|1|u(·, s)|∞ + |K| q

q−p+1
|u(·, s)|p−1

q |u(·, s)|∞
)
ds.

Thus, as long as |u(·, s)|q remains bounded, Gronwall’s Lemma provides the desired
L∞-bound.

If k = 1, argue as follows. Let v = ∂xu so that v satisfies the integral equation

v(x, t) = u′0(x) +

∫ t

0

K ∗
(
v + g′(u)v

)
ds.

Since |1 + g′(z)| ≤ C0(1 + |z|p−1) for all z ∈ R on account of Hypothesis (H1), it
follows that at least for 0 ≤ t ≤ T ′,

|v(·, t)|q ≤ |u′0|q + C0

∫ t

0

(
|K|1|v(·, s)|q + |K| q

q−p+1
|u(·, s)|p−1

q |v(·, s)|q
)
ds (2.11)

and

|v(·, t)|∞ ≤ |u′0|∞ + C0

∫ t

0

(
|K|1|v(·, s)|∞ + |K| q

q−p+1
|u(·, s)|p−1

q |v(·, s)|∞
)
ds.

(2.12)
Again, Gronwall’s Lemma comes to our rescue and the function v = ∂xu is seen to
possess an a priori bound as long as |u(·, s)|q remains bounded.

If k = 2, then if w = ∂2
xu, it follows that w satisfies the integral equation

w = u′′0 +

∫ t

0

K ∗
(
w + g′(u)w + g′′(u)v2

)
ds

where v = ∂xu as before. Since g′′ is a polynomial of degree p−2, there is a constant
C1 > 0 such that g′′(z) is bounded by C1(1 + |z|p−2) for any z ∈ R. As in (2.11)
and (2.12), one sees that

|w(·, t)|q ≤ |u′′0 |q+C0

∫ t

0

(
|K|1|w(·, s)|q + |K| q

q−p+1
|u(·, s)|p−1

q |w(·, s)|q
)
ds

+C1

∫ t

0

(
|K|1|v(·, s)|∞|v(·, s)|q + |K| q

q−p+1
|u(·, s)|p−2

q |v(·, s)|2q
)
ds

and

|w(·, t)|∞ ≤|u′′0 |∞ + C0

∫ t

0

(
|K|1|v(·, s)|∞ + |K| q

q−p+1
|u(·, s)|p−1

q |w(·, s)|∞
)
ds

+ C1

∫ t

0

(
|K|1|v(·, s)|2∞ + |K| q

q−p+1
|u(·, s)|p−2

q |v(·, s)|q |v(·, s)|∞
)
ds.

Since v is already known to lie in Lq ∩ Cb, the last two inequalities allow another
application of Gronwall’s Lemma and a priori bounds in W 2

q ∩ C2
b result.

A tedious, but straightforward induction concludes the proof of the proposition.

Remark: With a little more effort, one can show that the iteration starting at the
initial data u0

un+1 = Aun, n = 0, 1, 2, · · · ,
which is known to converge in C(0, T ;Lq), converges also in C(0, T ;W k

q ∩ Ckb ),
even though the mapping A need not to be contractive in this smaller space. For
example, suppose u0 ∈ W 1

q and let {un} be the sequence of iterates defined above.



1262 JERRY L. BONA AND HONGQIU CHEN

On the interval [0, T ], it is known that un → u in C(0, T ;Lq). Moreover, it follows
from the contraction mapping principle that there is a θ with 0 < θ < 1 such that

sup
0≤t≤T

|un+1(·, t) − un(·, t)|q ≤ Dθn, n = 1, 2, · · · , (2.13)

where D = |u0|q. Of course, un ∈ C(0, T ;W 1
q ), but it is not immediately clear that

un → u in C(0, T ;W 1
q ). However, if it is the case that

∞∑

n=0

sup
0≤t≤T

|vn+1(·, t) − vn(·, t)|q < +∞ (2.14)

where v = ∂xu as before, then {vn} is Cauchy in C(0, T ;Lq) and thus un → u in
C(0, T ;W 1

q ).
The boundedness of the sum in (2.14) will follow from the following inequality;

for n = 0, 1, · · · ,

|vn+1(·, t) − vn(·, t)|q ≤ C

∫ t

0

|K|1|vn(·, s) − vn−1(·, )|q ds

+ C

∫ t

0

|K| q

q−p+1

(
|un(·, s) − vn(·, s)|p−1

q |vn(·, s)|q

+ |un−1(·, s)|p−1
q |vn+1(·, s) − vn(·, s)|q

)
ds

where C is a constant independent of n of course. As it is already known from
Proposition 2.4 that ‖un‖C(0,T ;W 1

q ) ≤ M for all n, this inequality can be extended
to

|vn+1(·, t)−vn(·, t)|q ≤ A

∫ t

0

|vn(·, s)−vn−1(·, s)|q ds+B
∫ t

0

|un(·, s)−un−1(·, s)|q ds
(2.15)

where A and B depend only onM,C, and norms of the kernelK. For n = 0, 1, 2, · · · ,
define σn and τn by

σn = sup
0≤t≤T

|vn+1(·, t) − vn(·, t)|q

and

τn = sup
0≤t≤T

|un+1(·, t) − un(·, t)|q .

For 0 ≤ t ≤ T,

|v1(·, t) − v0(·, t)|q ≤ A|u′0|qt+Bτ1t,

|v2(·, t) − v1(·, t)|q ≤ A(A|u′0|q +Bτ1)
t2

2
+Bτ2t,

and, inductively, it is seen that

|vn+1(·, t) − vn(·, t)|q

≤An(A|u′0|q +Bτ1)
tn

n!
+An−1Bτ2

tn−1

(n− 1)!
+An−2Bτ3

tn−2

(n− 2)!
+ · · · +Bτn+1t,

for n = 2, 3, · · · . Taking the supremum of the last inequality for t ∈ [0, T ] yields

σn ≤ (A|u′0|q +Bτ1)
(AT )n

n!
+Bτ2

(AT )n−1

(n− 1)!
+Bτ3

(AT )n−2

(n− 2)!
+ · · · +Bτn+1T.
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Because of (2.13), it is readily deduced from this inequality that

∞∑

n=0

σn < +∞,

whence the desired conclusion. This argument is straightforwardly generalized to
the full setting W k

q ∩Ckb by induction on k.

Theorem 2.2. In Theorem 2.1, suppose that the relationship between r and p is
further restricted by requiring

r ≥ p+ 1

2
.

Then the integral equation (2.3) is locally well posed in L2 ∩ Lp+1, so, if the initial
data u0 ∈ L2 ∩ Lp+1, then there is a T > 0 such that (2.3) has an unique solution
u lying in C(0, T ;L2 ∩ Lp+1), and the mapping u0 7→ u is Lipschitz from the space
L2 ∩ Lp+1 to C(0, T ;L2 ∩ Lp+1). Moreover, its L2-norm is bounded by

|u(·, t)|22 ≤ eCt|u0|22 + 2

∫ t

0

eC(t−τ)|u(·, τ)|p+1
p+1 dτ,

where C = 2C0|K|1.

Proof. It is already understood that there is a unique solution u ∈ C(0, T ;Lq)
whenever q ≥ p + 1. The result at hand follows by arguments that are, by now,
familiar, from the inequality

|u(·, t)|2 ≤ |u0|2 +

∫ t

0

|K|1|u(·, s)|2 ds+ C

∫ t

0

|K| 2p+2

p+3

|u(·, s)|pp+1 ds.

Moreover, the sequence of iterates un+1 = Aun, n = 0, 1, · · · , starting anywhere in
the appropriate ball around the origin in Lp+1 also converges in C(0, T ;L2).

Lemma 1. Let u ∈ C(0, T ;L2 ∩ Lp+1) be a solution of (2.3). The functional
∫ ∞

−∞

(
F (u) +

1

2
u2

)
dx

is bounded and independent of t, where F is the primitive of g given by F (z) =∫ z
0 g(z) dz.

Proof. For smooth solutions, we have that

d

dt

∫ ∞

−∞

(
F (u(x, t)) +

1

2
u2(x, t)

)
dx

=

∫ ∞

−∞
(g(u) + u)ut dx

= −
∫ ∞

−∞
(g(u) + u)(I + L)−1∂x

(
g(u) + u

)
dx.

As (I+L)−1∂x is skew-adjoint, the right-hand side is obviously zero. For solutions in
the advertised class, the result follows from the regularity theory, the continuous de-
pendence of solutions on the initial data and density of, say,
D(R) in L2

⋂
Lp+1.
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Corollary 2. Let u ∈ C(0, T ;L2

⋂
Lp+1) be the solution in Lemma 1. If there is

a positive number γ such that the function F satisfies 2F (x) + x2 > γ(x2 + |x|p+1)
for all x ∈ R, then,

∫ ∞

−∞
(u2 + |u|p+1) dx ≤ 1

γ

∫ ∞

−∞
(2F (u) + u2) dx.

In consequence, the local existence result can be iterated to produce a solution u of
(2.3) which lies in C(0,∞;L2

⋂
Lp+1).

The next result is a special case of Theorem 2.1 and Corollary 2.7.

Corollary 3. Let p ≥ 1 be any integer. The generalized BBM-equation

ut + ux + up−1ux − uxxt = 0, x ∈ R, t > 0,

is locally well-posed in Lq for any q ≥ p. That is, if the initial data u(·, 0) = u0 ∈ Lq,
then there exists a positive number T = T (|u0|q) such that the above equation has
an unique solution u ∈ C(0, T ;Lq) which is continuously dependent on u0. If p ≥ 3
is an odd integer and the initial data u0 ∈ L2 ∩Lp+1, then the solution u is globally
defined and lies in Cb(0,∞;L2 ∩ Lp+1).

Remark: The issue of global solutions in L2∩Lp+1 remains open for even, positive
integers p. In the case p = 2, that is the BBM-equation (1.1), it is known that the
problem is globally well posed in L2 (see Bona and Tzvetkov 2009).

3. Initial data in L2-based Sobolev classes. In this section, attention is turned
to the initial-value problem (0.1) in the L2-based Sobolev spaces Hs. We discuss
a general relation between s, the properties of the dispersion relation α and the
nonlinearity g which guarantees well-posedness locally and globally in time. In a
special case when g is simply quadratic, g(u) = 1

2u
2 say, we are interested in how

small s can be and have well-posedness globally in time. The technique for the
latter analysis is based on theory developed in Bona and Tzvetkov (2009).

The following assumptions will be in force throughout this section.
(A1) g : R → R is a polynomial of degree p with g(0) = g′(0) = 0.
(A2) α : R → R is continuous, even, vanishing at zero, and there is an r ≥ 1 such

that

0 < γ0 = inf
ξ∈R

1 + α(ξ)

(1 + |ξ|)r ≤ sup
ξ∈R

1 + α(ξ)

(1 + |ξ|)r = γ̃ <∞.

Theorem 3.1. The initial value problem (0.1) is locally well-posed in Hs provided
that r, s and p satisfy any of the following three criteria:

(1) r ≥ 1 and s > 1
2 ;

(2) r > 3
2 − 1

2p and s > 1
2 − 1

2p ;

(3) r > 2 − 1
p and s > 1

2 − 1
p for p > 2 or s ≥ 0 for p = 2.

Proof. Take the Fourier transform in (0.1) with respect to the spatial variable x
and divide both sides of the outcome by 1 + α(ξ) to obtain

ût(ξ, t) =
−iξ

1 + α(ξ)

(
û(ξ, t) + ĝ(u)(ξ, t)

)
.

After an integration with respect to t, there appears

û(ξ, t) = û0(ξ) −
∫ t

0

iξ

1 + α(ξ)

(
û(ξ, τ) + ĝ(u)(ξ, τ)

)
dτ. (3.1)
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For any T > 0, define an operator A : C(0, T ;Hs) → C(0, T ;Hs) by

Âu(ξ, t) = û0(ξ) −
∫ t

0

iξ

1 + α(ξ)

(
û(ξ, τ) + ĝ(u)(ξ, τ)

)
dτ.

In case (1) where r ≥ 1 and s > 1
2 , g(u) ∈ Hs if u ∈ Hs since g is a polynomial

and Hs is a Banach algebra. In case (2), r > 3
2 − 1

2p and s > 1
2 − 1

2p , u ∈ Hs

implies uq ∈ Hs− 1
2
+ 1

2p for any q ≤ p and hence g(u) ∈ Hs− 1
2
+ 1

2p . Since α(ξ) has
the growth rate |ξ|r as ξ → ∞, in both cases (1) and (2), A is therefore seen to map
C(0,∞;Hs) to itself.

In case (3) where p = 2, r > 3
2 and s ≥ 0, if u ∈ Hs, then for any ξ ∈ R,

(1+|ξ|)s|û2(ξ)| ≤
(
(1+|·|)s|û|

)
∗
(
(1+|·|)s|û|

)
(ξ) ≤

∫ ∞

−∞
(1+|ξ|)2s|û(ξ)|2 dξ = ‖u‖2

s.

In case (3) where p ≥ 3, r > 2− 1
p and s > 1

2 − 1
p , let ǫ ∈ (0, s− 1

2 + 1
p )

⋂
(0, r−2+ 1

p )

be sufficiently small. Then, for any u ∈ Hs and ξ ∈ R,

(1 + |ξ|)s− 1
2
+ 1

p
−ǫ|ûp(ξ)| ≤

(
(1 + | · |)s− 1

2
+ 1

p
−ǫ|û|

)
∗ · · · ∗

(
(1 + | · |)s− 1

2
+ 1

p
−ǫ|û|

)
(ξ)

≤
{∫ ∞

−∞

(
(1 + |ξ|)s− 1

2
+ 1

p
−ǫ|û(ξ)|

) p
p−1

dξ
}p−1

≤
{∫ ∞

−∞
(1 + |ξ|)−1− 2pǫ

p−2 dξ
} p−2

2 ‖u‖ps.

The second inequality holds since |f1 ∗ · · · ∗ fp|∞ ≤ |f1|q|f2|q · · · |fp|q where q =
p/(p− 1). These relations in turn lead to the inequality
∫ ∞

−∞
(1+|ξ|)2s |iξ|2

(1 + α(ξ))2
|ûp(ξ)|2 dξ ≤ 1

γ2
0

∫ ∞

−∞
(1+|ξ|)2s−2r+2|ûp(ξ)|2 dξ ≤ C‖u‖2p

s ,

where γ0 is as in (A2) and C is a constant which need not be any larger than

1

γ2
0

(∫
(1 + |ξ|)−2r+3− 2

p
+2ǫ dξ

)(∫ ∞

−∞
(1 + |ξ|)−1− 2pǫ

p−2 dξ
)p−2

.

It is concluded that Au ∈ C(0,∞;Hs) if u ∈ C(0,∞;Hs) in both the situations
comprising case (3).

Following the steps laid out in the proof of Theorem 2.1, it can be shown that in
all three cases, when T > 0 is chosen sufficiently small, the operator A is contractive
in C(0, T ;B2‖u0‖s

), where B2‖u0‖s
= {u : u ∈ Hs, ‖u‖s ≤ 2‖u0‖s}. The contraction

mapping principle completes the proof.

Remark: It is worth noting that if u is a solution of (0.1) and u ∈ C(0, T ;H
r
2 ),

then the functional

∫ ∞

−∞

(
u2(x) + uLu(x)

)
dx =

∫ ∞

−∞
(1 + α(ξ))|û(ξ)|2 dξ

is independent of time. As a consequence, hypothesis (A2) implies that

‖u(·, t)‖2
r
2
≤ γ̃

γ0
‖u0‖2

r
2
. (3.2)
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Lemma 2. If u ∈ Hs where s > 1
2 , then for any integer p ≥ 2, up ∈ Hs and

‖up‖s ≤ C|û|p−1
1 ‖u‖s

where C > 0 is a constant dependent only on s and p.

Proof. Elementary considerations reveal that there is a constant c dependent only
on s ≥ 0 and p ≥ 1 such that

(1 + x1 + · · · + xp)
s ≤ c(1 + xs1 + · · · + xsp)

for all x1, x2, · · · , xp ≥ 0. It follows that

‖up‖2
s =

∫ ∞

−∞
(1 + |ξ|)2s|ûp(ξ)|2 dξ

=

∫ ∞

−∞
(1 + |ξ|)2s

∣∣û ∗ · · · ∗ û(ξ)
∣∣2 dξ

=

∫ ∞

−∞
· · ·

∫ ∞

−∞

(
1 + |ξ − ξ1 − · · · − ξp−1 + ξ1 + · · · + ξp−1|

)2s

∣∣û(ξ − ξ1 − · · · − ξp−1)û(ξ1) · · · û(ξp−1)
∣∣2 dξ1 · · · dξp−1 dξ

≤ c

∫ ∞

−∞
· · ·

∫ ∞

−∞

(
1 +

∣∣ξ − ξ1 − · · · − ξp−1

∣∣2s +
∣∣ξ1

∣∣2s · · · +
∣∣ξp−1

∣∣2s
)

∣∣∣û(ξ − ξ1 − · · · − ξp−1)û(ξ1) · · · û(ξp−1)

∣∣∣
2

dξ1 · · · dξp−1 dξ

≤ c
∣∣û ∗ · · · û

∣∣2
2

+ p c
∣∣D̂su ∗ û · · · û

∣∣2
2
.

Applying Young’s inequality to the right-hand side of the last inequality yields

‖up‖2
s ≤ c |û|2(p−1)

1 |û|22 + p c |û|2(p−1)
1 |D̂su|22 ≤ c (p+ 1)|û|2(p−1)

1 ‖u‖2
s,

thereby establishing the lemma.

Theorem 3.2. Suppose g satisfies (A1) and in (A2), r > 1. Then the initial-value
problem (0.1) is globally well-posed in Hs if s ≥ r

2 .

Proof. Since s ≥ r
2 satisfies all three conditions in Theorem 3.1, (0.1) is well-posed

locally in time and there is a T > 0 such that u ∈ C(0, T ;Hs). It remains to show
that T can be taken arbitrarily large.

In the case s = r
2 , The bound in formula (3.2) implies that the solution can be

extended from C(0, T ;Hs) to C(0,∞;Hs).
When s > r

2 , multiply both sides of (0.1) by 2(I + D)2s−ru(x, t) and integrate
over R with respect to x to obtain

2

∫ ∞

−∞

(
(I +D)2s−ru(x, t)

)(
(I + L)ut(x, t)

)
dx

= − 2

∫ ∞

−∞

(
(I +D)2s−ru(x, t)

)(
u(x, t) + (g(u))(x, t)

)
x
dx

= − 2

∫ ∞

−∞
iξ(1 + |ξ|)2s−r

(
|û(ξ, t)|2 + ¯̂u(ξ, t)ĝ(u)(ξ, t)

)
dξ

= − 2

∫ ∞

−∞
i(ξ(1 + |ξ|)2s−r ¯̂u(ξ, t)ĝ(u)(ξ, t) dξ.



REGULARIZED NONLINEAR DISPERSIVE WAVE EQUATIONS 1267

The last expression may be written as

d

dt

∫ ∞

−∞
(1 + α(ξ))(1 + |ξ|)2s−r |û(ξ, t)|2 dξ

≤2

∫ ∞

−∞
(1 + |ξ|)2s−r+1|û(ξ, t)||ĝ(u)(ξ, t)| dξ

≤2 ‖u(·, t)‖s‖g(u)‖s−r+1

≤2 ‖u(·, t)‖s‖g(u)‖s,
at least for smooth solutions. Since g is a polynomial of degree p satisfying (A1),
Lemma 2 implies that

d

dt

∫ ∞

−∞
(1 + α(ξ))(1 + |ξ|)2s−r|û(ξ, t)|2 dξ ≤ g̃(|û(·, t)|1)‖u(·, t)‖2

s

≤ c g̃(‖u(·, t)‖ r
2
)‖u(·, t)‖2

s

≤ c g̃
( γ̃

γ0
‖u0‖ r

2

)
‖u(·, t)‖2

s,

where g̃ is a polynomial of degree p− 1 with non-negative coefficients and c depends
only on r. Integrating the last inequality with respect to t, it follows that

∫ ∞

−∞
(1 + α(ξ))(1 + |ξ|)2s−r |û(ξ, t)|2 dξ ≤

∫ ∞

−∞
(1 + α(ξ))(1 + |ξ|)2s−r |û0(ξ)|2 dξ

+ C (‖u0‖ r
2
, g)

∫ t

0

‖u(·, τ)‖2
s dτ.

Applying (A2) again yields

γ0‖u(·, t)‖2
s ≤ γ1‖u0‖2

s + C (‖u0‖ r
2
, g)

∫ t

0

‖u(·, τ)‖2
s dτ.

By the Gronwall lemma, there are two constants c1 and c2 in which c1 is dependent
only on ‖u0‖s and c2 only on ‖u0‖ r

2
such that

‖u(·, t)‖s ≤ c1e
c2t.

This a priori bound allows us to iterate the local theory and achieve a globally
defined solution.

It is natural to wonder whether there is global well-posedness for values of s < r
2 .

If so, how small can s be and still maintain global well-posedness? We have results in
case g is quadratic. This result follows closely the argument in Bona and Tzvetkov
(2009).

Lemma 3. Consider the initial-value problem

vt + vx + vvx + Lvt = 0, x ∈ R, t > 0,

v(x, 0) = v0(x), x ∈ R.

}
(3.3)

If
(i) r ≥ 1 in hypothesis (A2) and s > 1

2 , or

(ii) r > 5
4 , and s > 1

4 , or

(iii) r > 3
2 and s ≥ 0,

then, for any T > 0, there is an ǫ = ǫ(T ) > 0 such that if v0 ∈ Hs and ‖v0‖s ≤ ǫ,
then v exists and lies in C(0, T ′;Hs) with T ′ ≥ T.
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Proof. The well-posedness of (3.3) in Hs locally in time is proved in Theorem 3.1
for all three cases. It remains to show how the time interval of existence depends
on the magnitude of the initial data. Apply the operator 2(I+D)2s−r to both sides
of (3.3) and integrate the result over R. This leads to the formula

d

dt

∫ ∞

−∞
(I +D)2s−rv(x, t) (I + L)v(x, t) dx = −

∫ ∞

−∞
(I +D)2s−rv(x, t)(v2(x, t))x dx

= −
∫ ∞

−∞
iξ(1 + |ξ|)2s−r ¯̂v(ξ, t)v̂2(ξ, t) dξ.

Notice that the term ∫ ∞

−∞
vx(x, t)(I +D)2s−rv(x, t) dx

that should apparently appear vanishes since (I +D)2s−r is self-adjoint and ∂x is
skew-adjoint. It follows that

d

dt

∫ ∞

−∞
(I +D)2s−rv(x, t)(I +L)v(x, t) dx ≤

∫ ∞

−∞
(1 + |ξ|)2s−r+1|v̂(ξ, t)||v̂2(ξ, t)| dξ.

(3.4)
The argument given in the proof of Theorem 3.1, in all of the three cases (i), (ii) and
(iii), shows the right-hand side of the last inequality to be bounded by c ‖v(·, t)‖3

s

where c = c(s, r) is a positive constant depending only on s and r. That is,

d

dt

∫ ∞

−∞
(I +D)2s−rv(x, t)(I + L)v2(x, t) dξ ≤ c ‖v(·, t)‖3

s.

Define z(t) to be the non-negative quantity

z(t) =
( ∫ ∞

−∞
(I +D)2s−rv(x, t) (I + L)v(x, t) dx

) 1
2

.

Because of condition (A2) on the symbol α of the dispersion operator L, z(t) is
equivalent to ‖v(·, t)‖s; indeed, because of (A2),

√
γ0‖v(·, t)‖s ≤ z(t) ≤

√
γ̃‖v(·, t)‖s.

In consequence, (3.4) can be extended to

d

dt
z2(t) ≤ c ‖v(·, t)‖3

s ≤
c√
γ3
0

z3(t).

Solving this differential inequality for an upper bound, it is determined that

z(t) ≤ z(0)

1 − c

2
√
γ3
0

z(0)t

at least as long as t < 2
√
γ3
0/cz(0). It thus follows that if we choose

ǫ(T ) =

√
γ3
0√

γ̃cT
,

then z(t) ≤ 2z(0) for 0 ≤ t ≤ T. Using hypothesis (A2), the latter inequality may
be extended to

‖v(·, t)‖s ≤ 2

√
γ̃√
γ0

‖v0‖s

provided 0 ≤ t ≤ T. The result follows.
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Lemma 4. Let v ∈ C(0, T ;Hs) be the solution of (3.3) obtained in Lemma 3.
Consider the initial-value problem

wt + wx +
1

2
(2vw + w2)x + Lwt = 0, x ∈ R, t > 0,

w(x, 0) = w0(x), x ∈ R.



 (3.5)

If s ≥ 1 − r
2 , then (3.5) is locally well-posed in H

r
2 . Moreover, the solution lies in

C(0, T ;H
r
2 ) on any time interval [0, T ] for which v exists.

Proof. As before, (3.5) can be converted to an integral equation, viz.

w(x, t) = w0(x) +
1

2

∫ t

0

K ∗ (2w + 2vw + w2)(x, τ) dτ

where the convolution kernelK is defined as before via its Fourier transform, K̂(ξ) =
−iξ√

2π(1+α(ξ))
. Define an operator A by

Aw(x, t) = w0(x) +
1

2

∫ t

0

K ∗ (2w + 2vw + w2)(x, τ) dτ

for w ∈ C(0, T ;H
r
2 ). Since r

2 > 1
2 , it is straightforward to see that K ∗ w and

K ∗ (w2) lie H
r
2 if w ∈ H

r
2 . Likewise, it is not hard to verify that vw ∈ Hs if

v ∈ Hs and w ∈ H
r
2 since s < r

2 . It follows that K ∗ (vw) ∈ Hr+s−1 ⊂ H
r
2 if

s ≥ 1 − r
2 . Therefore, the operator A maps the space C(0, T ;H

r
2 ) to itself. Just

as in the proof of Theorem 2.1, when T ′ < T is chosen sufficiently small, A is a
contraction mapping of a suitable ball about zero in C(0, T ′;H

r
2 ). That is to say,

(3.5) is locally well-posed in H
r
2 .

It remains to extend the time interval from [0, T ′] to [0, T ]. An a priori bound
together with the local well-posedness suffices to establish this fact. Multiply both
sides of (3.5) by 2w and integrate with respect to x over R; after integration by
parts, there appears

d

dt

∫ ∞

−∞
w(x, t)(I + L)w(x, t) dx = −

∫ ∞

−∞
vx(x, t)w

2(x, t) dx

≤
∫ ∞

−∞
|ξ||v̂(ξ, t)| |ŵ2(ξ, t)| dx

≤
∣∣|ξ|sv̂(·, t)

∣∣
2

∣∣|ξ|1−sŵ2(·, t)
∣∣
2

≤ c ‖v(·, t)‖s‖w(·, t)‖2
r
2

where c is a constant dependent only on r. Integration with respect to t gives
∫ ∞

−∞
(1+α(ξ))|ŵ(ξ, t)|2 dξ ≤

∫ ∞

−∞
(1+α(ξ))|ŵ0(ξ)|2 dξ+c

∫ t

0

‖v(·, τ)‖s‖w(·, τ)‖2
r
2
dτ,

which may be extended to

‖w(·, t)‖2
r
2
≤ γ̃

γ0
‖w0‖2

r
2

+
c

γ0

∫ t

0

‖v(·, τ)‖s‖w(·, τ)‖2
r
2
dτ

on account of (A2). Since v ∈ C(0, T ;Hs), |v(·, t)|2 is well defined for 0 ≤ t ≤ T.
Gronwall’s lemma thus indicates that

‖w(·, t)‖2
r
2
≤ γ̃

γ0
‖w0‖2

r
2

exp
( c

γ0

∫ t

0

‖v(·, τ)‖s dτ
)
.

The proof is complete.



1270 JERRY L. BONA AND HONGQIU CHEN

Combining the last two lemmas leads to the following conclusion.

Theorem 3.3. Let r > 1 and s satisfy any one of the three conditions enunciated
Theorem 3.1. In addition, suppose g(u) = 1

2u
2 and s+ r

2 ≥ 1. Then, the initial-value
problem (0.1) is globally well-posed in Hs.

Proof. If s ≥ r
2 , the global well-posedness is guaranteed by Theorem 3.2. It thus

suffices to consider the case where 1 − r
2 ≤ s < r

2 .
Let T > 0 be arbitrary and let ǫ = ǫ(T ) be the small positive number whose

existence is guaranteed by Lemma 3. Since H
r
2 is dense in Hs, there is φǫ ∈ H

r
2

such that ‖φǫ− u0‖s ≤ ǫ. Then Lemma 3 guarantees that the initial-value problem

vt + vx + vvx + Lvt = 0, x ∈ R, t > 0,

v(x, 0) = u0 − φǫ, x ∈ R

}
(3.6)

has a unique solution v ∈ C(0, T ;Hs).
Now, consider the Cauchy problem

wt + wx +
1

2
(2vw + w2)x + Lwt = 0, x ∈ R, t > 0,

w(x, 0) = φǫ(x), x ∈ R,



 (3.7)

where v is the solution of (3.6). Note that since φǫ ∈ H
r
2 , Lemma 4 implies that

(3.7) has a unique solution w ∈ C(0;T ;H
r
2 ). It is straightforward to verify that

u = v + w ∈ C(0, T ;Hs) solves the original problem,

ut + ux + uux + Lut = 0, x ∈ R, t > 0,

u(x, 0) = u0, x ∈ R.

}
(3.8)

Since T > 0 was arbitrary, local well-posedness together with existence on [0, T ] for
any T establishes the result.

4. Bore-like initial data. The theory developed in Sections 2 and 3 concentrated
on initial wave profiles that decay to zero at ±∞, at least in a weak sense. Attention
is turned now to initial data that possesses different asymptotic states at +∞ and
−∞. In the water wave context, this corresponds to bore propagation in field situ-
ations (see Peregrine 1966, 1967) and hydraulic surges in laboratory configurations.
In other physical systems, such data is generated when a signal corresponding to a
surge moves into an undisturbed stretch of the medium of propagation. Theoretical
work on the bore problem in the context of the BBM-equation was initiated by
Benjamin et al. (1972) (see also the papers of Bona and Schonbek 1985 and Bona,
Rajopadhye and Schonbek 1994, where further theory was developed for both the
BBM and the Korteweg-de Vries equations).

In the present contribution, the assumptions on the initial data are weakened
and the theory is extended to the broader class of models featured in (0.1).

The mathematical problem amounts to being confronted with the prospect of
solutions u = u(x, t) satisfying the boundary conditions

lim
x→−∞

u(x, t) = 1, lim
x→+∞

u(x, t) = 0, (4.1)

say. The question is, if the initial disturbance is bore-shaped, will the wave evolve
in a bore-like pattern? If so, how long will this pattern last? Bona, Rajopadhye and
Schonbek (1994) showed that the BBM-equation with bore-like initial data as in
(4.1) is globally well posed and that the solution maintains the boundary behavior
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(4.1) for all time. In this section, the generalized BBM-type model equations (0.1)
will be discussed in the bore context.

Consider the initial-value problem

ut + ux + g(u)x + Lut = 0,

u(x, 0) = u0(x),

}
(4.2)

where the operator L and nonlinear function g are as described in Section 2 and
the initial data u0 satisfies the bore condition (4.1). Following the technique used
by Bona, Rajopadhye and Schonbek (1994), u0 can be decomposed into the sum of
two parts v0 and φ, say, where φ ∈ C∞(R) satisfies the bore condition (4.1) and its
derivative φ′ lies in H∞, and v0 is a measurable function on R whose smoothness
is determined by the smoothness of u0.

Introduce a new variable v = v(x, t) by u(x, t) = v(x, t)+φ(x). Upon substitution
of this form into (4.2), there emerges the initial-value problem

(I + L)vt + vx +
(
g(v + φ) − g(φ)

)
x

= −
(
1 + g′(φ)

)
φ′

v(x, 0) = v0

}
(4.3)

for v. Inverting the operator I +L and then integrating with respect to t over [0, t]
leads to the integral equation

v = v0 +

∫ t

0

K ∗ {v + g(v + φ) − g(φ)}(·, τ) dτ + tM ∗
(
1 + g′(φ)

)
φ′ (4.4)

where the integral kernels K and M are determined via their Fourier symbols, viz.

K̂(ξ) =
−iξ√

2π (1 + α(ξ))
and M̂(ξ) =

−1√
2π (1 + α(ξ))

,

respectively. The following result is the analog in the bore context of Theorem 2.1.

Theorem 4.1. Suppose the nonlinear function g and the integral kernel K satisfy
hypotheses (H1) and (H2) in Section 2. Moreover, suppose that

inf
ξ∈R

α(ξ) > −1 and lim inf
|ξ|→∞

α(ξ)

1 + |ξ| > 0.

Then, for any q such that

q ≥ max
{
p,
r(p − 1)

r − 1

}
,

if v0 ∈ Lq, then there is a positive number T = T (|φ|∞, |φ′|q) > 0 such that the
integral equation (4.4) has an unique solution v ∈ C(0, T ;Lq) and, moreover, the
mapping v0 7→ v is continuous from Lq to C(0, T ;Lq).

Proof. For any v ∈ C(0,∞;Lq), modify the definition of the operator A in Section
2 as follows:

Av = v0 + tM ∗
((

1 + g′(φ)
)
φ′

)
+

∫ t

0

K ∗
{
v + g(v + φ) − g(φ)

}
dτ. (4.5)

It is sufficient to prove that A has a fixed point in C(0, T ;Lq) for some T > 0. Note
as before that for any v ∈ Lq,

v + g(v + φ) − g(φ) =

∫ 1

0

(
1 + g′(φ+ sv)

)
ds v.
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In consequence, it follows that

|K ∗
(
v + g(v + φ) − g(φ)

)
|q ≤C0

∣∣∣|K| ∗
((

1 +
(
|φ| + |v|

)p−1)|v|
)∣∣∣
q

≤C1

∣∣∣|K| ∗
((

1 + |φ|p−1 + |v|p−1
)
|v|

)∣∣∣
q

where C1 is a constant only dependent on p. Applying Young’s inequality yields

|K ∗
(
v + g(v + φ) − g(φ)

)
|q ≤ C1(1 + |φ|p−1

∞ )|K|1|v|q + C1|K|q/(q+1−p)|v|pq .
Hence, it is seen that

K ∗
(
v + g(v + φ) − g(φ)

)
∈ Lq.

Since φ ∈ C∞
b , φ′ ∈ H∞, g is a C1-function and the operator M is defined by

its Fourier symbol −1/
(√

2π(1 + α(ξ))
)

where α has the growth property just de-
scribed, it follows that

M ∗
((

1 + g′(φ)
)
φ′

)
∈ H1 ⊂ Lq

because ∫ ∞

−∞
(1 + |ξ|)2

∣∣∣F
(
M ∗

(
(1 + g′(φ))φ′

))
(ξ)

∣∣∣
2

dξ

=

∫ ∞

−∞

(1 + |ξ|)2
(1 + α(ξ))2

∣∣∣F
(
(1 + g′(φ))φ′

)
(ξ)

∣∣∣
2

dξ <∞.

So, the operator A maps C(0,∞;Lq) to itself. Let Bβ be, as before, the closed ball
of radius β > 0 centered at the origin in Lq. For any v, w ∈ C(0,∞;Lq),

Av(·, t) −Aw(·, t) =

∫ t

0

K ∗ {v − w + g(v + φ) − g(w + φ)}(·, τ) dτ.

Hence, if v, w ∈ C(0,∞;Bβ), then Young’s inequality yields

|Av(·, t) −Aw(·, t)|q ≤ C

∫ t

0

(
1 + (|φ|∞ + β)p−1

)
|v(·, τ) − w(·, τ)|q dτ (4.6)

where the constant C may be taken to be

C = C0 max
0≤j≤p−1

{|K|q/(q−j)}.

Following the line of argument laid down in the proof of Theorem 2.1, choose

β = 2|v0|q + 2
∣∣∣M ∗

((
1 + g′(φ)

)
φ′

)∣∣∣
q

and
T = min

{
1, 1/

(
2C(|φ|∞ + β)p−1

)}
.

The operator A is then contractive on C(0, T ;Bβ) and the stated results follow
directly.

Theorem 4.2. (Regularity) Let v ∈ C(0, T ;Lq) be the solution in Theorem 4.1 In

addition, suppose for some k ≥ 1, the nonlinear function g ∈ Ck and g(k) is bounded
by a polynomial of degree less than or equal to p− k. Then for j = 1, · · · , k,

∂jv

∂tj
∈ C(0, T ;Lq).

Proof. The proof is virtually the same as the proof of Proposition 1 in Section 2,
and so is omitted.
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The following further regularity result is the analog of Proposition 2. As the
proof is entirely similar, it is also omitted.

Theorem 4.3. (Regularity) Let v ∈ C(0, T ;Lq) be the solution of (4.4) obtained

in Theorem 4.1. Suppose in addition that for some k ≥ 1, v0 ∈ Ck−1
b and g ∈ Ck

and its jth derivative g(j) is bounded by a polynomial of degree less than or equal to
p− j for j = 1, 2, · · · , k. Then v ∈ C(0, T ;Ck−1

b ∩W k−1
q ).

Proposition 3. In the above Theorem, if p = 2n − 1 > 1 is an odd integer and
there are two positive numbers γ1 and γ2 such that the nonlinear function g(z) ≥
(γ1−1)z+2nγ2z

2n−1 for all z ≥ 0, then the equation (4.4) is well-posed in L2∩L2n

globally in time, in the sense that for any initial data v0 ∈ L2 ∩ L2n and T̄ > 0,
there is a unique solution v lying in C(0, T̄ ;L2 ∩ L2n).

Proof. Theorem 4.1 guarantees that there is T > 0 such that (4.4) has a unique
solution v ∈ C(0, T ;L2n). As in the proof of Theorem 2.4, it can be shown that v
also lies in C(0, T ;L2). It is sufficient to show that the solution can be extended to
times that are arbitrarily large.

To this end, let F (z) =
∫ z
0
g(z) dz be the primitive of g as before. Because of

hypothesis (H2) and the restriction on g, it is easily deduced that for some positive
constants γ1 and γ2, F (z) ≥ 1

2 (γ1 − 1)z2 + γ2z
2n. Define a functional I by

I(v) =

∫ ∞

−∞

(1

2
v2 + F (v)

)
dx.

If v is a solution of (4.4), then formally,

d

dt
I(v) =

∫ ∞

−∞
(v + g(v)) vt dx

=

∫ ∞

−∞

(
v + g(v)

)(
K ∗ (v + g(v)

)
+M ∗ (1 + g′(φ))φ′

)
dx

=

∫ ∞

−∞

(
v + g(v)

)(
M ∗ (1 + g′(φ))φ′

)
dx

≤ C0

∣∣M ∗ (1 + g′(φ))φ′
∣∣
2
|v|2 + C0

∣∣M ∗ (1 + g′(φ))φ′
∣∣
p+1

|v|pp+1

≤ C1(|v|22 + |v|p2n) + C2

≤ γ̄I(v) + C2,

where C1 and C2 are positive constants dependent only on the quantities |φ|∞,
‖φ′‖1 and γ̄ = C1/min{ 1

2γ1, γ2}. As before, this formal calculation is justified by
the regularity theory combined with the continuous dependence result. A Gronwall-
type argument then shows that for any t > 0,

I(v(·, t)) ≤ I(u0)e
γ1t +

C2

γ1
(eγ1t − 1).

This means that on any time interval [0, T̄ ], the L2- and L2n-norm of the solution
v is finite. The standard extension argument then completes the proof.

Corollary 4. For the generalized BBM-equation

ut + ux + u2n−2ux − uxxt = 0,

where n ≥ 2, if the initial data u0 = v0 +φ where φ is an infinitely smooth bore and
v0 ∈ L2∩L2n, then there is a unique solution u = v+φ where v ∈ C(0,∞;L2∩L2n)
which depends continuously on v0.
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5. Conclusion. A satisfactory theory of local and global well-posedness has been
put forward for the initial-value problems

ut + ux + g(u)x + Lut = 0,

u(x, 0) = u0(x)

}
(5.1)

for generalized BBM-equations. Similar issues for KdV-type equations

vt + vx + g(u)x − Lvx = 0

v(x, 0) = v0(x)

}
(5.2)

have also attracted attentions (see Saut 1979). Results have been obtained both for
initial data u0(x) that evanesces as x→ ±∞ and bore-like data.

An interesting issue not covered by the present developments is the so-called
‘wavemaker’, ‘quarter-plane’ or ‘half-line’ problem,

ut + ux + g(u)x + Lut = 0, x, t ≥ 0,

u(x, 0) = u0(x), x ≥ 0,

u(0, t) = h(t), t ≥ 0.





(5.3)

Theory for this problem for the BBM-equation itself was initiated by Bona and
Bryant (1973), and has seen further development for more general nonlinearities
(see Bona and Luo 1995). However, it remains an interesting question to provide
theory for the initial-boundary-value problem (5.3) in case L is a non-local operator.
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